
Trabajo Fin de Grado

LoCoQuad:

Diseño y desarrollo de una plataforma
robótica de bajo coste

LoCoQuad:

Design and development of a low-cost robotic platform

Autor

Manuel Bernal Lecina

Director

Javier Civera Sancho

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2020

I

II

AGRADECIMIENTOS

No me olvido de nadie, pues todos me han hecho mejor persona, mejor ingeniero

o mejor ser vivo. En especial me acuerdo de los que siempre han estado ah́ı. De los

que me acompañaron durante los primeros años. De los que me ayudaron a seguir

adelante. De los que vivieron mis locuras. De los que me sacaron del pozo. De los que

se fueron para bien. De los que se quedaron para disfrutar. De los que no aguantaron

a mi lado. De los que tuve que dejar de ver. De los que se rieron conmigo. De los que

aún siguen aqúı. De los que quiero y siempre querré. De los que me conocen casi del

todo. De los que me dieron una y dos oportunidades. De los que me dieron muchas

más.

Gracias.

III

IV

LoCoQuad:

Diseño y desarrollo de una plataforma robótica de
bajo coste

RESUMEN

En esta memoria se reflejan los pasos llevados a cabo para el diseño, construcción

y validación de una plataforma robótica de bajo coste llamada LoCoQuad. Este

nombre viene del inglés “Low Cost Quadruped” o Cuadrúpedo de bajo coste. Los

cuadrúpedos son una tipoloǵıa de robot que desde hace unos años se ha desarrollado

en todo el mundo, tratando de buscarles un propósito más allá de la investigación

en sistemas móviles autónomos. Para llevar a cabo esta tarea se han desarrollado

varias plataformas dentro de un rango de precios muy amplio. La única condición

para considerar que un robot sea un cuadrúpedo es que posea cuatro patas, pero

éstas pueden tener gran cantidad de diferencias. En general las patas se clasifican

según su número de ejes y la disposición de los mismos. Siendo las patas más

usadas las de 3 ejes, debido a la capacidad de éstas para alcanzar cualquier posición

dentro de su campo de trabajo. Las disposiciones más usadas son las conocidas como

mamı́feras, semejantes a las patas de cualquier mamı́fero, y arácnidas, semejantes a

las de insectos y arañas.

LoCoQuad es un cuadrúpedo diseñado para investigación y docencia, cuyo

objetivo es ofrecer una plataforma con varias configuraciones. LoCoQuad se ha

desarrollado partiendo de cero en este TFG, y es actualmente un producto

terminado. Mediante un diseño cuidadoso, se ha conseguido que sea el cuadrúpedo

más asequible del mundo (con un coste aproximado de 150$). Se han liberado el

diseño y el código realizado, y se ha hecho público un informe técnico con el objetivo

de someterlo a una conferencia cient́ıfica. El proyecto ha tenido ya un impacto

considerable: se ha recibido el primer premio tecnológico en el III Certamen de

Jóvenes Creadores Aragoneses y se me contactó para una entrevista en un blog de

tecnoloǵıa internacional con una repercusión considerable en redes sociales.

V

VI

Índice

1. Introducción 1

2. Objetivos 5

3. Estudio Previo 7

4. Mecánica 11

5. Electrónica 19

6. Programación 23

7. Validación 25

8. Casúısticas 29

9. Conclusiones 31

10.Proyección Temporal 33

11.Bibliograf́ıa 35

Lista de Figuras 39

VII

Lista de Tablas 41

Anexos 41

A. Condiciones Iniciales 45

B. Actuadores para robótica de bajo coste 47

C. Desarrollos previos 53

D. ROS, Robotic Operative System 59

VIII

Caṕıtulo 1

Introducción

Actualmente, la robótica está cruzando la barrera de la investigación para pasar

a formar parte del mundo globalizado en el que vivimos. Los brazos robóticos

industriales cruzaron esta ĺınea hace varias décadas, mientras que otros como el

robot limpiador Roomba o las plataformas robóticas para loǵıstica lo han hecho

en los últimos años. En el momento actual los mercados buscan huecos para

nuevos productos robóticos y se desarrollan plataformas con mayores capacidades

y mayores grados de fiabilidad. En el campo de la investigación también se

trabaja para dar nuevas capacidades a los robots o desarrollar nuevos robots

con caracteŕısticas espećıficas. Un ejemplo seŕıan los drones, robots aéreos que

se distancian significativamente de los brazos robóticos. Los drones tienen otros

objetivos de más dificultad técnica, y por ello se enfrentan a nuevos retos. Éstos se

resuelven en los grupos de investigación de universidades y empresas tecnológicas de

todo el mundo. Cuando los problemas nucleares alcanzan una cierta madurez, pasan

a ser las empresas las que continúan el desarrollo y la mejora de estas plataformas.

Una de esas tareas en las que se necesita todav́ıa cierto esfuerzo investigador,

antes de poder pasar a ser un producto más, es el aprendizaje automático. Dentro

de la inteligencia artificial (AI) existen gran variedad de estrategias y técnicas para

alcanzar el funcionamiento autónomo de agentes. En la arista en la que se unen la

inteligencia artificial con la robótica, estos algoritmos tienen una gran importancia,

ya que permitirán que los robots del mañana puedan aprender a relacionarse con

su entorno de manera independiente. En el momento actual dicha percepción e

interacción autónoma es todav́ıa un escenario lejano, pero se está trabajando en

ideas y ĺıneas de investigación que permitirán, al menos poco a poco, ir alcanzando

1

ese objetivo.

Una de las estrategias que se engloban dentro de la inteligencia artificial se

llama “aprendizaje por refuerzo”, del inglés “reinforcement learning” (RL). Esta

técnica se basa en un ciclo de aprendizaje en el que el sistema persigue la mayor

recompensa posible por sus acciones. En otras palabras, se define un objetivo para el

sistema, se le permiten una serie de acciones y en función del resultado obtenido se

le premia con una moneda virtual. Este ciclo se repite hasta que el sistema es capaz

de alcanzar el objetivo por si mismo. El sistema recuerda las acciones necesarias

para cumplir con ese objetivo, siendo capaz de reproducirlo desde ese momento en

cualquier circunstancia.

Este algoritmo puede parecer sencillo, pero su aplicación a la robótica tiene más

de un inconveniente. En primer lugar, una pequeña variación en el objetivo implica

un nuevo ciclo de entrenamiento, haciendo que el proceso de aprendizaje sea muy

largo si queremos que el robot sepa hacer un número elevado de tareas. Por otro lado,

existe la posibilidad de que un objetivo sea demasiado complejo y el robot no sea

capaz de completar nunca el aprendizaje. Otro inconveniente será la imposibilidad

de utilizar las acciones aprendidas en otros robots de similares caracteŕısticas, ya que

la geometŕıa y la configuración de cada robot puede variar de manera significativa.

Figura 1.1: Plataforma robótica, LoCoQuad.

Por todo esto, decidimos desarrollar LoCoQuad (Fig.1.1), una plataforma

robótica que nos permitirá investigar, desarrollar y, lo más importante, probar

2

algoritmos de RL a un coste muy bajo y con una flexibilidad muy grande.

LoCoQuad se ha desarrollado desde la primera pieza hasta la útima soldadura con

el fin de ser útil para la comunidad investigadora. Mediante un diseño muy cuidadoso,

se ha conseguido que LoCoQuad sea la plataforma robótica de cuatro patas de más

bajo coste del estado del arte. Esto se consiguió mediante un minucioso proceso

de toma de decisiones e iteraciones en el diseño, para garantizar que LoCoQuad

tuviera a la vez configurabilidad, capacidades razonables de cálculo y locomoción

y el mı́nimo coste. Se ha escrito un art́ıculo cient́ıfico1 describiendo el desarrollo

de la plataforma que al hacerlo público ha llevado a este robot a ganar premios

(en el III Certamen de Jóvenes Creadores Aragoneses2) y ser mencionado por blogs

tecnológicos internacionales3.

El diseño de sus distintos componentes4, el código desarrollado5 y toda la

documentación asociada han sido liberados para su uso de manera gratuita.

1https://arxiv.org/abs/2003.09025
2http://www.boa.aragon.es/cgi-bin/EBOA/BRSCGI?CMD=VEROBJ&MLKOB=1099040064343
3https://techxplore.com/news/2020-04-locoquad-arachnoid-inspired-robot-purposes.

html
4https://www.thingiverse.com/thing:3853722
5https://github.com/TomBlackroad/LoCoQuad

3

4

Caṕıtulo 2

Objetivos

Desde el comienzo de este trabajo, el objetivo principal ha sido el desarrollo de

una plataforma robótica de bajo coste, código abierto, diseño abierto y con una gran

configurabilidad.

Este objetivo requiere ser dividido en conceptos más concretos que una vez

alcanzados permitan ser agrupados y den por satisfecho el objetivo principal.

Empezando por los pilares de cualquier robot, dividiremos los desarrollos en

Mecánica, Electrónica y Programación. Además, se realizará un estudio previo, un

análisis del punto inicial y una bateŕıa de tests. Se documentarán las problemáticas

encontradas y se propondrán diferentes proyecciones a futuro para este proyecto.

Ordenados, los objetivos serán:

1. Estudio previo del estado del arte en el campo de la robótica móvil y el

aprendizaje autónomo en robots.

2. Consideraciones y análisis del punto de partida antes de comenzar el desarrollo.

3. Diseño mecánico de una plataforma sobre la que instalar los sensores,

los actuadores, la unidad de control, el sistema de alimentación y el de

comunicaciones.

4. Iteración del diseño teniendo en cuenta los errores que aparezcan de la primera

versión.

5. Diseño electrónico compatible con la estructura mecánica diseñada.

5

6. Integración de la mecánica y la electrónica en un sistema inanimado sobre el

que poder empezar a programar.

7. Ajuste y verificación de la integración, programando pequeños programas de

testeo.

8. Programación de una estructura de desarrollo básica sobre la que poder

programar acciones de alto nivel.

9. Programación de acciones basadas en prueba-error.

10. Validación de la plataforma mediante las acciones programadas.

11. Análisis los problemas encontrados durante los objetivos anteriores.

12. Comentar las ĺıneas de trabajo futuras, la proyección de la plataforma y su

participación en otros proyectos.

6

Caṕıtulo 3

Estudio Previo

Al comenzar este trabajo, lo primero que haćıa falta era entender el contexto

en el que se iba a trabajar, teniendo en cuenta el objetivo principal y tratando

de comprender la relevancia del mismo dentro de una perspectiva lo más global y

ambiciosa posible.

Hoy en d́ıa, la robótica es un campo de la investigación en el que se trabaja con

gran interés para resolver los problemas que van apareciendo con el paso del tiempo.

Hace varias décadas, el interés principal de la robótica era la manufacturación.

La automatización de procesos industriales conllevó la reducción de los tiempos

de trabajo por pieza y esto tuvo un gran impacto tanto en la capacidad de

producción como en la reducción de los costes de producción. Ha sido la investigación

en robótica la que ha permitido el desarrollo industrial de los últimos años, a

la vez que ha permitido expandir las fronteras de este campo fuera del ámbito

industrial. Otros campos en desarrollo de la investigación en robótica se están

centrando en sistemas móviles autónomos, desarrollando capacidades como la visión

o la navegación en entornos reales no controlados como las fábricas. Los nuevos

robots ya no son brazos robóticos, sino submarinos, drones, automóviles autónomos,

prótesis biónicas, plataformas loǵısticas, cuadrúpedos o hexápodos entre otros. Este

fenómeno expansivo ha tráıdo una gran variedad de nuevas plataformas robóticas

sobre las que los investigadores llevan poco tiempo trabajando. Esto supone una

gran ventaja, ya que se retoma la capacidad de diseñar, algo abandonada tras ser

adoptadas las fisionomı́as estándar para brazos industriales.

Otro gran avance del siglo XXI ha sido la evolución de la programación, su

liberalización y su apertura a la mayor parte de la comunidad investigadora.

7

Programar ya no es algo exclusivo de programadores, sino que cualquier investigador

tiene la posibilidad y a veces la obligación de desarrollar programas propios.

Aparecen las comunidades Open-Source o de “código abierto”, que permiten

compartir, y documentarse en los lenguajes de programación más utilizados. En

el campo de la robótica estos lenguajes seŕıan sin lugar a duda: C++, C y Python.

Además, no se nos puede olvidar el sistema operativo Open-Source por antonomasia,

Linux, en alguna de sus distribuciones y sabores más conocidos como Ubuntu o

Debian. En los últimos años la revitalización de Ubuntu ha sido un importante

avance para la investigación en robótica, sumándose o, en cierto modo, gracias al

lanzamiento de ROS (Robotic Operative System) 1. Una plataforma capaz de crear la

red de comunicaciones dentro de cualquier robot y sobre la que podemos implementar

algoritmos en Python y C++, además de establecer comunicaciones multi-robot

o con el exterior. ROS ha cobrado un papel protagonista en la investigación

robótica gracias a participar de la filosof́ıa Open-Source, permitiendo a todos los

investigadores del mundo reunirse alrededor de un entorno común y compartido.

Siguiendo con la filosof́ıa Open-Source, hay que mencionar también el crecimiento

de las plataformas electrónicas que se suman a esta idea de compartir y colaborar.

Ideas como el proyecto Arduino 2 o la evolución de plataformas como Raspberry

Pi 3 o Orange Pi 4 entre otras ha resultado ser toda una revolución en diferentes

campos, como la educación, la industria del prototipado o la propia investigación.

En el campo de la robótica su impacto ha sido menor, pero en cambio han hecho

asequible la creación de sistemas complejos a precios mucho más asequibles que

anteriormente, ya que se utilizan soluciones generalistas de bajo coste y plataformas

abiertas para implementar comportamientos espećıficos, reduciendo el desarrollo de

una plataforma robótica básicamente a su programación.

Por último, hay que mencionar que, para poder contar con un robot, la

programación y la electrónica ya se han cubierto. Queda por tratar la mecánica y

el diseño. Estos dos campos son en realidad uno solo y en relación con lo planteado

anteriormente, todo pasa por software de diseño 3D Open-Source 5 y tecnoloǵıas de

impresión 3D 6. Ambas han evolucionado mucho en los últimos años y actualmente

1www.ros.org
2www.arduino.cc
3www.raspberrypi.org
4www.orangepi.org
5https://www.autodesk.com/products/fusion-360/overview
6www.ultimaker.com/software/ultimaker-cura

8

los resultados que permiten obtener son de una calidad excepcional.

Para poder tener una referencia de los robots de bajo coste disponibles en el

mercado hasta la fecha, se realizó la tabla 3.1. En ella se muestran las plataformas

robóticas junto a su precio unitario y la tipoloǵıa de robot. El precio objetivo

de LoCoQuad se pretend́ıa que fuera competitivo y además supusiera una gran

diferencia frente a otros robots de su misma tipoloǵıa. Como se verá más adelante,

este objetivo se logró y LoCoQuad es el cuadrúpedo arácnido de sus caracteŕısticas

más barato del mundo.

Plataforma Precio [$] Tipoloǵıa

Aracna [1] 1389 Quadrúpedo
E-Puck [2] 280 Ruedas
Phantom X MRIII7 1300 Hexapodo
Roomba [3] 200 Ruedas
CotsBots [4] 200 Ruedas
Kilobot [5] 100 Vibración
Khepera IV [6] 2670 Ruedas
PiArm 263 Brazo
NAO power V6 [7] 9000 Humanoide
Cozmo8 180 Ruedas
Sphero RVR9 250 Ruedas
RoboMaster S110 400 Ruedas
Molecubes [8] 350 Modular
Lynxmotion SQ3U 550 Quadrúpedo
LoCoQuad 150-165 Quadrúpedo

Tabla 3.1: Coste de LoCoQuad frente a otras pltaformas

Con lo enunciado anteriormente disponemos de una idea general del estado de

la ciencia para desarrollar plataformas robóticas alternativas a los brazos robóticos

de finales del siglo XX, manteniendo una filosof́ıa Open-Source y siguiendo aśı la

ĺınea de nuestro objetivo principal. En relación al bajo coste que se persigue, cabe

mencionar que las soluciones Open-Source son por lo general más asequibles que los

productos cerrados.

7https://www.trossenrobotics.com/phantomx-ax-hexapod.aspx
8https://anki.com/en-us/cozmo.html
9https://www.sphero.com/rvr

10https://www.dji.com/es/robomaster-s1

9

10

Caṕıtulo 4

Mecánica

El proceso comenzó con la selección de los elementos limitantes del diseño de

cualquier robot pensado para interactuar con el mundo real: los actuadores. En los

robots de patas, éstos pueden ser de much́ısimas clases, pero generalmente se trata de

motores eléctricos o modificaciones de éstos. En el Anexo B se tratan los actuadores

para robótica en mayor profundidad.

Para este proyecto, teniendo en cuenta las condiciones iniciales y los objetivos,

precisábamos de un actuador barato, ligero, con una buena relación peso-par,

de pequeñas dimensiones, fácil de adquirir y fácil de programar. El resultado

tras una extensa búsqueda fue el servo-motor MG90S, que cumple con todas los

requerimientos con las siguientes caracteŕısticas.

Caracteŕısticas Valores
Voltaje de operación 4.8 V a 6 V

Velocidad de operación 0.1 s/60o (4.8 V), 0.08 s/60o (6 V)
Par detenido 18 Ncm (4.8 V), 22 Ncm (6 V)

Capacidad de rotación 180o aprox. (90o en cada dirección)
Banda muerta 5 us

Peso ligero 13.4 g
Dimensiones compactas Largo 22.5 mm, Ancho 12 mm, Alto 35.5 mm

Largo del cable 25 cm
Piñoneŕıa Metálica

Tabla 4.1: Caracteŕısticas Servo MG90

Una vez seleccionados los actuadores, debemos acotar las dimensiones y el peso

máximo de nuestro robot para garantizar que los actuadores trabajen dentro de

su rango de operación. Para realizar esta tarea, el proceso lógico es un ciclo de

11

iteración, ya que el peso y las dimensiones del robot van a estar relacionados y, por

tanto, la modificación de una de las dos variables alterará el valor de la otra. Se optó

por diseñar las patas más compactas que permitieran integrar los servos y verificar

posteriormente que los motores fueran capaces de maniobrar el robot resultante.

En este punto, se decidió plantear un cuerpo central por niveles, que albergaŕıan

diferentes componentes. En este cuerpo central iŕıan instalados cuatro motores, que

haŕıan de primeros ejes para las cuatro patas. Posteriormente y gracias a haber

realizado el estudio previo, se detectó una carencia importante en las plataformas

robóticas en general: la falta de flexibilidad en la configuración de las mismas. Los

robots comerciales tienen objetivos espećıficos y requieren altos grados de precisión,

y su diseño y programación están optimizados para tal propósito. En los robots

educativos por el contrario existen algunas opciones en formato kit, que permiten

variar los diseños de los robots con el objetivo de que éstos puedan utilizarse con una

gran variedad de propósitos. Esta caracteŕıstica resulta realmente interesante para

un robot que quiera aprender a moverse autónomamente, y sin que le afecten posibles

casúısticas como el bloqueo, la pérdida o la rotura de uno de sus motores. Además, en

el campo del aprendizaje autónomo, resulta de gran interés contar con plataformas

que con un pequeño ajuste cambien alguna de sus patas o simplemente éstas sean

desmontadas. Esto hace que los algoritmos deban estar atentos, se percaten de que

algo está ocurriendo y puedan refinar su comportamiento para llegar a alcanzar sus

metas u objetivos programados.

Fue esta reflexión la que hizo que se optara por un robot con diferentes

configuraciones, agrupadas en torno a dos configuraciones principales. La primera

con cuatro patas de dos ejes (2J) y la segunda con cuatro patas de tres ejes (3J).

Además de todas las configuraciones intermedias y derivadas de éstas. En la figura

4.1 se pueden ver ambas configuraciones.

El motivo por el que se optó por una disposición tipo araña fue la estabilidad. En

general, los robots con disposiciones de patas tipo mamı́fero (únicamente de 4 patas)

son cuerpos que se elevan en mayor medida del suelo, haciéndolos mecánicamente

más inestables. Por el contrario, las disposiciones arácnidas tienden a establecer

distancias entre el cuerpo del robot y el suelo muy inferiores. Esto resultaba muy

interesante para el proyecto ya que no se esperaba conseguir una gran estabilidad con

los motores seleccionados y en concreto con la configuración 2J, en la que, debido

a la falta del tercer eje, el campo de acción del mismo quedaba limitado a una

12

(a) LoCoQuad 2J (b) LoCoQuad 3J

Figura 4.1: Modelos de las dos configuraciones básicas de LoCoQuad.

superficie. Teóricamente, dicha superficie seŕıa la piel exterior de medio toroide, con

un radio exterior igual a la longitud del primer elemento del brazo y con un radio

de revolución igual a la longitud del segundo elemento.

Para aumentar la configurabilidad del sistema, se decidió integrar unos discos

multiposición entre los motores. Estos discos contaban con un patrón de agujeros que

permit́ıan girar los elementos de las patas sobre el eje principal de sus elementos para

alterar sus posiciones iniciales. Estas posiciones se limitaron a cuatro: 0, 45, 90 y 135

grados. En la imagen de la figura 4.2 se muestran algunas de estas configuraciones.

Figura 4.2: Modelos de algunas de las configuraciones de las patas.

13

Una vez concluido el diseño de las patas se pasó al del cuerpo, para el cual hubo

que decidir todos los componentes que deb́ıan ser instalados dentro del robot y que

se detallan más adelante. Como se comentaba antes, se optó por un diseño apilado,

en el que cada nivel se dedicaba un tipo de componente concreto. En la figura 4.3

se ve el diseño final en modo expandido, lo cual nos permite ver las diferentes zonas

del cuerpo del robot. En la base se instalan las bateŕıas, protegidas por la tapa

inferior. En el primer nivel, se insertan los cuatro motores de la base de las patas

y la electrónica de potencia y de control. En el nivel superior, junto con la pared

frontal, se fijan los sensores y la placa base.

A la hora de diseñar esta plataforma, siempre se tuvo en mente la incuestionable

ventaja que supondŕıa que cualquiera pudiera imprimir sus piezas en una impresora

3D. Por tanto, se limitaron las dimensiones y la complejidad de las piezas para que

las impresoras 3D más simples no encontraran problemas a la hora de producir los

diseños de LoCoQuad.

Una vez se concluyó el diseño y se validó su correcta impresión, era necesario

Figura 4.3: Modelo expandido del diseño

14

validar también que los motores fuesen capaces de maniobrar el diseño terminado.

Tras imprimir las piezas, pesar los elementos de los brazos, y montado el cuerpo, ya

se pod́ıa realizar esta comprobación.

En primer lugar, hab́ıa que considerar la peor situación en la que se pod́ıa

encontrar el robot. Claramente se deb́ıa realizar este estudio sobre la configuración

3J, asumiendo que el robot estaŕıa apoyado sobre los extremos de sus patas. Se

tomó la posición de reposo, que se muestra en la imagen de la figura 4.4 como la

más desfavorable, ya que las patas opuestas en diagonal completamente extendidas

supońıan la distancia más grande entre dos puntos de apoyo. En la imagen también

se detallan las distancias necesarias para realizar el equilibrio de momentos respecto

del eje más desfavorecido, el más externo.

Para calcular el equilibrio de momentos aislamos una pata y suponemos que está

sometida a un cuarto del peso del cuerpo de robot. En la figura 4.5 se muestran las

fuerzas y los momentos que actúan sobre la pata. Se hace equilibrio de fuerzas para

obtener el valor de la reacción. En dicha figura, BW representa el peso del cuerpo

central del robot. W son los pesos de los elementos de las patas. J son las posiciones

de las articulaciones. R es la reacción al contacto. Y Γ los pares en las articulaciones.

R =
BW

4
+ W2 + W3 (4.1)

Figura 4.4: Modelos de algunas de las configuraciones de las patas.

15

A continuación, se equilibran los momentos suponiendo los dos motores actuando

a su valor de par nominal,

Γ2 + Γ3

g
=

BW

4
d1 + W2d3 −W3d4 + Rd2 (4.2)

Para obtener el peso de los elementos del brazo y teniendo en cuenta que al ser

fabricados mediante impresión 3D, la masa puede variar, por lo que se adoptó un

valor mayorado de 30 gramos que daba un considerable margen a las medidas.

Resolviendo la ecuación 4.2 obtenemos que el valor máximo para el cuerpo del

robot es en torno a 850 gramos. Ambas configuraciones cuentan con pesos inferiores

a esta cantidad, siendo para 2J de 560 g y para 3j de 670 g. Queda por tanto validado

el diseño mecánico, que cuenta con un margen de carga considerable para ambas

configuraciones, el cual se puede emplear para acoplar sensores externos, antenas o

bateŕıas extra.

Mientras se diseñaba el robot, también se tuvo presente la parte estética. Esto

aportaba valor de cara a promocionar y anunciar el robot al mundo, además de

hacerlo más amigable para tareas educativas.

Otra cuestión por mencionar en este apartado es el uso de la versión estudiante

del software Solid Edge, que ha agilizado notablemente el proceso de diseño. En

Figura 4.5: Diagrama de fuerzas aplicado a una pata de LoCoQuad 3J.

16

cuanto a la impresión 3D, se contaba con una Tronxy X3 para imprimir en PLA

con diferentes calidades y acabados. En el Anexo C se muestran más imágenes del

robot y también de algunos de los diseños preliminares que sirvieron para probar

diferentes configuraciones, actuadores y soluciones.

Todos los diseños están disponibles de manera gratuita en https://www.

thingiverse.com/thing:3853722.

17

18

Caṕıtulo 5

Electrónica

En la cuestión electrónica se diferencian cuatro partes: la placa base, los

actuadores, los sensores y el sistema de potencia. En la figura 5.1 se muestra el

esquemático a alto nivel de las conexiones.

Figura 5.1: Esquema elecrónico de LoCoQuad

19

Para comprender mejor a LoCoQuad hay que entender su cerebro. Para esta

tarea, se seleccionó la conocida placa de desarrollo de código abierto y bajo coste:

Raspberry Pi 3 Model B. Este SBC (ordenador en placa simple) está muy extendida

en la comunidad robótica, ya que supone dar el salto a un microprocesador sin dar el

salto en precio. Tiene una gran flexibilidad a la hora de controlar periféricos, gracias a

una serie de puertos espećıficos como el CSI para conectar un módulo de cámara, un

hub de cuatro USBs, o el GPIO (entradas y salidad digitales de propósito general).

Además, cuenta con chip de comunicaciones, lo cual lo hace ideal para utilizarlo via

WiFi, mediante protocolo SSH como se verá más adelante. Su velocidad de computo

es limitada (4cores/1.2Ghz), al igual que su memoria RAM (1Gb). Estas prestaciones

inicialmente no suponen ninguna limitación para desarrollar este proyecto, pero se

deben estudiar las limitaciones de éstas si se desea ampliar los requerimientos del

robot. A nivel de conectividad, la Raspberry presenta un pequeño inconveniente,

ya que a pesar de ser alimentada a 5V, y para reducir el consumo de la misma, su

lógica es de 3.3V, por lo que habrá que tener esto en cuenta a la hora de conectar

sensores o actuadores que operen a 5V.

En la sección anterior se mencionan los actuadores principales a partir de los

cueales se construyó el robot. A nivel de control, los motores requieren alimentación

y señal de control. Ambas necesidades son cubiertas mediante el uso de un driver I2C

(PCA9685 by Adafruit) que se comunica con la placa base y permite actualizar los

valores de 16 registros de 12 bits sobre los que se escribe el duty cycle de cada PWM

que controla cada motor. Todos registros trabajan a la misma frecuencia lo cual no

es un problema, ya que todos los actuadores son iguales. Además de estos motores

que permiten el movimiento del robot en el mundo f́ısico, se instaló un buzzer con

el propósito de interactuar con el usuario y mandar indicaciones acústicas en caso

de ser necesario. Se planteó también el añadir señales lumı́nicas, pero esto quedó

descartado, ya que otros componentes integraban sus propias señales lumı́nicas, lo

cual podŕıa conducir a errores. El buzzer se conecta directamente al GPIO de la

placa base.

En cuanto a los sensores, LoCoQuad incorpora una cámara RGB de 5Mpx.

Conectada al puerto CSI de la Raspberry Pi, para evitar problemas de

compatibilidades y para hacer el diseño más compacto que conectando una cámara

USB se optó por el módulo de la misma compañ́ıa que produce la placa base

(Raspberry Camera Module v1.3). Además, LoCoQuad incorpora un sensor de

distancia ultrasónico (HC-SR04) este módulo se diseñó para placas de desarrollo

20

Arduino y su lógica es de 5V, por lo que se debe conectar un conversor de niveles

lógicos o al menos un divisor resistivo bien calibrado para poder conectarlo al GPIO

sin riesgo de dañar la placa base. También se instaló una IMU (unidad inercial)

(GY-521) que se comunica por I2C con la Raspberry prolongando la conexión de

ésta con el driver de los motores. La IMU opera con lógica 3.3V aunque se alimenta

a 5V.

Para alimentar todos estos componentes hace falta un sistema de potencia. Las

demandas de corriente de los componentes se detallan en la tabla 5.1. Inicialmente

se diseñó LoCoQuad para albergar dos bateŕıas LiPo 18650 de 3300 mAh en paralelo

con un coeficiente de descarga 5C. Estas bateŕıas proporcionan valores de tensión

entre 3.7V y 4.2V. Estos valores son insuficientes para alimentar correctamente los

componentes electrónicos que componen LoCoQuad, por ello se añadieron a la salida

de la bateŕıa un toggle de selección entre dos modos: ON y CARGA. En ON, las

bateŕıas se conectan a dos conversores DCDC tipo Boost de 5.2V de tensión fija

de salida y máximo 3A de corriente por conversor, lo que podŕıa proporcionar una

potencia de hasta 31.2W (15.6W por conversor). El hecho de que se decidiera utilizar

dos boost en lugar de un único conversor tiene que ver con la disponibilidad y el coste

de éstos. Además, esto permite separar la alimentación de la placa base del resto

de componentes con gran consumo de corriente. En el modo CARGA, la bateŕıa se

conecta a un módulo de carga monocelda (TP4065) que permite cargar la bateŕıa

con una entrada de 5V y una salida de 1A.

Componente Encendido Operación normal
Raspberry Pi hasta 3A (según periféricos) ∼ 300mA
Raspberry Pi despreciable 250mA

12 Servos ∼ 120mA 1.4A hasta 3A en bloqueo
Resto de componentes despreciable despreciable

Total hasta 3A 2A hasta 3.6A

Tabla 5.1: Consumos corriente por componente, en encendido y en operación normal

Usando el consumo máximo puntual como si fuese el nominal, y utilizando la

configuración de bateŕıas mencionada se calcula la duración de la bateŕıa del robot,

con una capacidad de 6600mAh. Teniendo en cuenta la presencia de los conversores,

y considerando una eficiencia baja (85 %), la corriente que éstos exigiŕıan a la bateŕıa

seŕıa algo mayor de 4A. Gracias a la gran capacidad de las bateŕıas de poĺımero de

litio para proporcionar altos ratios de descarga, las bateŕıas seleccionadas pueden

suministrar hasta 33A (baterias 10C) de manera segura. Por lo tanto, la vida de la

21

Figura 5.2: Imagen del interior del robot durante el ensamblaje.

bateŕıa seŕıa 99 minutos. Esto en las peores condiciones y contando con un margen

de seguridad. En la práctica, la bateŕıa dura considerablemente más, en el orden de

horas, aunque esto depende mucho de la cantidad de movimientos y grabaciones que

realice el robot. Hay que pensar que la Raspberry tiene un consumo de corriente

bajo una vez que se ha encendido. Y los servos, pocas veces llegan a la posición de

bloqueo y muchas menos llegan todos a la vez. Se dio por validada la solución para la

electrónica de potencia, que además resultó ser realmente compacta y fácil de soldar

y conectar. En la figura 5.2 se aprecia la disposición de alguno de los componentes

dentro del nivel central del robot.

22

Caṕıtulo 6

Programación

En esta sección se tratan todos lo temas relacionados con el sistema operativo,

los algoritmos y la estructura del programa principal.

En primer lugar, habiendo elegido la Raspberry Pi como placa base, los sistemas

operativos más atractivos resultaban ser Raspbian y Ubuntu Mate. Esta última

no contaba con versión sin interfaz gráfica por lo que fue descartada, además, no

permit́ıa una conexión remota desde el primer inicio. Raspbian es una versión de

Debian optimizada para funcionar en las Raspberries. Funciona básicamente como

cualquier sistema Linux básico y al ser una versión sin interfaz gráfica se ahorraban

ciclos de cómputo, operando únicamente con terminales. Para acceder a la Raspberry

de manera remota se configuró una red WiFi y se activó el protocolo SSH para poder

conectarse desde otros sistemas de la misma red.

Otra ventaja de Raspbian es la integración de Python, que viene preinstalado,

lo cual simplifica el trabajo de instalación previo. Se decidió usar Python, ya que

cubŕıa todo lo necesario para un proyecto como LoCoQuad. Permit́ıa usar OpenCV,

interactuar con el GPIO de la placa base, programar el driver I2C y la adquisición

de valores de los sensores; también permit́ıa exportar el código a ROS (Robotic

Operativ System) en caso de ser necesario. Y, por supuesto, es sencillo y asequible

para los que comiencen a utilizar LoCoQuad sin saber de programación.

A nivel de programación, se centró el esfuerzo en proveer una serie de capacidades

integradas en una estructura de clases que sirviera de base para el continuo desarrollo

del robot. Sobre todo, para que no fuera un limitante a la hora de probar, integrar

o instalar nuevas ideas en la plataforma. Para ello se optó por un paradigma

23

basado en objetos. Se estableció una clase principal donde se inicializa el robot

y el resto de las clases a partir de ficheros de configuración y posteriormente se

entra en una máquina de estados finitos. Esta estructura permite definir cuantos

comportamientos se deseen, y cuantas variantes y alternativas sean necesarias para

una tarea concreta. Inicialmente se estableció un ciclo de desplazamiento, reposo,

captura de imagen, movimiento acrobático, reposo y, de nuevo, desplazamiento.

Posteriormente se establecieron interacciones con el usuario, desde pitidos a modo

de llanto para exigir que el usuario levantara al robot del suelo, que cesaban cuando

el robot verificaba a través de los datos de la IMU que efectivamente le hab́ıan

cogido del suelo, hasta protocolos de evitación de obstáculos en los que se utilizaba

el sensor de distancia. Con la cámara se trabajó en capturar imágenes y videos, lo

cual no suponen ningún problema, incluso mientras el robot se esta desplazando. Śı

que es cierto que no se ha desarrollado una manera de hacer que los videos lleguen

al usuario de manera satisfactoria. Aunque con más tiempo se trabajará en ello, al

igual que incorporar redes neuronales entrenadas para detectar objetos de interés

para el robot que alteren su ciclo de comportamiento básico y lo lleven a modos de

exploración o incluso curiosidad.

Por último, se decidió integrar el código desarrollado en ROS. Esta decisión es

estratégica, ya que en la comunidad investigadora, ROS se ha convertido en un

estándar mundialmente usado y su integración en LoCoQuad supondŕıa una gran

ventaja a nivel de visualización del proyecto. ROS está limitado a sistemas Debian

y Ubuntu, por lo que pudo ser instalado en la Raspberry. Se instaló la versión base,

sin paquetes con interfaz gráfica para evitar saturar la Raspberry. Se ejecutó el

código desarrollado anteriormente desde ROS sin modificarlo y se está trabajando

en una versión de éste que saque partido a las ventajas que ofrece ROS gracias a su

estructura de comunicaciones preconfigurada.

Todo el código desarrollado para este proyecto está disponible en https://

github.com/TomBlackroad/LoCoQuad, al igual que los esquemáticos y las listas

de materiales. Con todo esto, cualquiera podŕıa fabricar su propio LoCoQuad y

programarlo para propósitos personales, educativos o de investigación.

24

Caṕıtulo 7

Validación

En cualquier producto, la etapa de validación o test resulta crucial. En esta etapa

se comprueba que el trabajo realizado y que ha pasado por varias iteraciones tanto

de diseño como de selección de componentes, montaje y posterior programación ha

alcanzado los objetivos que se planteaban al comienzo del desarrollo.

Para LoCoQuad, este proceso consiste fundamentalmente en comprobar el

correcto funcionamiento de sus subsistemas, tanto sensores, como actuadores,

bateŕıas, convertidores, sistema de carga y unidad de procesamiento. Además, el

comportamiento ante los comandos, y la ejecución general del sistema también deben

ser evaluados.

Empezando por los sensores, tanto la cámara como el sensor de ultrasonidos y la

IMU, ofrecen datos en crudo, que la unidad de procesamiento es capaz de manejar

sin problema. En concreto la cámara es capaz de grabar y almacenar v́ıdeos a 60

fps, con una resolución de 640x480px sin interferir con la ejecución normal de la

locomoción o la adquisición de otros datos.

Los actuadores responden sin problemas a las directrices del driver. Cabe

destacar los problemas evidentes de calibración, que impiden conseguir posiciones

completamente simétricas en el robot. Además, al construir sucesivos robots, éstos

precisan de una máscara con los desv́ıos respecto de la posición de reposo (en

cruz pegado al suelo). Eso es algo que se ajusta al comienzo, cuando se empieza

a programar el robot. El buzzer de indicación también interactúa bien con el GPIO,

aunque podŕıa optimizarse con el uso de un microcontrolador esclavo.

Las bateŕıas y los sistemas de potencia funcionan correctamente, ofreciendo

25

Concepto Unidades Precio[$]

Partes 3D ×1 10 (13)
Raspberry Pi 3 Model B ×1 35
Raspberry Pi Camera Module v2.1 ×1 30
Tarjeta Micro SD 32GB ×1 10
Placa PCA9685 12 canales PWM I2C ×1 15
Servos MG90S 18Ncm par nominal ×8 (12) 24 (36)
Bateŕıa 18650 LiPo 3300mAh 20C ×2 6
Porta-bateŕıas 2P 18650 LiPo ×1 1
Cargador LiPo TP4056 a 1A ×1 1
Sensor ultrasónico HC-SR04 ×1 1
Unidad inercial GY-521 3Accel + 3Gyro ×1 4
Buzzer 5V ×1 1
Conversor boost DCDC 3.2-5V a 5V 15W ×2 6
Switch ON-OFF ×1 1
M3 M2.5 M2 kit tornillos ×1 5

TOTAL 150 (165)

Tabla 7.1: Coste pormenorizado de LoCoQuad 2J y (3J).

suficiente potencia en todo momento para que los actuadores puedan ser activados

concurrentemente. La vida de la bateŕıa es mayor a lo estimado en los caṕıtulos

anteriores ya que no todos los servos se mueven a la vez, y la mayoŕıa de las veces

no tienen que sostener posiciones que los lleven a consumir una gran cantidad de

corriente. Existe una potencial mejora para el sistema de carga, y es un indicador

de carga, que se planteó durante el desarrollo de la estructura electrónica, pero

posteriormente se descartó por no contar la placa base con un conversor analógico

a digital.

En cuanto a la unidad de procesamiento, se temı́a que pudiera quedarse corta

para procesar imágenes, y calcular y ejecutar la locomoción. Por el contrario, la

carga de los núcleos no bloquea la ejecución de los programas y queda margen para

exprimir su capacidad. Además, con nuevas versiones de Raspberry Pi, se gana en

frecuencia de procesamiento y también en memoria RAM, aunque esto supondŕıa

un aumento del coste de la plataforma.

En relación al coste, se puede observar en la tabla 7.1 los precios de los

componentes que conforman LoCoQuad y que efectivamente validan que el precio

final de la plataforma es realmente bajo. Haciendo de la plataforma una opción muy

asequible para la comunidad investigadora.

26

Por último, en relación con los algoritmos desarrollados y la estructura en

máquina de estados finitos, ha sido todo un acierto; se identifica en cada momento

el estado y por tanto se sabe qué debe hacer el robot en cada momento. La ejecución

es ćıclica, pero permite integrar motores de randomización para que el robot cambie

de estado en función de una variable random, los inputs de los sensores y los estados

anteriores. Esto haŕıa al robot más interactivo, aunque esto no se planteó como un

objetivo inicialmente, por lo que se simplificó la máquina de estados para verificar

tanto los actuadores como los sensores, como se ha expuesto en el ejemplo del

caṕıtulo de programación.

Para hacer que esta validación y el proyecto en śı cobrara mayor interés se

grabaron los diferentes movimientos que el robot tiene programados, además de

comportamientos espećıficos como evitar obstáculos y elevarse sobre dos patas

diagonalmente opuestas. En la figura 7.1 se muestra la secuencia de giro, y en la

figura 7.2 la de equilibrio en dos patas. Todos los experimentos de validación se

agruparon en un video de presentación disponible en https://www.youtube.com/

watch?v=MvRcbdmQJ7U

Figura 7.1: Secuencia del movimiento de giro

Figura 7.2: Secuencia del movimiento de equilibrio

Para concluir la validación, se comprobó que el robot era capaz de realizar las

mismas acciones ejecutando el código en la Raspberry Pi con ROS Kinetic instalado.

En este caso, el procesador trabajaba con mayor carga, pero no ocurrió ningún evento

que denotara una bajada de rendimiento significativa.

Una vez verificados todos estos aspectos, se siguió utilizando el robot y

optimizando el código hasta llegar a dar por concluido el proyecto.

27

28

Caṕıtulo 8

Casúısticas

Desde el comienzo del proyecto han ido aconteciendo una serie de problemas,

fallos, errores que precisan mención, debido a su relevancia para el desarrollo de

LoCoQuad.

A continuación, se detallan aquellos eventos más relevantes:

En primer lugar, la selección de los actuadores supuso un gran reto. Como se ha

mencionado anteriormente, y tal y como se expresa en el Anexo B, actualmente el

cuello de botella de los robots de bajo coste son los actuadores de bajo coste. Elegir

un actuador barato capaz de hacer todo lo que necesitaba el robot, no resultó fácil.

Este problema se materializó en forma de varios prototipos que empleaban diferentes

actuadores para comprobar su validez. Estos prototipos sirvieron para descartar

Servos de menor coste, con trenes de engranajes de plástico en vez de metal. También

ayudaron a descartar la opción de los motores paso a paso de 5V, que no eran capaces

de realizar movimientos suficientemente rápidos, y además contaban con pares muy

bajos en relación con su peso, por lo que exiǵıan extremidades realmente cortas, que

imped́ıan su integración en los diseños.

Más adelante, una vez decididos la mayoŕıa de los componentes, se planteó

integrar un microcontrolador para realizar las tareas de adquisición y procesamiento

de actuadores y sensores. Esto quedó descartado por motivos de compacidad y

también en relación con la adquisición del driver multiservo empleado finalmente

que solucionaba tanto la alimentación de los actuadores como la comunicación con

los mismos. Los sensores pod́ıan ser léıdos desde el GPIO de la placa base.

El problema más relevante, como se esperaba, fue la calibración del sistema.

29

Los servos tienen una repetibilidad bastante buena, pero sus oŕıgenes vaŕıan

notablemente de un motor a otro. Es por tanto dif́ıcil ensamblar dos patas con

idénticos oŕıgenes. El problema se solucionó aplicando una máscara a los comandos

de movimiento, que tiene en cuenta los desfases iniciales respecto de la posición de

reposo (en cruz pegado al suelo).

Posteriormente, la orientación de la cámara resultó ser una decisión complicada,

ya que se planteaba una posición fija, como finalmente se usó. Esto supońıa perder

campo de visión y visualizar mucho suelo. Esto podŕıa ser idóneo para una aplicación

de sigueĺıneas, pero no resultaba conveniente para una versión de reconocimiento

facial. Finalmente se optó por la posición fija ya que permit́ıa un amplio abanico de

aplicaciones, aunque no todas.

El proceso de ensamblaje resultó rápido, eficiente y a pesar de tener que soldar

bastantes de los componentes manualmente, no dio ningún problema. Esto se debió

a una buena técnica de iteración en el diseño mecánico.

Finalmente, durante la programación aparecieron los últimos problemas. La

repetibilidad no era óptima, algo que se esperaba desde el primer momento al

seleccionar los actuadores con gran backlash debido a su amplio tren de engranajes.

Mecánicamente ya se sab́ıa que un robot con dos ejes por pata no era capaz de

desempeñar tareas precisas sin deslizamientos o impactos. Esto se ha mencionado

en el caṕıtulo anterior y se explica en el desarrollo mecánico. En cambio, la

programación en Python aporta una gran flexibilidad para optimizar la respuesta

del robot y su comportamiento final es adecuado, a pesar de ser algo brusco por los

impactos que tienen lugar al cambiar el centro de gravedad de un plano de apoyo al

siguiente.

Ninguno de los aspectos mencionados anteriormente ha impedido el correcto

desarrollo del proyecto. Todo lo contrario. Se han confirmado ideas, posibles

problemas y se han despejado dudas. Ayudando a vislumbrar el camino correcto

por el que se deb́ıa desarrollar LoCoQuad.

30

Caṕıtulo 9

Conclusiones

Recogiendo todo lo expuesto en esta memoria, LoCoQuad ha resultado ser todo

un éxito, tanto por satisfacer los objetivos iniciales, como por la oportunidad de

aprendizaje que ha supuesto. En general, la robótica es un campo demasiado extenso

como para que una persona desarrolle toda una plataforma robótica. En este caso, al

simplificar los problemas iniciales y tener claros los objetivos ha resultado interesante

y fruct́ıfero el desempeñar las tareas en paralelo.

En relación con la plataforma, no hay duda de que queda mucho camino por

delante, pero también hay que decir que tal y como ha quedado, con sus capacidades

y sus limitaciones, es un producto de desarrollo listo para ser usado. Faltaŕıa depurar

el control, la locomoción y la teleoperación, pero estas tareas no han estado en ningún

momento sobre la mesa, ya que supondŕıan un considerable incremento de la carga

de trabajo.

Tras concluir el desarrollo de LoCoQuad, en su primera versión, se presentó a

los Premios Jovenes Creadores Aragoneses, en los que obtuvo el primer puesto en la

categoŕıa de proyectos tecnológicos.

Con todo lo expuesto en esta memoria, se escribió un art́ıculo que se

envió a una conferencia internacional de robótica para su revisión. Además,

este mismo art́ıculo se archivó y está disponible en https://arxiv.org/abs/

2003.09025. Este art́ıculo dio lugar a una entrevista del blog de tecnoloǵıa

Tech Xplore que se puede encontrar en https://techxplore.com/news/

2020-04-locoquad-arachnoid-inspired-robot-purposes.html.

Todos estos acontecimientos han supuesto un gran refuerzo y motivación para

31

seguir mejorando las ideas que han surgido durante el desarrollo de LoCoQuad y

han supuesto un bonito broche a todo el esfuerzo puesto en el desarrollo de esta

plataforma tan especial.

Como reflexión final, la robótica es un campo extenso, en desarrollo y que

requiere de una gran implicación por parte de la comunidad investigadora, ya que, a

diferencia de otras corrientes o ramas de la investigación, la dependencia de equipos

multidisciplinares es alt́ısima. En el futuro, la robótica va a tener un gran impacto

en la sociedad y al igual que casi todos tenemos un router en casa, la evolución

tecnológica hará que empecemos a tener también robots y otros sistemas inteligentes

dispuestos a hacer nuestras vidas más cómodas y sencillas, asistiéndonos cuando lo

necesitemos o lo deseemos. Para llegar hasta ese punto, y como ya hemos visto en la

ciencia ficción, muchas plataformas y soluciones distintas deberán ser desarrolladas.

LoCoQuad no es más que una más de esas soluciones que nos permiten avanzar

hacia el futuro, aprendiendo y entendiendo los pasos que damos.

32

Caṕıtulo 10

Proyección Temporal

A partir del momento en que LoCoQuad quedó ensamblado y pod́ıa ejecutar

los comandos y los movimientos programados, se cumplió con el objetivo de este

proyecto. Sin embargo, durante el proceso de desarrollo se detectaron campos de

gran interés en los cuales LoCoQuad podŕıa suponer un gran avance, con un coste

de oportunidad realmente bajo, debido a sus caracteŕısticas principales y sobre todo

a su bajo coste. Entre estos campos, se encuentra la introducción a la programación y

la robótica, campo que ya se exploró, al presentar LoCoQuad a los premios CREAR

del Gobierno de Aragón, donde ganó el premio a mejor proyecto tecnológico.

Además, en el campo de la investigación, LoCoQuad promete ser una apuesta

segura, tanto para estudiantes que se estén iniciando con la robótica, como para

investigadores con ĺıneas relacionadas con la robótica de bajo coste y el creciente

campo de la inteligencia artificial. Para estos últimos, LoCoQuad podŕıa suponer

una manera más asequible de validar algoritmos que únicamente se prueban en

simulaciones. Cabe destacar que resulta de gran interés contar con sistemas reales

sobre los que poder testear y validar, antes o después de realizar simulaciones.

Como se ha mencionado a lo largo de esta memoria, LoCoQuad presenta una

serie de caracteŕısticas muy interesantes, que permitirán seguir desarrollando esta

plataforma desde diferentes perspectivas y orientarla a diferentes campos. También

se han mencionado algunas de las iteraciones y diseños preliminares que no llegaron

a hacerse realidad pero que supusieron un gran aprendizaje para el desarrollo del

proyecto. Estos diseños se han empezado a revisar para poder reenfocarlos a nuevas

plataformas que aprovechen el trabajo realizado con LoCoQuad y aplicarlo a nuevas

ideas, y aśı poder estudiar y entender mejor las limitaciones de este campo tan

33

apasionante como es la robótica de bajo coste.

Actualmente se ha empezado a trabajar en un proyecto multidisciplinar basado

en sistemas de aprendizaje autónomo y visión por computador en el que LoCoQuad

es la piedra angular. El objetivo es que sea capaz de aprender por śı mismo a ejecutar

trayectorias y posteriormente optimizar este proceso. Para desarrollar este proyecto,

LoCoQuad se situa dentro de una arena totalmente definida y delimitada sobre la

que mediante códigos bidimensionales se puede obtener la posición del robot relativa

a una referencia absoluta. Esto permite realimentar los algoritmos de aprendizage

automático y la inteligencia artificial desarrollada para LoCoQuad. Este proyecto

ya están dando resultados satisfactorios y tiene gran potencial para formar parte de

una linea de investigación innovadora en robótica de bajo coste aplicada a testear

la resolución de problemas con inteligencia artificial.

Gracias a continuar usando la plataforma tras la finalización de este proyecto se

han detectado potenciales mejoras, adaptaciones y simplificaciones en la versión

actual, y con la previsión de continuar usando LoCoQuad en el futuro, se ha

comenzado a desarrollar una nueva versión. LoCoQuad promete tener un impacto

positivo en el desarrollo robótico de plataformas de bajo coste.

34

Caṕıtulo 11

Bibliograf́ıa

[1] Sara Lohmann, Jason Yosinski, Eric Gold, Jeff Clune, Jeremy Blum, and Hod

Lipson. Aracna: An open-source quadruped platform for evolutionary robotics.

In Artificial Life Conference Proceedings 12, pages 387–392. MIT Press, 2012.

[2] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christopher

Cianci, Adam Klaptocz, Stephane Magnenat, Jean-Christophe Zufferey, Dario

Floreano, and Alcherio Martinoli. The e-puck, a robot designed for education in

engineering. In Proceedings of the 9th conference on autonomous robot systems

and competitions, volume 1, pages 59–65. IPCB: Instituto Politécnico de Castelo

Branco, 2009.

[3] Ben Tribelhorn and Zachary Dodds. Evaluating the roomba: A low-cost,

ubiquitous platform for robotics research and education. In Proceedings 2007

IEEE International Conference on Robotics and Automation, pages 1393–1399.

IEEE, 2007.

[4] Sarah Bergbreiter and Kristofer SJ Pister. Cotsbots: An off-the-shelf

platform for distributed robotics. In Proceedings 2003 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.

03CH37453), volume 2, pages 1632–1637. IEEE, 2003.

[5] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A low

cost scalable robot system for collective behaviors. In 2012 IEEE International

Conference on Robotics and Automation, pages 3293–3298. IEEE, 2012.

35

[6] Francesco Mondada, Edoardo Franzi, and Andre Guignard. The development

of khepera. In Experiments with the Mini-Robot Khepera, Proceedings of the

First International Khepera Workshop, pages 7–14, 1999.

[7] David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jérôme

Monceaux, Pascal Lafourcade, Brice Marnier, Julien Serre, and Bruno

Maisonnier. Mechatronic design of nao humanoid. In 2009 IEEE International

Conference on Robotics and Automation, pages 769–774. IEEE, 2009.

[8] Victor Zykov, Andrew Chan, and Hod Lipson. Molecubes: An open-source

modular robotics kit. In IROS-2007 Self-Reconfigurable Robotics Workshop,

pages 3–6, 2007.

[9] Gabriel T Sibley, Mohammad H Rahimi, and Gaurav S Sukhatme. Robomote:

A tiny mobile robot platform for large-scale ad-hoc sensor networks. In

Proceedings 2002 IEEE International Conference on Robotics and Automation

(Cat. No. 02CH37292), volume 2, pages 1143–1148. IEEE, 2002.

[10] Mohammad Ehsanul Karim, Séverin Lemaignan, and Francesco Mondada. A

review: Can robots reshape k-12 stem education? In 2015 IEEE International

Workshop on Advanced Robotics and its Social Impacts (ARSO), pages 1–8.

IEEE, 2015.

[11] Mark Yim, David G Duff, and Kimon D Roufas. Polybot: a modular

reconfigurable robot. In ICRA, pages 514–520, 2000.

[12] Elena Garcia, Maria Antonia Jimenez, Pablo Gonzalez De Santos, and Manuel

Armada. The evolution of robotics research. IEEE Robotics & Automation

Magazine, 14(1):90–103, 2007.

[13] S. Hirose, Y. Fukuda, K. Yoneda, A. Nagakubo, H. Tsukagoshi, K. Arikawa,

G. Endo, T. Doi, and R. Hodoshima. Quadruped walking robots at tokyo

institute of technology. IEEE Robotics Automation Magazine, 16(2):104–114,

June 2009.

[14] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a

versatile and accurate monocular slam system. IEEE transactions on robotics,

31(5):1147–1163, 2015.

36

[15] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation

and control for precise aggressive maneuvers with quadrotors. The International

Journal of Robotics Research, 31(5):664–674, 2012.

[16] Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver Brock, Danica

Kragic, Stefan Schaal, and Gaurav S Sukhatme. Interactive perception:

Leveraging action in perception and perception in action. IEEE Transactions

on Robotics, 33(6):1273–1291, 2017.

[17] Ning Tan, Rajesh Elara Mohan, and Karthikeyan Elangovan. A bio-inspired

reconfigurable robot. In Advances in Reconfigurable Mechanisms and Robots II,

pages 483–493. Springer, 2016.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[19] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[20] Alex Golovinsky, Mark Yim, Ying Zhang, Craig Eldershaw, and David Duff.

Polybot and polykinetic/spl trade/system: a modular robotic platform for

education. In IEEE International Conference on Robotics and Automation,

2004. Proceedings. ICRA’04. 2004, volume 2, pages 1381–1386. IEEE, 2004.

[21] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob Playter.

Bigdog, the rough-terrain quadruped robot. IFAC Proceedings Volumes,

41(2):10822–10825, 2008.

[22] M Brett McMickell, Bill Goodwine, and Luis Antonio Montestruque. Micabot:

A robotic platform for large-scale distributed robotics. In 2003 IEEE

International Conference on Robotics and Automation (Cat. No. 03CH37422),

volume 2, pages 1600–1605. IEEE, 2003.

[23] James McLurkin, Adam McMullen, Nick Robbins, Golnaz Habibi, Aaron

Becker, Alvin Chou, Hao Li, Meagan John, Nnena Okeke, Joshua Rykowski,

et al. A robot system design for low-cost multi-robot manipulation. In 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

912–918. IEEE, 2014.

37

[24] Francisco M López-Rodŕıguez and Federico Cuesta. Andruino-a1: Low-cost

educational mobile robot based on android and arduino. Journal of Intelligent

& Robotic Systems, 81(1):63–76, 2016.

[25] S Piperidis, L Doitsidis, C Anastasopoulos, and NC Tsourveloudis. A low cost

modular robot vehicle design for research and education. In 2007 Mediterranean

Conference on Control & Automation, pages 1–6. IEEE, 2007.

[26] Masahiro Fujita and Hiroaki Kitano. Development of an autonomous

quadruped robot for robot entertainment. Autonomous Robots, 5(1):7–18, 1998.

[27] Akiya Kamimura, Satoshi Murata, Eiichi Yoshida, Haruhisa Kurokawa, Kohji

Tomita, and Shigeru Kokaji. Self-reconfigurable modular robot-experiments on

reconfiguration and locomotion. In Proceedings 2001 IEEE/RSJ International

Conference on Intelligent Robots and Systems. Expanding the Societal Role of

Robotics in the the Next Millennium (Cat. No. 01CH37180), volume 1, pages

606–612. IEEE, 2001.

[28] Dayal C Kar. Design of statically stable walking robot: a review. Journal of

Robotic Systems, 20(11):671–686, 2003.

[29] Ori Kedar, Christie Capper, Yan-Song Chen, Zhaoyang Chen, Julia Di, Yonah

Elzora, Lingjian Kong, Yuanxia Lee, Julian Oks1 Jorge Orbay, Fabian Stute,

et al. Spyndra 1.0: An open-source proprioceptive robot for studies in machine

self-awareness.

38

Lista de Figuras

1.1. Plataforma robótica, LoCoQuad. 2

4.1. Modelos de las dos configuraciones básicas de LoCoQuad. 13

4.2. Modelos de algunas de las configuraciones de las patas. 13

4.3. Modelo expandido del diseño . 14

4.4. Modelos de algunas de las configuraciones de las patas. 15

4.5. Diagrama de fuerzas aplicado a una pata de LoCoQuad 3J. 16

5.1. Esquema elecrónico de LoCoQuad . 19

5.2. Imagen del interior del robot durante el ensamblaje. 22

7.1. Secuencia del movimiento de giro . 27

7.2. Secuencia del movimiento de equilibrio 27

B.1. Servos comerciales de distintos pares. 48

B.2. Motores paso a paso comerciales de distintos tamaños. 49

B.3. Motores DC de diferentes tamaños. 50

B.4. Motores DC de diferentes tamaños. 50

C.1. Primer diseño para el proyecto LoCoQuad 53

39

C.2. Segundo diseño para el proyecto LoCoQuad 54

C.3. Versión Beta de LoCoQuad . 55

C.4. Versión definitiva de LoCoQuad . 55

C.5. Versión 3J de LoCoQuad . 56

C.6. Mini Turtle, plataforma de testeo software 56

40

Lista de Tablas

3.1. Coste de LoCoQuad frente a otras pltaformas 9

4.1. Caracteŕısticas Servo MG90 . 11

5.1. Consumos corriente por componente, en encendido y en operación

normal . 21

7.1. Coste pormenorizado de LoCoQuad 2J y (3J). 26

41

42

Anexos

43

Anexos A

Condiciones Iniciales

Al comienzo de este proyecto contábamos con una serie de conocimientos, una

idea de a dónde queŕıamos llegar y la ilusión necesaria para emprender este viaje

hacia el descubrimiento de nuevas formas de hacer robots.

Como se ha mencionado anteriormente, el objetivo principal ha sido siempre

el diseño y desarrollo de una plataforma robótica. En los instantes iniciales, el

propósito final de la misma no quedó definido al cien por cien ya que no contábamos

con el conocimiento real del potencial de nuestras ideas. Ahora podemos decir que

ı́bamos bien encaminados en algunas de las premisas iniciales. En primer lugar,

el bajo coste y la filosof́ıa Open-Source, que nos parećıan la mejor manera de

aportar a la comunidad robótica, bien sea por el alto coste de la mayoŕıa de

los robots a d́ıa de hoy o por la falta de plataformas abiertas que existe en el

campo de la robótica. En segundo lugar, ofrecer una plataforma en la que poder

probar soluciones desarrolladas por investigadores de todo el mundo, ya que esto

implica la participación de la comunidad investigadora, permitiendo recibir feedback

y potenciales mejoras para futuras versiones de nuestro robot LoCoQuad.

En relación con los conocimientos previos que nos permitieran afrontar esta

tarea con garant́ıas, podemos enumerar los más relevantes, como la experiencia

necesaria para diseñar e imprimir en 3D piezas de casi cualquier complejidad.

Además, contábamos con equipo para realizar dichas impresiones de manera fiable.

Por el lado de la electrónica, se conoćıan los entornos Open-Source de Raspberry

Pi y Arduino además de las tecnoloǵıas que respaldan cada una de ellas. A nivel de

programación, se teńıa experiencia en Python, C y C++ en el desarrollo de pequeños

y medianos proyectos. Por último, a nivel de componentes como motores o bateŕıas,

45

se hab́ıan utilizado con anterioridad en otros proyectos, por lo que se teńıa una

idea de las caracteŕısticas básicas de los componentes más comunes necesarios en el

desarrollo del proyecto.

Se contaba pues,, con unas condiciones idóneas para evitar atascos inesperados

durante el desarrollo de la plataforma robótica.

En los siguientes caṕıtulos se describirán los procesos de desarrollo y diseño

desde los tres pilares fundamentales de cualquier plataforma robótica: la mecánica,

la electrónica y la programación.

46

Anexos B

Actuadores para robótica de bajo
coste

En el campo de la robótica el mayor inconveniente y la razón por la que no se

está alcanzando una tasa de expansión mayor en las soluciones que se ofrecen al

mercado global es la oferta de actuadores. Además, hay que tener en cuanta que es

un campo en desarrollo y por lo tanto hay pocos especialistas formados en todas

las especialidades que atañen al desarrollo robótico. Sin embargo, los actuadores

son una barrera económica inicial muy grande que restringe mucho el número de

soluciones robóticas capaces de sortearla. Se podŕıa decir que en cuanto la oferta de

actuadores de calidad para robótica aumente ocurrirán dos consecuencias directas.

En primer lugar, el abaratamiento de los mismos; y, por otro lado, un incremento

en la variedad de actuadores, que a d́ıa de hoy sigue siendo muy limitada y cara.

Generalmente se producen de manera expresa para empresas grandes.

En el campo de la robótica de bajo coste este efecto no tiene un efecto tan

agudo, ya que el propio presupuesto elimina gran cantidad de actuadores que

individualmente pueden llegar a costar cientos de veces el valor de todo un desarrollo.

En este apartado trataremos los principales actuadores que se plantearon utilizar

en un primer momento en el desarrollo de LoCoQuad. Se tratarán sus ventajas y

desventajas atendiendo al objetivo y los propósitos de este proyecto, por lo que no

se entrará a describir en detalle el modo de operación de los mismos.

En primer lugar, y ya desde el comienzo del proyecto, se planteó el uso de

servomotores. Estos son producidos a nivel mundial en gran variedad de formatos,

precios y prestaciones. Esto permite tener un abanico de opciones potenciales muy

47

interesante.

Un servomotor de bajo coste se compone de un motor DC al que se le aplica algún

tipo de reducción mecánica sobre su eje de salida y se controla la posición de la salida

de dicha reducción mediante un microprocesador integrado dentro del encapsulado

de dicho motor. Esto presenta algunas ventajas, como pares altos, relaciones par-peso

elevadas o sencillez en el control. En cuanto a las desventajas, se debe destacar la

dependencia del controlador para obtener buenos resultados y evitar al máximo los

errores mecánicos y holguras que puedan aparecer. Además, el control de posición

del servo implica una limitación del sistema a un rango concreto de posiciones,

normalmente inferior a 360 grados. Si se desea eliminar dicha restricción el control

pasa a realizarse en base a la velocidad, impidiendo realizar acciones con altos niveles

de repetibilidad. En la figura B.1 se pueden contemplar dos de los modelos de

servomotores más vendidos para aplicaciones de bajo coste y de reducido tamaño.

Otra alternativa de bajo coste son los motores paso a paso. Estos motores se

han popularizado mucho en los últimos años debido al incremento de soluciones

para impresión 3D y máquinas CAD que se han planteado. Su precio ha caido

mucho y a d́ıa de hoy resulta una gran solución para aplicaciones de bajo para

y mucha precisión. Éstas son precisamente sus grandes ventajas y sus grandes

inconvenientes. En primer lugar, no son capaces de generar apenas par. Incluso con

trenes de reducción altos los pares no pueden compararse con los de un servomotor.

Además, sus velocidades de operación son bastante bajas, por lo que al aplicar

(a) SG90 1.5kg (b) DSServo 60kg

Figura B.1: Servos comerciales de distintos pares.

48

reducciones éstas tienden a ser demasiado lentas. Un punto que no va a favor ni

en contra es sus soluciones de control. Éstas pasan por driver integrados de bajo

coste o placas de control industriales que se salen del rango de precios para un

proyecto con un presupuesto ajustado. El controlador no va integrado dentro del

motor por lo que hay más flexibilidad para configurar el sistema. Por otro lado, y

enlazando con las ventajas, los controladores permiten obtener divisiones de los pasos

de referencia de estos motores, reduciendo el par pero mejorando significativamente

las precisiones que pueden alcanzar, mucho mejores que las de un servo. En la figura

B.2 se pueden ver los servos de baja tensión para robots pequeños y los motores

Nema empleados para impresión 3D y aplicaciones robóticas pesadas y que precisan

de mucha precisión para su correcta operación.

Una alternativa natural a los servos son los motores DC con reductoras que

se controlan externamente mediante la incorporación de encoders al sistema. En la

figura B.3 se muestran dos casos: abiertos y cerrados. Se ha llegado a alcanzar niveles

de miniaturización muy elevados y esto permite integrar estos sistemas realimentados

mucho más facilmente en proyectos pequeños y de bajo coste. El control depende

principalmente de filtros para garantizar la fiabilidad de las mediciones y permitir

un control preciso. Gracias a la comunidad desarrolladora existen soluciones de

diversa complejidad para el desarrollador que se pueden emplear. Es por esto

que estos motores tienen la ventaja de ser más configurables y permiten controles

más robustos, incluso implementar soluciones cerradas dentro del propio proyecto

espećıficas para control de los motores. Como desventaja hay que destacar el

aumento de la complejidad, el aumento del coste en referencia al par obtenido y

el mayor tiempo de desarrollo que implican estas soluciones.

(a) 28BYJ-48 (b) Nema 17

Figura B.2: Motores paso a paso comerciales de distintos tamaños.

49

(a) Motor DC micro (b) Motor DC

Figura B.3: Motores DC de diferentes tamaños.

Por último, el avance de los drones en los últimos años ha implicado un gran

avance en la miniaturización de los motores que más están creciendo en la industria

robótica en el último lustro, los motores brushless. Estos motores cuentan con

bobinados trifásicos que optimizan las prestaciones de los motores DC de escobillas.

Se reduce el mantenimiento y se eliminan fricciones. En la figura B.4 se muestan

algunos de los formatos más extendidos de motores brushless para drónica y para

robots móviles.

Los motores brushless siguen mejorando a una velocidad elevada por lo que

(a) Motor brushless bala (b) Motor brushless plato

Figura B.4: Motores DC de diferentes tamaños.

50

los precios han ido bajando al haber mayor oferta, aunque siguen siendo altos

comparativamente. Su control es complejo comparativamente y suele ser necesario

recurrir a soluciones de control que encarecen aún más el uso de estos motores. Son

motores muy rápidos y con pares en relación a su peso muy elevados, es por esto

que han triunfado en los drones, a pesar de requerir más tiempo de desarrollo.

Como conclusión, decir que los servos son la mejor solución para propósitos

generales. Los motores paso a paso para proyectos de precisión. Los motores DC para

controles más robustos que los de los servos y los motores brushless para proyectos

que requieran más potencia y altas velocidades.

51

52

Anexos C

Desarrollos previos

Antes de poder diseñar LoCoQuad, se plantearon otros modelos de robot, cada

cual con caracteŕısticas espećıficas que permitieron validar y descartar soluciones,

ya que los productos de bajo coste no daban garant́ıas de operar según sus

caracteŕısticas teóricas. Por ello, se comenzó descartando posibles configuraciones,

Empezamos con un cuadrúpedo de 8 ejes, que integraba servos dentro de sus patas.

Los servos seleccionados eran menos potentes que los de LoCoQuad y las fricciones

entre piezas 3D supusieron un gran problema a la hora de evitar que los motores se

bloquearan. En la imagen C.1 se puede apreciar dicho diseño.

Posteriormente, se optó por integrar motores paso a paso de baja tensión en

una estructura mecánica más compleja que integraba reducciones 3:1 en las propias

piezas impresas en 3D. Esta solución seŕıa más optima si las reducciones se hicieran

en configuración planetaria, lo cual reduciŕıa considerablemente el gran número de

Figura C.1: Primer diseño para el proyecto LoCoQuad

53

saltos de diente que ocurŕıan en este prototipo. Además, y debido a la reducción

aplicada para aumentar el par de los motores paso bajo, que de normal es bastante

inferior a los de un servo, las velocidades que se pod́ıan obtener eran realmente

bajas, por lo que la envergadura con la que se diseñó el robot haćıa completamente

inviable este diseño. En las figura C.2 se puede apreciar este prototipo.

Una vez llegados a este punto y como se mencionaba al comienzo de esta

memoria, las configuraciones tipo mamı́fero tienden a ser más inestables y requieren

actuadores muy rápidos que permitan realizar controles dinámicos. Es por esto que

tras concluir que ninguno de los dos tipos de motores potencialmente viables, tanto

por precio como por dimensiones nos permit́ıan manejar las estructuras mecánicas

de los robot diseñados se decidió comenzar de cero con robots arácnidos de cuatro

patas. Aprovechando los conocimientos adquiridos durante el diseño, fabricación y

validación, fallida, de los prototipos mencionados, se decidió descartar los motores

paso a paso, y reducir el tamaño del robot al mı́nimo posible, haciendo las patas

mucho más cortas para inferir palancas mucho más asequibles para los servos.

Fue aśı como se contruyó la primera versión operativa de LoCoQuad, que se

muestra en la figura C.3.

Gracias a este desarrollo se detectaron algunos de los problemas que

posteriormente y con un poco de trabajo adicional nos llevaron a crear el LoCoQuad

que presentamos en este proyecto. En primer lugar, las patas acabadas en punta no

ofrećıan ninguna ventaja frente a patas acabadas en una arista redondeada. Por otro

lado, la posición de la bateŕıa marcaba en gran medida el centro de gravedad del

robot por lo que se decidió bajar lo máximo posible en la siguiente versión.

Figura C.2: Segundo diseño para el proyecto LoCoQuad

54

Figura C.3: Versión Beta de LoCoQuad

En cuanto a la electrónica, se comenzó con la versión mini de la Raspberry y

posteriormente se pasó a la versión original. Se decidió conservar la apariencia de los

ojos mediante el sensor ultrasónico, lo que marcó el diseño de la siguiente versión,

que además permit́ıa integrar toda la electrónica dentro del caparazón del robot.

No hizo falta mucho para llegar a la versión definitiva de LoCoQuad que se

muestra en la figura C.4.

A partir de esta versión 2J, se amplió a la versión 3J, que se muestra en la figura

C.5 en la que se añadió una articulación más a cada una de las patas.

Figura C.4: Versión definitiva de LoCoQuad

55

Figura C.5: Versión 3J de LoCoQuad

Figura C.6: Mini Turtle, plataforma de testeo software

56

Como trabajo posterior y en relación con la integrción de ROS se desarrolló una

última plataforma de pruebas para la electrónica y algunas soluciones de software

espećıficas. Este robot se muestra en la figura C.6. Consiste en una placa Orange

Pi Zero, para validar su capacidad de gestionar ROS más cómodamente que la

Raspberry Pi empleada en LoCoQuad. Además, cuenta con una placa de desarrollo

Arduino Uno, para probar las comunicaciones entre procesador y micro. Y una

cámara de 5Mpx que permite integrar soluciones con OpenCV en el robot. El sistema

de alimentación utiliza los mismos componenetes que se utilizaron en LoCoQuad

debido a que éstos ya hab́ıan sido validados.

Como conclusión a este apartado se debe hacer referencia a todo el trabajo previo

y posterior que ha supuesto el desarrollo de la plataforma robótica LoCoQuad. Todo

este conocimiento está sirviendo para mejorar la siguiente versión y llevar nuevas

ideas a ver la luz.

57

58

Anexos D

ROS, Robotic Operative System

La integración de ROS en el proyecto de LoCoQuad supone un gran avance para

la expansión de las capacidades de la plataforma. Esto no contaba como uno de

los objetivos del proyecto pero resultaba muy interesante realizar una prueba en la

plataforma una vez concluida.

Para instalar ROS en Raspbian, las versiones jugaron un papel fundamental y

resultó más sencillo instalar ROS Kinetic en Raspbian Jessie Lite que en Raspbian

Strech Lite. Se instaló y se probó su correcto funcionamiento mediante la conexión

SSH desde la que se interactuaba con el robot en todo momento.

Las ventajas de ROS en plataformas robóticas son muchas, pero para plataformas

de bajo coste con capacidades computacionales significativamente limitadas, la única

versión que se encontró viable era sin interfaces gráficas, las cuales son uno de los

pilares fundamentales de ROS. La estructura interna de tubeŕıa para comunicaciones

supone la mayor diferencia a la hora de crear soluciones robóticas de cero. Sin

embargo, al tener todo el código realizado antes de integrar ROS, esto no se utilizó,

llevando simplemente la ejecución de un nodo que lanzaba a ejecución el main del

software desarrollado en Python.

Antes de concluir este apartado hay que mencionar que durante las pruebas

realizadas para validar el uso de ROS se probaron otras placas y programaciones,

tal y como se mencionaba en el Anexo B, mediante una plataforma alternativa que

nos permitió comparar los resultados obtenidos. Sin lugar a dudas, la integración

en Armbian resultó mucho más sencilla e implicó muchos menos problemas. Esto

se debió a que este sistema operativo cuenta con dos versiones, una de Debian y

59

otra de Ubuntu, resultando ésta la más cómoda a la hora de realizar las tareas de

instalación, ejecución y personalización de paquetes espećıficos.

En definitiva, el empleo de ROS en una plataforma de bajo coste condiciona la

electrónica pero establece una referencia de capacidades mucho más elevada, entre

otras cosas por la posibilidad de entrelazar software en C++ y Python.

En la nueva versión de LoCoQuad, ROS ha estado presente en el desarrollo de

la misma desde el primer momento, ya que se pretenden integrar soluciones de RL

y visión que requieren de la agilidad de ROS para comunicar los sensores y los

actuadores entre śı.

60

