BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY A KOMUNIKACNICH TECHNOLOGIi

DEPARTMENT OF TELECOMMUNICATIONS
USTAV TELEKOMUNICACI

DEVELOPMENT OF A PEER-TO-PEER (P2P) SYSTEM
BASED ON BLOCKCHAIN WITH THE AIM OF ENERGY-
TRADE NETWORKS

TERM PROJECT
SEMESTRALNI PROJEKT

AUTHOR LUIS VICENTE ARNAO
AUTOR PRACE

SUPERVISOR Ing. RADEK FUJDIAK, Ph.D.
VEDOUCI PRACE

BRNO 2020

Abstract

The emergence of Artificial Intelligence (AI), Big Data and new Peer-to-Peer (P2P) net-
works based on Blockchain systems and technologies are reshaping our world. While the
new technological revolution improves the quality of our life, new concerns are triggered.
Based on Blockchain systems and their increasingly massive implementation in (mostly)
testing systems, this work will try to provide as generic a solution as possible for the test
of this kind of networks.

To do this, I have firstly searched lots of papers and a few courses to understand correctly
the Blockchain technology (part of the DLTs, the Distributed Ledger Technologies). After
this theoretical introduction, I tried a few incomplete projects in different languages to
decide which do language I prefer. There are so many codes in C++, Python and Java but
it is often mixed a few languages on the same project as it was said, there are incomplete
codes.

Finally, the project developed is a Blockchain system realized in different modules so it can
be easier to get the parts you want in your project starting from mine.

I really hope this project and the literature I recommend helps you to start in the Blockchain
world if you finally decide so. Don’t hesitate to ask me by Linked In or any preferred way
about doubts.

Keywords

Blockchain, P2P, Peer-to-peer, DLT, Distributed Ledger Technologies, Energy, Electricity,
Energy-trade, Electricity-trade, Network, Project code, Python language

Reference

VICENTE ARNAO, Luis. Development of a peer-to-peer (P2P) system based on Blockchain
with the aim of energy-trade networks. Brno, 2020. Term project. Brno University of
Technology, Faculty of Electrical Engineering and Communication. Supervisor Ing. Radek
Fujdiak, Ph.D.

Development of a peer-to-peer (P2P) system based
on Blockchain with the aim of energy-trade net-
works

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the au-
thor under the supervision of Mr.Radek Fujdiak. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Luis Vicente Arnao
June 29, 2020

Acknowledgements

I take this opportunity to express gratitude to all the people that supported me to carry on
with my studies and help me to grow up. First, thank you to the unconditional love and
support brought by my family (specially my mother, grandparents and uncles) so important
in my life. Thanks a lot, to my friends and classmates for helping me to improve and learn
every single day. I also place on record, my sense of gratitude to one and all the teachers
and researcher who directly or indirectly have helped, taught and motivated me.

Contents

1 Introduction

2 Prior analysis

2.1 Distributed Ledger Technologies

2.2 Blockchain networks . .
2.3 Energy trading networks

2.4 Public key and elliptic curve cryptography

2.5 State of the art analysis

3 Project development
3.1 Libraries utilized
3.2 Explanation of my code

3.2.1 Dblockchain_client.py o
3.2.2 blockchain_client_generator.py

3.2.3 Dblockchain.py . .
3.3 Experimental validation

4 Conclusions summary
5 List of lists

Bibliography

SRS IS IS TN

13
14
22
23
26
27
34

44

46

48

Chapter 1: Introduction

Satoshi Nakamoto published on November 2008 the White Paper [13] who originated the
Bitcoin. After this milestone, Blockchain technologies and cryptocurrencies has been re-
lentlessly developed due to its potential power.

First, everyone interested on this technology should understand that a Blockchain is
simply a chain of blocks, a string of packets, that builds trust through some special cyber-
security attributes explained below. Due to this, the Blockchain technologies can save time
and costs besides improve the security if the nodes can rule with these algorithms to be
active part of the network.

One of the most important problems is that this hype around this topic pushed lots
of people write codes and papers about it without making a clear difference between dis-
tributed ledger technologies (DLT), Blockchain and cryptocurrencies (In example, Bitcoin
or Ethereum). Example of this are some really useful courses given by some of the most
prestigious entities like Berkeley University [10] or the Linux Foundation [5] whereof I per-
sonally recommend the first one.

In this thesis, I am going to focus on the Blockchain to explain the components of mine
(on the literature are some papers and two books [2] that explain it more deeply) and create
a Blockchain (chain of blocks using DLT using P2P) network step by step. This network
will be coded in Python 3 with the idea of trade electricity and to be implemented over a
Raspberry Pi network. This means that the nodes on the network (computers or raspis)
are clients of an electric system that generate/consume electricity.

Motivation and objectives

There are so many students (and researchers) like me interested on the Blockchain topic.
This thesis should be an introduction to this deep world to every person interested on how
it works and how to build a Blockchain network “for dummies”.

Following this line, it is going to be expound theoretically the main parts of a Blockchain
network to be able to explain the development of my project. After these two steps,
every reader should be able to develop their own network if desired or at least, understand
correctly this trendy technology.

In the introduction, it was told that this Blockchain networks bring some security at-
tributes that can be the optimal option in some scenarios. These attributes are: immutabil-
ity (once the network verifies or mines a block, this transaction is saved and nobody should
be able to destroy it), transparent (every node or participant in the network is visible
to the rest of them and can be consulted so every node has access to all the transaction
data), secure (the confidence on the process of creation of new blocks comes directly from
the distributed algorithm used to it that makes impossible an unauthorized access to the
Blockchain), consensus-based (enough relevant network participants must agree a trans-
action, the propagation of the transactions is paramount), flexible (Smart Contracts can

be written into the platform so the Blockchain network can evolve depending on the ne-
cessities) and of course, distributed (this distributed ledger technology propagates every
incoming transaction among the nodes of the network).

Content description

This diploma thesis needs a correct structure to reflect correctly the main parts of this
extensive work. This is the reason why I consider interesting to add this brief part to the
thesis.

After an abstract and this introduction, on the Chapter 1 that tries to motivate the
reader explaining the research problem and objectives, my methods to develop the project
and my conclusion about it, it starts the first of the three parts: the prior analysis.

The prior analysis explains the theory needed to know about the main topics. These
topics are the DLTs, the Blockchain networks and the Energy trading networks. This theory
is located on the Chapter 2. At the same time, this chapter explains the math behind the
Public key and Elliptic Curve algorithms to end with the current state of the art.

The second part, Chapter 3 is my project’s development and implementation. This
practical part is compound by the explanation of some important libraries and functions
utilized (following the main idea of Python programming), the explanation of my code and
the experimental validation with some screenshots I took to make it more clear.

The last but not the least is the conclusions summary and the proposed future projects.
Due to the particularity of my project (the idea of a project to help people to develop
projects starting from this one) it is important to add some project proposed in the Chapter
4.

Of course, this thesis counts with a Literature.

Chapter 2: Prior analysis

In this chapter, the main idea is to introduce the relative technologies I consider needed to
know to understand the Blockchain and this project.

Starting with the DLTs or Distributed Ledger Technologies, it can be understood the
idea of saving information without servers but using multiple locations or nodes. After this
explanation, it can be explained the Blockchain networks and with both of this concepts,
finally, it will be easy to understand the networks that nowadays are developed to trade
energy between peers using Blockchain.

In addition, it is interesting to understand two cryptographic algorithms like the Public
Key and the Elliptic Curve. After explaining these technologies and algorithms, it can be
easily summarized analysis of the current state of the art.

To help the reader understand this ideas importance, it can be shown some examples to
see how the Blockchain investigation and success applications are being built and see the
importance of the technologies and protocols here explained.

1. Bitcoin: One of the most famous Blockchain applications and cryptocurrencies. Due
to it is based on Blockchain network, it can be said that the Bitcoin network uses Peer-
to-Peer connections between nodes, and besides, the information is saved distributed
in multiple nodes (without servers), so it can be said that it is a Distributed Ledger
Technology. Finally, the security system chosen is a version of Elliptic Curve Digital
Signature Algorithm (ECDSA), in turn, using the Public Key Cryptography (most of
the actual Blockchain Systems uses this Public Key Cryptography application).

2. Ethereum: This one is other really famous cryptocurrency. In this case, it is too
used the Blockchain (part of the DLTs and P2P networks) and the Elliptic Curve

cryptography.

3. My network: It is a Blockchain network (it counts on P2P and DLT network) too.
The difference is that due to it is a educational example, the Public Key signature
has been used instead of the Elliptic Curve signature (much more complex) as it will
be explained below, due to both of this two systems have a security problem against
quantum computers.

4. Alternative Blockchain networks: To avoid the Elliptic Curve and Public Key Cryp-
tography, there are some alternative networks starting to investigate different cryp-
tographic protocols like W-OTS (Winternitz one time signature). More information
about this curious method in this link. It explains how it is tried to avoid the quantum
computer power to break the cryptography protocol security.

This networks are being developed and are just investigation networks and ideas so
it can not be treated as a commercial network yet.

https://medium.com/asecuritysite-when-bob-met-alice/the-most-significant-future-risk-around-blockchain-ecdsa-361b245219dc

2.1 Distributed Ledger Technologies

The Distributed Ledger Technologies (DLTs) have conceptually the same origin as the
Blockchain Technologies: distributed digital registers. First of all, Blockchains are part of
the DLTs but all the DLTs are not Blockchain. The DLT focus their power on improve
the transparency by making copies of some information in different parts so it is harder
to hack or corrupt the information. The particularity of Blockchain is that this one, adds
the packets of information in a chain (often) in a hash to improve the confidentiality and
compression of this information. The hash, it just a summary of the information that
independently on the amount of data you put as input, it will give you and output with
the same number of bits. E.g.: SHA256 (Secure Hash Algorithm of 256 bits) will give an
output of 256 bits independently if the input is an image or the book Don Quixote.

This DLTs are at the same time part of the Peer to Peer (P2P) technologies. If tradi-
tional networks make a successive amount of request to reach a server and ask for a resource,
in example a website domain, in the Peer to Peer networks the users can send any kind of
media without intermediary or central servers but a network of peers or users like it was
done with the Spotify in their origins or the traditional Torrent system. Due to the huge
number of variations on Blockchain (part of the Distributed Ledger Technologies) networks
it must be done a differentiation between the three most extended identity management
schemes on DLT.

U-port depends purely on the network. The system has the risk of unauthorized access
to local authentication methods. The network provides a method to recover ownership of
lost /compromised uPortID (it is important to have in mind if a user disconnects will lost his
credentials. It is needed). This idea it is implemented on the Ethereum cryptocurrency. A
different idea is Sovrin, who implements a complex Seal plus Certification plus Verification
system that enable each user to control all his credentials.

In the other hand, ShoCard is a system that depends on a “Steward” or controller
system to verify the credentials. This idea it is implemented on the Bitcoin cryptocurrency
and its system is the traditional one on the Blockchain.

If interested on understand more deeply this part, it is recommended to take a look on
these interesting papers about issues to fight against [12] and identity management schemes
[3] in DLTs. It is too recommended as introduction to the topics treated in this chapter a
few websites: [7], [8], [16] and [15] and the courses: [15] and [5]

One of this DLTs is the Blockchain networks due to it is said a particular type of DLT.

2.2 Blockchain networks

Blockchain is a safe technology and it is a currently well-established technology operating
in example in the Bank of China as a valuation system. Despite saying tirelessly all the
life that there is not absolutely safe technology, non-repudiation property and the public
scrutiny makes this system really different to previous ones and the whole network would
solve the issues that can try to spoil [9] a Blockchain system. Despite all this, there are
some inherent risks on Blockchain architecture:

e A weakness in a network infrastructure can jeopardize the security of all the Blockchain-
based application. e.g.: there are some “cheaters” in a network trying to destabilize
the system creating fake information. This “cheaters” must be discovered, expelled
and probably, safe logs about this intrusion like a black/grey list to avoid similar

dangers in a future. If not when these fakes spread more than the real information,
our system will threat the correct information as a fake and will be ignored.

e In some systems, the communication must be encrypted to ensure that only the system
knows who send some information and what does that information means (not even
network operators can access to data). e.g.: if a “cheater” knows the identity of other
node of our system, could try to impersonate it or even attack him to eliminate some
information from our system (what opens the way to the next necessity).

e The problem of using hash codes when we have on the other side a large-scale quantum
computer as potential future “cheater” like it is said on [4] (e.g.: A 1024b RSA,
Rivest—Shamir—Adleman protocol, would need 2300 logical gbits what means less
than 4 hours and the issue of a hash so utilized on the Blockchain systems, it is
realized with 100 symbols that means 10010, approximately 266 that if we bear in
mind the Grover algorithm can be solved in some seconds using 33 logical gbits. This
can be clearly seen on the article [11]). It is interesting remember that this year 2019,
IBM has already launched the first commercial quantic computer with 20gbits. An
easy option would be increasing the number of bits that would increase the delay in
calculus and would in a similar problem and this is one of the inherited problems that
are currently not solved on this technology.

One of the most common techniques on Blockchain is the redundancy of information in
different nodes to avoid losing or corrupting our system’s information (this shows a trouble
of Ethereum smart contracts when nodes are isolated and can’t send confirmation). This
is because of the potential of the DLTs to propagate the information in different nodes.

In conclusion, there are more than a hundred alternate Blockchain systems with different
security guarantees because sometimes it is not needed to ensure privacy, or it is used a
simpler hash to save some computing time. And the users must not lose their credentials.

To solve these issues, it can be considered some options when developing a Blockchain
network:

e Multi-factor authentication for access to the Blockchain network due to the front-end
applications risk. This is because “vulnerabilities are usually found in the front-end
applications such as the wallets or in the smart contracts with which malicious codes
can be built” as Paul Sin, Leader of Deloitte Asia Pacific Blockchain Lab from Deloitte
China Consulting Partner said in a speech.

e Redundancy of the information in different users or even redundancy in different users
in addition with storing parts of the information (useless without the rest of parts)
instead of the whole packet. In this way, it is avoided that the store can interpret it
and reduce the encryption.

e To use black/grey lists (a list with forbidden or potentially dangerous users) and
some kind of logs file. Adding to this some kind of system that frequently checks
the network looking for threats: corrupted information like inconsistencies between
users or simply lack of information, cheaters or any malfunction on our request sit-up
(request-response system) system. This system can be the just the users.

e Ensure a wide safety network before opening the access to (potentially dangerous)
new users and start the normal operation mode. This helps to avoid the 51 percent

attack where there are more intruders than normal users in our network and take
advantage of it.

e Being ready to change the cipher and security algorithm if needed due to possible
quantic computer attach. This mean that the system can be updated in this area.
One option can be to implement a layer model with the security encapsulation on the
top.

As it can be seen, there are so many options to develop Blockchain networks depending
on the purpose of our network. One of this purposes and the one interested on this project
is to trade energy. This kind of projects are starting to be developed as it can be read
below.

2.3 Energy trading networks

The increasing number of DERs (Distributed Energy Resources) introduce the necessity
of networks specially developed to communicate nodes and send this kind of information.
These DERs are small-scale power (generation and storing) systems mainly used to provide
an alternative to or an enhancement of the traditional electric power system e.g.:a solar
panel on the roof of a particular house connected with a electricity storage. The final idea
is to promote the self-consume and the renewable energy to the detriment of the fossil fuels.

This new scenario (often low-voltage networks) is being focused to the P2P (Peer to
peer) networks and the Blockchain networks due to their advantages avoiding servers and
centralization of this data. These networks must ensure that the constraints are not violated
during the storage and exchange of this transactions or data.

Therefore, the project has been focused on this problematic. An interesting paper to
read about this topic is [6].

A good example of this kind of projects is Energy Web. The system named Origin
they have developed is a market to connect buyers. Their main aim is to impulse the
renewable energy procurement and the relative markets like 100 percent certified renewable
powered electric vehicle charger systems. Another example is Power Ledger. This company
is completely focused on trading renewable energy and environmental commodities as it is
said on their website. Their main idea is to create new markets for energy from renewable
sources and connect the buyers and the providers/stores. It is interesting to see some
success stories to understand how important this projects can be in some years. Another
projects explained on their website are systems to set alerts and start charging electric
vehicles when power price are the lowest, control systems to understand better the origin
(energy source, date of the request and amount of power) of the energy consumed.

More interesting examples cold be the ones in Stromdao, Hyperledger or Corda. Most
of them are plug-and-play projects that try to adjust to the scenario or client needs.

After this explanation, it follows my project. The way it has been tried to unify this
type of projects and develop a all-in-one Blockchain network.

2.4 Public key and elliptic curve cryptography

The math behind the Blockchain could be summarized with a simple comparison between
two really different cryptography protocols: the Public Key and the Elliptic Curve cryp-
tography (ECC).

https://www.energyweb.org/solutions/renewable-energy-markets/
https://www.powerledger.io
https://github.com/energychain
https://www.hyperledger.org/use
https://www.corda.net/

In summary, the ECC provides an one-way function (shown on the Figure 2.1) whose
signature is relatively easy to be verified, but it is really hard to work back from publicly
available data (in a similar way to get the Private Key even if we have the Public Key) to
discover the private data.

The ECC works by using an equation such as:

v =23 +ar+b

Q_4 g

-5

Figure 2.1: Common elliptic curve function

In some tokens like Bitcoin, it is usually taken a=0 and b=7 so the equation looks more
simple, it is like:
y =23+ 7

ECC is a type of PK cryptography. It has some curious properties such as the fact that
a non-vertical line intersecting two non-tangent points will always intersect a third point
on the curve as it is shown on the figure above as shown on the figure above.

The key on this cryptographic algorithm is to discover the third point once we have the
two other points.

It can be defined the “addition” operation on the curve, what is basically done in
Elliptic Curve Digital Signature Algorithm (ECDSA), the analogous to RSA (named due
to its inventors: Rivest—-Shamir—Adleman) in PK Cryptosystems. In particular, in ECDSA,
addition of two points (pl,p2) and (ql,q2), and the doubling of (pl,p2), are performed as
follows (where M as a large prime number):

c= umodM
g1 —Pp1

r1 = (c2 —p1 — q1)modM
T2 = (c(p1 — 1) p2)modM

And “doubling” of (pl,p2):
c= Z))pimod]\i
2p2

T1 = Co — 2p1
ro = C(pl - "“1) — D2

As it is said on [1] “Since M is a prime, every non-zero integer from 1 to M-1 has a
multiplicative inverse. One other preliminary detail is multiplying in this algebraic struc-
ture, in particular to calculate an expression such as m*(p1,p2) for integer m. This can be
done by first doubling the input (p1l,p2), and then using the addition algorithm repeatedly
until m copies of (pl,p2) have been added, but this, of course, is not practical when m and
M are very large, as they are in real Blockchain applications. Instead, such operations are
typically done using a binary algorithm for multiplication, which are for integers but can
be easily adapted to ECDSA.”. Then, to compute:

r = (n*b)modM

It is needed “r” to be the largest power of two such that “t” is less than or equal to “n”,
and set r=1. After this, there are 2 conditions:

e If n is greater than or equal to t, set:

r = (b+ r)modM

n=n-—=t
else set:
Lt
2
o If t is greater than or equal to 1 set:
r = (2r)modM

and go to the first step (if t<1, then we are done).

Again, as it is said on [1] “Computer scientists will immediately recognize this as almost
identical to the binary algorithm for exponent M, except that we are adding and doubling
instead of multiplying and squaring.

First, select M, a “base point” (pl,p2), and a private key k1 (integer between 1 and M-
1). These are typically selected such that the order of the base point (namely the maximum
number of times (pl,p2) can be added to itself before it fails due to a division by zero) is
prime and at least as large as M (this is not required but is normally done). This often
takes some experimentation, although practical applications can do this very rapidly.

As a concrete example, let us take M=199 (which is prime), and the base point (p1,p2)=
(2,24). For this M and (p1,p2), one can calculate that the order n=211. Then let us select
as our private key k1=151. We first need to calculate the public key (rl,r2) corresponding
to the private key”.

This is done by multiplication:

(r1,72) = k1 * (p1, p2)

Where the multiplication is done either by repeated summation or by the binary algo-
rithm above.

If we do this, we find that the public key (rl,r2)=(64,80). Now select data zl, say
z1=104. We shall construct a digital signature of the data.

This is done as follows:

1. Choose an integer k2 between 1 and n-1, where n is the order.

2. Calculate:
(s1,82) = ko * (p1,p2)

If s1 = 0, return to step 1.

3. Calculate:
(21 + s1 % k1)

9
y k2

modn
If s2=0, return to step 1.

Then the digital signature is (s1,s2). In our specific case, if we select k2=115, we
calculate (s1,52)=(99,52).

Now we can test the digital signature, as a third party might to verify that the trans-
action (which in this example we presume is coded in the data z1=104) is valid.

This is done as follows:

e Calculate:
up = (s2 — 1)modn

e Calculate:
ug = (21 * up)modn

e Calculate:
ug = (s1 % up)modn

e Calculate:
(t1,t2) = (u2 * (p1,p2) + u3 * (r1,72))modn

Verify that t1=sl. In our case, we find that the result of step 4 is (t1,t2)=(99,44).
Since t1=99=s1 (see above), the validity of the signature is confirmed (it is not nec-
essary for t2 to equal s2).

In conclusion, the ECC system is a PK system evolution to increase the difficulty of the
reversal calculus and improve the security to the traditional computers needed due to this
computes evolution.

Anyway, as it was said previously, the quantic computers can make both of this two
systems obsolete for their completely different way to work and calculate but it is considered
it is important to explained this two systems in this section.

The ECC scheme will be shown on the Figure 2.2.

As it has been explained and cited on this article [1], the mathematics used on the
ECC is not trivial (neither in the PK system, but it is even more complex) and the scheme
needed to implement the scheme are more particular. This is the reason why it is mostly
used specific blocks to do this work instead of using general purpose hardware.

10

/ Authenticator Device 1D, Page \

Public Key (Qx, Qy) Padding
System Constant Formatting
Message
digest
Message Message
SHA algorlthm SHA algorlthm

ECDSA
signature

System Private Key
algorithm

Random number }

(cr, cs)

[Digital signature]

Figure 2.2: Elliptic curve scheme

11

It is too recommended to read the article [14] to understand more deeply the difference
between this two systems due to it is not going to be explained deeper in this thesis. Only
remark that due to this is a general purpose Blockchain network, it has been decided to use
the Public Key cryptography instead the Elliptic Curve cryptography to simplify (there are
already done libraries and functions) the project and be able to finish it. The development
of a ECC system could be, by its own, a thesis.

2.5 State of the art analysis

The state of the art is a means to an end. In my current task (to learn about and develop
a Blockchain network) it is needed to search the information meticulously due to the huge
hype around this topic. This is said because the first problem to fight against is the large
number of sites, blogs, article and projects can be found.

First of all, it must be pointed out that the Blockchain technologies and networks are
being developed in multiple success stories across the globe. Some of this examples are the
Chinese most important monetarian entity: the People’s Bank of China (PBC) with some
currency systems and insurance systems developed with Blockchain, the most important
cryptocurrencies like Bitcoin, Ethereum or Ripple, some healthcare (interesting to save the
patient’s medical data safe and secure) and logistic systems based on Blockchain or even
taxes systems that are starting to be developed with this technology in contrast with the
traditional systems (really interesting to track taxes and avoid cheats and frauds).

Some writers does not make clear distinction between Blockchain and another technolo-
gies like DLT or P2P. Some others had not correctly structured the idea of how a Blockchain
network works (in example, believe that it is mandatory to use an specific technology or
algorithm like the PK or ECC just explained on the previous section).

This is why it has been finally decided to begin in the beginning: the White Paper
written by Satoshi Nakamoto [13]. After this, it is recommended to search for some trusted
papers and books like Mastering Bitcoin [2] to start to make the differentiation between
Blockchain and another technologies with some parts in common, some Blockchain systems
or success stories like Ethereum, Bitcoin and Power Ledger.

Once the idea of this kind of distributed networks, were the data are (usually) stored as
hashes in a chain, is clear it is time to start to decide in which language does it preferred
to develop the project. To do this task, it is recommended to find and try some projects
(the most of the ones tried did not compiled, used obsolete libraries or were uncompleted
projects) so it can be easier to see which of the programming languages already known
can be more accurated with this project or if it was interesting to learn a new one (it was
considered C++). After trying lots of this uncompleted projects from the most famous
code repositories, it was decided to develop the project on Python due to its versatility
because there are so many libraries and functions already developed ready to be used by
yourself as explained on the “Libraries utilized” chapter.

In this point, it was realized the need of explaining more about the math behind the
Public Key Cryptography (and the Elliptic Curve Cryptography in contraposition) you can
fin as a section from the Prior analysis chapter.

After developing and testing the differences blocks, join all of them in a project and test
the whole project, it is as much important as the project to write the conclusions attached
on the “Conclusions summary” chapter.

12

Chapter 3: Project development

This project has been developed on Python release 3.7 and the Python language is an object
oriented programming languages (similar to Java language) due to the already developed
Blockchain and cipher libraries. It is important to utilize wisely the libraries already created
by the Python community to improve and speed up the development of the code.

This chapter must explain the code and to do it more clear, it has been decided to
start explaining the libraries utilized on it explained by its own page. After this, it will be
possible to explain in Section 3.2 little chunks of code I consider needed to with pseudo-code
to make it the as generic and clear as possible.

Last but not least, I will show some screenshots of the programs running in different
sockets and interacting to the other ones in Section 3.3.

In conclusion, this project wants to create a Blockchain network where the MNs (Master
Nodes) are connected as shown on the Figure 3.1. These MNs, at the same time, will be
connected by clients and eventually, by generators as shown on the Figure 3.2.

MN

MN

MN

MN

Figure 3.1: Used network architecture

As it can be seen on the Figure 3.2, the connection Generator-Master Node is different
to the MN-MN or Client-MN. This is because it is not needed to have a generator connected

13

in a MN (imagine the case of a client who consumes energy from the network but does not

generate electricity).

The Blockchain network

‘MN <—>MN

Lo 1MN

Generator

[D

Client

Figure 3.2: Software architecture

3.1 Libraries utilized

As it is said above, here it is going to be explained the libraries utilized in my project and
put the links to their proper web-page to make it easier referring to it. At the same time,
it will be explained why do I recommend to use this libraries and objects or at least, why
were them decided to be used.

e Argument parser from argparse

As it is said on the library: “The argparse module makes it easy to write user-
friendly command-line interfaces. The program defines what arguments it requires,
and argparse will figure out how to parse those out of sys.argv”.

There are three different input argument parsers: SYS, GETOPT and ARGPARSE.
Trying to explain it briefly, the main differences between this options are:

1. SYS comes from a standard Python installation and this is the simplest option.
It is quite limited and could not be enough for some purposes.

2. GETOPT is a more flexible option in comparison with Sys. it would be used in
a similar way to getopt.getopt(args, shortopts, longopts=[]) where “args” is the
list of taken arguments, “shortops” is where the option letters are specified and

14

https://docs.python.org/3/library/argparse.html

“longopts” is where the extended versions of the shortopts is selected (e.g.: -b
will bean bind, the IP port).

3. ARGPARSE is the most complex (and complete) option. This is due to multiple
aditional options like selecting if a variable it is needed (required = True) or not,
an explanation it was added named “help”... In conclusion, it is more readable.
This is why it was chosen to parse by using ARGPARSE.

It was used for example in the following lines:

— parser = ArgumentParser()
Here, an parser object is created and named “parser”.

— parser.add__argument(‘-b’, ‘~bind’, default="127.0.0.1’, help="the ad-
dress to bind to’)
After creating parser, it must be added some arguments like “bind” in this ex-
ample.

— args = parser.parse__args()
When the program is initiated from the command line, the arguments are re-
trieved and can be stored. In this example, the arguments are stored in “args”
to be used in a future.

— host_mn = args.bind
Finally, it can be easily gotten any item (like bind in the example) from “args”
in any time when the program is running.

e Timestamps from Datetime

As it is said on the library: “The datetime module supplies classes for manipulating
dates and times. While date and time arithmetic is supported, the focus of the imple-
mentation is on efficient attribute extraction for output formatting and manipulation
[...] classmethod datetime.now (tz=Nomne) Return the current local date and time.

If optional argument tz is None or not specified, this is like today(), but, if possible,
supplies more precision than can be gotten from going through a time.time() times-
tamp (for example, this may be possible on platforms supplying the C gettimeofday()
function).”.

The additional option to DATETIME would be using timestamps but it is (again)
more readable to the final user and it is more clear to see the date and time written
like 2020-06-10 15:24:57:12345 than just a random-likely number.

It was used for example in the following lines:

— now = datetime.now().strftime(“%Y-%m-%d %H:%M:%S.%f”)

Here, it is requested the current date and time with a millisecond exactitude
(could be easily changed to microsecond) as explained on the library.

e Ordered lists from Dictionary

There are so many ways to order objects in lists or similar higher level objects so
studying a few of the most used ones, it was decided to use the Dictionary.

As it is said on the library: “Fixes dictionary iteration methods. dict.iteritems()
is converted to dict.items(), dict.iterkeys() to dict.keys(), and dict.itervalues() to

15

https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/2to3.html?highlight=dict#2to3fixer-dict

dict.values() [...]

It also wraps existing usages of dict.items(), dict.keys(), and dict.values() in a call to
list.”.

It was decided to use DICTIONARY in contrast with arrays or lists due to the type
of the argument can change (in example, it could be interesting to save the port of
a MN but not the variable port from a client and in the other hand, it could be
desired to save the client’s PK or connected MN), it is a list where it is not needed
to index integers (it can be added directly an object named “key”). In conclusion, a
DICTIONARY is the list, array list and ordered buffer evolution to save objects in
Python.

It was used for example in the following lines:

— payload__dictionary = {‘type__of data’: type__of _data,
‘sender__address’: src__host_mn,
‘recipient__address’: dst__ipaddress,
‘sender__port’: src__port_mn}
Where a dictionary is created to store and organize correctly as a packet the
payload of a transaction with some keys and values (e.g.: ‘sender_address’:
src__host__mn with src_host_mn as a string value).

— mn__dict = defaultdict(list)
Where a dictionary is defined but not initialized in case it is needed to create it
without adding information yet.

— tentative__datemined = tentative _transaction.get(‘date__mined’)
Where a value is read in the position/key in brackets. In this case, read (from
the value with key name “date_mined”) and stored in a variable named tenta-
tive__datemined.

— Balance__dict[tentative__miner] = DEFAULT BALANCE
Where a value is stored in the dictionary. In this case, the dictionary modifies

(or adds in case it was not already created) an entry in the dictionary for the key
stored in the variable “tentative miner” and the value “DEFAULT BALANCE”.

e Object serialization from Pickle

As it is said on the library: “The pickle module implements binary protocols for
serializing and de-serializing a Python object structure. “Pickling” is the process
whereby a Python object hierarchy is converted into a byte stream, and “unpickling”
is the inverse operation, whereby a byte stream (from a binary file or bytes-like object)
is converted back into an object hierarchy.”.

It was decided to use the Pickle module because it is the most used serializing and de-
serializing binary object in Python. Despite the fact that it must be verified the sender
of the pickle to avoid security problems (it can be executed arbitrary code during the
unpickling process as explained on the library), it is probably the more complete and
easy-to-use object on python. This is one of the reasons why it is so widely used. It
was too tried another options like JSON serialization, YAML serialization and read
about CSV files to avoid the security issue but finally and after discussing this topic,
It was made this decision.

It was used for example in the following lines:

16

https://docs.python.org/3/library/pickle.html

— mn__dict__pickle = pickle.dumps(mn__dict)
Where a dictionary named mn__dict (the dictionary were it is stored the list of
Master Nodes connected) is pickled on a pickle named mn_ dict_ pickle.

— mn__dict = pickle.loads(mn__dict__pickle)

Where a pickle is unpickled to get the dictionary inside and it is saved on the
dictionary variable named mn__dict.

e Pseudo-random integer generator from Random

As it is said on the library: “This module implements pseudo-random number gener-
ators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uni-
form selection of a random element, a function to generate a random permuta-
tion of a list in-place, and a function for random sampling without replacement
[...] random.randrange(start, stop[, step]) Return a randomly selected element from
range(start, stop, step). This is equivalent to choice(range(start, stop, step)), but
does not actually build a range object.

The positional argument pattern matches that of range(). Keyword arguments should
not be used because the function may use them in unexpected ways.”.

There is not so much to say about this module.It was chosen this object because is
the native pseudo-random integer generator in Python.

— src__port_mn = random.randrange(1024, 65535)
Here, this call is used to get a random integer for a dynamically and random
selector of port. This is because it is needed to change the port to avoid problems
in some Operative Systems (Windows has problems actualizing the free ports, it
is done with a selected timeout). This range is because of the list of TCP free
port numbers.

e Socket object and functions from Socket

As it is said on the library: “This module provides access to the BSD socket interface.
It is available on all modern Unix systems, Windows, MacOS, and probably additional
platforms. [...] The Python interface is a straightforward transliteration of the Unix
system call and library interface for sockets to Python’s object-oriented style: the
socket() function returns a socket object whose methods implement the various socket
system calls. Parameter types are somewhat higher-level than in the C interface:
as with read() and write() operations on Python files, buffer allocation on receive
operations is automatic, and buffer length is implicit on send operations.”.

Like in the previous case of the random library, it was chosen this object because it
is the native socket library in Python and it is the most actualized one.

It was used for example in the following lines:

— ¢ = socket.socket(socket. AF_INET, socket. SOCK__STREAM)

Here, an socket type object is created as explained on the library: the family is

AF_INET and the type is SOCK_STREAM.

17

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/socket.html

c.setsockopt(socket.SOL__SOCKET, socket.SO_REUSEADDR, 1)
Where it is added some additional flags/options like telling the kernel to reuse
a local socket in TIME_WAIT (modifiable variable) state, without waiting for
its natural timeout to expire (needed to receive more than a transaction every 2
minutes).

— c.bind((host__c, port_c))

Where the code binds the socket to the address (host_c:port_c e.g.:
127.0.0.1:12345). The socket must not already be bound. As you can see, it is
working with IPv4 addresses but it could be easily modifiable (It was tried just
to make sure).

— c.connect((host__mn, port_mn))
As it is said in the link above: “Connect to a remote socket at address. [...] If
the connection is interrupted by a signal, the method waits until the connection
completes, or raise a socket.timeout on timeout, if the signal handler doesn’t
raise an exception and the socket is blocking or has a timeout. For non-blocking
sockets, the method raises an InterruptedError exception if the connection is
interrupted by a signal (or the exception raised by the signal handler).”.

— c.send(message.encode(‘ascii’))
c.sendall(payload__pickle)
About these 2 calls, we can read in the link above that: “Send data to the socket.
The socket must be connected to a remote socket. The optional flags argument
has the same meaning as for recv() above. Unlike send(), this method continues
to send data from bytes until either all data has been sent or an error occurs.
None is returned on success. On error, an exception is raised, and there is no
way to determine how much data, if any, was successfully sent.”.
In this case, message.encode(‘ascii’) converts the string variable “message” into
an string of ascii values able to be sent without pickling. In the other hand, to
send a dictionary is always needed to serialize with for example a pickle.

— c.shutdown(socket. SHUT _RDWR)
As it is said in the link above: “Shut down one or both halves of the connection. If
how is SHUT _RD, further receives are disallowed. If how is SHUT WR, further
sends are disallowed. If how is SHUT_RDWR, further sends and receives are
disallowed.”.

— c.close()

As it is said in the link above: “Mark the socket closed. The underlying system
resource (e.g. a file descriptor) is also closed when all file objects from makefile()
are closed. Once that happens, all future operations on the socket object will fail.
The remote end will receive no more data (after queued data is flushed). Sockets
are automatically closed when they are garbage-collected, but it is recommended
to close() them explicitly, or to use a with statement around them. Changed in
version 3.6: OSError is now raised if an error occurs when the underlying close()
call is made.”.

e Public and private keys generator from RSA

As it is said on the library: “RSA is the most widespread and used public key algo-
rithm. Its security is based on the difficulty of factoring large integers. The algorithm

18

https://pycryptodome.readthedocs.io/en/latest/src/public_key/rsa.html

has withstood attacks for more than 30 years, and it is therefore considered rea-
sonably secure for new designs. The algorithm can be used for both confidentiality
(encryption) and authentication (digital signature). It is worth noting that signing
and decryption are significantly slower than verification and encryption. The crypto-
graphic strength is primarily linked to the length of the RSA modulus n. In 2017, a
sufficient length is deemed to be 2048 bits. For more information, see the most re-
cent ECRYPT report. Both RSA ciphertexts and RSA signatures are as large as the
RSA modulus n (256 bytes if n is 2048 bit long). The module Crypto.PublicKey.RSA
provides facilities for generating new RSA keys, reconstructing them from known
components, exporting them, and importing them.”.

All of this, considering the problems with quantum computers as it was explained
previously. In my case, it was randomly generated a 1024 bits private key on the code
line displayed.

It was used for example in the following lines:

— public__key = private__key.publickey()
Where a public key (the pair for the private key) is created from the private one.

— public__key__export = public__key.exportKey(“PEM”)
Where the public key is exported in a PEM format. This PEM-encoded data is
a series of length plus data pair with the length encoded as 4 octets in big-endian
order. It is useful in ssh-rsa key’s encoding as our casuistry. This part of the
code is needed to send the public key to the notes that receive a signature from
the sender to verify if the signature was made with the private key (pair and
private) of the public key sent.

— h = SHA256.new(payload__pickle)

Where a hash is created from a payload (pickle of a dictionary of a payload to
be strict). This is part of the signature on public key encryption.

Signature verifier from PKCS1_v1_5

Basically, the “signer” is an object needed to sign a hash (named “h” in the example
below). A few options were taken on consideration for it but this one was the most
recommended due to its simplicity and efficiency. As it will be shown below, it is only
needed to sign and verify hashes and it is perfect for this purpose.

It was used for example in the following lines:

— signer = PKCS1__v1__5.new(private__key)
Here, a signer is created (with the private key) by the sender of the message as
explained on the link above.
— signature = signer.sign(h)
After creating a signer, the hash (previously calculated) must be signed.
— if verifier.verify(h, signature):
| print(“\tMN__T:—> The signature IS authentic.”)
| if host_c == message__dict.get(’sender__address’):
| | print(“\tMN__T:—> The packet contains the sender address
correctly.”)

19

https://pycryptodome.readthedocs.io/en/latest/src/cipher/pkcs1_v1_5.html

| | vwverification = True | else:

| print(“\tMN__T:—> The signature is NOT authentic.”)

If everything goes well, the signature can be verified with the public key (known
by the receiver of the message) as explained here. This is a code it has been
created to make the code clearer but it is not needed to add it to your project.
In case the signature is correct, it is tested if the packet contains the sender
address to know if the sender is correctly saying that “this user” sends the amount
of value and avoid frauds.

e Pipe or queue to communicate threads from Queue and the RFC8017

As it is said on the library: “The queue module implements multi-producer, multi-
consumer queues. It is especially useful in threaded programming when information
must be exchanged safely between multiple threads. The Queue class in this module
implements all the required locking semantics. The module implements three types
of queue, which differ only in the order in which the entries are retrieved. In a
FIFO queue, the first tasks added are the first retrieved. In a LIFO queue, the most
recently added entry is the first retrieved (operating like a stack). With a priority
queue, the entries are kept sorted (using the heapq module) and the lowest valued
entry is retrieved first.”.

In this case, the FIFO (First In, First Out) queue is the selected one due to the
simple priority between transactions received and transactions to be mined. In the
code above, a queue variable named “cola_ pk” is created to store the Public Key
dictionary. This is because it is needed a queue to send objects between threads in
case of a future implementation of parallelization. It will be talked later.

It was used for example in the following lines:

— cola__pk = queue.Queue()
Here, a queue is created by default (FIFO queue) and named “cola_ pk” due to
it is going to be used to save the public keys dictionary.

— mn__dict__pickle = cola__mn.get()
Where it is obtained an object from the queue “cola_mn” and stored in the

variable named “mn_ dict_ pickle” (due to the MN list is a dictionary and this
dictionary is pickelized to be able to store it on the queue).

— cola__mn.put(mn__dict__pickle)
Where the “mn_ dict_ pickle” is put on the cola_ mn queue. The inverse step to
the previously explained.

e Semaphore or lock to control critical sections from Lock

As it is said on the library: “This module constructs higher-level threading interfaces
on top of the lower level _thread module. See also the queue module.”.

This part of the project is not needed but if it is desired to implement the paralleliza-
tion and thread system proposed later. Due to the idea of the project, it would be
really easy to add the acquire and release conditions before and after the parallel/crit-
ical section to make the threads wait for the rest of threads to release the semaphore.
A semaphore/lock is a high-level threading interfaces as said, often used to control
the access to a critical section (a part of the code where only one thread can access at

20

https://pycryptodome.readthedocs.io/en/latest/src/cipher/pkcs1_v1_5.html
https://tools.ietf.org/html/rfc8017
https://docs.python.org/2/library/threading.html?highlight=threading%20lock#threading.Lock

the same time e.g.: a variable that changes its value in every access or the access to
a printer function) and avoid consistency problems. It is well explained on this site
in case of any doubt. It was used for example in the following lines:

— semaphore__lock = threading.Lock()
Here, a lock object is created and named “semaphore_ lock”.

— semaphore__lock.acquire()
Where the semaphore/lock is acquired by a thread. In case of the semaphore/lock
counter is 0 after this call, there will be no more threads with the option to access
to the sections with a “semaphore_ lock” acquire.

— semaphore__lock.release()
Where the semaphore/lock is released by a thread. Usually, this comes after a
acquire and a critical section to let the rest of the threads fight for the critical
section and the control of the “semaphore_lock” acquisition.

e Thread object and functions from Thread

As it is said on the library: “A class that represents a thread of control. This class
can be safely sub-classed in a limited fashion.” and makes it run the target function
“threaded” implemented by me.

The THREADING and the THREAD libraries has been decided to be used for this
purpose due to there are the original Python libraries and this means that there are
native functions (more efficient due to it was made for this main purpose).

It was used for example in the following lines:

— t = Thread(target=threaded, args=(c, addr))
Here, a thread object is created. The target is the name of the function called
when the thread starts to run and the args are a tuple of input arguments. In this
case, the arguments needed are the socket which communicates the thread with
the sender of the received transaction (remember that the threads are created
to deal with the work of the received transactions).

— t.start()

Explained as: “Start the thread’s activity. It must be called at most once per
thread object. It arranges for the object’s run() method to be invoked in a
separate thread of control. This method will raise a RuntimeError if called more
than once on the same thread object”.

— t.join()

Said that: “Wait until the thread terminates. This blocks the calling thread
until the thread whose join() method is called terminates — either normally or
through an unhandled exception — or until the optional timeout occurs. When
the timeout argument is present and not None, it should be a floating point
number specifying a timeout for the operation in seconds (or fractions thereof).
As join() always returns , you must call isAlive() after join() to decide whether
a timeout happened — if the None thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block
until the thread terminates. A thread can be join()ed many times.”.

21

https://realpython.com/intro-to-python-threading/
https://docs.python.org/3/library/threading.html

0 O Tk W

[e e R S R R e i e Wl
O O 0O UL W+~ OO

This is the correction in my code to let the option of an easy implementation
of threads and parallelization to future versions. Not needed in the concurrent
version.

Now all the imported libraries and functions has been explained, it is time to explain
my code. It is going to be explained what does the .py document, the functions in each .py
and the most important things to understand in each code.

3.2 Explanation of my code

This project contains three .py programs: the master node program, the client and a special
or simpler client who focus only on generating value for the network, like a solar panel.

The blockchain.py explained in Subsection 3.2.3 is a MN (Master Node) whose tasks
are to connect with other MNs as shown on Figure 3.1, propagate the transactions received
(from clients and generators) and mining these transactions (storing and propagating the
transaction when it is mined to try earning a reward). Finally, this nodes are responsible
for the Blockchain where the mined transactions are stored.

The blockchain_ client.py explained in Subsection 3.2.1 is a client whose tasks are create
transactions (send an amount of value from its balance to another client’s balance) and ask
for its current balance when the user desires to.

The blockchain_ client_ generator.py explained in Subsection 3.2.2 is a client whose only
task is generate value and send it to increase a client’s balance. The analogy with a solar
panel is very accurate due to it.

The first part of the code to be explained are the imports (most of them are common
to the three .py codes):

SOCKET:

import socket

THREAD:

from threading import Thread

import threading

import random

from _ thread import * # the code can be improved by adding parallelization
CREATE PKs:

import Crypto.Random

from Crypto.PublicKey import RSA

_ STORE:

import pickle

import queue

from collections import defaultdict

import json

from datetime import datetime

VERIFY SIGNATURE:

from Crypto.Hash import SHA256

from Crypto.Signature import PKCS1_v1_5
from argparse import ArgumentParser

These imports were taken from the “blockchain.py” code but the ones used on the rest
of codes comes from here. This is because “blockchain.py” is the most complex node.

This imported libraries are needed to create and control the sockets (line number 2 of
this chunk of code), create and control the threads (lines number 4 to 5), create the private
key and its public pair (lines number 4 to 5), create, sign and verify hashes (lines number

22

WO O Wi

S U W N

18 to 20) and some additional tasks like creating pseudo-random integer generator or the
encapsulation and storing system. All of them are correctly explained above in Section 3.1.

Another important part of my project is the “type of data” field. Depending on what
is the main purpose of a packet, it is said that this packet has a type of data. These types
are explained in a comment below but is short, there are transactions (the message sent
to inform that a user sent value to other user), current balance request and request of
connection:

nnn

type_of data:

|1:transaction(1/2: without being/already mined) |
|2:currentBalance(1: request) |
|3:connectMN(1: request) |

nnn

After these shared parts, it can be explained the first program:

3.2.1 blockchain__ client.py

THE MAIN:

After a message printed to advice the start of the program, it is set the input argument
named “bind”. Depending on if there are input arguments or not, it can be chosen the IP
address or let it be chosen by default.

To sign and cipher messages with Public Key Cryptography (PKC), it is needed a
public and private key tuple so it is created. The Public Key (PK) is also stored in a
special container with the PEM protocol to be sent if required. This is because a PK can
not be sent as a normal object in a pickle, it is needed a special container and the PK is
needed to verify a signature.

print("\t3— MENU \n'
"\t\t1l.: Ask for my Public key\n"
"\t\t2.: Make a transaction (To send an amount to a client)\n"
"\t\t3.: Ask for my current balance\n"

"\t\t0.: End the client.")
decision = int(input("\tWhat would you (the client) like to do: "))

To make the code as clear as possible, it has been decided to implement a menu in a
while. This is a infinite loop that will request an action to do something depending on the
selected action. To finish this loop and the program, it is needed to select an option, “0”
in this case, that changes a boolean variable named “cont” (name derived from continue)
into False.

In case the user selects the option “1”, the program will show (print a string by console
or command line) the PK. It can not be copied from here but it can be good to take a look.
As it can be seen, it is needed special functions to deal with the PKs correctly.

In case the user selects the option “2”, the user is requesting for a new transaction. To
create a new transaction (to sent an amount of value from this client account’s balance to
other user’s balance) it is needed some additional information that must be required to.
This additional information are the IP address of the receiver (who will earn the amount
of value sent) and the amount of value to be sent, all of them requested by console to the
user. It is not needed to request for it but it will essential to get the current date and time
when the transaction is created, it will be stored with the variable name “now”.

23

[
o

—_ =
w N =

—
~

— =

0~ Otk W

©

= O © 00O Ui~ Wwh -

4—Create packet (payload_ dictionary)
Payload: dictionary —> string —> pickle send pickle —> string —> dictionary
payload_ dictionary = {’type_of data’: type of data,

’sender__address’: host__c,

'recipient__address’: destination__ip,

'value’: value,

transaction__date’: now,

payload__str = str(payload_ dictionary)
payload__pickle = pickle.dumps(payload_ str)

h = SHA256.new(payload_ pickle) # payload b)
signer = PKCS1_vl_ 5.new(private_key)
signature = signer.sign(h)

signature_ pickle = pickle.dumps(signature)

With this information, it can be created the packet that will be sent. This packet or
payload (the information in a packet message system that is useful to the user) is stored
as a dictionary (lines number 3 to 8). The dictionary structure was already explained
but it can be remembered that it is needed to put each value in a key-value tuple (e.g.:
‘type_of data’ 11).

This chunk of code is really important because it is possible to appreciate the package
envelopment. A dictionary object is converted into string (str) before being introduced in
a pickle envelopment (lines number 9 to 10).

At the same time, it can be seen how to create a hash (variable whose name is “h”)
from a pickle, so it can be signed and how to create a signer to be able to create a signature
with this signer and the previously calculated hash. This is shown from the line 11 to 14.

After preparing the transaction (and its signature), it is time to prepare the method
to send this message or transaction. For this purpose, it is needed to create a socket and
connect it with a receiver socket (already listening when it is tried to connect with it).

5—Get the attributes by CommandLine (additional attributes for Socket connection)
host _mn = str(input("\tMaster Node IPv4 ADDRESS (ie.: 127.0.0.1): "))
port_mn = int(input("\tMaster Node IPv4 PORT (ie.: 12345): "))
while True: # .1—Avoid block because of OSError:WinError10048 or
ConnectionResetError:WinError10054
try: # .2—Avoid block [...]
port_c¢ = random.randrange(1024, 65535) # BETWEEN 1024(49152) AND 65535
¢ = socket.socket(socket. AF_INET, socket.SOCK_STREAM)
c.setsockopt(socket.SOL__SOCKET, socket.SO_REUSEADDR, 1)

c.bind((host__c, port_c))
c.connect((host_mn, port_mn))

To connect with the destination socket, it is needed to know the IP address and the
port listening for requests, so it is requested to the user. This IP:Port tuple is from the
MN who will deal with our just created transaction (verify the correctness of it, propagate,
mine and store). It is required the IP and the Port in the lines 2 and 3 respectively.

Due to some issues with some Operative Systems (OS) like Windows, it is needed to
be careful with the sockets. This is why some lines are added with the comment “Avoid
block because of OSError:WinError10048 or ConnectionResetError:WinError10054”. This
system will randomly select an integer number to the sender port (in the available range, it
must be considered the TCP-IP port list) and try to send to connect with the destination
socket. In case it is not successful, it will choose a new random integer number and try it
again until it is. The just explained system to avoid blocks is a whileTrue Try-Break-Except
loop to catch the exceptions without leaving, it is too frequently called Try-Catch loop.

24

© 00O U Wi

The last 4 lines create an socket, sets additional options, configure the IP address and
port and connects with the destination socket in the MN as explained in the library section.

In case the connection is successful, the client will display (print) a message with the
socket-to-socket connection information as shown and will proceed to send the transaction
(“payload__pickle”).

When the MN receives the transaction successfully, it will send an acknowledge (ACK)
and wait for the signature.

The client sends the transaction’s signature to verify that it was created by him and
avoid frauds. In this point, there are two possible responses: if the MN had already stored
this client’s PK, it will be seen an ACK but if not, the MN will request for the PK (it was
packet in a special package following the PEM protocol).

10—Decide if the Pk—response must be sent (Public Key in a PEM exporter)
print(’3.2.7—PK request/ACK1 from the MN(_T) ", str(data.decode(’ascii’)))
if not str(data.decode(’ascii’)) == "ACK1":

message = public_ key_ export

10(x)—Pk sent to server (thread will receive it)

c.send (message)

print("3.2.7(x)—Pk sent to the MN(_T)")

data = c.recv(1024)
print(’3.2.7(x)—ACK2 from the MN(_T) v, str(data.decode(’ascii’)))

In case the MN had this client’s PK the answer will be ACK1, and will not be needed
to send it. Otherwise, in case the MN did not have this client’s PK the answer will not be
ACKI1, so it will be needed to send it. As it is shown on the code displayed, this kind of
comparisons are done with a string comparison in an if structure to simplify as much as
possible.

When it is needed to sent a PK (already packed following the PEM protocol), the client
sends it as can be seen and finally will receive an ACK (“ACK2”) from the MN.

After this, everything is done and the thread can be finished.

The socket must be closed and disconnect from the MN socket. It will be printed
a message and come back to the start menu (in the client’s Main, in the start of this
Subsection 3.2.1).

In case the user selects the option “3”, it is desired to know the this client’s current
balance.

To do this task, it is needed to send a balance request to a MN. It has been decided to
simplify this option (unnecessary on most of the Blockchain systems) avoiding the signature,
so the payload will contain only the type of data correct to choose this option in the MN.

Notice that there are three additional options I recommend for future versions depending
on the characteristics demanded on your project:

1. To add a “’sender__address’: host” tuple. This can improve the system’s privacy as
shown on the transaction ToD (Type of data).

2. To add a “’recipient__address’: destination_ ip” tuple. This could improve the security
by adding signature.

3. To add a “’transaction__date’: now” tuple. This last idea wants to improve the system
by avoiding resend a message. To understand this kind of attack, it can be thought
on the double-spend attack, in this case, to discover the balance of another user on
the network.

25

U W N

© 00O O Wi

Analogously, it is needed to request for the destination MN’s IP and port, and to be
careful with the OS issues (when dealing with sockets already used) to create a socket and
connect it withe the listening MN’s socket. Once the client socket is correctly connected
with the listening (MN’s) socket, it is time to tell the user it was everything okay and to
send the message (“payload_ pickle”).

The MN will answer with this client’s current balance in case it was on this MN’s
“balance dict” or with a DEFAULT BALANCE if not. This default balance is not needed
to be set in a non-zero number, but it is recommended to let the clients make at least a
transaction in a test Blockchain network.

The last but not least, in case it was not selected a wrong menu option it will be
displayed an error message asking for a correct one.

After explaining the client (blockchain_ client.py), it is time to explain a special client
code: the generator (blockchain_client_ generator.py).

3.2.2 Dblockchain_ client_ generator.py

This program only contains a main function. The first step in this code is to get the input
arguments analogously to the rest of clients as explained above.

It has been added another menu (analogously to the client above explained) but in this
case, it is simpler as it can be seen:

cont = True

while cont: # Until the user ask for the option number 0

print("\t3— MENU \n'
"\t\t1.: Generate and send value.\n"

"\t\t0.: End the generator.")
decision = int(input("\tWhat would you (the generator) like to do: "))

There are not so many thing to explain because all of them were already explained on
the previous subsection.
Following the rest of the clients line, I have decided to add a menu in the start as can
be seen. In this case, this menu contains the main option and the option to exit and finish.
In case the user selects the option “0”, the program ends as the rest of clients but, in
the other hand, in case the user selects the option “1” it is desired to create value and send
it to a client. The first step is to get the additional information needed like the destination
IP address, the amount of value to be created and sent (this would be, in example, the
amount of electricity generated by a solar panel in a house that must be added to the
owner balance) and the date and time.
Once every data needed to create the message are stored, it is time to create a transaction
as displayed:
Payload: dictionary —> string —> pickle _ send___ pickle —> string —> dictionary
payload__dictionary = {’type_of data’: type_of_data,
’sender__address’: "SUN", # inexhaustible energy source
‘recipient__address’: destination__ip,

value’: value,
’transaction__date’: now,

}
payload_str = str(payload_ dictionary)
payload__pickle = pickle.dumps(payload_ str)

It follows the same steps: create a dictionary (packet or payload), convert the dictionary
object into a string and encapsulate the string in a pickle (envelopment).

26

0~ Tk W

D = = e e e e e
O O 0O ULk WD+~ OO

21
22
23
24
25

In the line number 3, it can be seen that the sender is always “SUN”. This is a way to
say the system that this transactions is not a trade but a generation of energy so nobody
is losing it (the Sun can not get a negative balance).

Then, the packet can be sent to a MN so the transaction can be propagated and mined
to make the client earn the value for the electricity generated to the network. To do this,
the destination IP address and port are requested to the user.

The transaction in sent as explained on the previous subsection.

Finally, in case the selected option on the menu was neither “0” nor “1”, it is requested
again because it is not allowed any different option.

After the clients (and the pseudo-clients: generators) were explained, it is time to explain
the most important part of the project. The MNs are the nodes who control the network
and that is why it was decided to explain firstly the easier codes.

3.2.3 blockchain.py

Before starting to explain the Master Nodes, it must be explained that this code contains
three functions and the main. Two of these functions are “connect_ with__mn” and “propa-
gate_transaction” whose objective are connect the MN who calls this function with another
MN (adding it to the list of MNs, a dictionary to order them) and send a transaction to all
the connected MNs that can be retrieved from the already explained list of MNs. In the
other hand, “threaded” is a function really similar to a main due to it is the function called
by the threads and guide them during their whole time of life.

It must be remembered that after a few initialization, this code runs creating threads
to deal with the received transactions and after a few of them, mines the stored received
transactions.

After the imports, it is time to define and initialize a few variables in the Master Node.

semaphore_lock = threading.Lock()

cola_ pk = queue.Queue() # Qip:pk

cola__balance = queue.Queue() # Qip:current_ balance

cola_mn = queue.Queue() # Qip:port

(tuple with pk? +security)

(tuple with last—activity date? would improve the network efficiency by deleting after

a long time without activity)

cola_ tobemined = queue.Queue() # date:transaction(without MN miner)

cola__tentative_alreadymined = queue.Queue() # date:transaction(with MN miner)

cola_alreadymined = queue.Queue() # date:transaction(withMN miner)

(no one can send 2 transactions in our system at the same time and we securitize it by signature)

1 am supposing it is not possible to receive 2 different transaction generated at the same

time by different users (if not, it would not be possible to compare the date and we would

need to compare a tuple date+sender__address)

i.e.: dict[(received__date, received_sender_address)] = message_rcv

random__gen = Crypto.Random.new().read

private_key = RSA.generate(1024, random__gen)

MINING_REWARD =1

DEFAULT_ BALANCE = 17

MINING_DIFFICULTY = 2 # IN MY SYSTEM I DON'T NEED MINING_ DIFICULTY, it would
be similar to:

1) increase the number of transaction listened before mining (n) dynamically when the

network grows up

2) increase the number of cycles before accepting a mined transaction OR increase the

number of transactions to listen before mining (increase the time before accept a transaction

so I let more extreme delay)

27

[y
R O © 00O Ui WwWwiN K-

—_

© 00 3O Ui Wi+

In the first line, a semaphore or lock is initialized. Remember, this object is really useful
on the parallelized programming because it lets multiple threads to use in order (one by
one and according the FIFO technique) a critical section.

Between the second and the fifteenth line, the six queues are defined: 3 queues are used
to communicate the threads by putting and getting from there the dictionary (correctly
enveloped in a pickle) with the connected MNs, current balances and stored PK from
the Clients: the other 3 queues are used to save the transactions mined (Blockchain) in
“cola__alreadymined”, before being mined (“cola_tobemined ”) and mined but waiting to
verify that it was not mined by another MN before the one who send us the transaction
(“cola_ tentative alreadymined”). Some additional ideas for future implementations are
commented so it is not needed to add anything else.

The integer pseudo-random generator is initialized as “random_ gen” in the same way
as the Private Key needed on the PKC (Public Key Cipher).

Finally, there are defined two constant integers. The firs constant is named “MIN-
ING _REWARD?” and it is the amount of value sent to the miner of a transaction in a
similar way as a payment or a tax. The second constant (“DEFAULT BALANCE?”) is
used in some Blockchain networks to start the system before generating value.

In addition, it is commented some ideas for future versions like the traditional mining
difficulty and how can be easily implemented on this system.

After this initializations, it is recommended to understand the three (two and the thread
function) functions defined on the code:

def connect_ with_ mn(src_host_mn, src_port_mn, dst_ipaddress, dst_ portaddress):

nn

This function is called by a Master Node and tries to connect with a Master Node to add it
to the mn__dict used to propagate the transactions.

:param src__host__mn: Source @Qip address Master Node

:param src__port_ mn: Source port address Master Node

:param dst__ipaddress: Destination @Qip address Master Node

:param dst_ portaddress: Destination port address Master Node

:return: nothing. The mn__dict is actualized inside the function routine

This function “is called by a Master Node and tries to connect with a Master Node to
add it to the mn_ dict used to propagate the transactions” as it is said on the comment.
When a MN calls this function, it requested the connection with other MN by the proper
transaction (type of data 31)) sending. After this connection, the connected MN credentials
(IP address and listening port) are stored in the MN’s dictionary. In case the MN was
already connected to the caller MN, this function skips and finishes.

Finally, the socket is closed, the dictionaries are encapsulated and saved on their queues
and lock is released.

After this first function and depending on it, the second function deals with the work
of propagate (send) a transaction to all the MNs in the list of connected MNs:

def propagate_ transaction(src_host_mn, dst_ipaddress, dst_portaddress, transaction_ dict):

nnn

This function is called to connect with the destination and send a transaction

:param src__host__ mn: Source @Qip address Master Node
:param dst__ipaddress: Destination @Qip address

:param dst_ portaddress: Destination port address
:param transaction_ dict: Transaction to be sent
:return: nothing, this function just sends a transaction

28

1

— =

0

— O © 00O Ut W+~

nnn

This function can be used to send transactions from a IP to a destination (by introducing
IP:Port address as a input argument when called).

It is not needed to explain little chunks of code here because most of the things are
repetition of structures already explained.

The last and most important function is named “threaded”. Here, it is collected the
code for the threads since they are created till they die:
def threaded(c, addr):

1-RECEIVE THE MESSAGE

host_ ¢ = str(addr[0]) # port c¢ = str(addr[1])

semaphore_lock.acquire()

message_ pickle_rcv = c.recv(1024) # receive the first message from the client

message_str = pickle.loads(message_ pickle_rcv) # unbox/unpickle the message

message__str = message_ str.replace("", "\"")

message_dict = json.loads(message_ str)

received__tod = message_ dict.get("type_of_data’) # received type of data

Depending on the type_of data received:

if received__tod == 11: # type_ of data: 11 (Transaction from Client or MN)

The input arguments for this functions are a socket “c” and the address “addr” for it.
Once this function is called and before making differentiation on the kind of transaction
received, it is needed to prepare the packet received.

It is shown an example of taking the lock with and “acquiere”. This call lets the thread
enter in a Critical Section only if there are not more thread on it. In my code it is not
needed but it is an interesting improve in bigger networks (parallelization of work, in this
case, receive transactions).

The transaction just received from the socket it is unpickled, converted into a string and
finally and after a few adjustments by replacing characters that can produce an error, it is
translated into dictionary (the final object needed to work with). Once the transaction is
reconstructed as dictionary, it is possible to take fields and information from it as displayed
when it is saved the value in the key “type_of data”.

Depending on the received transaction’s type of data field:

e In case the “type_of data” field is “11”, it is a transaction created by a client (either
simple or generator). It can too be propagated from a MN.

In case this transaction comes from a normal client (neither MN nor generator client),
it will be needed to ask for the signature (and PK if it was not stored yet) to verify
the authority of this transaction. This verification process could be added on the
MN /generator case if desired in future implementations.

To verify a transaction it is needed that the signature matches (as shown below) and
that the sender of the transaction field matches with the Client sender (in case the
transaction was received from a Client).

1 # 4—VERIFY SIGNATURE

2 h = SHA256.new(message pickle rcv) # create hash

3 verifier = PKCS1_v1_5.new(pk_cl_imported) # create verifier with the PK from the
client

4 if verifier.verify(h, signature):

5 print("\tMN_T:—————————— > The signature IS authentic.")

6 if host_ ¢ == message_ dict.get(’sender__address’):

7 print("\tMN_T:—————————— > The packet contains the sender address

correctly.")

29

verification = True
else:
print("\tMN_T:—————————— > The signature is NOT authentic.")
verification = False if the signature/sender__address doesn’t match

If the transaction was successfully verified, it can be added to the list of transactions
ready to be mined. To explain the three queues displayed on this bunch of code, I am
going to briefly explained the mining process of this Blockchain network:

1. Add the transactions (without being mined) to be mined to the queue named
“tobemined”. This transactions ready to be mined are propagated to the rest of
connected MNs too to let them the opportunity to mine it.

2. Add the transactions (already mined or once mined from “tobemined” to the
queue named “tentative_alreadymined”. These transactions miner are propa-
gated too to let the rest of nodes know that the transaction was already mined
and avoid them an useless effort.

3. Add the transaction from “tobemined” to the queue named “alreadymined”. In
this moment, the transaction is added to the Blockchain and saved definitely.

In case a mined transaction comes to the MN and shows that the miner MN mined
an already saved transaction before, the balance of MNs are corrected. Else, it is
ignored.

Following the just explained process, it is searched for the transaction just received
on the queue of already mined transactions. In case this was encountered would mean
that we had already stored the transaction and it has already been mined, so it can be
ignored. In addition, the system could be modified by adding a tuple sender plus date
of transactions to make difference between users, this could be useful in big networks.

In case the just received transaction was not already stored on the already mined
transactions queue, it is time to search for it in the queue of tentative to be already
mined, following the same process. Again, it would be deleted in case the system
finds a match.

Finally, in case the transaction was not here, it can be said that it is a new verified
transaction. Now, it is time to save this new transaction (on the list of transactions
to be mined) and propagate it to the connected MNs so it can be mined as soon as
possible. After saving this new transaction, it must be sent to all the connected MNs
(propagated). To do this task, it can be used a loop where the already explained
function ”propagate_ transaction” can sent the transaction to each MN saved on the
list of connected MNs.

Finally, the lists are put back on their respective queues so the queues are actualized
with the new information and the lock is released.

In case the received transaction had the Type of Data (TOD) 21 instead of the 11
just explained, it would mean that the received transaction was created to request for
the current balance of its sender. This is an easy task that it was decided to add so
it can be easier to see the evolution of the clients balance and test the system.

To do this task, it is needed to get the requested balance from the balance list and
send it to the client that requested for it.

30

In some of the biggest Blockchain networks like the Bitcoin or Ethereum network, this
information is not requested on the moment. This is because it could be a transaction
waiting to be mined (or mined in a different MN) that would change this answer. This
would be easily implemented by making the thread sleep as explained on the starting
comments with the sleep library function.

After a quick verification to avoid a MN asking for a client’s balance (it is not needed
but it was added to show how could be done), it is searched on the balance dictionary
for the requested balance.

In case this client was not on the balance dictionary yet, it is added with the default
balance (this default balance is not needed to be different to zero). But if the balance
was on the dictionary, it is directly taken from there.

e In case the received transaction had 31 as TOD field, the received transaction is a
request for connect with a MN (the sender).

First of all, if the MN who requests to connect with this MN already was on our list,
this process ends due to the transaction can be skipped. Otherwise, both address and
port are added to the MN list as a key and value pair.

A message is sent as an ACK to tell the sender MN that everything went okay and
the MN list (“mn_ dict”) can be put back on its queue.

e Finally, if the received TOD is equal to 12, the received message is an already mined
transaction coming from a MN.

In case this MN does not have the received transaction in any list, it will be added
on the “tentative_already_mined_ dict” list waiting to the next mining time to be
finally added to this MN’s Blockchain (“already_mined_ dict”).

In case the received transaction was already saved on the list of already mined trans-
actions, it must be compared which transaction was mined before because that will
be the one that choose who was the real miner (the MN who mined the transaction
before) and the one who must earn the reward.

After explaining the functions on this .py, it is time to explain the main program.
The MN’s main is an infinite loop where after a pre-routine, the system listens for an
amount of transactions and after it, mines all the stored transactions.

1 def Main():
2 # get keyboard inputs
3 parser = ArgumentParser()
4 parser.add__argument(’—b’, ’——bind’, default="127.0.0.1", help="the address to bind to’)
5 parser.add__argument(’—p’, ’——port’, default=12345, help="the port to bind to’)
6 args = parser.parse_args()
7 host_mn = args.bind
8 port_mn = int(args.port)
9 # 0—define variables, define dictionaries and initialize if needed
10 # 1 create the pk in the MNs this for if I finally add the secure mood between MNs (0,1,2)
11 public_ key = private_key.publickey() # 0:pk
12 pk__export = public_key.exportKey("PEM") # 1:pk_exported
13 pk_dict = {host_mn: pk_export, # 2:pk_exported>dict
14 } # 1 do this for if I finally add the secure mood between MNs
15 balance_dict = {host_mn: DEFAULT BALANCE,
16 }
17 mn_ dict = defaultdict(list) # defined but not initialized

31

18
19
20
21
22
23
24

O © 00O Ui WwWhN

0O U= W

pk_ dict_ pickle = pickle.dumps(pk_ dict) # 3:pk_ exported>dict>pickle
mn_ dict_ pickle = pickle.dumps(mn__ dict)
balance_ dict_ pickle = pickle.dumps(balance__ dict)

cola_ pk.put(pk_ dict_ pickle) # 4:pk exported>dict>pickle>queue
cola_ balance.put(balance_ dict_ pickle)
cola_ mn.put(mn__dict_ pickle)

It is needed to get some arguments from the command line, firstly as input arguments
(that would take default value if not selected) and later some additional ones that will be
shown below.

It is too needed to prepare the keys in case of the program used the cipher or the
signature (not in this version, but it has been added for if the reader wanted).

The most important part of this chunk of code is the one represented between the lines
13 and 24. This lines show how the lists (dictionaries) are created, enveloped (put in a
pickle) and stored in a queue.

After this, the first additional option to be selected is if the MN must connect with
another MNs (remember that the P2P architecture needs every node connected to at least
another one) as shown here:

1—connect to some MN if needed:
This MNs will be the ones to whom this MN send the transactions when it wants to propagate
loop__connectmn = True
while loop__connectmn:
answer = str(input("> Do you want to connect with some MasterNode? (1/0 or Y/N to choose"
" yes/no): ")
if answer == "0" or answer == "no" or answer == "NO" or answer == "N" or answer == "n":
print(">> DON’T ADD MN")
loop__connectmn = False
elif answer == "1" or answer == "yes" or answer == "YES" or answer == "Y" or answer ==
y"
print(">> ADD MN")
ipaddress = str(input(">> What this MasterNode’s IP address is? (i.e.: 127.0.0.1): "))
portaddress = int(input(">> What this MasterNode’s port is? (i.e.: 12345): "))
connect_ with__mn(host_ mn, port_mn, ipaddress, portaddress) # str, str, int

The second and last input argument to be requested is the number of transactions
(named “n”) the system needs to receive before start mining all the stored and ready to be
mined transactions.

2—to choose n:
How many transactions are there needed in the "ready to be mined" queue before mining
(it’s the mining difficulty)
loop_ n = True
while loop_ n:
n = int(input("> How many transactions do you want to receive before mining? "
"(Please, choose between 6 and 99): "))
if 5 < n < 100:
print(">> n="+ str(n))
loop_n = False
tobemined_ dict = defaultdict(list)
dict_ tobemined = {new_list: [| for new_list in range(n)} # 0,1,2..n—1
dict_ tobemined = dict.fromkeys(range(n), [])
tentative_alreadymined_ dict = defaultdict(list) # This is a dictionary initialization
alreadymined__dict = defaultdict(list)
tobemined_ dict_ pickle = pickle.dumps(tobemined__dict)
tentative_alreadymined_ dict_ pickle = pickle.dumps(tentative_alreadymined_ dict)
alreadymined__dict__pickle = pickle.dumps(alreadymined__dict)

32

19
20
21

N O U W N

10
11
12
13
14
15
16
17
18
19
20
21

cola__tobemined.put(tobemined_ dict_ pickle)
cola_ tentative alreadymined.put(tentative_alreadymined dict_ pickle)
cola_ alreadymined.put(alreadymined_ dict_ pickle)

Finally, the main function enters in a loop of listening for transactions and creating
threads to delegate the work of each transaction. Realize that this code is concurrent but
it is ready to be changed to parallel programming if desired (it is recommended in large
networks to avoid collapsing the listening buffers). The “t.join()” call in the nineteenth line
is the way to convert a parallel version of the program in a concurrent one.

while True: # READY TO LISTEN REQUEST: (IN WHILE true)

3—listen in a loop until I have n transactions to be mined and mine all of them
for i in range(n):
create socket
semaphore_ lock.acquire() # not needed, just in case
s = socket.socket(socket. AF__INET, socket.SOCK_STREAM) # create socket
s.setsockopt(socket.SOL__SOCKET, socket.SO_REUSEADDR, 1) # set SO_ REUSEADDR
is important
s.bind((host__mn, port_mn)) # finish my socket configuration with my address and port
print("\nMN:socket binded to " + host_mn + ":" 4 str(port_mn))
s.listen(5) # the socket can have 5 petitions on queue
print("MN:socket is listening")
¢, addr = s.accept()
print"MN:Connected to ’ 4+ addr[0] 4+ '’ + str(addr[1]) + > Starting a new thread...”)
semaphore__lock.release()
Start a new thread and return its identifier
t = Thread(target=threaded, args=(c, addr)) # I can wait for the thread
t.start()
it would improve with a concurrent multithread system as explained on the header
t.join() # the thread is working and I am going to wait here for it (NO concurrency)
c.close()
s.close()

After the n transactions, it is time to mine. This number could be dynamically increased
because it is needed to increase the time before mining in bigger networks, or at least,
delegate some threads just to mine.

Before mining the transactions, it is needed to acquire the lock and get the lists (dic-
tionaries) from their respective queues as always.

After this preparations, it is time to start mining the transactions ready to be added to
the Blockchain (already mined transactions that were waiting to be confirmed).

First of all, it is important to avoid mining an already mined transaction. To do this, it
is needed to compare the transaction ready to be added to the Blockchain (and the ones to
be mined) with the transactions already added. In a real system, it would be (often) added
a hash not the whole transaction but as it has been said multiple times, this is a educational
example and the most important thing is to understand what happens. Without hashes,
the efficiency of the stored data is reduced but it can be read anytime it is desired and look
at the order of the Blockchain.

At the same time, it is important to avoid mine a transaction to be mined when there
is a copy of it already mined on the tentative to be mined queue.

When a transaction is mined, the amount of value sent is subtracted from the sender’s
balance. The miner MN earns its reward for the mining work and the receiver gets the sent
amount less the reward. This analogy between taxes and rewards is only an option, there
are other networks where it is sent the full amount of value to the receiver and the sender’s
balance gets subtracted the amount plus the reward.

33

Finally, all the lists (dictionaries) are put back in their respective queues and the lock
is released to let another thread use them.

3.3 Experimental validation

An easy implementation (from the command line in the directory where the .py are located):

1. python blockchain.py

The system will choose the address 127.0.0.1:12345 by default for the first MN. The
options recommended are 0 and 6 to avoid adding MNs to the connected MN list (it
will be done by the second MN on the next step) and set the number of transactions
before mining in the minimum (six).

2. python blockchain.py -b 127.0.0.2 -p 23456

The configuration sets the socket 127.0.0.2:23456. The options recommended are 1,
127.0.0.1, 12345, 0 and 7 to add the first MN to the connected MN list and set the
number of transactions before mining in a not divisible by 6 number (this is not

needed but it is more graphical in case it is sent transactions only to on of this two
MNs).

3. python blockchain_ client.py -b 127.0.0.3

The configuration sets the address 127.0.0.3 due to the port dynamically selected in
every connection to speed up the process. The options recommended when it is chosen
to create a transaction: 127.0.0.4, 5, 127.0.0.1, 12345. This would send 5 unities of
value to the client located in 127.0.0.4 . The options recommended when it is chosen
to request for the balance are: 127.0.0.1, 5, 127.0.0.1, 12345

The next implementation would increase the number of MNs connected in a network. It
would be needed to reach some MNs to connect with some other MN. This implementation
would increase the number of clients too.

Finally, some of this clients could create value (generate electricity) so it can be created
some electric generators like this:

4. python blockchain_ client_ generator.py -b 127.0.0.5

The configuration sets the address 127.0.0.5 with dynamical port. The options recom-
mended when it is chosen to create value (a transaction) are 127.0.0.3, 5, 127.0.0.1, 12345.
This would create 5 unities of value and send it to the client 127.0.0.3 by the MN located
in 127.0.0.1:12345 who will propagate the transaction and try to mine it firstly.

Following this recommendations, it was prepared an example to create a network similar
to the one on the Figure 3.3. As it can be seen, the Client-MN and the MN-MN communi-
cation are bidirectionals in contrast with the (Client) Generator-MN communication. The
port in the both the client and generator side are dynamically selected.

As it can be seen, and analogously to the Figure 3.2, the generator is an unnecessary
or optional node so it is marked with an unidirectional grey line instead of the blue line.
The line is unidirectional because it is not needed to send information from the MN to the
generator.

34

Example architecture:

’ Connected MNs
Client

],ZZ 77.() .()-:3 1)/I]>J 1\[[1\1
127.0.0.1 ~—s () 127.0.0.2

12345 23456

Generator
127.0.0.5

Figure 3.3: Example network architecture

C:\Users\lvice\Desktop\Final project\Other projects\e-LVAproject\blockchain>python b EMIC:\Users\lvice\Desktop\Final project\Other projects\e-LVAproject\blockchain>python b i
lockchain.py lockchain_client.py -b 127.0.0.3
> Do you want to connect with some MasterNode? (1/@ or Y/N to choose yes/no): @ 1-Starting blockchain_client.py
>> DON'T ADD MN 2-Generating a new wallet (Public and Private keys)
> How many transactions do you want to receive before mining? (Please, choose betwee
n 6 and 99): 6 3- MENU
>> n=6 k for my Public key
Make a transaction (To send an amount to a client)

MN:socket binded to 127.0.6.1:12345 ER for my current balance
MN:socket is listening ©.: End the client.
MN:Connected to 127..0.2:9842 Starting a new thread... What would you (the client) like to do

MN_T:type of data: 31 (Connection request from a MN)

MN_T:The new MN(127.0.0.2:23456) was added to my mn_dict

MN_T:Message ready to be sent: ACK, I just added you to my list

MN_T:That's all, forks!!

IMN:socket binded to 127.0.0.1:12345
MN:socket is listening]

[Seleccionar Simbolo del sistema - python blockchain.py -b 127.0.0.2 -p 23456

c:\Users\1vice\Desktop\Final project\Other projects\e-LVAproject\blockchain>python b
lockchain.py -b 127.0.0.2 -p 23456

> Do you want to connect with some MasterNode? (1/@ or Y/N to choose yes/no): yes

>> ADD MN

>> What this MasterNode's IP address is? (i.e.: 127.8.0.1): 127..0.1

>> What this MasterNode's port is? (i.e.: 12345): 12345

>>> Let's connect with the MN in 127.6.0.1:12345

>>> Socket(127.0.0.2:9842) connected with MN(127..8.1:12345). Let's send our messag]
e

>>> Message sent to MN

>>> ACK received from the MN: ACK, I just added you to my list

>>> Connection with the MN was correctly finished

> Do you want to connect with some MasterNode? (1/@ or Y/N to choose yes/no): @

>> DON'T ADD MN

> How many transactions do you want to receive before mining? (Please, choose betwee
n 6 and 99): 7,

Figure 3.4: Initialization of two MNs and a Client
After creating two MNs (left side of the screenshot displayed as Figure 3.4) and a client
(right side) with the options explained above as “easy implementation”, the second MN
has been connected with the first one (in black over white). In this way, every transaction
received or mined by this MNs will be propagated to the other one. This is the first
transaction received in 127.0.0.1 (it will mine after the sixth received transaction).

35

&3 Seleccionar Simbolo del sistema - python blockchain.py
ocket binded to 127.0.0.1:12345

ocket is listening
[MN:Connected to 127.0.6.2:9842 Starting a new thread...
MN_T:type_of data: 31 (Connection request from a MN)
MN_T:The new MN(127.0.0.2:23456) was added to my mn_dict
| T:Message ready to be sent: ACK, I just added you to my list
MN_T:That's all, forks!!

ocket binded to 127.6.0.1:12345
MN:socket is listening
MN:Connected to 127.6..3:40822 Starting a new thread. ..
MN_T:type_of_data: 21 (Current balance request from Client)
MN_T:Current balance of 127..6.3 (THIS MASTERNODE HAS NO INFORMATION ABOUT
YOU. default_balance=17) ready to be sent to the client

IMN:socket binded to 127.0.0.1:12345
et is listening

> Do you want to connect with some MasterNode? (1/@ or Y/N to choose yes/no): yes
>> ADD MN

>> What this MasterNode's IP address is? (i.e.: 127.0.0.1): 127.0.0.1

>> What this MasterNode's port is? (i.e.: 12345): 12345

>>> Let's connect with the MN in 127.0.8.1:12345

>>> Socket(127.0.0.2:9842) connected with MN(127.0.0.1:12345). Let's send our messag

e

>>> Message sent to MN

>>> ACK received from the MN: ACK, I just added you to my list

>>> Connection with the MN was correctly finished
Do you want to connect with some MasterNode? (1/@ or Y/N to choose yes/no): @

>> DON'T ADD MN

> How many transactions do you want to receive before mining? (Please, choose betwee
6 and 99): 7

>> n=7

MN:socket binded to 127.0.6.2:23456
MN:socket is listening

Users\lvice\Desktop\Final project\Other projects\@-LVAproject\blockchain>python b |l
lockchain_client.py -b 127.6.8.3

1-Starting blockchain_client.py

2-Generating a new wallet (Public and Private keys)

MENU
Ask for my Public key

: Make a transaction (To send an amount to a client)
Ask for my current balance

: End the client.

3-

3.3-Let's check my balance (type_of data: 21)
Master Node IPv4 ADDRESS (ie.: 127.0.0.1): 127.0.0.1
Master Node IPv4 PORT (ie.: 12345): 12345
3.3.1-Client socket(127.0.0.3:40822) connected with MN(127.0.0.1:12345). Let's send
lour message
3.3.2-Message sent to MN.
3.3.3-My current balance is: THIS MASTERNODE HAS NO INFORMATION ABOUT YOU. default_b
7

MENU
‘Ask for my Public key
Make a transaction (To send an amount to a client)
Ask for my current balance
©.: End the client.
what would you (the client) like to do

Figure 3.5: First request for current Client’s balance
After doing the configuration on the first creenshot, the client can ask for its current balance
or to create a transaction (send value). Firstly, it has been chosen the balance request option
as shown on pictures from Figure 3.5 to 3.6.
As it can be seen, the client wasn’t on this MN’s balance list, so it is added with the default

balance value: 17.

MN:socket binded to 127.0.0.1:12345
MN:socket is listening
IMN: Connected to 127.0.0.3:40822 Starting a new thread...
MN_T:type_of data: 21 (Current balance request from Client)
MN_T:Current balance of 127.6.0.3 (THIS MASTERNODE HAS NO INFORMATION ABOUT
YOU. default_balance=17) ready to be sent to the client
MN_T:That's all, forks!

:socket binded to 127.0.0.1:12345

:socket is listening

:Connected to 127.6.0.3:62912 Starting a new thread...
MN_T:type_of_data: 21 (Current balance request from Client)
MN_T:Current balance of 127.0.8.3 (17) ready to be sent to the client

:socket binded to 127.0.0.1:12345
:socket is listening

> Do you want to connect with some MasterNode? (1/@ or Y/N to choose yes/no): yes

>> ADD MN

>> What this MasterNode's IP address is? (i.e.: 127.0.0.1): 127.0.0.1

>> What this MasterNode's port is? (i.e.: 12345): 12345

>>> Let's connect with the MN in 127.6.0.1:12345

>>> Socket(127.0.0.2:9842) connected with MN(127.0.0.1:12345). Let's send our messag
e

>>> Message sent to MN

>>> ACK received from the MN: ACK, I just added you to my list

>>> Connection with the MN was correctly finished

> Do you want to connect with some MasterNode? (1/@ or Y/N to choose yes/no): @

>> DON'T ADD MN

> How many transactions do you want to receive before mining? (Please, choose betwee

MN:socket binded to 127.0.0.2:23456
MN:socket is listening

& Seleccionar Simbolo del sistema - python blockchain_client.py -b 127.0.0.3

MENU
Ask for my Public key
Make a transaction (To send an amount to a client)
Ask for my current balance
End the client.

3.3-Let's check my balance (type_of data
Master Node IPv4 ADDRESS (ie.: 127.8.0.1): 127.0.0.1
Master Node IPv4 PORT (ie.: 12345): 12345
3.3.1-Client socket(127.0.0.3:62912) connected with MN(127.0.0.1:12345). Let's send
lour message
3.3.2-Message sent to MN.
3.3.3-My current balance is: 17
3.3.4-Current Balance request correctly finished

MENU
Ask for my Public key
Make a transaction (To send an amount to a client)
Ask for my current balance
©.: End the client.
What would you (the client) like to do:

Figure 3.6: Second request for current Client’s balance
The second time the client requests for its balance, it will directly receive its current balance
as displayed.

36

&3 Seleccionar Simbolo del sistema - python blockchain.py

MN:socket binded to 127.6.6.1:12345
MN:socket is listening
IMN:Connected to 127.0.8.3:26841 Starting a new thread...
MN_T:type_of_data received: 11 (Transaction from Client or a MN)
MN_T:it is a CLIENT, I need to ask for the signature (and maybe the Public
ley)
MN_T:signature request ready to be sent to the client
MN_T:signature received from the client.
MN_T:message(I don't have your Public Key. Send it to me, please) ready to Y
le sent to the client
MN_T:pk received from the client: Public RSA key at @x24D58424Fe8
MN_T:ACK2 ready to be sent to the client
MN_ -> The signature IS authentic.
-> The packet contains the sender address correctly.
| T:This is a new transaction at 2020-85-18 10:07:06.317347
MN_T:The message received:
{"type_of data": 11, "sender_address": "127.0.0.3", "recipient_address": "127.0.0.4"
, “value": 5, "transaction date": "2020-05-18 10:07:06.317347"}
MN_T:The new transaction was stored to be mined
> socket(127.8.0.1:22868) connected with MN(127.8.0.2:23456). Let's propagate our t
lansaction.
> Message sent to MN.
> Connection with the MN was correctly finished.
IMN: Transaction received by me, successfully sent to the connected MN: 127.0.0.2:2345
16

MN_T:That's all, forks!!

MN:socket binded to 127.0.0.1:12345
socket is listening

Figure 3.7:

MN:socket binded to 127.6.08.1:12345
MN:socket is listening
MN:Connected to 127.8.8.3:5163 Starting a

:This is a new transaction at
:The message received:

saction.
> Message sent to MN.

B Seleccionar Simbolo del sistema - python blackchain.py

it is a CLIENT, I need to ask for the signature (and maybe the Public ke

| T:Pk from 127.0.0.3 was already on my Dict: Public RSA key at ©x20F178CD4g{

MN_T:type_of data received: 11 (Transaction from Client or a MN)
MN_T:

)
MN_T:signature request ready to be sent to the client
MN_T:signature received from the client.
MN_T

8

| T:message(ACK1) ready to be sent to the client
| Ti--m-m-mmm-- > The signature IS authentic.
-------- > The packet contains the sender address correctly.

{"type_of_data": 11, "sender_address": "127.8.8.3", "recipient_address": "127.8.8.4",
"value": 10, "transaction_date": "2020-05-18 11:56:56.015155"}

MN_T:The new transaction was stored to be mined
> socket(127.8.8.1:5826) connected with MN(127.8.0.2:23456). Let's propagate our tran)

> Connection with the MN was correctly finished.
MN:Transaction received by me, successfully sent to the connected MN: 127.8.0.2:2345¢

~ what would you (the client) like to do: 2
3.2-Let's create a transaction (type_of data: 11) with:
Recipient IPv4 ADDRESS (ie.: 127.6.6.3): 127.0.0.4
Amount to send (ie.: 5): 5
Master Node IPv4 ADDRESS (ie.: 127.0.0.1): 127.0.0.1
Master Node IPv4 PORT (ie.: 12345): 12345
2.3-Client socket(127.0.0.3:26841) connected with MN(127.0.0.1:12345). Let's send
r message
2.4-Message sent to MN.
2.5-Signature request from the MN(_T) : Send me the signature, please
2.6-Signature sent to the MN
2.7-PK request/ACK1 from the MN(_T) : I don't have your Public Key. Send it to me,|
lease
2
-
2

socket binded to 1.
MN:socket is listening
MN:Connected to 127.8.8.1:22868 Starting a new thread...

:type_of data received: 11 (Transaction from Client or a MN)

:it is a MN, do NOT ask for the signature

:This is a new transaction at 2020-©5-18 10:07:06.317347

:The message received:

ta": 11, "sender_address": "127.8.0.3", “recipient_address": "127.0.0.4"|
, "transaction_date": "2020-05-18 10:087:06.317347"}

MN_T:The new transaction was stored to be mined

> socket(127.0.0.2:61817) connected with MN(127.0.0.1:12345). Let's propagate our tr]
lansaction.

> Message sent to MN.

> Connection with the MN was correctly finished.
MN:Transaction received by me, successfully sent to the connected MN: 127.0.0.1:1234]
5

.0.2:23456

MN T:That's all, forks!!

socket binded to 127.0.0.2:23456

:socket is listening

Creation of the first transaction

new thread...

2026-85-18 11:56:58.015155

Figure 3.8: Response to the second transaction

The second option on the client side is to create a transaction so it can be sent an amount of

value (it has been chosen 5) to another client (127.0.0.4) through a MN (127.0.0.1:12345).
The receiver MN verifies the correctness of the transaction asking for the signature, the

client’s PK to verify the signature if needed (only the first time because it is saved on a

dictionary to speed up the transaction system on future transactions). This is shown on

the Figure 3.7

It is important to verify that the sender client (the socket that requested the connection) is
the one that says to be the sender on the packet (the field sender_address of the transac-
tion). If everything is correct, this MN propagates the transaction to the rest of connected

MNs (it will be received by the second MN,

displayed on the bottom right corner).

As it can be seen on the second screenshot (Figure 3.8), the PK is already stored and it is

skipped to request for it.

37

MN_T:I had this transaction (to be mined):
{"type_of_data": 11, "sender_address”: "127.6. recipient_address”: "127..0.4" JllC:\Users\lvice\Desktop\Final project\Other projects\e-LVAproject\blockchain>python b
16, "transaction_dat: ©5-18 1 48.498193"} lockchain_client.py -b 127.8.0.3
h

1-Starting blockchain_client.py
, "sender_addre: 27.0.0.3", "recipient_address": "127.0.6.4" 2-Generating a new wallet (Public and Private keys)
"transaction_date": "2020-05-18 10:09:48.498193"}
MN_T:That's all, forks!! 3- MENU
: Ask for my Public key
MN:Time to mine!! Make a transaction (To send an amount to a client)
MN:Transaction 2020-85-18 10:07:06.317347 was mined from tobemined. Let's propagate for my current balance
[to the connected MNs ©.: End the client.
> socket(127.0.0.1:27875) connected with MN(127.0.0.2:23456). Let's propagate our t What would you (the client) like to do:
lansaction.
> Message sent to MN.
> Connection with the MN was correctly finished.
MN:Transaction mined by me, successfully sent to the connected MN: 127.8.0.2:23456
MN:Transaction 2020-85-18 10:09:48.498193 was mined from tobemined. Let's propagate
to the connected MN]

B8 Seleccionar Simbolo del sistema - python blockchain.py -b 127.0.0.2 -p 23456

MN_T:That's all, forks!!

MN:socket binded to 127.0.0.2:23456
MN:socket is listening
IMN:Connected to 127.0.0.1:27875 Starting a new thread...
MN_T:type_of data: 12 (Transaction already mined from MN)
MN_T:I had this transaction (to be mined):
{"type_of_data": 11, "sender_address": "127.0..3", "recipient_address": "127.0.6.4"
, "value": 5, "transaction_date": "2020-05-18 10:07:06.317347"}
MN_T:The message received:
": 12, "sender_address": "127.6.0.3", "recipient_address": "127.0.6.4"|
"transaction_date": "2020-05-18 10:07:06.317347", “"miner_address": "1.
", "date_mined": "2026-@5-18 11:15:36.442530"}
MN_T:The new transaction was stored as tentative_alreadymined to be already
mined and the already stored transaction in TOBEMINED was deleted
MN_T:That's all, forks!!

Figure 3.9: Time to the MN to mine the received transactions
After a few transactions (another sent with an amount of 10 and a few requests of balance
to make the system run), on the sixth iteration, the first MN will mine all of them as
explained and propagate the transactions mined by itself. This is why the second MN
receives a transaction mined and overwrites its queues to delete the old transaction (before
being mined) and adds the new one (already mined by the first MN).

MN:Time to mine!!

MN:127.@.8.3 did HAVE enough balance & sent MORE value than the mining_reward:
MINING_REWARD < tentative_value <= balance_dict[tentative_sender] = 1 < 5 <=

17

127.8.6.1 mined. Current balance: 18

MN:127.0.0.4 received. Current balance: 21

MN:127.8.08.3 sent. Current balance: 1

MN: Transaction 2020-05-18 11:56:50.015155 was mined from tobemined. Let's propagate t

o the connected MNs

> socket(127.9.0.1:19313) connected with MN(127.0.9.2:23456). Let's propagate our tra

nsaction.

> Message sent to MN.

> Connection with the MN was correctly finished.

MN: Transaction mined by me, successfully sent to the connected MN: 127.0.9.2:23456

MN:socket binded to 127.8.8.1:12345
MN:socket is listening

Figure 3.10: Second time the MN is going to mine

On the second time to mine, the transaction stored as mined is accepted (it was not received
any other transaction that shows another MN mining the transaction before so the MN adds
the amount of value called reward to the miner MN for its work, the amount of value sent
(after subtracting the reward) to the receiver and it is subtracted the amount sent to the
sender as displayed. The accepted transaction is added to the Blockchain.

In case an incoming transaction shows another MN mining before, it would be changed the
balances and the Blockchain.

38

BX Simbolo del sistema - python blockchain_dlient_generator.py — O X

:\Users\lvice\Desktop\Final project\Other projects\@-LVAproject\blockchain>python b
[lockchain_client_generator.py
1-Starting blockchain_client_generator.py
3- MENU
1.: Generate and send value.

@.: End the generator.
What would you (the generator) like to do: 1
[1.2-Let's create a transaction (type_of_data: 11) with:

Recipient IPv4 ADDRESS (ie.: 127.6.0.3): 127.0.0.3
Amount to send (ie.: 5): 22

Master Node IPv4 ADDRESS (ie.: 127.0.0.1): 127.0.0.1
Master Node IPv4 PORT (ie.: 12345): 12345

Figure 3.11: The Generator menu

In addition, the generator can be used in the advanced configuration to send amounts of
energy generated by the clients to the clients. This is as simple as displayed and of course,
nobody lose value due to this energy was generated (not sent) like using a solar panel. In
the practice, the sender is named “SUN” and this user does not lose value when sends an
amount. This generator is shown on the Figure 3.11 where it can be seen its menu.

As it was said this part of the project should be controlled on a different project to ensure
no problems with the electricity meter.

39

It has been too measured the times in different sections. This performance tests has been
done with the time.time function from time library. As it is said on this library: “Return
the time in seconds since the epoch as a floating point number”. Following this, it is really
easy to measure the time between two events by calculating the difference between two
measures. Notice that when the elapse of time between two events is less than a minimum
of time, it is said that the duration is 0,0.

It has been tried to measure only the computing time so the experiment has been done
in loop-back directions on the same computer. To increase the exactitude, it was tried in
two different computers (a laptop and a more powerful desktop computer) and the times
were really similar due to the simplicity of the calculus (the hardest parts of the code are
avoid to be repeated when possible). Of course, the measures had been repeated multiple
times (at least, ten times each option or section in each computer).

This study shows that:

e In the Clients (blockchain_ client.py code):

It has been measured the chunk of code before the infinite loop that executes the
menu to request for an action. This code prints, parses an argument from command
line and generates a private-public key tuple. This sections is computed very fast
between 0,160996913 and 0,255102634.

The other part is the menu. Depending on the option selected, there are four (five if
it is counted to introduce and erroneous input argument) different options.

The first (and fastest) option is to ask the program to print the PK that consumes
between 0,0 (in case it is not the first time to be requested) and 0,001996278.

The second option is to create a new transaction and send it to a MN, this is the
opposed case and it is needed a lot of time depending on the user (it is needed the user
to write the additional arguments, easily around 5-10 seconds). If it is not counted
the time needed by the user to write the additional information, it is needed between
0,723068237 and 2.441816329 (in case it is needed the receiver MN to propagate to
lots of MNs). Of course, the more MNs in the list to propagate, the more time needed
but it could be reduced by introducing parallel programming on this task (create
threads to find MNs on the list and send the transaction, one by one but in a parallel
way).

The third option is to ask for this client’s current balance to a MN. This task requires
between 0,310797366 and 0,864660891.

There are two more options, to ask the Client to finish the program and to introduce
an erroneous argument. Both of them requires 0,0.
e In the Generators (blockchain_ client_ generator.py code):

It has been measured the chunk of code before the infinite loop that executes the
menu to request for an action again. In this case the code parses input arguments
and prints two times. It is needed 0,0 to resolve this simple tasks.

On the other hand, the time measured on the menu loop is bigger. Depending on the
decided option, if it is required to generate value it is required between 1,247811532
and 1,528101241.

There are two more options again with “zero” (0,0) time-cost like introduce and
erroneous argument and ask the program to finish.

40

https://docs.python.org/3/library/time.html#time.time

e In the Master Nodes (blockchain.py code):

There are so many chunks of code analyzed in this code but some of them can be
grouped. This similar chunks of code are: the part of code in the main before the
loop to request the user how many transactions will be accepted before start mining
(a part that depends on the user’s reaction time), the one in the main before the
loop used to listen for socket connections and the part of the main that fills from
the socket creation to the thread start. All of them have really similar and negligible
times around 0,0 (the maximum recorded elapse of time was 0,006507158). This is
because this codes does not use socket functions. In these group of sections, it is
printed messages on the console, gotten the arguments from the parser, initialized
the dictionaries, get and put pickles from/on dictionaries, prepared and started the
treads and taken and released the locks.

After this, it mus be talked about the times in the propagate_ transaction function.
It has been measured times between 0,000997543 and 0,515519142. Remember, this
function connects the MN with another MN and sends a transaction.

The other function is connect with mn. This function tries to connect with a MN
and in case it is successful, it will be added the IP and port address to a list of
connected MNs. The time needed to do this task varies between 0,0 and 0,00769639.
It is a really simple task that was encapsulated in a function just to make clearer the
code.

The most important part of this test is the threaded function. To study the elapses of
time on this function it is needed to difference the types of data received. In case of a
ToD 11 (Transaction), it can be needed to print, get values from lists and compare it,
it is possible to need to verify a signature, send messages and propagate. Due to all
the just explained tasks, it is needed between 0,015621423 and 0,550095319. In case
the ToD is 21 (Client requesting for its balance), 31 (MN connecting with this MN)
or 12 (receiving an already mined transaction), the elapse of time needed are really
similar and comes from 0,0 to 0,002990484 because the tasks to done are simple.

The mining time is curiously on of the fastest parts of the code independently of how
many transactions are ready to be mined or added to the Blockchain. This is because
the code has been carefully done to improve the efficiency and avoid the program block
here for so much time. Due to it is a recursive if-else nested section that compares
in dictionaries and prints (the part of the code with higher time cost and the one
that can be commented), the time varies from 0,0 to 0,0009987537932 (this time was
measured with the prints and seventeen transactions ready to be mined).

In conclusion, it can be said that the performance of this Blockchain network depends
on the time needed to connect two nodes (sockets).

In adition, the Python IDE used to develop this project (PyCharm from IntelliJ) in-
cludes the option to test the performance of the programs. It has been tested the number
of calls and the time needed in each section of the program that is going to be explained
below.

As it is shown on the Figure 3.4, in this nested architecture, there are four blocks needed
by the “blockchain.py” program and an independent block (the threads).

The process is working on the Main around the 99.8% of the execution time. This is
due to the main process spends the most of the time waiting for new connections request on
the socket.accept call already explained. This is the reason to do not delegate the listening

41

Blockchain.py threads

Main cryptography locks dictionaries

Figure 3.12: Blockchain performance test

action to a thread (in the same way it is done once a transaction comes). In case the number
of requests for connection increase a lot (imagine a network with millions of nodes), it could
be useful to implement too a thread function for the listening stuff.

The threads block represents the tasks done by the threaded function. This block is
not connected with the rest because it is done by different threads, so this work does not
requires execution time from the main process. In case this staff was not delegated to
other threads, this jobs time could be superior to the Main function if there are so many
transaction.

The third block to discuss about is the cryptography where the main process spends
around 0,1% of its time. This block represents all the functions working with the SHA256,
RSA, hashes and similars. In example, here it is measured the time to create the keys,
do and verify the signatures or to create hashes. Curiously, call needed to raise the power
of a number (___pow___) is the one that spends the more time in my computers. This
is probably due to the multiply and addition function can be done faster than a loop of
multiplications on the general purpose CPUs.

In the other hand, there are two blocks dealing with the locks (the control of the critical
sections access) and the dictionaries (the system to organize the information). Both of
them have a similar time needed in this functions and calls, around the 0,05%.

In case the number of received transactions increased, the time needed on the locks’
block could be higher but anyway it would be similar to the cryptography’s block. The locks
block deals with the creation of this semaphores (locks), and its acquisition and release. The
higher measured time is the needed to acquire the lock (the call named “_load_ unlock”).
This is because it is needed to wait for other threads releasing it and it is used both in the
“acquire” and the “join” calls.

In the other hand, the dictionaries block create this ordered lists, gets value from them,
sets changes and puts new values with the peculiar key-value system. The most required
action in this block is to create a new dictionary. This is why, it is avoided to create
dictionaries out of the initial pre-protocol.

Similarly, the Client’s (“blockchain_ client.py”) diagram is shown on the Figure 3.5.

In this program, there are not threads neither locks or dictionaries so the scheme is
simpler. The measured times variate a lot on the user because it depends on how fast the
user choose new actions to do or how much time the client spends waiting for a new task.

Supposing a fast human selection, the measured times indicates that the Clients is in
the main block between the 99.6 and the 99.9% of the time. Due to the most of the tries,

42

Blockchain__client.py

Main cryptography

Figure 3.13: Client performance test

it was measured 99.7% it will be chosen this data to compare the rest of blocks times. In
similar way to the MN main, the Client main’s most expensive (in terms of time) action is
to connect a socket with another one (in example, when a client needs to send a transaction
to a MN).

In the other hand, the Client needs too so create the private and public keys and does
not need to verify signature but to create it (a bit more expensive). Due to this, the Client
usually spends more percentage of its process time in the cryptography block. Again, the
“_ pow___ 7 call is the one that spends the most of the cryptography block time.

Finally, the Generator variant of a client is even simpler as explained is shown on the
Figure 3.6.

Blockchain_ client_ generator.py

Main

Figure 3.14: Generator performance test

This function focus its main in waiting for the user (or the electricity meter) and when
it is active, it connects with a MN socket-to-socket and sends a transaction. In this case,
it con be a process in stand by (it is not needed to measure the generation of electricity in
every clock cycle). Of course, the most expensive action is to connect with a MN’s socket.
The percentage of time in this block is not relevant due to its total dependence on the user
and how it is measured the generated electricity.

43

Chapter 4: Conclusions summary

All in all, this thesis lay the foundations for future Blockchain projects. These projects
can take all the code and try new technologies and protocols like different cipher protocols,
or to take parts of it and create new Blockchain networks to compare them for different
purposes. Some of these future projects could be:

e To change the key “transaction_date” which is saved the transactions when re-
ceived for a tuple, in example it could be utilized the tuple “transaction_ date” plus
“sender_address”.

This is because of accepting the possibility of receiving more than a transaction gen-
erated at the same time if the network is big enough.

[}

e To change dynamically the mining difficulty (the variable “n” is statically selected
on the start of every MN in the code) if it is supposed that the Blockchain network
is going to grow up.

In this way, it could be solved the problem of need to wait for a transaction mined
before coming from far. Remember that the further (in number of nodes) a MN is
from another one, the more time that can be needed to reach it and propagate a
transaction.

e To implement a protocol to improve the efficiency of connections in the network. This
would make more efficient the propagation.

In example, a algorithm to choose the connected MNs in each MN (and even the
clients) depending on the delay between them or a load balancing algorithm to avoid
a MN with 20 connected MNs and another one with only 1.

e Following the line of the tuples, implement a tuple for the MNs and clients when
saved on the list.

In example, a tuple with the PK would allow to add the signature in every transaction
if considered. Or implement a tuple with the date of last activity and clean the list of
connected MNs periodically to avoid saving inactive nodes. This secure mood could
be too an option to the user.

e Definitely, one of the main ideas of the code is to implement the parallelization in
future versions by using threads.

This is why the code is already prepared for it with locks, queues to communicate
the threads and a threaded function to deal with the received transactions and it was
explained. In this way, the main thread of blockchain.py (the MN) would focus on
listening transactions and every transaction would be dealt by a thread of this father

44

MN. This concurrent system reduces the time needed between transactions received
to a clock cycle of the computer running the process.

45

Chapter 5: List of lists

List of Abbreviations

e P2P - Peer To Peer

e Al - Artificial Intelligence

e DLT - Distributed Ledger Technologies

e ECDSA - Elliptic Curve Digital Signature Algorithm

e ECC - Elliptic Curve Cryptography

e PKC - Public Key Cryptography or Cipher

e PK - Public Key

e W-OTS - Winternitz One Time Signature

e SHA256 - Secure hash Algorithm of 256 bits

e RSA - Rivest, Shamir and Addleman protocol for the Public Keys
e DER - Distributed Energy Resources

e RFC - Request For Comment

e TOD - Type Of Data

e MN - Master Node

e ACK - Acknowledge type of message frequently used on the TCP systems
e TCP - Transmission Control Protocol

e [P - Internet Protocol address

e IDE - Integrated Development Environment

e CPU - Central Processing Unit

46

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Common elliptic curve function 8
Elliptic curve scheme e 11
Used network architecture 13
Software architecture 14
Example network architecture L. 35
Initialization of two MNs and a Client 35
First request for current Client’s balance 36
Second request for current Client’s balance 36
Creation of the first transaction 37
Response to the second transaction oo L. 37
Time to the MN to mine the received transactions 38
Second time the MN is going tomine 38
The Generator menu v o v vt i e e e e e e 39
Blockchain performance test oo 42
Client performance test 43
Generator performance test L oL 43

47

Bibliography

1]

ALIL Z. Ezplaining the Math Behind Blockchain Algorithms [online]. 2019. Available
at: https://medium.com/dataseries/explaining-the-math-behind-blockchain-
algorithms-98d06e06c2e3#: ~:text=Elliptical)%20curve’20cryptography%20is
20a,this%20scheme’,20are’,20not%20trivial.

ANTONOPOULOS, A. Mastering Bitcoin. 2nd ed. O’Reilly, 2017. ISBN
978-1-491-954386-6.

DunpHY, P. and PETITCOLAS, F. A First Look at Identity Management Schemes on
the Blockchain [online]. 20. Available at:
https://ieeexplore.ieee.org/document/8425607.

ELBANSARKHANI, R., GEIHS, M. and BUCHMANN, J. PQChain: Strategic Design
Decisions for Distributed Ledger Technologies against Future Threats [online]. 2018.
Available at: https://ieeexplore.ieee.org/document/8425622.

GROETSEMA, A., GROETSEMA, A., SAHDEV, N., SALAMI, N. et al. Course
Introduction to Hyperledger Blockchain Technologies from The Linux Foundation
[online]. Available at:

https://www.edx.org/course/introduction-to-hyperledger-blockchain-technologie.

GUERRERO, J., CHAPMAN, A. and VERBIC, G. Decentralized P2P Energy Trading
under Network Constraints in a Low-Voltage Network [online]. 2018. Available at:
https://www.researchgate.net/publication/

327763558 _Decentralized_P2P_Energy_Trading_under_Network_Constraints_in_a_Low-
Voltage_Network.

GuPTA, A. Introduction to Blockchain technology | Set 1 [online]. Available at:
https://www.geeksforgeeks.org/blockchain-technology-introduction/.

JIMENEZ, P. Introduccion a Blockchain: ;Que es y como ha evolucionado? [online].
Available at: https:
//www.techedgegroup.com/es/blog/introduccion-blockchain-explicacion-evolucion.

KARAME, G. and CAPKUN, S. Blockchain Security and Privacy [online]. 2018.
Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425621.

LiN, R. and AKHTAR, N. Course Learn the fundamentals of blockchain technology and
how it will power the economy of tomorrow from Berkeley University of California
[online]. Available at: https://www.edx.org/course/blockchain-technology.

48

https://medium.com/dataseries/explaining-the-math-behind-blockchain-algorithms-98d06e06c2e3#:~:text=Elliptical%20curve%20cryptography%20is%20a,this%20scheme%20are%20not%20trivial.
https://medium.com/dataseries/explaining-the-math-behind-blockchain-algorithms-98d06e06c2e3#:~:text=Elliptical%20curve%20cryptography%20is%20a,this%20scheme%20are%20not%20trivial.
https://medium.com/dataseries/explaining-the-math-behind-blockchain-algorithms-98d06e06c2e3#:~:text=Elliptical%20curve%20cryptography%20is%20a,this%20scheme%20are%20not%20trivial.
https://ieeexplore.ieee.org/document/8425607
https://ieeexplore.ieee.org/document/8425622
https://www.edx.org/course/introduction-to-hyperledger-blockchain-technologie
https://www.researchgate.net/publication/327763558_Decentralized_P2P_Energy_Trading_under_Network_Constraints_in_a_Low-Voltage_Network
https://www.researchgate.net/publication/327763558_Decentralized_P2P_Energy_Trading_under_Network_Constraints_in_a_Low-Voltage_Network
https://www.researchgate.net/publication/327763558_Decentralized_P2P_Energy_Trading_under_Network_Constraints_in_a_Low-Voltage_Network
https://www.geeksforgeeks.org/blockchain-technology-introduction/
https://www.techedgegroup.com/es/blog/introduccion-blockchain-explicacion-evolucion
https://www.techedgegroup.com/es/blog/introduccion-blockchain-explicacion-evolucion
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8425621
https://www.edx.org/course/blockchain-technology

[11]

[12]

[13]

[14]

[15]

[16]

MARANON, G. El futuro post-cuantico esta a la vuelta de la esquina y aun no
estamos preparados [online]. 2019. Available at:
https://empresas.blogthinkbig.com/futuro-post-cuantico-ciberseguridad/.

MEIKLEJOHN, S. Top Ten Obstacles along Distributed Ledgers Path to Adoption
[online]. 2018. Available at: https://ieeexplore.ieee.org/document/8425611.

NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System [online]. 2008.
Available at: https://bitcoin.org/bitcoin.pdf.

NaziriD1s, N. Comparing ECDSA vs RSA [online]. 2018. Available at:

https://www.ssl.com/article/comparing-ecdsa-vs-rsa/.

PASTOR, J. Que es Blockchain: la explicacion definitiva para la tecnologia mas de
moda [online]. Available at: https://www.xataka.com/especiales/que-es-blockchain-
la-explicacion-definitiva-para-la-tecnologia-mas—-de-moda.

SANDERSON, G. But how does bitcoin actually work? [online]. Available at:
https://www.youtube.com/watch?v=bBC-nXj3Ng4.

49

https://empresas.blogthinkbig.com/futuro-post-cuantico-ciberseguridad/
https://ieeexplore.ieee.org/document/8425611
https://bitcoin.org/bitcoin.pdf
https://www.ssl.com/article/comparing-ecdsa-vs-rsa/
https://www.xataka.com/especiales/que-es-blockchain-la-explicacion-definitiva-para-la-tecnologia-mas-de-moda
https://www.xataka.com/especiales/que-es-blockchain-la-explicacion-definitiva-para-la-tecnologia-mas-de-moda
https://www.youtube.com/watch?v=bBC-nXj3Ng4

	Introduction
	Prior analysis
	Distributed Ledger Technologies
	Blockchain networks
	Energy trading networks
	Public key and elliptic curve cryptography
	State of the art analysis

	Project development
	Libraries utilized
	Explanation of my code
	blockchain_client.py
	blockchain_client_generator.py
	blockchain.py

	Experimental validation

	Conclusions summary
	List of lists
	Bibliography

