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Estimación de profundidad en imágenes 360o

RESUMEN

La Realidad Virtual (RV) es un paradigma de interacción persona-ordenador

que ha ganado relevancia en los últimos años. El contenido empleado en RV puede

tener diversos formatos. Entre ellos se encuentran los panoramas equirrectangulares,

o panoramas 360o. Este tipo de contenido suele ser capturado mediante una cámara

omnidireccional situada en un punto de vista estático. Debido a esto, la información

de profundidad de la escena suele estar limitada o, incluso, no estar disponible. Sin

embargo, esta información puede ser útil para distintas aplicaciones como la conducción

autónoma, robótica (odometŕıa), edición digital, etc. Los panoramas 360o, además, son

un tipo de proyección fácilmente reproyectable en una esfera, lo cual motiva más su

uso. El objetivo de este proyecto es crear y evaluar un sistema basado en aprendizaje

profundo capaz de estimar la profundidad de una imagen 360o.

Primero, se ha realizado un estudio del estado del arte sobre la estimación de

profundidad con redes neuronales profundas para conocer cómo se está abordando

este problema. Dadas las limitaciones que se encontraron en estos sistemas, en su

mayoŕıa entrenados con imágenes tradicionales, se ha propuesto el estudio, diseño,

modelado y evaluación de un sistema capaz de hacer frente al problema de estimación

de profundidad en 360o.

Para alcanzar el objetivo de este trabajo, se han planteado una serie de modelos

basados en aprendizaje profundo, y en concreto en redes neuronales convolucionales,

utilizando convoluciones tradicionales y esféricas, y funciones de pérdida t́ıpicas, como

el error cuadrático medio, también en ambas versiones (convencional y esférica).

Las versiones esféricas tienen la propiedad de tratar los datos de manera diferente,

enfocándose en los rasgos de las imágenes equirrectangulares.

Seguidamente, se han evaluado los diferentes sistemas propuestos. También se han

comparado esos sistemas con otros del estado del arte para evaluar su mejoŕıa. Además,

se ha comparado el mejor modelo implementado con una estimación real de una cámara

360o.

En conclusión, tras observar los resultados obtenidos de diferentes modelos del

estado del arte y propios del proyecto, se ha obtenido una mejora con respecto a los

mismos, y se han identificado v́ıas de mejora a futuro.

III



IV
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4.5.1 Comparativa con cámara 360o . . . . . . . . . . . . . . . . . . . 27

5 Trabajo futuro 29

6 Conclusiones 31

6.1 Conocimientos adquiridos . . . . . . . . . . . . . . . . . . . . . . . . . 32

V



Bibliograf́ıa 33

Lista de figuras 35

Lista de tablas 36

Anexos 37

A Comparativa a más resolución 39

VI



Caṕıtulo 1

Introducción y objetivos

En los últimos años, la Realidad Virtual ha ganado relevancia en campos como la

investigación, la simulación, videojuegos o entretenimiento. Este impulso se ha dado

gracias a precios más asequibles, una tecnoloǵıa más desarrollada o el aumento de

contenido, lo cual ha permitido que la RV esté cada vez más presente en muchos

hogares.

En RV existen dos tipos de contenido: el contenido sintético y el contenido

capturado. El primero es generado por ordenador, con información perfecta de la escena.

El segundo, por el contrario, es tomado por una - o múltiples - cámara, situada en

un punto estático. Uno de los formatos más comunes para capturar una escena para

RV es el panorama equirrectangular, que es un tipo de proyección que abarca una

escena completa en 360o, aunque presenta distorsiones y deformaciones, sobre todo en

la parte superior e inferior de la imagen. Este tipo de proyección es especialmente útil en

realidad virtual, ya que su reproyección a una geometŕıa esférica es trivial, facilitando

su visualización y permitiendo un alto grado de realismo.

Para la obtención de panoramas existen una serie de dispositivos especializados

en capturar este tipo de imágenes. Normalmente estos dispositivos disponen de

una plataforma (o “esfera”) de 2 o más cámaras cubriendo los 360o de la

plataforma uniformemente, obteniendo información de profundidad buscando las

mismas caracteŕısticas en las diferentes imágenes de cada cámara (profundidad a

partir de estéreo). Este método está limitado por la distancia máxima entre cada

cámara, resultando en un paralaje entre imágenes insuficiente para obtener una

buena información de profundidad. Otras opciones de captura seŕıan las cámaras

omnidireccionales basadas en espejos que no permiten obtener información de

profundidad debido a que suelen ser un tipo de accesorio para cámaras convencionales.

La información de profundidad es especialmente útil, e incluso necesaria, en muchas
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(a) Plataforma (b) Esfera (c) Espejos

Figura 1.1: Diferentes tipos de cámaras omnidireccionales. La (a) consiste en una
plataforma con 2 o más cámaras repartidas uniformemente en 360o, mientras que en el
dispositivo (b) las cámaras son repartidas uniformemente alrededor de una esfera. La
(c) es una cámara convencional con una ”lente”de espejo omnidireccional.

aplicaciones como la conducción autónoma, robótica (odometŕıa), edición digital, etc.

Algunos de estos sistemas son capaces de obtener esta información mediante sensores

estéreo u otras tecnoloǵıas (láser, sonar, etc.), pero otros muchos carecen de estas

herramientas, por lo que necesitan estimarla. No obstante, la mayoŕıa de estos sistemas

están diseñados para estimar la profundidad en base a imágenes 2D convencionales,

por lo que fallan a la hora de estimar la profundidad en imágenes equirrectangulares,

especialmente debido a sus distorsiones.

Por tanto, el objetivo final de este trabajo es construir un sistema que consiga

estimar la profundidad de imágenes con proyección equirrectangular con mayor

precisión que los sistemas actuales en el estado del arte. Para ello, se probarán diferentes

modelos, herramientas y técnicas de aprendizaje profundo que permitan dicha mejora.

Se compararán los resultados obtenidos de los diferentes modelos. Además, se evaluará

la mejora de los modelos propuestos frente a los del estado del arte actual, aśı como

frente al algoritmo propio de una cámara 360o.

(a) Imagen original (b) Mapa de profundidad

Figura 1.2: Ejemplo de un panorama equirrectangular RGB (a) y su mapa de
profundidad (b). Los colores más oscuros (morados) indican cercańıa mientras que
los más claros (amarillo/naranja) indican lejańıa.
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1.1. Objetivos y alcance del proyecto

El objetivo general de este trabajo de fin de grado es mejorar la estimación de mapas

de profundidad en imágenes equirrectangulares para su uso posterior en diferentes

aplicaciones.

Para ello, las tareas realizadas en este trabajo de fin de grado se resumen en:

− Estudio y exploración de la literatura ya existente en cuanto a sistemas de

estimación de profundidad y otros sistemas de RV que explotan este tipo de

información (Sección 2).

− Introducción al aprendizaje profundo y las redes convolucionales explicando en

qué consisten las redes neuronales, las convoluciones y sus parámetros, y las

diferentes arquitecturas de redes existentes en el estado del arte (Sección 3).

− Implementación de un sistema real de estimación de profundidad basado en

el estado del arte utilizando técnicas del aprendizaje profundo. Evaluación

y comparación de los modelos implementados y su posterior propuesta e

implementación de mejoras (función de pérdida). Evaluación y comparación de

los modelos finales frente a sistemas del estado del arte (Sección 4).

− Propuesta de mejoras y posibles estudios futuros para mejorar el rendimiento del

sistema implementado. Algunos ejemplos son la mejora de la función de pérdida

y el estudio de activación de capas de la red para el análisis de las convoluciones

esféricas (Sección 5).

− Conclusiones y resumen de los resultados obtenidos del sistema implementado.

Se ha logrado alcanzar unos resultados considerables, además de destacar los

conocimientos adquiridos durante el proceso (Sección 6).

1.2. Planificación y herramientas

Este trabajo de fin de grado se ha dividido en una serie de tareas relacionadas con

la estructura inherente al proyecto. A cada una de esas tareas se le ha dedicado un

total de horas que se puede consultar en la Figura 1.1.

La implementación de la red encargada de entrenar los modelos se ha llevado a

cabo usando el conjunto de herramientas de aprendizaje automático Pytorch [Paszke

et al., 2017] mediante el lenguaje de programación Python. También se ha utilizado
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la libreŕıa TensorFlow [Abadi et al., 2015] para la reproducción de otros sistemas del

estado del arte, [Laina et al., 2016]. Además, se han utilizado libreŕıas como OpenCV

[Bradski, 2000] y MathPlotLib [Hunter, 2007] para el tratamiento y visionado de las

imágenes. Los procesos de entrenamiento y evaluación los modelos se han llevado a

cabo en su mayoŕıa en una máquina con un procesador Intel i7 de octava generación,

16 GB de RAM y una tarjeta gráfica Nvidia RTX 2060, haciendo uso de la tecnoloǵıa

CUDA, acelerando este proceso de entrenamiento.

El desarrollo del código utilizado para la implementación del sistema se ha llevado a

cabo utilizando la herramienta de control de versiones Github en el repositorio público:

https://github.com/JaviBite/Depth-estimation-on-360-images

Plan temporal

Enero Febrero Marzo Abril Mayo Junio

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Preparación
Lectura de art́ıculos

Tutoriales Pytorch

1o Iteración

Cursos de aprendizaje profundo

Búsqueda estado del arte

Búsqueda colección de datos

Desarrollo
Pruebas de concepto

2o Iteración

Implementación inicial

Convoluciones Esféricas

MSE esférico

Desarollo de la red

3o Iteración

Entrenar redes

Evaluar modelos

Documentación
Memoria

Presentación

Entrega

Figura 1.3: Planificación temporal de las diferentes tareas del proyecto desglosadas
en un diagrama de Gantt.
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Tarea Horas

Preparación 70

- Lectura de art́ıculos 25

- Tutoriales PyTorch 10

- Cursos de aprendizaje profundo 15

- Búsqueda estado del arte 10

- Búsqueda de colección de datos 10

Desarrollo 107

- Prueba de concepto 12

- Implementación Inicial 15

- Convoluciones y perdida esférica 10

- Reuniones 10

- Desarrollo de la red 35

- Evaluaciones y comparaciones 25

Documentación 65

- Memoria 40

- Contenido gráfico 10

- Presentación 15

TOTAL 242

Tabla 1.1: Número de horas dedicadas al proyecto desglosadas en las diferentes tareas
relacionadas.
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Caṕıtulo 2

Trabajo relacionado

Como primer paso en el proyecto, se ha llevado a cabo un proceso de estudio del

estado del arte actual en diferentes ámbitos de relevancia para el mismo.

2.1. Estimación de profundidad mediante

aprendizaje profundo

La estimación de profundidad consiste en generar un mapa de profundidad de una

imagen a partir de esta, donde cada ṕıxel contiene un valor numérico que representa

la distancia a la que se encuentra ese punto respecto a la cámara. Hoy en d́ıa, hay

numerosos dispositivos que realizan esta tarea de diferentes maneras (láser, cámaras

dobles, etc.), mientras que otros no pueden obtener esta información, o, de hacerlo, es

poco precisa. Por eso, la estimación de profundidad mediante aprendizaje profundo

es una buena alternativa, que ha sido ampliamente estudiada, ofreciendo buenos

resultados [Godard et al., 2017].

Entre las técnicas de aprendizaje automático, se encuentran las redes

convolucionales (CNN), que han demostrado su efectividad para muchas tareas de

visión por computador que requieren trabajar con grandes volúmenes de imágenes,

como puede ser la detección de objetos, reconocimiento facial, segmentación semántica,

o estimación de profundidad. Este último será el caso de estudio de este trabajo.

Una de las técnicas más comunes que se ha utilizado para llevar a cabo este

problema consiste en alimentar una red residual (ResNet) con una arquitectura

codificador-decodificador utilizando imágenes con información de profundidad

(RGBD), entrenándola para que a partir de los canales de color (RGB) sea capaz

de predecir la profundidad (D).

Otra de las técnicas más recientes, y que ha obtenido resultados con gran precisión,
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es la conocida como Monodepth2 [Godard et al., 2017]. Esta técnica se basa en

calcular las disparidades de dos imágenes tomadas desde dos puntos diferentes, pero

relativamente cercanos (estéreo), permitiendo que la red aprenda a predecir un punto

de vista desde el otro, y según la disparidad entre ambos, estima su profundidad.

Sin embargo, en la mayoŕıa de los trabajos dedicados a este problema han empleado

imágenes tradicionales para entrenar y probar dichos modelos. Debido a esto, cuando

se usa cualquiera de estos modelos sobre imágenes panorámicas equirrectangulares la

estimación de profundidad no es muy precisa, e incluso puede contener incoherencias.

2.2. Adquisición y visualización de contenido 360o

para realidad virtual

La realidad virtual es una tecnoloǵıa en auge que ha evolucionado mucho en los

últimos años y que ha abierto un amplio campo de investigación. Algunos trabajos

como “Instant 3D photography”, [Hedman et al., 2017], o “Casual 3D photography”,

[Hedman and Kopf, 2018], permiten generar escenas tridimensionales a través de una

serie de imágenes RGBD bidimensionales. Otros trabajos, como “Motion parallax for

360o RGBD video”, [Serrano et al., 2019], permiten añadir paralaje a un v́ıdeo 360o

capturado desde un punto de vista único: esto es, permite al usuario moverse libremente

en la escena, infiriendo información sobre la escena que no fue capturada originalmente,

pero ofreciendo una mejor experiencia al consumir el contenido. Aunque son trabajos en

diferentes ĺıneas, todos ellos tienen una necesidad común: información de profundidad.

Existen variedad de dispositivos que permiten adquirir imágenes panorámicas en

360o (equirrectangulares) fácilmente, incluso los móviles actuales pueden capturar este

tipo de contenido. Sin embargo, su precisión no es muy elevada y, en general, no son

capaces de capturar información de profundidad, o esta tampoco es especialmente

precisa, dificultando el desarrollo de trabajos como los citados previamente.

Este trabajo persigue obtener mapas de profundidad de imágenes equirrectangulares

sin necesidad de ningún dispositivo adicional, estimando dichos mapas gracias a

técnicas de aprendizaje profundo.
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2.3. Aprendizaje profundo en panoramas

En la actualidad en el estado del arte existen trabajos que tratan con imágenes

panorámicas o de 360o para resolver problemas utilizando el aprendizaje profundo,

algunos de estos ejemplos son los mapas de saliencia y detección o clasificación de

imágenes. Los mapas de saliencia indican las zonas de una imagen que tienden a ser

más atractivas al ojo humano, es decir, hacia dónde se suele mirar en dicha imagen. Un

ejemplo de esto orientado a imágenes panorámica seŕıa el trabajo de Zhang et al. [2018],

que aplica técnicas novedosas como convoluciones y funciones de pérdida esféricas. La

detección y clasificación de imágenes consiste en detectar “objetos” en imágenes o

clasificarlas por clases, un ejemplo de esto aplicado en imágenes equirrectangulares

seŕıa SphereNet [Coors et al., 2018].

Las técnicas que se usan en estos trabajos son, sobre todo, el uso de unas

convoluciones especiales esféricas y una función de pérdida (esférica) adaptada también

a las imágenes equirrectangulares. Las convoluciones esféricas tratan de adaptar sus

filtros para hacer frente a las distorsiones de las imágenes equirrectangulares. La

función de pérdida esférica amplifica el error generado en función de las zonas menos

distorsionadas de las imágenes equirrectangulares, por lo que será mayor en el ecuador

de la imagen.

En este proyecto se incluirán y probarán las técnicas utilizadas en estos dos trabajos,

evaluando aśı su aplicabilidad en el problema de estimación de profundidad.
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Caṕıtulo 3

Marco teórico

Este proyecto se basa en el uso del aprendizaje profundo, y más concretamente,

en el uso de redes neuronales convolucionales. Para su desarrollo, ha sido necesario

construir una base de conocimiento que abarca algunos conceptos que quedan fuera del

marco teórico del grado de Ingenieŕıa Informática, y que se introducen a continuación.

3.1. Redes neuronales

Las redes neuronales son una técnica de aprendizaje automático cuyo objetivo

principal es encontrar un modelo capaz de resolver un problema concreto, de forma

que, dada una entrada, sea capaz de generar una salida lo más precisa posible. Las

redes neuronales intentan imitar el funcionamiento de las conexiones neuronales de

organismos vivos, mediante un conjunto de neuronas conectadas entre śı que se activan

o desactivan según la entrada (impulso) que reciben.

Estas neuronas se reparten a lo largo de la red agrupadas en capas, generalmente

de manera secuencial. Cada neurona tiene asignado cierto peso que decide si, dada

una entrada, se activa dicha neurona o no. Para llevar a cabo ese ajuste de pesos, las

redes neuronales son entrenadas con un conjunto de datos del cuál, generalmente, se

sabe la salida que se desea obtener. De esta forma, la red predice una salida para cada

entrada, y se ajusta iterativamente en función de cómo de buena ha sido su predicción

con respecto a esa salida esperada. Esta función es la conocida como función de pérdida

(o loss en inglés)

El proceso de entrenamiento suele llevarse a cabo hasta que la función de pérdida

converge y la red no sigue aprendiendo. Para ello, el proceso de entrenamiento se divide

en épocas, donde cada época consiste en una iteración completa sobre todo el conjunto

de datos. La evolución de la función de pérdida permite reconocer posibles problemas
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de sobre ajuste (se ha ajustado demasiado a los datos de entrenamiento, y no es capaz

de generalizar a otros datos) o sub ajuste (no se ha ajustado lo suficiente).

3.2. Redes convolucionales y aprendizaje profundo

Como se ha comentado en la Sección 2, dentro de las diferentes técnicas de

aprendizaje automático, hay un tipo de redes conocidas como redes convolucionales

(CNN). Este tipo de redes han resultado ser especialmente útiles en problemas que

trabajan con imágenes o v́ıdeos.

Las redes convolucionales son un tipo de red neuronal donde se aplican una serie

de convoluciones (en inglés, kernel) sobre la entrada, de forma que, en cada paso, se

extraen distintas caracteŕısticas intŕınsecas de los datos (en inglés, features). En este

caso, la entrada a la red suele ser una imagen (matriz o tensor) a la que se le aplican

una serie de convoluciones (ver Figura 3.1) para extraer las caracteŕısticas.

La entrada a cada capa de la red se puede definir por un tensor con tamaño

(B,C,H,W ) siendo B el número de muestras con que se alimentará a la red en cada

entrada (en inglés, batch size). La C representa el número de canales de la capa. Por

ejemplo, para una imagen RGB tradicional, existen tres canales, uno por cada color

(rojo, verde y azul), mientras que una imagen en escala de grises solo tendŕıa un

canal. En capas ocultas (intermedias), el número de canales aumenta, representando

las distintas caracteŕısticas que se extraen de los datos. Por último, la H y W indican

el tamaño de la entrada en dos dimensiones (altura y anchura). Cada operación de

convolución tiene una serie de parámetros que definen cómo será la operación, qué

entrada admite, y qué salida generará. Entre ellos, se encuentran el tamaño del filtro

(en inglés, kernel size), número de canales de entrada y salida, el paso (en inglés, stride)

y margen (en inglés, padding).

− Canales: El número de canales esperados para la entrada y salida. Cada canal

se centra en aprender un cierto rasgo (feature) de la entrada, por lo que cada uno

tiene unos pesos diferentes.

− Filtro (Kernel): Es una matriz NxN que aplica la operación de convolución en

función de los pesos que se han ajustado durante el entrenamiento.

− Margen (Padding): Son las filas y columnas adicionales que se añaden para

permitir que la operación de convolución se ejecute tantas veces como se requiera

para obtener el tamaño de salida adecuado.
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− Paso (Stride): El paso o desplazamiento del filtro entre muestreos de la

convolución. Nótese que un paso diferente de 1 reduciŕıa la resolución de la

entrada.

Una convolución consiste en aplicar a cada dato de un tensor o matriz (ṕıxel si son

imágenes) una operación en la que participan también sus N vecinos. Esta operación

se define por la suma de las multiplicaciones de cada vecino y el dato en śı por su peso

correspondiente del filtro (Kernel) correspondiente.

g(x, y) = w ∗ f(x, y) =
a∑

dx=−a

b∑
dy=−b

w(dx, dy)f(x+ dx, y + dy) (3.1)

Donde g(x, y) es la salida, f(x, y) la entrada, la w representa los pesos del filtro

(Kernel) donde 0 ≤ dx ≤ a y 0 ≤ dy ≤ b, siendo a la altura y b la anchura del filtro.

Figura 3.1: Ejemplo de una imagen 5x5 a la que se le está aplicando una convolución
con un tamaño de filtro de 3 (cuadrados verde y rojo) con todos sus pesos a 0.5, margen
(padding) de ceros de tamaño 1 (filas y columnas de 0 grises) y un paso (stride) de
2, por lo que el filtro avanza de dos en dos posiciones resultando en una imagen más
pequeña que la original.

En la Figura 3.1 se puede ver como la convolución se está aplicando a cada ṕıxel

de la entrada, por ejemplo, el primer ṕıxel de salida (cuadrado verde) es calculado por

la siguiente fórmula: w ∗ (1,2 + 5,0 + 6,5 + 0,2) = 0,5 ∗ (1,2 + 5,0 + 6,5 + 0,2) = 6,45

Además de las convoluciones también se pueden realizar operaciones como

concatenación de tensores, juntar varias salidas en una sola, normalización de la entrada

(Batch norm), desescalado (down-sampling), importante cuando se aumenta el número

de canales, o escalado (up-sampling), en caso contrario.
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3.3. Arquitecturas de CNN: ResNet

Conforme se ha ido investigando en técnicas de aprendizaje profundo se han

explorado diferentes tipos de arquitecturas de redes convolucionales para solventar

diversos problemas [Standford, 2020]. Las más relevantes son las siguientes:

− AlexNet o ImageNet: Una de las primeras arquitecturas que mostraron que

era capaz de reconocer objetos en imágenes con solo ocho capas, [Krizhevsky

et al., 2012]. Más tarde fue superada por ZFNet [Zeiler and Fergus, 2013].

− VGGNet: Una red más profunda que sus predecesoras que además utilizaba

convoluciones 3x3 seguidas actuando como una sola de 7x7. Prueban que redes

más grandes funcionan mejor. [Simonyan and Zisserman, 2014].

− GoogLeNet: Una de las arquitecturas que tratan de buscar eficiencia con

convoluciones 1x1 de cuello de botella (reducen el número de canales de

features) y evita el uso de capas conectadas completamente usando una media

de agrupación global, [Szegedy et al., 2014].

− ResNet: Redes extremadamente profundas, desde 18 capas a 152. Consiguió

una precisión similar a la de los seres humanos, y es una arquitectura que ha sido

ampliamente utilizada para múltiples problemas. Este tipo de redes da prioridad

a la eficiencia en lugar de a un aumento no muy significativo de la precisión. [He

et al., 2013].

En este proyecto, se ha seguido la arquitectura ResNet para solventar el problema,

ya que, tras estudiar el estado del arte, se ha observado que esta arquitectura ha sido

enormemente explotada, además de ser una de las que más precisión consigue. En la

arquitectura global de los sistemas diseñados en este proyecto, la ResNet forma parte de

lo que se denomina codificador, que extrae las caracteŕısticas (features) de las imágenes.

El decodificador utiliza esas caracteŕısticas (features) para, a través de varios escalados

y convoluciones (con menos canales de salida que entrada), conseguir la salida deseada,

que para el caso de este proyecto, será un mapa de profundidad.
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Caṕıtulo 4

Un modelo de estimación de
profundidad

Se va a implementar un sistema capaz de estimar la profundidad de una imagen

equirrectangular con técnicas de aprendizaje profundo con el objetivo de conseguir

una mejor estimación que los sistemas actuales en el estado del arte. Se probarán y

evaluarán diferentes modelos para analizar el rendimiento de cada uno y determinar

cuál es el más preciso. También se evaluará el mejor modelo frente a otros sistemas del

estado del arte.

4.1. Arquitectura de la red

Como se ha comentado previamente, la arquitectura de la red se basa en el esquema

codificador-decodificador, en concreto, en la arquitectura de ResNet18. La red está

inspirada en “Monodepth2”[Godard et al., 2017], salvo que en este caso no se genera

un nuevo punto de vista, y se realiza el proceso a partir de una única imagen. A

lo largo del proyecto, las convoluciones y la función de pérdida se han alternado

entre sus implementaciones tradicionales y otras implementaciones adecuadas a casos

panorámicos [Zhang et al., 2018] [Coors et al., 2018].

El codificador (ver especificaciones en Tabla 4.1) se encarga de extraer las

caracteŕısticas (features) de la imagen de entrada (RGB normal), mientras que el

decodificador (ver especificaciones en Tabla 4.2) estima un mapa de profundidad,

haciendo uso de conexiones “skip”[Shelhamer et al., 2016] de los bloques de activación

del codificador, facilitando aśı el proceso de obtención de la salida.
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Figura 4.1: La estructura de la red neuronal se basa en la naturaleza de
codificador-decodificador común en diversos modelos de este ámbito. Las capas de
codificación reducen la dimensionalidad, agregando más canales, mientras que las
decodificaciones realizan la tarea inversa, hasta alcanzar la salida esperada. Se puede
apreciar el uso de conexiones “skip”[Shelhamer et al., 2016] para tratar problemas de
diferentes resoluciones.
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Codificador

capa
Tamaño de filtro

(kernel)

Paso

(stride)

canales

(entrada/salida)
entrada

econv1 3 2 3/64 img

maxpoll 3 2 64/64 econv1

convs2 3 1 64/64 maxpool

econv2 3 1 64/64 convs2

convs3 3 2 64/128 econv2

econv3 3 1 128/128 convs3

convs4 3 2 128/256 econv3

econv4 3 1 256/256 convs4

convs5 3 2 256/512 econv4

econv5 3 1 512/512 convs5

Tabla 4.1: Arquitectura del codificador basado en ResNet con 18 capas. Se trata
de una serie secuencial de convoluciones de mayor a menor resolución y de menor a
mayor número de canales, todas ellas precedidas por una convolución inicial. En cada
bloque de convoluciones, la salida es normalizada (BatchNorm). Algunas capas de la
arquitectura se han ocultado y agrupado con otras ya que repiten convoluciones 3x3 sin
cambiar el número de canales o resolución de la entrada (convs2 a convs5). Se encarga
de extraer las caracteŕısticas de la entrada.

Decodificador de profundidad

capa
Tamaño de filtro

(kernel)
Paso

(stride)
canales entrada activación

upconv5 3 1 256 econv5 ELU
iconv5 3 1 256 upconv5, econv4 ELU
upconv4 3 1 128 iconv5 ELU
iconv4 3 1 128 upconv4, econv3 ELU
disp4 3 1 1 iconv4 Sigmoid
upconv3 3 1 64 iconv4 ELU
iconv3 3 1 64 upconv3, econv2 ELU
disp3 3 1 1 iconv3 Sigmoid
upconv2 3 1 32 iconv3 ELU
iconv2 3 1 32 upconv2, econv1 ELU
disp2 3 1 1 iconv2 Sigmoid
upconv1 3 1 16 iconv2 ELU
iconv1 3 1 16 upconv1 ELU
disp1 3 1 1 iconv1 Sigmoid

Tabla 4.2: Arquitectura del decodificador. Conjunto de convoluciones y escalados de
menor a mayor resolución y de mayor a menor número de canales hasta un solo canal
y a la resolución de entrada. Se encarga de construir el mapa de profundidad partiendo
de las caracteŕısticas extráıdas por el codificador.
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4.2. Convoluciones

En un principio, la arquitectura de la red contaba con diferentes tamaños

de convoluciones en sus capas, pero para poder comparar los diferentes modelos

propuestos (con convoluciones esféricas y normales) se han tenido que modificar algunos

parámetros de estas convoluciones como el tamaño de filtro a 3 y en algunos casos, el

margen (para ser consistente con el cambio del tamaño del filtro). Este cambio se debe

a que la implementación elegida de las convoluciones esféricas está preparada para usar

un tamaño de kernel de 3x3.

4.2.1. Convoluciones esféricas (SphereNet)

Los filtros que son aplicados en las convoluciones tradicionales pueden no funcionar

correctamente con imágenes equirrectangulares por sus distorsiones. Esto se debe a que

en una imagen con proyección perspectiva normal, cada punto de la imagen corresponde

con su posición real en el espacio, mientras que en proyección equirrectangular esto no

ocurre (ver Figura 4.3). Existen unos tipos especiales de convoluciones esféricas 3x3

[Coors et al., 2018] que śı tienen en cuenta este problema.

(a) Ángulo Sólido (b) Relación

Figura 4.2: (a) es una representación tridimensional de un ángulo sólido definido por
θ y φ en una esfera. En la Figura (b) r indica el grado de distorsión según el ángulo
sólido en el que se encuentra.

La idea principal de estas convoluciones consiste en trasladar las operaciones locales

que se hacen en una convolución convencional al dominio de la superficie de una esfera.

Esto se consigue representando el kernel como un pequeño plano tangente (ver figura

4.3) a la superficie de dicha esfera (imagen equirrectangular) representando una porción

de la imagen sin distorsiones [Coors et al., 2018].
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(a) Kernel normal (b) Kernel esférico

(c) Ejemplo en esfera
(d) Ejemplo equirrectangular

Figura 4.3: En la imagen (a) se puede ver como se aplicaŕıa el filtro (kernel) de una
convolución tradicional a una imagen equirrectangular. La imagen (b) muestra cómo
se aplicaŕıa la misma convolución que en (a) pero utilizando un filtro (kernel) esférico.
En la imagen (c) podemos ver un ejemplo aplicado en una escena con su equivalente
en proyección equirrectangular (d) donde se observa fácilmente como actúa el filtro
(kernel) esférico para lidiar con las distorsiones. [Coors et al., 2018]

.

4.3. Funciones de pérdida

Las funciones de pérdida (loss) convencionales suelen ser el error absoluto medio y

el error cuadrático medio (MSE). En este proyecto se usará esta última junto con una

función de pérdida especial para las imágenes equirrectangulares, el error cuadrático

medio esférico [Zhang et al., 2018], que utiliza una serie de pesos que tienen en cuenta

las distorsiones de las imágenes según el ángulo solido en el que se encuentra cada ṕıxel.

4.3.1. Error cuadrático medio esférico

El error cuadrático medio es una función muy utilizada en problemas similares,

solo que está basada en imágenes convencionales en las que la discretización se

realiza de forma homogénea en el espacio de la imagen. No obstante, en las imágenes

equirrectangulares, esa homogeneidad no se cumple, ya que hay zonas distorsionadas

(p.e., los polos) que ocupan más ṕıxeles que las zonas céntricas.
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Para tener en cuenta esto, se utiliza una modificación del error cuadrático medio

que introduce el uso de una matriz de pesos en la que cada componente indexada por el

ángulo sólido (Ω(θ, φ)) de la esfera (ver Figura 4.2) tiene asignado un peso proporcional

al ángulo sólido en el que se encuentra, penalizando aśı más los errores en el ecuador, y

menos los errores en puntos cercanos a los polos. La función de pérdida (loss) utilizada

seŕıa la siguiente:

L =
1

n

n∑
K=1

Θ,Φ∑
θ=0,φ=0

wθ,φ(S
(k)
θ,φ − Ŝ

(k)
θ,φ)2 (4.1)

donde w representa la matriz de pesos (ver Figura 4.4), θ y φ representan la latitud y

la longitud de cada ṕıxel en sus coordenadas esféricas. S (Mapa de profundidad real)

y Ŝ (estimación del mapa de profundidad). K representa la imagen k-ésima del total

de n imágenes.

(a) Matriz de pesos (b) Peso según la altura

Figura 4.4: La imagen (a) representa la matriz de pesos asociada a el error cuadrático
medio esférico. Los colores blancos indican un peso mas elevado mientras que los negros
son pesos más bajos. En este caso se ha inicializado de la siguiente manera: wθ,φ =
Ω(θ, φ)/4π (4π es el ángulo sólido unidad). La matriz tiene tamaño 256x516 como las
imágenes de la colección de datos. La (b) muestra la variación de pesos en función de
la coordenada angular vertical.

4.4. Modelos implementados

A lo largo del trabajo, se han implementado modelos que combinaban los dos tipos

de convoluciones y de funciones de pérdida. De esta serie de modelos, se va a evaluar

cuál de todos obtiene resultados más precisos. Para ello se han especificado una serie

de métricas cuantitativas.
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4.4.1. Métricas

Las métricas utilizadas para evaluar los modelos son ampliamente conocidas y

utilizadas en diferentes sistemas similares para evaluar resultados. Han sido utilizados

en otros proyectos [Godard et al., 2017], [Zhan et al., 2018]. También se ha introducido

el uso del error cuadrático medio esférico (Sección 4.3.1).

− Error absoluto relativo (Abs rel): Media de la división de la diferencia de los

datos correctos y los estimados entre los datos correctos.

1

N

N∑
i

| yi − ŷi |
yi

− Error cuadrático relativo (Sq rel): Media de la división de la diferencia al

cuadrado de los datos correctos y los estimados entre los datos correctos.

1

N

N∑
i

(yi − ŷi)2

yi

− Ráız del error cuadrático medio (RMSE): Ráız de la media de la diferencia

al cuadrado de los datos correctos y los estimados.√√√√ 1

N

N∑
i

(yi − ŷi)2

− Error cuadrático medio esférico (SMSE): Media de la diferencia al cuadrado

de los datos correctos y los estimados multiplicados por un peso correspondiente

a su ángulo sólido en coordenadas de la imagen (ver Sección 4.3.1).

− Ráız del error cuadrático medio logaŕıtmico (RMSE log): Ráız de la media

de la diferencia al cuadrado del logaritmo de los datos correctos y el logaritmo

de los estimados. √√√√ 1

N

N∑
i

(log yi − log ŷi)2

− Tasa de acierto (a1-3): Media de la tasa de acierto por dato. Un dato (ṕıxel)

se considera acertado si tras obtener el máximo entre la división del dato real y

el predicho y su inversa, éste es inferior al umbral de 1,25 (a1), 1,252 (a2) o 1,253

(a3)
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4.4.2. Aproximación inicial

Como primera aproximación, se han implementado y entrenado cuatro modelos,

combinando los diferentes parámetros que se han comentado previamente. Los

resultados pueden observarse en la Tabla 4.3.

Convoluciones Pérdida Épocas Abs rel Sq rel RMSE SMSE RMSE log a1 a2 a3

Normal 3.746 1.872 0.062 0.086 0.687 0.894 0.947 0.958
Normal

Esférica 3.706 1.851 0.062 0.085 0.684 0.888 0.946 0.958

Normal 5.427 2.192 0.077 0.125 0.736 0.842 0.931 0.953
Esférica

Esférica

40

5.107 2.118 0.075 0.119 0.716 0.846 0.933 0.954

Esférica Esférica 100 4.796 2.158 0.073 0.113 0.705 0.859 0.937 0.955

Tabla 4.3: Tabla de resultados tras evaluar los diferentes modelos combinando
convoluciones y funciones de pérdida esféricas con normales. El mejor resultado es la
combinación de convolución tradicional con función de pérdida esférica. Las métricas
son la expuestas en la Sección 4.4.1. Las métricas en azul claro significan que más bajo
mejor, en morado cuanto más altas, mejor. Los mejores resultados quedan indicados
en negrita, mientras que los peores quedan indicados con un subrayado.

Como se puede observar en la Tabla 4.3, el modelo con convoluciones normales y

función de pérdida esférica (SMSE) era el que mejores resultados ofrećıa, muy cerca

del modelo convencional (convoluciones y loss ambos normales).

(a) Imagen original (b) C normal L normal (c) C normal L esférico

(d) Profundidad real (e) C esféricas L normal (f) C esféricas L esférico

Figura 4.5: Resultados cualitativos del primer modelo. Los ćırculos verdes indican
zonas con artefactos y errores notorios respecto a la imagen original. C = convoluciones,
L = pérdida.

Explorando los resultados cualitativamente (ver Figura 4.5 y 4.6), se observó que

una parte del error podŕıa deberse a la interpretación de los datos. En la práctica, las

imágenes de la colección de datos empleada para entrenar la red poseen varias zonas

de profundidad no definida codificada como 0. Estas zonas suelen estar en lugares de
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(a) Imagen original (b) Mapa de profundidad (c) Estimación

Figura 4.6: Resultado del modelo completamente esférico. De izquierda a derecha:
original, mapa de profundidad real y mapa de profundidad estimado.

la imagen donde la distancia de profundidad debeŕıa ser muy alta (por lo que no está

definida), pero al codificarse como 0 se dificulta el aprendizaje de la red. Por tanto, en

una segunda iteración, se modificará la función de pérdida.

También se probó un modelo con más épocas (ver última fila de la Tabla 4.3) de las

normales para comprobar si eran necesarias más épocas para que el sistema convergiera,

pero no se notó diferencia y las gráficas mostraban una convergencia alrededor de la

época 35. Por tanto, se estableció 40 como el número de épocas a emplear en las

siguientes iteraciones.

4.4.3. Mejora de la función de pérdida

Como se ha introducido en la sección anterior, la tasa de error era muy alta en

imágenes con demasiada información no definida (el mapa de profundidad no estaba

definido en varios puntos) y esto pod́ıa dificultar el aprendizaje de la red.

Para solventar este problema se modificó la función de pérdida y las métricas

para no tener en cuenta el error causado por la predicción en zonas de la imagen

donde no estaba definida la profundidad. Esto mejoró los resultados prediciendo valores

acordes con el mapa de profundidad original, y dejando en las zonas sin definir valores

relativamente acertados (sin contradicciones). Los resultados cuantitativos obtenidos

con estos modelos se pueden ver en la Tabla 4.4.

Convoluciones Pérdida Épocas Abs rel Sq rel RMSE SRMSE RMSE log a1 a2 a3

Normal 0.092 0.007 0.042 0.034 0.132 0.903 0.978 0.993
Normal

Esférica 0.066 0.004 0.032 0.020 0.101 0.944 0.989 0.997

Normal 0.124 0.011 0.054 0.056 0.168 0.855 0.961 0.987
Esférica

Esférica

40

0.088 0.006 0.041 0.033 0.129 0.910 0.980 0.994

Tabla 4.4: Tabla de resultados del segundo modelo cambiando la función de pérdida
explicado en la sección 4.4.3. Utiliza las métricas de Tabla 4.3 modificadas al igual que
la función de pérdida, no penalizando las zonas de profundidad no definidas.

En este modelo se puede apreciar como las tasas de errores han bajado
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considerablemente en todas sus versiones. Sin embargo, la tendencia es la misma, ya

que el mejor modelo sigue siendo el de convoluciones tradicionales y función de pérdida

esférica.

Los modelos con convoluciones esféricas siguen si mostrar unos resultados tan

precisos como los modelos con convoluciones tradicionales. Una posible explicación

de este fenómeno seŕıa que, en el caso de las convoluciones normales la red ha

podido aprender la estructura inherente a los panoramas, y la misma red podŕıa

estar corrigiendo esas distorsiones. Todo esto se podŕıa comprobar observando las

activaciones de la red, dejando este paso como trabajo futuro.

Observando cualitativamente los resultados de este segundo modelo (Figura 4.7) se

puede apreciar cierta mejora en todos los modelos en general, destacando que algunos

de los artefactos que aparećıan en el modelo anterior (ver Figura 4.5) parecen haberse

atenuado.

4.5. Comparativa

Se han comparado los resultados de diferentes sistemas del estado del arte con el

diseñado en este trabajo para evaluar el rendimiento del mismo. Se ha utilizado el

mismo conjunto de datos de test que en las evaluaciones anteriores al igual que las

ultimas métricas utilizadas.

Se puede observar la mejora respecto a otros sistemas del estado del arte cuantitativa

(a) Imagen original (b) C normal L normal (c) C normal L esférico

(d) Mapa de profundidad real (e) C esféricas L normal (f) C esféricas L esférico

Figura 4.7: Resultados cualitativos del segundo modelo. Se ha utilizado la misma
imagen que en los resultados del modelo 1 (ver Figura 4.5). Los ćırculos verdes indican
zonas con artefactos y errores notorios respecto a la imagen original. C = convoluciones,
L = pérdida.

24



y cualitativamente en la Tabla 4.5 y Figura 4.8. Los sistemas implementados estiman

un mapa de profundidad bastante acertado mientras que los sistemas del estado de arte

actual generan unos resultados menos precisos. Esta falta de precisión en los sistemas

del estado del arte puede deberse, por un lado, a que no están diseñados para funcionar

sobre panoramas equirrectangulares. Además, son modelos entrenados con escenas con

rangos de profundidad ligeramente distintos. Dado esto, un estudio más intensivo seŕıa

interesante.

Comparando solo los modelos implementados en este proyecto, se puede observar,

como se ha indicado antes, que el modelo con mejor resultado es el de convoluciones

normales y función de pérdida esférica ya que se puede apreciar que es bastante similar

al mapa de profundidad original y no se aprecian los artefactos vistos en las Figuras

4.5 y 4.7.

Una de las mejoras que ofrece el sistema desarrollado frente al resto es que no

sobrestima la profundidad, es decir, no se estima que todo esté más lejos de lo que en

realidad está, como ocurre con los otros sistemas, además de que no aparecen artefactos

tan notorios como los que podemos encontrar, por ejemplo, en el sistema de Godard

et al. [2019], adaptándose mejor a las caracteŕısticas de las imágenes equirrectangulares.

Puede parecer que el sistema implementado sistema falla al predecir zonas muy

alejadas debido a que en el mapa de profundidad original aparecen zonas negras

mientras que el modelo implementado estima lejańıa, esto indica que la profundidad no

está definida en esa zona por lo que, en términos prácticos, no se consideraŕıa un error,

además de que en su mayoŕıa estas zonas se encuentran en ṕıxeles correspondientes

a zonas muy alejadas. Como se explica en la Sección 4.4.3 esto ayudó al sistema a

disminuir su error.

Observando el sistema desarrollado por Laina et al. [2016], cualitativamente ofrece

Modelo Abs rel Sq rel RMSE SRMSE RMSE log a1 a2 a3

Normal Normal 0.092 0.007 0.042 0.034 0.132 0.903 0.978 0.993

Normal Esférico 0.066 0.004 0.032 0.020 0.101 0.944 0.989 0.997

Esférico Normal 0.124 0.011 0.054 0.056 0.168 0.855 0.961 0.987

Esférico Esférico 0.088 0.006 0.041 0.033 0.129 0.910 0.980 0.994

[Godard et al., 2019] mono 0.858 0.258 0.234 0.706 1.472 0.217 0.390 0.557

[Godard et al., 2019] mono stereo 0.971 0.324 0.260 0.875 1.475 0.197 0.357 0.522

[Laina et al., 2016] 1.309 0.536 0.339 1.582 0.837 0.131 0.254 0.426

Tabla 4.5: Tabla de resultados comparando los sistemas implementados frente a otros
del estado del arte. Los modelos implementados están nombrados indicando primero el
tipo de convolución y la función de pérdida en ese orden.
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Figura 4.8: Matriz de resultados comparando todos los últimos modelos con varios
sistemas del estado del arte. De izquierda a derecha: imagen original (RGB), mapa de
profundidad real (MP), modelo normal (NN), convoluciones normales y pérdida esférica
(NE), convolución esférica y pérdida normal (EN), esférico (EE), [Godard et al., 2019]
monocular (GM) y monocular con estéreo (GM+S) y [Laina et al., 2016] (L). Para más
resolución ver Figura A.1 y A.2.
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unos resultados aceptables a pesar de estimar la escena más alejada de lo que está,

pero falla en los polos al igual que pasa en los modelos implementados excepto en el

de convoluciones normales y función de pérdida esférica. Esto se aprecia en la columna

cuatro de la Figura 4.8.

4.5.1. Comparativa con cámara 360o

Se han comparado el modelo con convoluciones normales y función de pérdida

esférica frente a los resultados del algoritmo propio de una cámara 360o. Este algoritmo

consiste en buscar pares de caracteŕısticas iguales entre sus diferentes cámaras (estéreo)

y en base a la distancia entre las cámaras obtener la profundidad mediante paralaje.

(a) Imagen original (b) Profundidad cámara (c) Estimación NE

Figura 4.9: Comparación del mapa de profundidad generado por el algoritmo de una
cámara 360o y la estimación resultante del modelo implementado con convoluciones
normales y función de pérdida esférica. La estimación (c) se han normalizado para que
la comparación visual sea más clara.

Como se puede observar en la Figura 4.9 la estimación del modelo implementado

estima en general más cercańıa que el mapa de profundidad de la cámara, pero los

cambios de profundidad no son tan drásticos como en el generado por la cámara. En

la primera imagen podemos ver como las esquinas y la mesa en la parte izquierda de

la imagen ofrecen un mejor resultado en la estimación del sistema desarrollado que en

la generada por la cámara ya que en este caso a penas se percibe diferencia.

En las ventanas o zonas muy iluminadas (parte izquierda de la primera imagen o

ventana derecha e izquierda de la segunda, Figura 4.9) no se consigue tanta precisión

con nuestro modelo, estimando estas zonas más cercanas de lo que en realidad están,

posiblemente por cómo ha aprendido la red a identificar estas zonas. Algo similar ocurre

con la profundidad que calcula la cámara, que falla en ventanas, luces y otras superficies

especulares. Esto probablemente se deba al método que utilizan, la profundidad a partir
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de estéreo, buscando las mismas caracteŕısticas entre las imágenes capturadas por cada

cámara, las caracteŕısticas que se obtiene de estas superficies especulares vaŕıan en

función del punto de vista por lo que dan lugar a inconsistencias en la información de

profundidad.

En general, en ciertas zonas se ofrece un resultado más preciso, pero en otras pueden

aparecer inconsistencias debido a la iluminación de la escena.
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Caṕıtulo 5

Trabajo futuro

Este proyecto deja abiertas algunas potenciales mejoras y pruebas que se pueden

realizar para expandir el trabajo realizado.

La arquitectura de la red actualmente es la más básica que puede ofrecer una

arquitectura ResNet, pero como se ha visto en la Sección 3.3, esta arquitectura

ofrece varias opciones en cuanto a número de capas que pueden ayudar a mejorar

el rendimiento considerablemente. Otra opción seŕıa cambiar el tamaño del filtro a

uno mayor en las primeras, o incluso concatenar más convoluciones para comprobar si

mejora la precisión.

Otro posible trabajo futuro consiste en estudiar cómo se activan las neuronas,

qué caracteŕısticas las disparan, analizando aśı, los resultados de las convoluciones

esféricas. También puede ser interesante el estudio del uso de funciones de pérdida más

sofisticadas, para mejorar el aprendizaje de la red, por ejemplo ajustando la matriz de

pesos de la función de pérdida esférica según cada panorama. Estas funciones se pueden

mejorar añadiendo diferentes factores como el suavizado para mejorar el resultado final,

además de hacer una prueba de ablación para comprobar que estas mejoras son eficaces.

Actualmente, para entrenar y ajustar los modelos generados se ha utilizado una

colección de imágenes equirrectangulares de interiores, por lo que los resultados

para proyecciones equirrectangulares exteriores son algo menos precisas. Por tanto, el

entrenamiento con exteriores queda pendiente como ĺınea futura. Si no encontrasen

conjuntos, o para reforzarlos, se podŕıa añadir escenas sintéticas desarrolladas en

motores como Unity. Esta inclusión de datos de entornos de exteriores se podŕıa abordar

tanto en un modelo único como en un segundo modelo. Un estudio comparativo entre

estas posibilidades seŕıa otra ĺınea interesante.

La información de profundidad es muy útil en numerosas aplicaciones (ver Sección

2), por lo que probar los resultados de este sistema en alguna de ellas podŕıa demostrar

la mejora que ofrece tener una información de profundidad más precisa.
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Caṕıtulo 6

Conclusiones

Los cuatro modelos finales superan a dos sistemas del estado el arte, por lo que se

puede concluir que el uso de una colección de datos equirrectangulares y el uso de una

función de pérdida esférica, ayuda a aumentar el rendimiento de estos sistemas a la

hora de estimar la profundidad de imágenes equirrectangulares.

Se han investigado y explorado diferentes art́ıculos del estado del arte que trataran

problemas similares y relacionados con la estimación de profundidad y el uso de

imágenes equirrectangulares, llegando a la conclusión de que una arquitectura de

red basada ResNet, un codificador y decodificador, similar a la utilizada en Godard

et al. [2019] seŕıa una buena base debido al amplio uso de este tipo de arquitectura.

Además, se hizo uso de diferentes técnicas especiales para tratar con imágenes

equirrectangulares.

Se han probado diferentes modelos combinando las convoluciones y funciones de

pérdida tradicionales con sus versiones esféricas obteniendo el mejor resultado con la

combinación de convoluciones normales y función de pérdida esférica. Posteriormente,

introduciendo una mejora en la función de pérdida que no aumentaba el error en

zonas no definidas del mapa de profundidad original, se han mejorado los resultados

frente a los modelos anteriores. El uso de las convoluciones esféricas no obtuvo mejores

resultados en diferencia a otros trabajos, dando lugar a una posible opción de trabajo

futuro investigando la causa de este resultado. Además, también está la posibilidad de

probar otras mejoras a las funciones de pérdida o incluso otras arquitecturas de la red

o aumentar el número de capas de la actual arquitectura ResNet.

En conclusión, la elaboración de este proyecto ha supuesto un trabajo de

investigación del estado del arte y desarrollo considerable y se han obtenido unos

resultados razonables, además de haber adquirido nuevos conocimientos.
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6.1. Conocimientos adquiridos

Durante el desarrollo de este proyecto se han adquirido varios conocimientos

relacionados con el ámbito del aprendizaje profundo y se ha profundizado más en

las redes convolucionales y las diferentes arquitecturas que existen. También se han

adquirido conocimientos sobre art́ıculos relacionados en el estado del arte sobre la

estimación de profundidad. Además, se han desarrollado capacidades de análisis y

evaluación de sistemas de aprendizaje profundo más extensas.

Se han aplicado conocimientos adquiridos durante la carrera de ingeniaŕıa

informática como las redes neuronales (Inteligencia artificial), tratamiento de imágenes

por ordenador (Visión por computador), incluyendo también otras más básicas como

programación y matemáticas. También se han adquirido competencias sobre cómo

enfrentarse a un proyecto de investigación analizando el problema y buscando soluciones

relacionadas con problemas similares en el estado del arte.
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1.1 Tipos de cámaras omnidireccionales . . . . . . . . . . . . . . . . . . . . 2

1.2 Ejemplo mapa de profundidad . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Planificación temporal . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Ejemplo de convolución . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Arquitectura de la red . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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