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Estimacion de profundidad en imagenes 360°

RESUMEN

La Realidad Virtual (RV) es un paradigma de interaccién persona-ordenador
que ha ganado relevancia en los ultimos anos. El contenido empleado en RV puede
tener diversos formatos. Entre ellos se encuentran los panoramas equirrectangulares,
o panoramas 360°. Este tipo de contenido suele ser capturado mediante una cdmara
omnidireccional situada en un punto de vista estatico. Debido a esto, la informacién
de profundidad de la escena suele estar limitada o, incluso, no estar disponible. Sin
embargo, esta informacion puede ser util para distintas aplicaciones como la conduccion
auténoma, robética (odometria), edicion digital, etc. Los panoramas 360°, ademés, son
un tipo de proyeccion facilmente reproyectable en una esfera, lo cual motiva més su
uso. El objetivo de este proyecto es crear y evaluar un sistema basado en aprendizaje

profundo capaz de estimar la profundidad de una imagen 360°.

Primero, se ha realizado un estudio del estado del arte sobre la estimacién de
profundidad con redes neuronales profundas para conocer cémo se esta abordando
este problema. Dadas las limitaciones que se encontraron en estos sistemas, en su
mayoria entrenados con imagenes tradicionales, se ha propuesto el estudio, diseno,
modelado y evaluacién de un sistema capaz de hacer frente al problema de estimacién

de profundidad en 360°.

Para alcanzar el objetivo de este trabajo, se han planteado una serie de modelos
basados en aprendizaje profundo, y en concreto en redes neuronales convolucionales,
utilizando convoluciones tradicionales y esféricas, y funciones de pérdida tipicas, como
el error cuadratico medio, también en ambas versiones (convencional y esférica).
Las versiones esféricas tienen la propiedad de tratar los datos de manera diferente,

enfocandose en los rasgos de las imagenes equirrectangulares.

Seguidamente, se han evaluado los diferentes sistemas propuestos. También se han
comparado esos sistemas con otros del estado del arte para evaluar su mejoria. Ademas,
se ha comparado el mejor modelo implementado con una estimacion real de una camara

360°.

En conclusion, tras observar los resultados obtenidos de diferentes modelos del
estado del arte y propios del proyecto, se ha obtenido una mejora con respecto a los

mismos, y se han identificado vias de mejora a futuro.
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Capitulo 1

Introduccién y objetivos

En los ultimos anos, la Realidad Virtual ha ganado relevancia en campos como la
investigacion, la simulacion, videojuegos o entretenimiento. Este impulso se ha dado
gracias a precios mas asequibles, una tecnologia més desarrollada o el aumento de
contenido, lo cual ha permitido que la RV esté cada vez mas presente en muchos

hogares.

En RV existen dos tipos de contenido: el contenido sintético y el contenido
capturado. El primero es generado por ordenador, con informacion perfecta de la escena.
El segundo, por el contrario, es tomado por una - o multiples - camara, situada en
un punto estatico. Uno de los formatos mas comunes para capturar una escena para
RV es el panorama equirrectangular, que es un tipo de proyecciéon que abarca una
escena completa en 360°, aunque presenta distorsiones y deformaciones, sobre todo en
la parte superior e inferior de la imagen. Este tipo de proyeccion es especialmente 1itil en
realidad virtual, ya que su reproyeccion a una geometria esférica es trivial, facilitando

su visualizacién y permitiendo un alto grado de realismo.

Para la obtencion de panoramas existen una serie de dispositivos especializados
en capturar este tipo de imagenes. Normalmente estos dispositivos disponen de
una plataforma (o “esfera”) de 2 o mas cdmaras cubriendo los 360° de la
plataforma uniformemente, obteniendo informacién de profundidad buscando las
mismas caracteristicas en las diferentes imdgenes de cada cdmara (profundidad a
partir de estéreo). Este método estd limitado por la distancia méxima entre cada
camara, resultando en un paralaje entre imagenes insuficiente para obtener una
buena informacién de profundidad. Otras opciones de captura serian las camaras
omnidireccionales basadas en espejos que no permiten obtener informacién de

profundidad debido a que suelen ser un tipo de accesorio para camaras convencionales.

La informacién de profundidad es especialmente 1itil, e incluso necesaria, en muchas



ee )

(a) Plataforma (b) Esfera (c) Espejos

Figura 1.1: Diferentes tipos de cdmaras omnidireccionales. La (a) consiste en una
plataforma con 2 o mas cdmaras repartidas uniformemente en 360°, mientras que en el
dispositivo (b) las cAmaras son repartidas uniformemente alrededor de una esfera. La
(c) es una cdmara convencional con una ”lente”de espejo omnidireccional.

aplicaciones como la conduccién auténoma, robdtica (odometria), edicién digital, etc.
Algunos de estos sistemas son capaces de obtener esta informacién mediante sensores
estéreo u otras tecnologias (laser, sonar, etc.), pero otros muchos carecen de estas
herramientas, por lo que necesitan estimarla. No obstante, la mayoria de estos sistemas
estan disenados para estimar la profundidad en base a imagenes 2D convencionales,
por lo que fallan a la hora de estimar la profundidad en imagenes equirrectangulares,

especialmente debido a sus distorsiones.

Por tanto, el objetivo final de este trabajo es construir un sistema que consiga
estimar la profundidad de imagenes con proyeccion equirrectangular con mayor
precision que los sistemas actuales en el estado del arte. Para ello, se probaran diferentes
modelos, herramientas y técnicas de aprendizaje profundo que permitan dicha mejora.
Se compararan los resultados obtenidos de los diferentes modelos. Ademas, se evaluard
la mejora de los modelos propuestos frente a los del estado del arte actual, asi como

frente al algoritmo propio de una camara 360°.

(a) Imagen original (b) Mapa de profundidad

Figura 1.2: Ejemplo de un panorama equirrectangular RGB (a) y su mapa de
profundidad (b). Los colores més oscuros (morados) indican cercania mientras que
los més claros (amarillo/naranja) indican lejania.



1.1. Objetivos y alcance del proyecto

El objetivo general de este trabajo de fin de grado es mejorar la estimacion de mapas
de profundidad en imégenes equirrectangulares para su uso posterior en diferentes

aplicaciones.

Para ello, las tareas realizadas en este trabajo de fin de grado se resumen en:

— Estudio y exploracién de la literatura ya existente en cuanto a sistemas de
estimacion de profundidad y otros sistemas de RV que explotan este tipo de

informacién (Seccién 2).

— Introduccién al aprendizaje profundo y las redes convolucionales explicando en
qué consisten las redes neuronales, las convoluciones y sus parametros, y las

diferentes arquitecturas de redes existentes en el estado del arte (Seccién 3).

— Implementacién de un sistema real de estimacion de profundidad basado en
el estado del arte utilizando técnicas del aprendizaje profundo. Evaluacion
y comparaciéon de los modelos implementados y su posterior propuesta e
implementaciéon de mejoras (funcién de pérdida). Evaluacién y comparacién de

los modelos finales frente a sistemas del estado del arte (Seccion 4).

— Propuesta de mejoras y posibles estudios futuros para mejorar el rendimiento del
sistema implementado. Algunos ejemplos son la mejora de la funcién de pérdida
y el estudio de activacion de capas de la red para el analisis de las convoluciones

esféricas (Seccion 5).

— Conclusiones y resumen de los resultados obtenidos del sistema implementado.
Se ha logrado alcanzar unos resultados considerables, ademas de destacar los

conocimientos adquiridos durante el proceso (Seccién 6).

1.2. Planificacion y herramientas

Este trabajo de fin de grado se ha dividido en una serie de tareas relacionadas con
la estructura inherente al proyecto. A cada una de esas tareas se le ha dedicado un

total de horas que se puede consultar en la Figura 1.1.

La implementaciéon de la red encargada de entrenar los modelos se ha llevado a
cabo usando el conjunto de herramientas de aprendizaje automatico Pytorch [Paszke

et al., 2017] mediante el lenguaje de programacién Python. También se ha utilizado
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la libreria TensorFlow [Abadi et al., 2015] para la reproduccién de otros sistemas del

estado del arte, [Laina et al., 2016]. Ademés, se han utilizado librerfas como OpenCV
[Bradski, 2000] y MathPlotLib [Hunter, 2007] para el tratamiento y visionado de las

iméagenes. Los procesos de entrenamiento y evaluacion los modelos se han llevado a

cabo en su mayoria en una maquina con un procesador Intel i7 de octava generacién,
16 GB de RAM y una tarjeta grafica Nvidia RTX 2060, haciendo uso de la tecnologia

CUDA, acelerando este proceso de entrenamiento.

El desarrollo del codigo utilizado para la implementacién del sistema se ha llevado a

cabo utilizando la herramienta de control de versiones Github en el repositorio ptblico:

https://github.com/JaviBite/Depth-estimation-on-360-images

Lectura de articulos
Tutoriales Pytorch

1° Iteracion

Cursos de aprendizaje profundo
Busqueda estado del arte
Biisqueda coleccién de datos
Desarrollo

Pruebas de concepto

2° Iteracion
Implementacién inicial
Convoluciones Esféricas
MSE esférico

Desarollo de la red

3° Iteracion

Entrenar redes

Evaluar modelos
Documentacion

Memoria

Presentacién

Plan temporal
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Figura 1.3: Planificacién temporal de las diferentes tareas del proyecto desglosadas

en un diagrama de Gantt.


https://github.com/JaviBite/Depth-estimation-on-360-images

Tarea Horas
Preparacién 70
- Lectura de articulos 25
- Tutoriales PyTorch 10
- Cursos de aprendizaje profundo 15
- Busqueda estado del arte 10
- Busqueda de coleccién de datos 10
Desarrollo 107
- Prueba de concepto 12
- Implementacién Inicial 15
- Convoluciones y perdida esférica 10
- Reuniones 10
- Desarrollo de la red 35
- Evaluaciones y comparaciones 25
Documentacion 65
- Memoria 40
- Contenido grafico 10
- Presentacion 15
TOTAL 242

Tabla 1.1: Numero de horas dedicadas al proyecto desglosadas en las diferentes tareas
relacionadas.






Capitulo 2

Trabajo relacionado

Como primer paso en el proyecto, se ha llevado a cabo un proceso de estudio del

estado del arte actual en diferentes ambitos de relevancia para el mismo.

2.1. Estimacion de profundidad mediante
aprendizaje profundo

La estimacion de profundidad consiste en generar un mapa de profundidad de una
imagen a partir de esta, donde cada pixel contiene un valor numérico que representa
la distancia a la que se encuentra ese punto respecto a la camara. Hoy en dia, hay
numerosos dispositivos que realizan esta tarea de diferentes maneras (laser, cdmaras
dobles, etc.), mientras que otros no pueden obtener esta informacién, o, de hacerlo, es
poco precisa. Por eso, la estimacion de profundidad mediante aprendizaje profundo
es una buena alternativa, que ha sido ampliamente estudiada, ofreciendo buenos
resultados [Godard et al., 2017].

Entre las técnicas de aprendizaje automatico, se encuentran las redes
convolucionales (CNN), que han demostrado su efectividad para muchas tareas de
visién por computador que requieren trabajar con grandes volimenes de im&agenes,
como puede ser la deteccion de objetos, reconocimiento facial, segmentacion seméntica,

o estimacién de profundidad. Este tultimo serd el caso de estudio de este trabajo.

Una de las técnicas mas comunes que se ha utilizado para llevar a cabo este
problema consiste en alimentar una red residual (ResNet) con una arquitectura
codificador-decodificador utilizando imagenes con informaciéon de profundidad
(RGBD), entrendndola para que a partir de los canales de color (RGB) sea capaz
de predecir la profundidad (D).

Otra de las técnicas mas recientes, y que ha obtenido resultados con gran precision,
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es la conocida como Monodepth2 [Godard et al., 2017]. Esta técnica se basa en
calcular las disparidades de dos iméagenes tomadas desde dos puntos diferentes, pero
relativamente cercanos (estéreo), permitiendo que la red aprenda a predecir un punto

de vista desde el otro, y segiin la disparidad entre ambos, estima su profundidad.

Sin embargo, en la mayoria de los trabajos dedicados a este problema han empleado
imégenes tradicionales para entrenar y probar dichos modelos. Debido a esto, cuando
se usa cualquiera de estos modelos sobre imédgenes panoramicas equirrectangulares la

estimacion de profundidad no es muy precisa, e incluso puede contener incoherencias.

2.2. Adquisicién y visualizacion de contenido 360°
para realidad virtual

La realidad virtual es una tecnologia en auge que ha evolucionado mucho en los
ultimos anos y que ha abierto un amplio campo de investigacién. Algunos trabajos
como “Instant 3D photography”, [Hedman et al., 2017], o “Casual 3D photography”,
[Hedman and Kopf, 2018|, permiten generar escenas tridimensionales a través de una
serie de imagenes RGBD bidimensionales. Otros trabajos, como “Motion parallaz for
360° RGBD wvideo”, [Serrano et al., 2019], permiten anadir paralaje a un video 360°
capturado desde un punto de vista tinico: esto es, permite al usuario moverse libremente
en la escena, infiriendo informacién sobre la escena que no fue capturada originalmente,
pero ofreciendo una mejor experiencia al consumir el contenido. Aunque son trabajos en

diferentes lineas, todos ellos tienen una necesidad comun: informacion de profundidad.

Existen variedad de dispositivos que permiten adquirir imagenes panoramicas en
360° (equirrectangulares) facilmente, incluso los méviles actuales pueden capturar este
tipo de contenido. Sin embargo, su precision no es muy elevada y, en general, no son
capaces de capturar informaciéon de profundidad, o esta tampoco es especialmente

precisa, dificultando el desarrollo de trabajos como los citados previamente.

Este trabajo persigue obtener mapas de profundidad de imagenes equirrectangulares
sin necesidad de ningin dispositivo adicional, estimando dichos mapas gracias a

técnicas de aprendizaje profundo.



2.3. Aprendizaje profundo en panoramas

En la actualidad en el estado del arte existen trabajos que tratan con imagenes
panoramicas o de 360° para resolver problemas utilizando el aprendizaje profundo,
algunos de estos ejemplos son los mapas de saliencia y detecciéon o clasificacion de
iméagenes. Los mapas de saliencia indican las zonas de una imagen que tienden a ser
mas atractivas al ojo humano, es decir, hacia dénde se suele mirar en dicha imagen. Un
ejemplo de esto orientado a imdgenes panoramica serfa el trabajo de Zhang et al. [2018],
que aplica técnicas novedosas como convoluciones y funciones de pérdida esféricas. La
deteccion y clasificacién de imégenes consiste en detectar “objetos” en im&agenes o
clasificarlas por clases, un ejemplo de esto aplicado en imagenes equirrectangulares
serfa SphereNet [Coors et al., 2018].

Las técnicas que se usan en estos trabajos son, sobre todo, el uso de unas
convoluciones especiales esféricas y una funcién de pérdida (esférica) adaptada también
a las iméagenes equirrectangulares. Las convoluciones esféricas tratan de adaptar sus
filtros para hacer frente a las distorsiones de las imagenes equirrectangulares. La
funcién de pérdida esférica amplifica el error generado en funcion de las zonas menos
distorsionadas de las imagenes equirrectangulares, por lo que serd mayor en el ecuador

de la imagen.

En este proyecto se incluiran y probaran las técnicas utilizadas en estos dos trabajos,

evaluando asi su aplicabilidad en el problema de estimaciéon de profundidad.
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Capitulo 3

Marco teodrico

Este proyecto se basa en el uso del aprendizaje profundo, y méas concretamente,
en el uso de redes neuronales convolucionales. Para su desarrollo, ha sido necesario
construir una base de conocimiento que abarca algunos conceptos que quedan fuera del

marco tedrico del grado de Ingenieria Informatica, y que se introducen a continuacion.

3.1. Redes neuronales

Las redes neuronales son una técnica de aprendizaje automatico cuyo objetivo
principal es encontrar un modelo capaz de resolver un problema concreto, de forma
que, dada una entrada, sea capaz de generar una salida lo mas precisa posible. Las
redes neuronales intentan imitar el funcionamiento de las conexiones neuronales de
organismos vivos, mediante un conjunto de neuronas conectadas entre si que se activan

o desactivan segun la entrada (impulso) que reciben.

Estas neuronas se reparten a lo largo de la red agrupadas en capas, generalmente
de manera secuencial. Cada neurona tiene asignado cierto peso que decide si, dada
una entrada, se activa dicha neurona o no. Para llevar a cabo ese ajuste de pesos, las
redes neuronales son entrenadas con un conjunto de datos del cudl, generalmente, se
sabe la salida que se desea obtener. De esta forma, la red predice una salida para cada
entrada, y se ajusta iterativamente en funciéon de cémo de buena ha sido su prediccién
con respecto a esa salida esperada. Esta funcion es la conocida como funcién de pérdida

(o loss en inglés)

El proceso de entrenamiento suele llevarse a cabo hasta que la funcion de pérdida
converge v la red no sigue aprendiendo. Para ello, el proceso de entrenamiento se divide
en épocas, donde cada época consiste en una iteracién completa sobre todo el conjunto

de datos. La evoluciéon de la funcion de pérdida permite reconocer posibles problemas
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de sobre ajuste (se ha ajustado demasiado a los datos de entrenamiento, y no es capaz

de generalizar a otros datos) o sub ajuste (no se ha ajustado lo suficiente).

3.2. Redes convolucionales y aprendizaje profundo

Como se ha comentado en la Seccién 2, dentro de las diferentes técnicas de
aprendizaje automatico, hay un tipo de redes conocidas como redes convolucionales
(CNN). Este tipo de redes han resultado ser especialmente ttiles en problemas que

trabajan con imagenes o videos.

Las redes convolucionales son un tipo de red neuronal donde se aplican una serie
de convoluciones (en inglés, kernel) sobre la entrada, de forma que, en cada paso, se
extraen distintas caracteristicas intrinsecas de los datos (en inglés, features). En este
caso, la entrada a la red suele ser una imagen (matriz o tensor) a la que se le aplican

una serie de convoluciones (ver Figura 3.1) para extraer las caracteristicas.

La entrada a cada capa de la red se puede definir por un tensor con tamano
(B,C, H,W) siendo B el nimero de muestras con que se alimentard a la red en cada
entrada (en inglés, batch size). La C representa el nimero de canales de la capa. Por
ejemplo, para una imagen RGB tradicional, existen tres canales, uno por cada color
(rojo, verde y azul), mientras que una imagen en escala de grises solo tendria un
canal. En capas ocultas (intermedias), el nimero de canales aumenta, representando
las distintas caracteristicas que se extraen de los datos. Por ultimo, la H y W indican
el tamano de la entrada en dos dimensiones (altura y anchura). Cada operacién de
convolucién tiene una serie de parametros que definen como sera la operacién, qué
entrada admite, y qué salida generara. Entre ellos, se encuentran el tamano del filtro
(en inglés, kernel size), nimero de canales de entrada y salida, el paso (en inglés, stride)

y margen (en inglés, padding).

— Canales: El nimero de canales esperados para la entrada y salida. Cada canal
se centra en aprender un cierto rasgo (feature) de la entrada, por lo que cada uno

tiene unos pesos diferentes.

— Filtro (Kernel): Es una matriz NxN que aplica la operacién de convolucién en

funcién de los pesos que se han ajustado durante el entrenamiento.

— Margen (Padding): Son las filas y columnas adicionales que se anaden para
permitir que la operacion de convolucion se ejecute tantas veces como se requiera

para obtener el tamano de salida adecuado.
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— Paso (Stride): El paso o desplazamiento del filtro entre muestreos de la
convolucién. Nétese que un paso diferente de 1 reduciria la resolucién de la

entrada.

Una convolucién consiste en aplicar a cada dato de un tensor o matriz (pixel si son
imdgenes) una operacién en la que participan también sus N vecinos. Esta operacién
se define por la suma de las multiplicaciones de cada vecino y el dato en si por su peso

correspondiente del filtro (Kernel) correspondiente.

g(x,y) =wx f(x,y) = Z Z (dx, dy) f(x + dz,y + dy) (3.1)
dr=—a dy=—>b

Donde g(z,y) es la salida, f(x,y) la entrada, la w representa los pesos del filtro
(Kernel) donde 0 < dzx < ay 0 <dy <b, siendo a la altura y b la anchura del filtro.

1.2|5.0]35(|1.2]|6.5

6.510.211.0]|0.1]8.0 6.45| 5.5 | 7.9

1.211.2)11.2]1.2(1.2

Ol o |o|Oo|oOo | o

o|lo|lo|lo o|o|o

0/,0]0|0|0]O

Figura 3.1: Ejemplo de una imagen 5x5 a la que se le esta aplicando una convolucion
con un tamano de filtro de 3 (cuadrados verde y rojo) con todos sus pesos a 0.5, margen
(padding) de ceros de tamano 1 (filas y columnas de 0 grises) y un paso (stride) de
2, por lo que el filtro avanza de dos en dos posiciones resultando en una imagen mas
pequena que la original.

En la Figura 3.1 se puede ver como la convolucién se esta aplicando a cada pixel
de la entrada, por ejemplo, el primer pixel de salida (cuadrado verde) es calculado por
la siguiente férmula: w * (1,24 5,04+ 6,5+ 0,2) = 0,5% (1,2+ 5,0+ 6,5+ 0,2) = 6,45

Ademas de las convoluciones también se pueden realizar operaciones como
concatenacion de tensores, juntar varias salidas en una sola, normalizacién de la entrada
(Batch norm), desescalado (down-sampling), importante cuando se aumenta el nimero

de canales, o escalado (up-sampling), en caso contrario.
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3.3. Arquitecturas de CNN: ResNet

Conforme se ha ido investigando en técnicas de aprendizaje profundo se han
explorado diferentes tipos de arquitecturas de redes convolucionales para solventar

diversos problemas [Standford, 2020]. Las mas relevantes son las siguientes:

— AlexNet o ImageNet: Una de las primeras arquitecturas que mostraron que
era capaz de reconocer objetos en imagenes con solo ocho capas, [Krizhevsky
et al., 2012]. Mas tarde fue superada por ZFNet [Zeiler and Fergus, 2013].

— VGGNet: Una red mas profunda que sus predecesoras que ademas utilizaba
convoluciones 3x3 seguidas actuando como una sola de 7x7. Prueban que redes

méas grandes funcionan mejor. [Simonyan and Zisserman, 2014].

— GoogLeNet: Una de las arquitecturas que tratan de buscar eficiencia con
convoluciones 1x1 de cuello de botella (reducen el nimero de canales de
features) y evita el uso de capas conectadas completamente usando una media

de agrupacién global, [Szegedy et al., 2014].

— ResNet: Redes extremadamente profundas, desde 18 capas a 152. Consiguid
una precisiéon similar a la de los seres humanos, y es una arquitectura que ha sido
ampliamente utilizada para multiples problemas. Este tipo de redes da prioridad
a la eficiencia en lugar de a un aumento no muy significativo de la precisién. [He
et al., 2013].

En este proyecto, se ha seguido la arquitectura ResNet para solventar el problema,
ya que, tras estudiar el estado del arte, se ha observado que esta arquitectura ha sido
enormemente explotada, ademés de ser una de las que mas precisién consigue. En la
arquitectura global de los sistemas disenados en este proyecto, la ResNet forma parte de
lo que se denomina codificador, que extrae las caracteristicas (features) de las imdgenes.
El decodificador utiliza esas caracteristicas (features) para, a través de varios escalados
y convoluciones (con menos canales de salida que entrada), conseguir la salida deseada,

que para el caso de este proyecto, sera un mapa de profundidad.
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Capitulo 4

Un modelo de estimacion de
profundidad

Se va a implementar un sistema capaz de estimar la profundidad de una imagen
equirrectangular con técnicas de aprendizaje profundo con el objetivo de conseguir
una mejor estimacién que los sistemas actuales en el estado del arte. Se probaran y
evaluaran diferentes modelos para analizar el rendimiento de cada uno y determinar
cual es el mas preciso. También se evaluard el mejor modelo frente a otros sistemas del

estado del arte.

4.1. Arquitectura de la red

Como se ha comentado previamente, la arquitectura de la red se basa en el esquema
codificador-decodificador, en concreto, en la arquitectura de ResNetl8. La red esta
inspirada en “Monodepth2” [Godard et al., 2017], salvo que en este caso no se genera
un nuevo punto de vista, y se realiza el proceso a partir de una unica imagen. A
lo largo del proyecto, las convoluciones y la funciéon de pérdida se han alternado
entre sus implementaciones tradicionales y otras implementaciones adecuadas a casos

panoramicos [Zhang et al., 2018] [Coors et al., 2018].

El codificador (ver especificaciones en Tabla 4.1) se encarga de extraer las
caracteristicas (features) de la imagen de entrada (RGB normal), mientras que el
decodificador (ver especificaciones en Tabla 4.2) estima un mapa de profundidad,
haciendo uso de conexiones “skip” [Shelhamer et al., 2016] de los bloques de activacién

del codificador, facilitando asi el proceso de obtencién de la salida.
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Figura 4.1: La estructura de la red neuronal se basa en la naturaleza de
codificador-decodificador comun en diversos modelos de este ambito. Las capas de
codificacion reducen la dimensionalidad, agregando mas canales, mientras que las
decodificaciones realizan la tarea inversa, hasta alcanzar la salida esperada. Se puede
apreciar el uso de conexiones “skip” [Shelhamer et al., 2016] para tratar problemas de
diferentes resoluciones.
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Codificador
Tamano de filtro | Paso canales
capa ) . entrada
(kernel) (stride) | (entrada/salida)
econvl 3 2 3/64 img
maxpoll 3 2 64,/64 econvl
convs2 3 1 64,/64 maxpool
econv2 3 1 64,/64 convs2
convs3 3 2 64,/128 econv2
econv3 3 1 128/128 convs3
convs4 3 2 128/256 econv3
econv4 3 1 256/256 convs4
convsb 3 2 256/512 econv4
econvh 3 1 512/512 convsb

Tabla 4.1: Arquitectura del codificador basado en ResNet con 18 capas. Se trata
de una serie secuencial de convoluciones de mayor a menor resolucién y de menor a
mayor numero de canales, todas ellas precedidas por una convolucion inicial. En cada
bloque de convoluciones, la salida es normalizada (BatchNorm). Algunas capas de la
arquitectura se han ocultado y agrupado con otras ya que repiten convoluciones 3x3 sin
cambiar el nimero de canales o resolucién de la entrada (convs2 a convsh). Se encarga
de extraer las caracteristicas de la entrada.

Decodificador de profundidad
Tamano de filtro Paso A
capa (kernel) (stride) canales entrada activacion
upconvd 3 1 256 econvd ELU
iconvh 3 1 256 upconvd, econvd | ELU
upconv4 3 1 128 iconvh ELU
iconv4 3 1 128 upconv4, econv3 | ELU
disp4 3 1 1 iconv4 Sigmoid
upconv3 3 1 64 iconv4 ELU
iconv3 3 1 64 upconv3, econv2 | ELU
disp3 3 1 1 iconv3 Sigmoid
upconv2 3 1 32 iconv3 ELU
iconv2 3 1 32 upconv2, econvl | ELU
disp2 3 1 1 iconv2 Sigmoid
upconvl 3 1 16 iconv2 ELU
iconvl 3 1 16 upconvl ELU
displ 3 1 1 iconvl Sigmoid

Tabla 4.2: Arquitectura del decodificador. Conjunto de convoluciones y escalados de
menor a mayor resolucién y de mayor a menor nimero de canales hasta un solo canal
y a la resolucion de entrada. Se encarga de construir el mapa de profundidad partiendo
de las caracteristicas extraidas por el codificador.
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4.2. Convoluciones

En un principio, la arquitectura de la red contaba con diferentes tamanos
de convoluciones en sus capas, pero para poder comparar los diferentes modelos
propuestos (con convoluciones esféricas y normales) se han tenido que modificar algunos
parametros de estas convoluciones como el tamano de filtro a 3 y en algunos casos, el
margen (para ser consistente con el cambio del tamano del filtro). Este cambio se debe
a que la implementacion elegida de las convoluciones esféricas estd preparada para usar

un tamano de kernel de 3x3.

4.2.1. Convoluciones esféricas (SphereNet)

Los filtros que son aplicados en las convoluciones tradicionales pueden no funcionar
correctamente con imagenes equirrectangulares por sus distorsiones. Esto se debe a que
en una imagen con proyeccion perspectiva normal, cada punto de la imagen corresponde
con su posicion real en el espacio, mientras que en proyeccion equirrectangular esto no
ocurre (ver Figura 4.3). Existen unos tipos especiales de convoluciones esféricas 3x3

[Coors et al., 2018] que si tienen en cuenta este problema.

(a) Angulo Sélido (b) Relacién

Figura 4.2: (a) es una representacién tridimensional de un angulo sélido definido por
0 v ¢ en una esfera. En la Figura (b) r indica el grado de distorsién segin el dangulo
solido en el que se encuentra.

La idea principal de estas convoluciones consiste en trasladar las operaciones locales
que se hacen en una convolucién convencional al dominio de la superficie de una esfera.
Esto se consigue representando el kernel como un pequeno plano tangente (ver figura
4.3) a la superficie de dicha esfera (imagen equirrectangular) representando una porcién

de la imagen sin distorsiones [Coors et al., 2018].
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(d) Ejemplo equirrectangular

(c) Ejemplo en esfera

Figura 4.3: En la imagen (a) se puede ver como se aplicarfa el filtro (kernel) de una
convolucién tradicional a una imagen equirrectangular. La imagen (b) muestra c6mo
se aplicaria la misma convolucién que en (a) pero utilizando un filtro (kernel) esférico.
En la imagen (c¢) podemos ver un ejemplo aplicado en una escena con su equivalente
en proyeccién equirrectangular (d) donde se observa facilmente como actia el filtro
(kernel) esférico para lidiar con las distorsiones. [Coors et al., 2018]

4.3. Funciones de pérdida

Las funciones de pérdida (loss) convencionales suelen ser el error absoluto medio y
el error cuadratico medio (MSE). En este proyecto se usard esta tltima junto con una
funcion de pérdida especial para las imédgenes equirrectangulares, el error cuadratico
medio esférico [Zhang et al., 2018], que utiliza una serie de pesos que tienen en cuenta

las distorsiones de las imagenes segun el angulo solido en el que se encuentra cada pixel.

4.3.1. Error cuadratico medio esférico

El error cuadratico medio es una funciéon muy utilizada en problemas similares,
solo que estd basada en imdagenes convencionales en las que la discretizacion se
realiza de forma homogénea en el espacio de la imagen. No obstante, en las imagenes
equirrectangulares, esa homogeneidad no se cumple, ya que hay zonas distorsionadas

(p-e., los polos) que ocupan mas pixeles que las zonas céntricas.
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Para tener en cuenta esto, se utiliza una modificacién del error cuadratico medio
que introduce el uso de una matriz de pesos en la que cada componente indexada por el
angulo solido (£2(0, ¢)) de la esfera (ver Figura 4.2) tiene asignado un peso proporcional
al angulo solido en el que se encuentra, penalizando asi mas los errores en el ecuador, y
menos los errores en puntos cercanos a los polos. La funcién de pérdida (loss) utilizada

serfa la siguiente:

n 0,0

1 .
L= > woolSyy —550)° (4.1)

K=10=0,4=0

donde w representa la matriz de pesos (ver Figura 4.4), 6 y ¢ representan la latitud y
la longitud de cada pixel en sus coordenadas esféricas. S (Mapa de profundidad real)
y S (estimacién del mapa de profundidad). K representa la imagen k-ésima del total

de n imagenes.

Pesos por altura

— Peso
0.00014 4

0.00012 4
0.00010 1

150 © 0.00008 -
&
0.00006
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0.00004
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Altura de la imagen (H)

(a) Matriz de pesos (b) Peso segtn la altura

Figura 4.4: La imagen (a) representa la matriz de pesos asociada a el error cuadratico
medio esférico. Los colores blancos indican un peso mas elevado mientras que los negros
son pesos mas bajos. En este caso se ha inicializado de la siguiente manera: wg, =
Q(0, ¢)/4m (47 es el dngulo sdlido unidad). La matriz tiene tamano 256x516 como las
imagenes de la coleccion de datos. La (b) muestra la variacion de pesos en funcién de
la coordenada angular vertical.

4.4. Modelos implementados

A lo largo del trabajo, se han implementado modelos que combinaban los dos tipos
de convoluciones y de funciones de pérdida. De esta serie de modelos, se va a evaluar
cual de todos obtiene resultados mas precisos. Para ello se han especificado una serie

de métricas cuantitativas.
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4.4.1. Meétricas

Las métricas utilizadas para evaluar los modelos son ampliamente conocidas y
utilizadas en diferentes sistemas similares para evaluar resultados. Han sido utilizados
en otros proyectos [Godard et al., 2017], [Zhan et al., 2018]. También se ha introducido

el uso del error cuadratico medio esférico (Seccién 4.3.1).

— Error absoluto relativo (Abs rel): Media de la divisién de la diferencia de los

datos correctos y los estimados entre los datos correctos.
N
1 | yi — i |
R

— Error cuadratico relativo (Sq rel): Media de la divisién de la diferencia al

cuadrado de los datos correctos y los estimados entre los datos correctos.
N .
1 3 (vi — )
N p Yi

— Raiz del error cuadratico medio (RMSE): Raiz de la media de la diferencia

al cuadrado de los datos correctos y los estimados.

N

% Z(yz — 0:)?

i

— Error cuadratico medio esférico (SMSE): Media de la diferencia al cuadrado
de los datos correctos y los estimados multiplicados por un peso correspondiente

a su angulo sélido en coordenadas de la imagen (ver Seccién 4.3.1).

— Raiz del error cuadratico medio logaritmico (RMSE log): Raiz de la media
de la diferencia al cuadrado del logaritmo de los datos correctos y el logaritmo

de los estimados.

N
1 .
N Z(log yi — log ;)?

)

— Tasa de acierto (al-3): Media de la tasa de acierto por dato. Un dato (pixel)
se considera acertado si tras obtener el maximo entre la divisién del dato real y
el predicho y su inversa, éste es inferior al umbral de 1,25 (al), 1,25% (a2) o 1,253
(a3)
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4.4.2. Aproximacién inicial

Como primera aproximacion, se han implementado y entrenado cuatro modelos,
combinando los diferentes parametros que se han comentado previamente. Los

resultados pueden observarse en la Tabla 4.3.

Convoluciones | Pérdida Epocas Abs rel | Sq rel | RMSE | SMSE | RMSE log | al a2 a3
Normal 3.746 1.872 | 0.062 0.086 0.687 0.894 | 0.947 | 0.958
Normal
Esférica 20 3.706 1.851 | 0.062 | 0.085 0.684 0.888 | 0.946 | 0.958
- Normal 5.427 2.192 0.077 0.125 0.736 0.842 | 0.931 | 0.953
Esférica
Esférica 5.107 2.118 0.075 0.119 0.716 0.846 | 0.933 | 0.954
Esférica Esférica 100 4.796 2.158 0.073 0.113 0.705 0.859 | 0.937 | 0.955

Tabla 4.3: Tabla de resultados tras evaluar los diferentes modelos combinando
convoluciones y funciones de pérdida esféricas con normales. El mejor resultado es la
combinacion de convolucién tradicional con funcion de pérdida esférica. Las métricas
son la expuestas en la Seccién 4.4.1. Las métricas en azul claro significan que més bajo
mejor, en morado cuanto mas altas, mejor. Los mejores resultados quedan indicados
en negrita, mientras que los peores quedan indicados con un subrayado.

Como se puede observar en la Tabla 4.3, el modelo con convoluciones normales y
funcién de pérdida esférica (SMSE) era el que mejores resultados ofrecia, muy cerca

del modelo convencional (convoluciones y loss ambos normales).

(a) Imagen original (b) C normal L normal (c) C normal L esférico
(d) Profundidad real (e) C esféricas L normal (f) C esféricas L esférico

Figura 4.5: Resultados cualitativos del primer modelo. Los circulos verdes indican
zonas con artefactos y errores notorios respecto a la imagen original. C = convoluciones,
L = pérdida.

Explorando los resultados cualitativamente (ver Figura 4.5 y 4.6), se observé que
una parte del error podria deberse a la interpretacién de los datos. En la practica, las
iméagenes de la coleccién de datos empleada para entrenar la red poseen varias zonas

de profundidad no definida codificada como 0. Estas zonas suelen estar en lugares de
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(a) Imagen original (b) Mapa de profundidad (c) Estimacién

Figura 4.6: Resultado del modelo completamente esférico. De izquierda a derecha:
original, mapa de profundidad real y mapa de profundidad estimado.

la imagen donde la distancia de profundidad deberia ser muy alta (por lo que no esta
definida), pero al codificarse como 0 se dificulta el aprendizaje de la red. Por tanto, en

una segunda iteracion, se modificard la funcion de pérdida.

También se probé un modelo con més épocas (ver ultima fila de la Tabla 4.3) de las
normales para comprobar si eran necesarias mas épocas para que el sistema convergiera,
pero no se notd diferencia y las graficas mostraban una convergencia alrededor de la
época 35. Por tanto, se establecié 40 como el nimero de épocas a emplear en las

siguientes iteraciones.

4.4.3. Mejora de la funcién de pérdida

Como se ha introducido en la secciéon anterior, la tasa de error era muy alta en
imagenes con demasiada informacién no definida (el mapa de profundidad no estaba

definido en varios puntos) y esto podia dificultar el aprendizaje de la red.

Para solventar este problema se modifico la funcion de pérdida y las métricas
para no tener en cuenta el error causado por la prediccién en zonas de la imagen
donde no estaba definida la profundidad. Esto mejoro los resultados prediciendo valores
acordes con el mapa de profundidad original, y dejando en las zonas sin definir valores
relativamente acertados (sin contradicciones). Los resultados cuantitativos obtenidos

con estos modelos se pueden ver en la Tabla 4.4.

Convoluciones | Pérdida | Epocas | Abs rel | Sq rel RMSE | SRMSE | RMSE log al a2 a3
Normal 0.092 0.007 0.042 0.034 0.132 0.903 | 0.978 | 0.993
Normal
Esférica 0 0.066 0.004 | 0.032 0.020 0.101 0.944 | 0.989 | 0.997
Normal 0.124 0.011 0.054 0.056 0.168 0.855 | 0.961 | 0.987
Esférica
Esférica 0.088 0.006 0.041 0.033 0.129 0.910 | 0.980 | 0.994

Tabla 4.4: Tabla de resultados del segundo modelo cambiando la funciéon de pérdida
explicado en la seccién 4.4.3. Utiliza las métricas de Tabla 4.3 modificadas al igual que
la funcion de pérdida, no penalizando las zonas de profundidad no definidas.

En este modelo se puede apreciar como las tasas de errores han bajado
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considerablemente en todas sus versiones. Sin embargo, la tendencia es la misma, ya
que el mejor modelo sigue siendo el de convoluciones tradicionales y funcién de pérdida

esférica.

Los modelos con convoluciones esféricas siguen si mostrar unos resultados tan
precisos como los modelos con convoluciones tradicionales. Una posible explicacién
de este fenémeno seria que, en el caso de las convoluciones normales la red ha
podido aprender la estructura inherente a los panoramas, y la misma red podria
estar corrigiendo esas distorsiones. Todo esto se podria comprobar observando las

activaciones de la red, dejando este paso como trabajo futuro.

Observando cualitativamente los resultados de este segundo modelo (Figura 4.7) se
puede apreciar cierta mejora en todos los modelos en general, destacando que algunos
de los artefactos que aparecian en el modelo anterior (ver Figura 4.5) parecen haberse

atenuado.

4.5. Comparativa

Se han comparado los resultados de diferentes sistemas del estado del arte con el
disenado en este trabajo para evaluar el rendimiento del mismo. Se ha utilizado el
mismo conjunto de datos de test que en las evaluaciones anteriores al igual que las

ultimas métricas utilizadas.

Se puede observar la mejora respecto a otros sistemas del estado del arte cuantitativa

(a) Imagen original (b) C normal L normal (c) C normal L esférico

(W

(d) Mapa de profundidad real ~ (e) C esféricas L normal (f) C esféricas L esférico

Figura 4.7: Resultados cualitativos del segundo modelo. Se ha utilizado la misma
imagen que en los resultados del modelo 1 (ver Figura 4.5). Los circulos verdes indican
zonas con artefactos y errores notorios respecto a la imagen original. C = convoluciones,
L = pérdida.
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y cualitativamente en la Tabla 4.5 y Figura 4.8. Los sistemas implementados estiman
un mapa de profundidad bastante acertado mientras que los sistemas del estado de arte
actual generan unos resultados menos precisos. Esta falta de precision en los sistemas
del estado del arte puede deberse, por un lado, a que no estan disenados para funcionar
sobre panoramas equirrectangulares. Ademas, son modelos entrenados con escenas con
rangos de profundidad ligeramente distintos. Dado esto, un estudio mas intensivo seria

interesante.

Comparando solo los modelos implementados en este proyecto, se puede observar,
como se ha indicado antes, que el modelo con mejor resultado es el de convoluciones
normales y funcién de pérdida esférica ya que se puede apreciar que es bastante similar

al mapa de profundidad original y no se aprecian los artefactos vistos en las Figuras
4.5y 4.7.

Una de las mejoras que ofrece el sistema desarrollado frente al resto es que no
sobrestima la profundidad, es decir, no se estima que todo esté més lejos de lo que en
realidad estd, como ocurre con los otros sistemas, ademas de que no aparecen artefactos
tan notorios como los que podemos encontrar, por ejemplo, en el sistema de Godard

et al. [2019], adaptdandose mejor a las caracteristicas de las imégenes equirrectangulares.

Puede parecer que el sistema implementado sistema falla al predecir zonas muy
alejadas debido a que en el mapa de profundidad original aparecen zonas negras
mientras que el modelo implementado estima lejania, esto indica que la profundidad no
estd definida en esa zona por lo que, en términos practicos, no se consideraria un error,
ademas de que en su mayoria estas zonas se encuentran en pixeles correspondientes
a zonas muy alejadas. Como se explica en la Seccion 4.4.3 esto ayudd al sistema a

disminuir su error.

Observando el sistema desarrollado por Laina et al. [2016], cualitativamente ofrece

Modelo Abs rel Sq rel | RMSE | SRMSE | RMSE log | al a2 a3

Normal Normal 0.092 0.007 0.042 0.034 0.132 0.903 | 0.978 | 0.993
Normal Esférico 0.066 0.004 | 0.032 0.020 0.101 0.944 | 0.989 | 0.997
Esférico Normal 0.124 0.011 0.054 0.056 0.168 0.855 | 0.961 | 0.987
Esférico Esférico 0.088 0.006 0.041 0.033 0.129 0.910 | 0.980 | 0.994
[Godard et al., 2019] mono 0.858 0.258 0.234 0.706 1.472 0.217 | 0.390 | 0.557
[Godard et al., 2019] mono stereo | 0.971 0.324 | 0.260 0.875 1.475 0.197 | 0.357 | 0.522
[Laina et al., 2016] 1.309 0.536 0.339 1.582 0.837 0.131 | 0.254 | 0.426

Tabla 4.5: Tabla de resultados comparando los sistemas implementados frente a otros
del estado del arte. Los modelos implementados estdan nombrados indicando primero el
tipo de convolucién y la funciéon de pérdida en ese orden.
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Figura 4.8: Matriz de resultados comparando todos los tltimos modelos con varios
sistemas del estado del arte. De izquierda a derecha: imagen original (RGB), mapa de
profundidad real (MP), modelo normal (NN), convoluciones normales y pérdida esférica
(NE), convolucién esférica y pérdida normal (EN), esférico (EE), [Godard et al., 2019
monocular (GM) y monocular con estéreo (GM+S) y [Laina et al., 2016] (L). Para més
resolucién ver Figura A.1y A.2.
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unos resultados aceptables a pesar de estimar la escena més alejada de lo que estéd,
pero falla en los polos al igual que pasa en los modelos implementados excepto en el
de convoluciones normales y funcion de pérdida esférica. Esto se aprecia en la columna

cuatro de la Figura 4.8.

4.5.1. Comparativa con camara 360°

Se han comparado el modelo con convoluciones normales y funcién de pérdida
esférica frente a los resultados del algoritmo propio de una camara 360°. Este algoritmo
consiste en buscar pares de caracteristicas iguales entre sus diferentes cdmaras (estéreo)

y en base a la distancia entre las caAmaras obtener la profundidad mediante paralaje.

(a) Imagen original (b) Profundidad cdmara (c) Estimaciéon NE

Figura 4.9: Comparacién del mapa de profundidad generado por el algoritmo de una
camara 360° y la estimaciéon resultante del modelo implementado con convoluciones
normales y funcién de pérdida esférica. La estimacién (c) se han normalizado para que
la comparacién visual sea mas clara.

Como se puede observar en la Figura 4.9 la estimacion del modelo implementado
estima en general m&s cercania que el mapa de profundidad de la camara, pero los
cambios de profundidad no son tan drasticos como en el generado por la camara. En
la primera imagen podemos ver como las esquinas y la mesa en la parte izquierda de
la imagen ofrecen un mejor resultado en la estimacién del sistema desarrollado que en

la generada por la cdmara ya que en este caso a penas se percibe diferencia.

En las ventanas o zonas muy iluminadas (parte izquierda de la primera imagen o
ventana derecha e izquierda de la segunda, Figura 4.9) no se consigue tanta precisién
con nuestro modelo, estimando estas zonas mas cercanas de lo que en realidad estan,
posiblemente por cémo ha aprendido la red a identificar estas zonas. Algo similar ocurre
con la profundidad que calcula la camara, que falla en ventanas, luces y otras superficies

especulares. Esto probablemente se deba al método que utilizan, la profundidad a partir
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de estéreo, buscando las mismas caracteristicas entre las imagenes capturadas por cada
camara, las caracteristicas que se obtiene de estas superficies especulares varfan en
funcién del punto de vista por lo que dan lugar a inconsistencias en la informacion de

profundidad.

En general, en ciertas zonas se ofrece un resultado mas preciso, pero en otras pueden

aparecer inconsistencias debido a la iluminacion de la escena.
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Capitulo 5

Trabajo futuro

Este proyecto deja abiertas algunas potenciales mejoras y pruebas que se pueden

realizar para expandir el trabajo realizado.

La arquitectura de la red actualmente es la mas bésica que puede ofrecer una
arquitectura ResNet, pero como se ha visto en la Secciéon 3.3, esta arquitectura
ofrece varias opciones en cuanto a nimero de capas que pueden ayudar a mejorar
el rendimiento considerablemente. Otra opcién seria cambiar el tamano del filtro a
uno mayor en las primeras, o incluso concatenar mas convoluciones para comprobar si

mejora la precision.

Otro posible trabajo futuro consiste en estudiar como se activan las neuronas,
qué caracteristicas las disparan, analizando asi, los resultados de las convoluciones
esféricas. También puede ser interesante el estudio del uso de funciones de pérdida mas
sofisticadas, para mejorar el aprendizaje de la red, por ejemplo ajustando la matriz de
pesos de la funcion de pérdida esférica segiin cada panorama. Estas funciones se pueden
mejorar anadiendo diferentes factores como el suavizado para mejorar el resultado final,

ademas de hacer una prueba de ablaciéon para comprobar que estas mejoras son eficaces.

Actualmente, para entrenar y ajustar los modelos generados se ha utilizado una
coleccion de imagenes equirrectangulares de interiores, por lo que los resultados
para proyecciones equirrectangulares exteriores son algo menos precisas. Por tanto, el
entrenamiento con exteriores queda pendiente como linea futura. Si no encontrasen
conjuntos, o para reforzarlos, se podria anadir escenas sintéticas desarrolladas en
motores como Unity. Esta inclusiéon de datos de entornos de exteriores se podria abordar
tanto en un modelo tnico como en un segundo modelo. Un estudio comparativo entre

estas posibilidades seria otra linea interesante.

La informacién de profundidad es muy 1til en numerosas aplicaciones (ver Seccién
2), por lo que probar los resultados de este sistema en alguna de ellas podria demostrar

la mejora que ofrece tener una informacién de profundidad mas precisa.
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Capitulo 6

Conclusiones

Los cuatro modelos finales superan a dos sistemas del estado el arte, por lo que se
puede concluir que el uso de una coleccién de datos equirrectangulares y el uso de una
funcion de pérdida esférica, ayuda a aumentar el rendimiento de estos sistemas a la

hora de estimar la profundidad de imégenes equirrectangulares.

Se han investigado y explorado diferentes articulos del estado del arte que trataran
problemas similares y relacionados con la estimacion de profundidad y el uso de
imégenes equirrectangulares, llegando a la conclusiéon de que una arquitectura de
red basada ResNet, un codificador y decodificador, similar a la utilizada en Godard
et al. [2019] seria una buena base debido al amplio uso de este tipo de arquitectura.
Ademas, se hizo uso de diferentes técnicas especiales para tratar con imagenes

equirrectangulares.

Se han probado diferentes modelos combinando las convoluciones y funciones de
pérdida tradicionales con sus versiones esféricas obteniendo el mejor resultado con la
combinacion de convoluciones normales y funcién de pérdida esférica. Posteriormente,
introduciendo una mejora en la funcién de pérdida que no aumentaba el error en
zonas no definidas del mapa de profundidad original, se han mejorado los resultados
frente a los modelos anteriores. El uso de las convoluciones esféricas no obtuvo mejores
resultados en diferencia a otros trabajos, dando lugar a una posible opcion de trabajo
futuro investigando la causa de este resultado. Ademas, también estd la posibilidad de
probar otras mejoras a las funciones de pérdida o incluso otras arquitecturas de la red

o aumentar el nimero de capas de la actual arquitectura ResNet.

En conclusién, la elaboracién de este proyecto ha supuesto un trabajo de
investigacion del estado del arte y desarrollo considerable y se han obtenido unos

resultados razonables, ademas de haber adquirido nuevos conocimientos.
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6.1. Conocimientos adquiridos

Durante el desarrollo de este proyecto se han adquirido varios conocimientos
relacionados con el ambito del aprendizaje profundo y se ha profundizado més en
las redes convolucionales y las diferentes arquitecturas que existen. También se han
adquirido conocimientos sobre articulos relacionados en el estado del arte sobre la
estimacién de profundidad. Ademads, se han desarrollado capacidades de andlisis y

evaluacién de sistemas de aprendizaje profundo mas extensas.

Se han aplicado conocimientos adquiridos durante la carrera de ingeniaria
informética como las redes neuronales (Inteligencia artificial), tratamiento de imédgenes
por ordenador (Visién por computador), incluyendo también otras més bésicas como
programacion y matematicas. También se han adquirido competencias sobre céomo
enfrentarse a un proyecto de investigacion analizando el problema y buscando soluciones

relacionadas con problemas similares en el estado del arte.
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