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Resumen

En este trabajo se presenta un modelo de aprendizaje profundo para convertir
imAgenes que muestran contenido dindmico, como vehiculos o peatones, en iméa-
genes estaticas realistas. Para ello, se utiliza el modelo CycleGAN, el cual realiza
una traduccién de una imagen perteneciente a un conjunto de datos de entrada a
otra imagen que pertenece al conjunto de datos que se desea obtener. El problema
de traduccién de imagen a imagen es una clase de problema de visiéon y gréaficos
donde el objetivo es aprender el mapeo entre una imagen de entrada y una de
salida. Ademas, el modelo CycleGAN permite aprender simultdneamente un ma-
peo inverso, es decir, la traducciéon de imagenes estaticas a imégenes dinamicas,
aunque este no sera el objetivo primordial del trabajo.

La traduccién de imagenes dindmicas a estaticas conlleva la deteccién de los
objetos dindamicos contenidos en la imagen y la reconstruccion del posible fon-
do estatico de tales zonas de la imagen, obteniendo como resultado una imagen
estatica realista. Para ello, sobre el modelo CycleGAN se introducen diferentes
implementaciones en el entrenamiento con el propésito de mejorar los resultados
obtenidos. Una de estas mejoras conlleva la incorporaciéon de mascaras con la in-
formaciéon dindmica de la imagen en el entrenamiento, asi como un reescalado de
las funciones de pérdidas de la red en funcién del niimero de pixeles dinamicos. La
introduccién de técnicas utilizadas en esteganografia y de técnicas de detecciéon de
esquinas en imagenes suponen también una mejora de nuestras reconstrucciones.

Las imagenes generadas con nuestro modelo pueden ser utilizadas en aplicacio-
nes de realidad aumentada o realidad virtual, en sistemas de mapeo y localizaciéon
simultaneos (SLAM), como conjunto de datos para simulaciones de coches auto-
nomos, para representaciones virtuales, etc.

A la hora de validar nuestro trabajo se utiliza una red de segmentacién seman-
tica para obtener la informacién seméntica del conjunto de imégenes traducidas.
Con dicha informacién se realiza una evaluaciéon para determinar la calidad de
nuestras reconstrucciones. El porcentaje de pixeles dindmicos y estaticos de la
salida de esta red permite evaluar el realismo de las imagenes asi como la calidad
de la traduccién de imagen dinadmica a imagen estatica.
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1 Introduccién

1.1 Motivacion

Los objetos dinamicos degradan la precision de problemas y tareas de localizacion y
navegacion robotica basados en vision. El enfoque habitual utilizado por la comunidad
cientifica para lidiar con estos objetos dinamicos consiste en detectarlos en las imagenes
capturadas por la camara y entonces clasificarlos como informaciéon no valida para ta-
les aplicaciones. Trabajos recientes proponen sin embargo modificar las imagenes para
que el contenido dindmico sea convertido de manera realista en estatico [I,2|. Estos
se basan en la siguiente hipotesis: la combinacion de experiencia y contexto permite
alucinar o “pintar” la escena estatica detras de los objetos dindmicos de manera que

esta tenga una apariencia consistente tanto geométrica como seméanticamente.

Convertir imagenes que presentan contenido dinamico en imagenes estaticas realis-

tas revela varios desafios:

1. Detectar el contenido dindmico de las imégenes, como por ejemplo vehiculos,
animales y personas. También entran dentro de esta categoria las sombras y los

reflejos que estos generan.

2. Pintar la region de la imagen que estos objetos ocluyen con una representacion
plausible. La imagen resultante conseguird ser realista si las regiones pintadas
son consistentes de manera tanto geométrica como semantica con el contenido

estatico de la imagen.

El primer desafio puede ser abordado con enfoques geométricos de visiéon por compu-
tador multivista si se dispone de una secuencia de imégenes. Este proceso consiste nor-
malmente en estudiar la consistencia del flujo 6ptico a lo largo de la secuencia [3-5].
En el caso en el que s6lo una imagen esta disponible, son los algoritmos de aprendizaje
profundo los que destacan en la resolucion de esta tarea mediante el uso de redes neu-
ronales convolucionales (CNNs) y el conocimiento previo de qué clases de objetos son

dindmicos y cudles no [0] (Figura 1).

En cuanto al segundo desafio, enfoques recientes de alucinacién de imagenes que
no utilizan aprendizaje profundo suelen utilizar estadisticas de la parte de la imagen
restante para para rellenar los agujeros [7]. Mientras este enfoque produce generalmente
resultados suaves, esta limitado por las estadisticas de la imagen y no tiene el concepto

de coherencia semantica. Sin embargo, las redes neuronales pueden aprender contenidos
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Ehoto

(a) Los coches aparcados pueden ser clasificados  (b) El sofa seria clasificado como estatico con

como dindmicos gracias al uso de CNNs entrena- una CNN;, pero si se utiliza geometria multivis-
das con el conocimiento previo de qué clases son ta se podria clasificar como dindmico. Las perso-
dinamicas, a pesar de que no se estan moviendo. nas moviéndose podrian ser detectadas con am-

bos métodos.

Figura 1: Ejemplos de diferentes tipos de objetos dinamicos segin como detectarlos.

semanticos y representaciones escondidas muy significativas que han sido utilizadas

recientemente para hacer “inpainting” (ver Figura 2).

(a) Las zonas de la imagen danada pueden ser correcta- (b) Esta reconstruccién puede hacerse tni-
mente recuperadas utilizando las estadisticas de la propia camente con técnicas de aprendizaje, puesto
imagen, al ser estas pequenas. No es necesario tener un que la imagen reconstruida tiene coherencia
entendimiento seméantico de la imagen para reconstruirla. semantica ademéas de geométrica.

Figura 2: Ejemplos de métodos de inpainting con y sin aprendizaje profundo.

Ambos desafios pueden ser combinados y vistos como una unica tarea: trasladar
una imagen dindmica en su correspondiente representacion estatica. En esta direccion
Isola et al. [8] proponen una solucién para realizar traslacion de imagen a imagen de

manera generalizada, a la cual se le llama Pix2Pix.

El principal problema de este sistema, asi como de otros que trabajan con aprendi-
zaje profundo con imagenes, es que para lograr una buena precision es necesario obtener
grandes conjuntos de datos emparejados. Esto puede resultar muy costoso dependiendo
de la aplicacion, y no siempre es posible. En nuestro caso, en el que queremos trasladar
una imagen con contenido dindmico en una imagen estatica, seria altamente costoso

obtener pares de imégenes tomadas con las mismas caracteristicas: enfoque, ilumina-
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cion, perspectiva, etc. con objetos dinamicos y sin ellos. El trabajo Empty Cities |1, 2]
utiliza el simulador de conducciéon autéonoma CARLA [9] para conseguir los datos de
entrenamiento. Consiguen resultados impresionantes eliminando los objetos dinamicos
de imégenes renderizadas con el mismo simulador pero, sin embargo, estos resultados
se ven altamente comprometidos cuando se trata de eliminar los objetos de imégenes de
escenas del mundo real. En este trabajo de fin de grado se quiere abordar este obstaculo
utilizando un modelo que permita trabajar con un conjunto de datos no emparejados

para que asi sea posible trabajar con imagenes reales en vez de sintéticas.

Las imagenes generadas pueden utilizarse en aplicaciones de realidad aumentada o
realidad virtual: uno podria moverse virtualmente por una ciudad en la que no hubiera
trafico de personas o de coches. También pueden ser de interés para la cinematografia,
o para empresas proveedoras de representaciones virtuales de las ciudades (como el
“street-view” de Google) como una medida de privacidad para reemplazar el proceso
de emborronamiento de matriculas o caras. Otras aplicaciones de estas imagenes que
tienen alta demanda hoy en dia son el aumento de datos para simulaciones de coches
autonomos. Por tltimo, estas imégenes podrian ser de gran utilidad para sistemas de
localizacion basados en imagenes como puede ser el SLAM. SLAM es un sistema de
mapeo y localizacion simultaneos (del inglés Simultaneous Localization and Mapping),
donde es comiin asumir que la escena en la que se trabaja es estatica. La precision de
estos sistemas se ve altamente afectada su precision cuando dichas escenas presentan

objetos dinamicos [10].

1.2 Objetivo

El principal objetivo del trabajo es convertir imégenes reales RGB que muestran con-
tenido dinamico, como vehiculos o peatones, en imagenes RGB estaticas realistas. Para
ello, se va a utilizar el modelo de traslacion de imagenes CycleGAN [11], el cual utiliza
un conjunto de entrenamiento de imagenes no emparejadas. Esto es al contrario que su
predecesor Pix2Pix [3], el cual necesita un conjunto de entrenamiento de iméagenes per-
fectamente emparejadas. Al igual que el trabajo Empty Cities |2] anade modificaciones
a Pix2Pix para adaptarlo al problema concreto de trasladar imagenes con contenido
dinamico en estatico, en este trabajo se quiere adaptar el complejo modelo de Cycle-

GAN a este mismo problema con el proposito de mejorar los resultados.

Por otro lado, el modelo CycleGAN [11], el cual sera presentado en detalle en la
seccion 3.2, anade un mapeo inverso, permitiendo aprender simultaneamente la traduc-

cion de imagenes estéticas a dinamicas en el mismo entrenamiento. La obtencion de
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imagenes dindmicas realistas no es el objetivo principal de este trabajo pero también

se procedera mas adelante a analizar estos resultados.

1.3 Alcance

El trabajo planteado continta la linea de investigacion de Empty Cities [2] buscando
solventar la limitacion principal que presenta: Empty Cities necesita de la utilizacion
de un conjunto de imégenes sintéticas para poder asi conseguir datos emparejados.
Mientras que los resultados obtenidos para iméagenes sintéticas son prometedores, los
resultados para iméagenes reales pierden realismo. Ademas, Empty Cities trabaja con
imagenes en escala de grises, viéndose limitado el rango de sus aplicaciones. Este tra-

bajo se ha desarrollado sin embargo con iméagenes a color para que esto no suceda.

Para poder alcanzar los objetivos propuestos en primer lugar se ha realizado un estu-
dio en detalle del estado del arte, y méas en concreto del trabajo Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks [ 1], también
conocido como CycleGAN, asi como del codigo que implementa dicho modelo. Tam-

bién sera necesario configurar el entorno de trabajo con los requisitos necesarios: Linuz,

Python 3, CPU o NVIDIA GPU, CUDA CuDNN y Pytorch entre otros.

A continuacion, se ha procedido a la creaciéon de un conjunto de datos no empare-
jados de imagenes reales urbanas tomadas desde un coche. Una vez se ha tenido este
dataset se ha procedido a investigar y desarrollar diferentes implementaciones que pue-
dan ofrecer una mejora en los resultados del entrenamiento del modelo CycleGAN [L1].
Finalmente, se han evaluado las implementaciones realizadas, y para ello se han in-
vestigado modelos de segmentacion semdntica, eligiendo ERFnet [6] como candidato

final, y se implementan dos evaluaciones basadas en la informacion seméntica del pixel.

1.4 Descripciéon del documento

La estructura del documento es la siguiente. En el Capitulo 2 estdn descritos los fun-
damentos teodricos de redes generativas adversarias, redes neuronales convolucionales y
aprendizaje profundo sobre los que se apoya el trabajo. A continuacién, en el Capitulo
3, se explica la linea de investigacion que se sigue, el modelo de traducciéon de imagen
a imagen utilizado (CycleGAN) y las implementaciones desarrolladas para conseguir

el objetivo del trabajo.
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El Capitulo 4 describe cémo se ha obtenido el dataset utilizado para entrenar nues-
tro modelo. La evaluacion cuantitativa junto con ejemplos cualitativos de los resultados
obtenidos se encuentran en el Capitulo 5. El Capitulo 6 y el Capitulo 7 contienen las
conclusiones y trabajo futuro a realizar respectivamente. Finalmente, el diagrama de

Gantt del proyecto se muestra en el Anexo B.
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2 Fundamentos

El trabajo presentado utiliza el modelo de aprendizaje profundo CycleGAN [11], el cual
es un modelo que realiza traduccién de imagen a imagen con conjuntos de datos de
entrenamiento no emparejados. CycleGAN se basa en las redes generativas adversarias
conocidas como GANS por sus siglas en inglés (Generative Adversarial Networks). Las
GANSs han tenido un enorme éxito en los tltimos anos. Su arquitectura esta compuesta
por dos redes neuronales, que suelen ser convolucionales cuando se trabaja con iméa-
genes. A continuacién se van a explicar en detalle los fundamentos basicos necesarios

para llegar a entender el funcionamiento de una CycleGAN [11].

2.1 Convolucion

Una convoluciéon en dos dimensiones consiste en aplicar un filtro a una imagen utilizan-
do una matriz que contiene los coeficientes del filtro, a la cual se le suele llamar mascara
o kernel. El valor del pixel de salida se calcula mediante la suma de los pixeles vecinos
ponderada con los coeficientes del kernel. En la Figura 3 se presenta un ejemplo de
convolucién en dos dimensiones. La zona azul es el mapa de caracteristicas de entrada
y la zona verde es el mapa de salida. Un nucleo (4rea sombreada) se desliza a través del
mapa de entrada. En cada lugar se calcula el producto entre cada elemento del niicleo
y el elemento de entrada al que se superpone y se suman los resultados para obtener

asi la salida en el lugar actual [12].

Figura 3: Calculo de los valores de salida de una convolucion [12]

Ademés del kernel de la convolucion, también es necesario definir los siguientes pa-
rametros: zancada o stride y relleno o padding. La zancada es la distancia entre dos
posiciones consecutivas del nicleo, y el relleno es el niimero de pixeles concatenados al

principio y al final de un eje en el mapa de caracteristicas de entrada. En la Figura 3
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el relleno esté representado por las celdas sin color que bordean el mapa de entrada.
El relleno permite obtener un mapa de caracteristicas de salida del mismo tamafio que

el mapa de entrada, y la zancada permite reducir el tamano del mapa de salida.

2.2 Redes Neuronales Convolucionales

Las Redes Neuronales Convolucionales (también llamadas CNNs del inglés Convolu-
tional Neural Networks) son un tipo de red neuronal artificial disenada para emular el
comportamiento de la corteza visual. Las neuronas corticales individuales responden
a los estimulos solo en una regién restringida del campo visual conocida como campo
receptivo. Por otro lado, los campos receptivos de diferentes neuronas se superponen
parcialmente de tal manera que cubren todo el campo visual. Esta es la base detras
de las Redes Neuronales Convolucionales, donde el objetivo es aprender caracteristicas

especificas de los datos de entrada.

Las CNN consisten en multiples capas de filtros convolucionales de diferentes di-
mensiones. Después de cada capa, normalmente suele haber una funciéon para realizar
un mapeo causal no-lineal. Cada parte de una CNN esta entrenada para realizar una
tarea, por lo que el entrenamiento de cada una de ellas se realiza individualmente. Este
tipo de redes son las més utilizadas cuando se trabaja con imégenes. De esta manera,
las CNN son capaces de transformar la entrada original, capa por capa, usando técnicas

convolucionales y de reducciéon de muestras.

Tienen aplicaciones en el reconocimiento de imagenes y de video [13], sistemas de
recomendacion, clasificacion de imagenes [11] [15], reconstruccion de imégenes [16], seg-
mentacion seméantica [17], entre otras.

2.3 Redes Generativas Adversas

Las Redes Generativas Adversas (del inglés Generative Adversarial networks,
GANSs) son un modelo generativo compuesto por dos redes neuronales, una generadora
denominada Generador y otra discriminadora denominada Discriminador (Figu-
ra 4).

La red generadora aprende a asignar elementos de un espacio latente a una distribu-

cion de datos determinada, mientras la red discriminadora diferencia entre elementos
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de la distribucién de datos original y los candidatos producidos por el generador. El
objetivo del aprendizaje del Generador es aumentar el indice de error del Discrimina-
dor, es decir, enganar a la red discriminadora produciendo nuevos elementos sintéticos
que parecen pertenecer a la distribucion de datos originales. Por otro lado, el objetivo
del Discriminador es aumentar el indice de error del Generador, es decir, aprender a

diferenciar entre imégenes reales y aquellas producidas por el Generador.

g G D
g ' N |I| R . I real
N —3  Or
‘ fake

y

Figura 4: Representacion del proceso que siguen las imagenes a través del generador G
y discriminador D. En este ejemplo se aprende a traducir imégenes de una distribucion
que contiene muestras de vista de satélite a una distribucion de imagenes de vista de
mapa. El generador traduce la imagen de una vista satélite = en un mapa G(x) y, el
discriminar evalda si es real comparandolo con una foto real de un mapa y [15].

Las GANs han logrado resultados asombrosos en la generaciéon de iméagenes y en
el aprendizaje de la representacion. La clave del éxito de las GANs es la idea de una
pérdida adversa que obliga a que las imagenes generadas sean, en principio, indistin-

guibles de las imagenes en el dominio de destino [19].

Para aprender la distribuciéon del generador pg sobre los datos x se representa un
mapeo al espacio de datos como G(f¢), donde G es una funcion diferenciable represen-
tada por un perceptrén multicapa con parametros 6. También se define un segundo
perceptron multicapa D(z; g ) que da salida a una matriz la cual indica la probabilidad
de que cada parche de la imagen sea falso o real. D(z) representa la probabilidad de

que z provenga de los datos y no de pg [19].
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2.4 Traducciéon de imagen a imagen

La traduccion de imagen a imagen es una clase de problema de vision y gréaficos donde
el objetivo es aprender el mapeo entre una imagen de entrada y una imagen de salida.
Muchas tareas en el procesamiento de imagenes pueden definirse como un problema de
traduccion de imagen a imagen. Por ejemplo, la transferencia de estilo de una imagen,

la transfiguracion de objetos, la superresolucion, etc (Figura 5).

(a) Transferencia de estilo (b) Transfiguracion de objeto

Figura 5: Ejemplos de traducciones de imagen a imagen

La mayoria de trabajos que hacen traduccién de imagen a imagen emplean en el
entrenamiento datos emparejados pixel a pixel. Es decir cada pixel de cada imagen de
la distribuciéon de entrada tiene una etiqueta en la distribucion de los datos de salida.
Uno de los trabajos mas relevantes en este area es Pix2Pix [20], el cual utiliza una
red generativa adversaria condicional para obtener un modelo de aprendizaje profundo

capaz de generalizar a cualquier tipo de imagen de entrada y salida.

Para algunas aplicaciones no siempre es posible obtener datos emparejados, o el
coste que esto conlleva es demasiado alto. En los tltimos anos la comunidad de vi-
sion por computador ha abordado este problema creando modelos de traduccion de
imagenes que no requieran datos de entrenamiento completamente emparejados. Co-
GAN [21] utiliza una estrategia de reparto de pesos para aprender una representacion
comun entre los dominios [11], Ming-Yu Liu et al. [22], entre otros, basan su trabajo
en redes generativas adversas (GANs) y autocodificadores variacionales (VAEs) . A di-
ferencia de los enfoques anteriores, Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks [11]| no se basa en ninguna funcién de
similitud predefinida y especifica entre la entrada y la salida, ni supone que la entrada
y la salida deban estar en el mismo espacio. De esta forma, proporcionan una solucién
de propésito general para muchas tareas de vision y gréaficos. Por esta razon, hemos

elegido el modelo que ellos ofrecen para el desarrollo de este trabajo.

Se quiere destacar con el ejemplo de la Figura 6 la diferencia, para el objetivo
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concreto de este trabajo de fin de grado, entre unos datos de entrenamiento emparejados
y unos no emparejados. Todos los pixeles de la imagen de la izquierda de la Figura 6a
tienen su etiqueta en la imagen derecha. Sin embargo, en el caso de la Figura 6b no
hay una equivalencia pixel a pixel entre las dos imagenes. En el caso de la Figura 6a
es muy costoso obtener un nimero significativo de pares de imégenes con las mismas
caracteristicas de enfoque, iluminaciéon, perspectiva, etc. y el trabajo Empty Cities
recurre entonces al uso de un simulador de coches auténomos. Por otro lado, el uso de
un modelo como el de CycleGAN permite el uso de un dataset de pares de imagenes
no emparejadas, como las del ejemplo de la Figura 6b, y asi trabajar directamente con

imagenes reales de manera menos costosa.

(a) Par de imégenes emparejadas (b) Par de imégenes no emparejadas

Figura 6: La obtencion de imégenes emparejadas consiste en conseguir pares de image-
nes con las mismas caracteristicas (enfoque, iluminacion, perspectiva, etc.). Esto puede
resultar muy costoso dependiendo de la aplicacion, y no siempre es posible. Por ello, se
suele utilizar pares de imagenes sintéticas (a) [1]. En cambio, la utilizacion de imagenes
no emparejadas (b) hace posible trabajar con imagenes reales.
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3 Metodologia
3.1 Empty Cities

El trabajo realizado contintia la linea de investigacion de Empty Cities [2], donde
se presenta un marco de aprendizaje profundo para convertir imagenes que muestran
contenido dinamico, como vehiculos o peatones, en imégenes estaticas realistas. Em-
pty Cites desarrolla un modelo de aprendizaje supervisado para el cual necesita como
datos de entrenamiento pares de imagenes dinamicas y estaticas con una corresponden-
cia pixel a pixel. Debido a la arquitectura del modelo utilizado y a la dificultad para
obtener suficientes datos de entrenamiento, se ven obligados a utilizar un simulador

para generar datos emparejados con y sin objetos dindmicos.

Debido a que los datos sintéticos que utilizan en el entrenamiento pertenecen a una
distribucion diferente a imégenes de escenarios reales, la calidad de sus resultados se
ve comprometida cuando se trabaja con tales imagenes. En la Figura 7 se pueden ver
algunos ejemplos de los resultados que Empty Cities obtiene en imagenes sintéticas
(Figura 7b). La reconstruccion del fondo estatico detras de los objetos tiene coherencia
tanto semantica como geométrica. Sin embargo, puede verse como los resultados cuando
se utilizan iméagenes reales (Figura 7d) han perdido esta coherencia. Ademas, este

modelo trabaja con imagenes en escala de grises, limitando su rango de aplicacion.

(a) sintética dinamica (b) fake estatica (c) real dinamica (d) fake estatica

Figura 7: Comparacion del resultado obtenido con el Modelo Empty Cities [I| con
imagenes sintéticas del simulador de conduccion autonoma CARLA [9] (7b) e imagenes
reales (7d).

20



3.2 CycleGAN

Una CycleGAN es una Red Generativa Adversarias |1 1] (del inglés Generative Ad-
versarial Network, GAN) que utiliza dos generadores y dos discriminadores (Figura 8).
El objetivo de la CycleGAN es traducir imagenes de un dominio de origen X a un
dominio de destino Y sin el uso de datos emparejados, motivacién obtenida por la
dificultad y el coste de obtener datos de entramiento emparejados. Para ello, la red
aprende un mapeo G:X—Y de tal manera que la distribucion de imagenes de G(X)
sea indistinguible de la distribucion Y utilizando pérdidas adversas (Eqn. 1) para
ajustar la distribucion de las imégenes generadas a la distribucion de los datos objetivo.
Ademés, anade un mapeo inverso F: Y— X e introduce una pérdida de consistencia
del ciclo (Eqn. 2) para hacer cumplir F(G(X))=X (y viceversa) y asi evitar que los

mapeos aprendidos Gy F' se contradigan entre si [11].

real
[¢) g —
fake

F(G(x)

Figura 8: Representacion del proceso que siguen las imagenes a través de los gene-
radores y discriminadores. En este ejemplo se aprende a traducir imagenes de una
distribuciéon que contiene objetos dinamicos, vehiculo o peatones, a una distribucion
sin dichos objetos y viceversa. El Generador G traduce la imagen dindmica real z en
una estatica G(z), a continuacion el Generador F traduce la imagen generada G(x)
en F(G(z)) obteniendo nuevamente una imagen dindmica. A su vez, el Discrimina-
dor D evalia si es real o no G(z) comparandola con una imagen real estatica y, y el
Discriminador D’ realiza una evaluacion similar con F(G(z)) y x.

Pérdida Adversa (Eqn. 1): donde G es el generador que intenta generar imagenes
G(z) similares a las imagenes del domino Y, mientras que Dy trata de distinguir entre
las iméagenes reales y las generadas G(z). Se introduce una pérdida adversaria similar

para el mapeo F:Y— X y su discriminador Dx. Denotamos la distribucion de datos
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COMoO Y ~ Pdata(y) Y T ~ Pdata(x) [ ]

‘CGAN(G7 Dy, X, Y) = ]Eprdata(y) [log(DY (y)]
HEipyara 108(1 = Dy (G(2))]

Pérdida de Consistencia del Ciclo (Eqn. 2): donde G es el generador que intenta
generar imagenes G(z) similares a las imagenes del dominio Y y F es el generador que
genera imagenes recuperadas F(G(z)). Se introduce una pérdida de consistencia del

ciclo similar para G(F(Y))=Y. Denotamos la distribucion de datos como y ~ Paata(y)

yxn~ pdata(m) [ ]
Leye(G F) = Bonpporan | F(G(2)) =z [|1]

(2)
+ Bypianaey I GE ) =y 1]

Ademas, se ha anadido una ultima pérdida para preservar la composiciéon del color
entre la entrada y la salida: Pérdida de Identidad (Eqn. 3). Se regulariza el generador
para que esté cerca de un mapeo de identidad cuando se proporcionan muestras reales

del dominio objetivo como entrada al generador [11].

£identity(Gv F) = EyNPdata(y) [H G(y> -y ||1]

3
t Boppuran I G(2) =9 [1] ¥

Se supone que hay una relacion subyacente entre los modelos (por ejemplo: dos
representaciones diferentes de la misma escena subyacente) y esa es la relacion que se

busca encontrar.

El modelo esté formado por dos generados y dos discriminadores.

e Generador: Traduce imagenes de un dominio de origen X a un dominio de des-
tino Y. Su objetivo es aumentar el indice de error del Discriminador, es decir,
enganar a la red discriminadora produciendo imagenes sintéticas que parezcan

pertenecer al conjunto de datos original.

La red esté formada por tres capas convolucionales, las dos tltimas de stride-2,
un bloque de nueve ResNets, dos deconvoluciones de stride-2 y una tultima capa

convolucional. Ademés, se utiliza la normalizacion de instancias |1 1] (Figura 9).

22



e Discriminador: Distingue entre elementos de la distribuciéon de datos original y
los candidatos producidos por el Generador. Su objetivo es incrementar el indice
de error del Generador, es decir, aprender a diferenciar entre imagenes reales e

imagenes producidas por el Generador.

Para las redes del discriminador utilizan 70x70 PatchGANS. Esta arquitectura
puede trabajar con imagenes de tamano arbitrario de manera totalmente convolu-
tiva [11]. Esta formada por cinco capas convolucionales, siendo las tres primeras
de stride-2, en las cuales también se utiliza normalizacion de instancia (Figu-
ra 10).

I:l Reflection Padding |:| RelU
I:l Conv . ResNet Block
I:l Deconv . Tanh

Figura 9: Arquitectura del Generador: tres capas convolucionales, un bloque de nueve
ResNets, dos capas deconvolucionales y una tultima capa convolucional
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095 0.87 0.42 0.64 ..
0.58 0.31 0.87 0.46 ..
0.74 097 0.12 0.32 ..
0.29 0.24 097 0.74 ..

Figura 10: Arquitectura del Discriminador: cinco capas convolucionales.

3.3 Mascaras

La primera idea que se ha desarrollado, a la hora de mejorar la traduccion de imége-
nes, ha sido la implementaciéon de una nueva entrada a la red que ofreciera informaciéon
de aquellas zonas de la imagen que tuvieran mayor relevancia en el entrenamiento. Co-
mo el principal objetivo del trabajo es la traduccion de imégenes dinamicas a estaticas,
consideramos que las zonas donde més debe centrarse nuestra red son aquellos pixeles
de la imagen clasificados como dindmicos. Por tanto, se ha anadido un nuevo valor de

entrada en la red con esta informacion.

Para ello, se ha llevado a cabo la generacion de una méscara binaria (Figura 11)
que representa el conjunto de pixeles estéticos y dindmicos que contiene la imagen [1].
Con ello, se asume que se tiene un conjunto de imégenes en el dataset que contiene
la informacién seméantica de la imagen correspondiente, es decir, la asociaciéon de una
etiqueta o categoria a cada pixel presente en dicha imagen. En caso contrario, se podria
generar tal informacién mediante una red de segmentacion seméantica. El etiquetado
de estas iméagenes representa elementos de paisajes urbanos, por ello, se utilizara dicha
informacion para generar la méscara correspondiente en funcion a estas etiquetas, es-
tableciendo valor ‘255" en la mascara en aquellos pixeles de la imagen cuyas etiquetas
corresponden a vehiculos o peatones y valor ‘0" en caso contrario. Obteniendo asi una

clasificacion de pixeles estéticos y dindamicos.

Esta méscara se utilizard como un nuevo canal de entrada (Figura 12), anadido a

los canales RGB que ya teniamos, tanto para el generador como para el discriminador

de nuestra CycleGAN [1].
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(a) Imagen original (b) Imagen semantica (c) Mascara

Figura 11: Ejemplo de mascara. (a) muestra la imagen original utilizada en el entre-
namiento, (b) es la imagen que contiene la informacion semantica de cada uno de los
pixeles y (¢) es la méscara binaria obtenida a partir de (b) que se genera al inicio del
entrenamiento. La méascara (c) tiene diferente tamano ya que se le ha modificado la
proporcién para el proceso de entrenamiento.

En el caso de la traducciéon de imagenes estaticas a dinamicas, se va a anadir también
una mascara binaria con la misma finalidad. En esta traduccion, la méscara de la propia
imagen no nos sirve de utilidad, ya que se necesita una mascara que contenga objetos
dinamicos, de esta manera se ayudaré a la red a fijarse en aquellas zonas doénde generar
objetos. Por tanto, en un principio, se va a anadir como entrada la misma méscara que

la utilizada para la traduccion de imagenes dinamicas.

real — -
or P
fake

F(G&)

Figura 12: Representacion del proceso que siguen las imagenes a través de los genera-
dores y discriminadores. Se incluye la mascara como nueva entrada en los generadores.

3.3.1 Aplicacion de pesos

Una implementacion ligada a la generacion de méscaras es la posibilidad de esta-
blecer un peso de reescalado manual a la pérdida de cada elemento del lote para cada

una de las diferentes funciones de pérdida utilizadas en el modelo.
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La finalidad de utilizar estos pesos es compensar la proporcion de pixeles dinamicos
a la hora de realizar el entrenamiento del modelo, ya que es menor en comparaciéon con
el porcentaje de pixeles estaticos. En nuestro caso, queremos que el modelo se centre
mayormente en aquellos pixeles que son dindmicos, ya que serian las zonas de la imagen

donde queremos que tenga una mayor importancia el error obtenido.

A la hora de generar el kernel de los pesos tnicamente comprobamos el porcentaje
de pixeles dinamicos y estéaticos que hay, estableciendo el valor resultante del mayor
porcentaje en aquellos pixeles que son dinamicos y, el valor resultante del menor por-
centaje en los estéaticos (Eqn. 4). De esta manera, intentamos que la red se fije més en

los pixeles dinamicos sin perder tampoco de vista los pixeles estaticos.

Si PD>PE{ Wipd] = Pp

_ W[pe] = Pg
W= (4)

Si PE>PD{ Wipal = Pg

W[pe] = PD

Siendo py el conjunto de pixeles dindmicos y p. el conjunto de pixeles estaticos de
la imagen, los cuales son indicados por la mascara. Por tltimo, Pp es el porcentaje de

pixeles dindmicos v Pg el porcentaje de pixeles estaticos de la imagen.

3.4 Deteccién de manipulacion de imagenes.

Con la evolucion de las técnicas de edicion, la distinciéon entre imagenes auténticas
e imagenes manipuladas se ha vuelto cada vez maés dificil (Figura 13). Hay trabajos
que han intentado detectar estas imagenes como el trabajo de Zhou et al. [23]. Por
ello, se ha seguido su marco de aprendizaje para estudiar aquellas caracteristicas cuya

implementaciéon podrian ser de utilidad en el Discriminador.

(a) La parte izquierda de la imagen (b) La imagen de la izquierda presenta la misma escena que en
corresponderia a la foto original y la la derecha pero habiéndole anadido un objeto maés.
derecha a la foto manipulada

Figura 13: Ejemplo de dos imagenes manipulada
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Mientras que los modelos actuales de aprendizaje profundo representan de mane-
ra adecuada las caracteristicas jerarquicas del contenido de una imagen RGB, ningtn
trabajo previo habia investigado anteriormente el aprendizaje de las distribuciones de

ruido en la deteccion hasta el trabajo de Zhou et al. [23].

El ruido es la variacion aleatoria del brillo o el color en las imégenes digitales
producido por el dispositivo de entrada. La visualizacion de esta alteraciéon genera el
conocido "grano", que son pixeles que no se corresponden con la luminancia y tonalidad

real de la imagen (Figura 14).

(a) Imagen sin ruido (b) Imagen con ruido

Figura 14: Comparacién entre una imagen con ruido y sin ruido

El objetivo de nuestro trabajo es eliminar aquellas regiones de la imagen que con-
tienen elementos dinamicos. La intuicién detras de esto es que al quitar elementos de
una imagen y rellenar sus huecos, es improbable que las caracteristicas de ruido entre

la imagen original y la modificada coincidan.

Recientemente, los métodos basados en caracteristicas de ruido local, como el Mode-
lo Rico en Estegoandlisis (conocido principalmente como SRM, del inglés Steganalysis
Rich Model) utilizado en la deteccion de manipulacion [24], han mostrado un rendi-
miento prometedor. Estos métodos extraen caracteristicas de ruido local de los pixeles

adyacentes, capturando la inconsistencia entre las regiones alteradas y las auténticas.

El ruido se modela por el residuo entre el valor de un pixel y la estimacion del valor

de ese pixel producido al interpolar sélo los valores de los pixeles vecinos.

Siguiendo el trabajo original de Fridrich et al. [24], en el que se utilizan ntcleos
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de filtro SRM para extraer las caracteristicas de ruido local de las imagenes (Figu-
ra 16), Zhou et al. |

un rendimiento decente y, aplicando todos los kernels no se obtiene una ganancia de

| publica que usando tnicamente 3 de esos niucleos se obtiene

rendimiento significativa (Figura 15).

00 0 0 0 -1 2 -2 2 -1l oo 0 00
Jo-1 2 —1of |2 -6 8 =6 2| 00 0 00
2102 4 2 05|28 -128 —2/5001 210
0 -1 2 -10 2 6 8 6 2| (00 0 00
oo 0o 00 |[-1 2 -2 2 1] [00 0 00

Figura 15: Los tres niicleos SRM utilizados para extraer las caracteristicas de ruido.
El primer nticleo ha sido utilizado anteriormente en esteganografia [21] [25], el segundo
nucleo es resultado de la optimizacion de los coeficientes de un niicleo circularmente
simétrico 5x5 utilizando el algoritmo de Nelder-Mead [24] y, por ultimo, el tercer nicleo
se calcula como un filtro lineal de paso alto de pixeles vecinos con los coeficientes
correspondientes [24].

(b) SRMO.png

(a) real.png

(e) fake.png

(f) SRMO.png

(g) SRMl.png

(h) SRM2.png

Figura 16: Ejemplo de las imagenes utilizadas como nuevos canales de entrada en el
discriminador, resultado de aplicar cada filtro SRM sobre la imagen RGB. El resultado
obtenido por cada filtro es la visualizacion de las caracteristicas de ruido de cada
imagen. La intuicion detras del estudio realizado plantea la improbabilidad de que las
caracteristicas de ruido de una imagen real y una modificada coincidan.

En el modelo CycleGAN es tarea del discriminador clasificar cada parche de cada
imagen generada como real o falso (modificado). Por tanto, se utilizan las caracteris-

ticas de ruido local calculadas como un nuevo canal de entrada en el discriminador
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(Figura 17), incrementando la posibilidad de aprender, mas facilmente, a distinguir las

imagenes reales de las falsas.

FGX)

real or fake

real or fake

Figura 17: Representacion del proceso que siguen las imégenes a través de los genera-
dores y discriminadores. Se incluyen las imagenes obtenidas de aplicar el filtro SRM
como nueva entrada en los discriminadores.

3.5 Detector FAST

A la vista de los resultados obtenidos, se aprecia que las zonas reconstruidas detras
de los objetos dinamicos a veces carecen de altos gradientes. Por ello, se quiere forzar
a que las imagenes reconstruidas tenga una misma respuesta a filtros de deteccion de

esquinas que las imagenes originales, obteniendo de esta manera resultados més nitidos.

Entre todos los algoritmos de deteccion de esquinas se ha elegido FAST (del inglés
Features from Accelerated Segment Test) |26], por su buena respuesta y por su sencillez
a la hora de aproximarlo de manera convolucional. Ademés, es muy adecuado para

aplicaciones de procesamiento en tiempo real debido a su rendimiento a alta velocidad.

La deteccién de esquinas se va a implementar calculando la probabilidad de esquina
para la imagen original como para la imagen recuperada y asi, comprobar la desviacion
de la prediccion obtenida mediante una pérdida BCE (Eqn. 7). Con esto, se espera

reducir las zonas borrosas de las imagenes obteniendo una mejor definicion.

El detector de esquinas FAST utiliza un circulo de 16 pixeles (un circulo de Bre-

senham de radio 3) para clasificar si un punto p es realmente una esquina. Si un
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conjunto de N pixeles contiguos (denotado cada pixel individualmente por I, ) son
mas brillantes que la intensidad del pixel p (denotado por I,) més un valor umbral ¢
o todos més oscuros que la intensidad del pixel p menos el valor umbral ¢, entonces p

se clasifica como esquina.

Cada pixel x del circulo de Bresenham tiene un estado establecido (Eqn. 5).

Darker si I, ,, <I,—1
Sposz = § Similar si I, —t < I, ,, <I,+1 (5)
Brightersi I, +t<1,,,

Para ello, se ha aproximado la deteccion de esquinas FAST: implementando una ca-

pa convolucional, y por tanto, diferenciable, de 16 kernels con pesos fijos (Figura 18) [2].

2N

Figura 18: Ejemplo ilustrativo de algunos de los kernels utilizados en la deteccion de
esquinas. El pixel central blanco tiene valor 1, los pixeles grises 0 y los pixeles negros
tienen valor -1/12

A la hora de realizar la convolucion es necesario tener la intensidad de cada pixel.

Para ello, se va a traducir cada imagen a escala de grises obteniendo asi dicho valor.

Una vez que se tienen los valores de la intensidad se realiza la convolucion sobre la

imagen obteniendo las diferentes respuestas a los filtros detectores de esquinas |2].

A continuacion, elevamos cada valor al cuadrado, ya que nos interesan tanto los
valores positivos como los negativos y, para cada pixel, nos quedamos tnicamente con

el valor del nicleo que ha obtenido mayor puntuacion [2].

Finalmente, anadimos el valor umbral ¢, del que hablabamos anteriormente, y apli-
camos una convolucion sigmoide para obtener un resultado comprendido entre [0, 1].

De esta forma obtenemos la probabilidad de que un pixel sea una esquina [2].

Las caracteristicas de las imagenes reales (ground truth features) se generan de la
misma forma. Pero, sobre estos resultados obtenidos, se anade una tultima transforma-

cion convirtiendo los valores a un resultado binario (Eqn. 6).
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[0 sip < 05
p_{1 sip > 05 (6)

Calculadas las probabilidades de esquina (Figura 19), tanto para la imagen original
como para la generada por el segundo generador (la imagen recuperada), se mide a

continuacion la desviacion de la prediccion obtenida.

Para ello, se utiliza la funcion de pérdida BCE (Eqn. 7) que mide la entropia

cruzada binaria entre el objetivo y la salida, es decir, la calidad del modelo.

L(z,y) = mean(L)

L={l,.In}", L,=—wy[y, logz, + (1 —yy,) - log(1l — z,,)] (7)

donde N es el tamano del lote, z es el conjunto a evaluar, y el conjunto objetivo y
w un peso dado a la pérdida de cada elemento del lote. Esta funcion es utilizada para

medir el error de una reconstruccion.

3.5.1 Aplicacién pesos

A la hora de calcular la funciéon de pérdida BCE se establece un peso de reescala-
do manual, similar a lo que se ha realizado con los pesos de la mascara (Eqn. 4). La
finalidad de utilizar estos pesos es compensar la proporcion de pixeles que son esquina,
a la hora de realizar el entrenamiento del modelo, ya que es menor en comparacion
con el porcentaje de pixeles que no son esquina. En este caso, queremos que el error

producido en aquellos pixeles donde realmente habia una esquina sea mas significativo.
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(a) Imagen dinamica (b) Deteccién de esqui-
real nas de (a)

(¢) Imagen dinamica (d) Deteccién de esqui-
recuperada nas de (c)

nas de (e)

(g) Imagen estatica re- (h) Deteccion de esqui-
cuperada nas de (g)

Figura 19: Las im4genes mostradas a la derecha son un ejemplo visual de los resul-
tados obtenidos por la detecciéon de esquinas, siendo los pixeles blancos las esquinas
detectadas. Como se observa, el conjunto de esquinas detectadas en las imagenes reales
muestra zonas mas definidas y claras, en cambio los pixeles en las imégenes recupera-
das son més dispersos. Ademas, de esta forma también es més facil detectar errores
como artefactos producidos por la red convolucional (e.g. en la imagen (c) en la zona
superior derecha).
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4 Conjunto de datos utilizado

A la hora de realizar el entrenamiento y la evaluacion de nuestro modelo se ha
utilizado el dataset CityScapes [27]. Este conjunto de datos a gran escala contiene
un conjunto diverso de secuencias de video estéreo grabadas en escenas urbanas de 50
ciudades diferentes, con anotaciones a nivel de pixeles de alta calidad de 5000 foto-
gramas, ademas de un conjunto mayor de 20000 fotogramas con anotaciones débiles
(Figura 20).

(a) Anotacion de alta calidad (b) Anotacion de baja calidad

Figura 20: La diferencia entre estos conjuntos es que en (b) se marcan poligonos que
cubren objetos individuales, mientras que en (a) se ofrecen anotaciones de alta calidad.
Los colores superpuestos codifican las clases seméanticas. [27]

Los datos utilizados corresponden al conjunto de 5000 fotogramas de alta calidad.
Este conjunto esta formado por 2975 imagenes para el entrenamiento, 500 para la va-

lidacion del modelo y 1525 imagenes como conjunto de pruebas.

El dataset contiene cuatro tipos de imagenes por cada fotograma (Figura 21).

leftImg8bit.png: Imagen RGB.
e color.png: Imagen donde cada pixel esté codificado por una clase color.

e labellds.png: Imagen donde cada pixel esté codificado por un entero que indica
la clase a la que pertenece. En total hay 34 clases diferentes (persona, cielo, coche,

senal, etc.).

e instancelds.png: Imagen donde cada pixel estd codificado por un ID de ins-
tancia. Este identificador indica si el pixel pertenece a un vehiculo (sin tener en

cuenta matriculas) o a una persona.

Para cada imagen del conjunto, los objetos del primer plano etiquetados nunca tie-

nen huecos, es decir, si hay algin fondo visible ‘a través’ de algtin objeto del primer
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plano, se considera parte del primer plano. Ejemplo: hojas de arboles frente a una casa

o el cielo (todo arbol), ventanas transparentes de un coche (todo coche).

(a) leftImg8bit.png (b) color.png

(c¢) instancelds.png (d) labellds.png

Figura 21: Ejemplo de una imagen del conjunto de datos de CityScapes.

Sobre este conjunto de datos se ha realizado una separacién entre imégenes diné-
micas y estaticas. Para ello, se ha comprobado el porcentaje de pixeles dindmicos que
contiene cada imagen quedandonos con aquellas imagenes que no tienen més del 1.5 %
de pixeles dindmicos como imagenes estaticas y, aquellas que tienen un minimo del
20 % como dinamicas. Obtenemos asi 1185 imégenes dinamicas y 1049 estaticas para

el entrenamiento y, 199 dinamicas y 148 estaticas para la validacion de los modelos.

Ademas, antes de realizar este proceso, se ha modificado el tamano original de ca-
da imagen (2048x1024) para obtener unas dimensiones de 1000 pixeles de ancho por
800 pixeles de alto. De esta manera intentamos centrar mas la imagen en la carretera

y eliminar la parte inferior del cap6 del coche que aparece en la mayoria de las imégenes.
Por ultimo, en el modelo solo se tienen en cuenta las imagenes RGB y aquellas que

contienen el identificador de clase (labellds.png). Estas ultimas seran utilizadas para

generar posteriormente la méscara binaria (Figura 22).
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(a) color.png (b) labellds.png

Figura 22: Ejemplo del conjunto de datos utilizado en el entrenamiento del modelo.
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5 Evaluacion

A la hora de realizar la evaluacién de cada una de las implementaciones desarro-
lladas se procede inicialmente al entrenamiento del modelo, anadiéndole de manera
incremental cada una de las implementaciones explicadas anteriormente. Al modelo
CyleGAN |[11] sin ninguna de las implementaciones se le denominara Modelo Original.
El modelo con méscaras sera Modelo Mask (Sec. 3.3), Modelo Weight si ademas tiene
pesos (Sec. 3.3.1). A este ultimo modelo anadiéndole la deteccion de manipulacion de
iméagenes se le denominara Modelo Noise (Sec. 3.4) y, por altimo, Modelo FAST si tam-
bién se anade el detector FAST (Sec. 3.5). Finalmente, como se explicara méas adelante,
se ha realizado un nuevo modelo denominado Modelo FASTwithoutNoise, el cual retine

todas las implementaciones desarrolladas a excepciéon de la deteccion de manipulacion.

Una vez finalizado el entrenamiento, para cada uno de los modelos, se realiza la
evaluacion tanto cualitativa como cuantitativa. Para ello, se ha obtenido el resultado
de la traduccion del conjunto de validacion (148 imégenes dindmicas y 148 estéticas)

con cada modelo entrenado. A continuacién, se muestran los resultados obtenidos.

5.1 Evaluacion Cualitativa

5.1.1 Modelo Original

Los resultados mostrados en la Figura 23 corresponden a la evaluacion del Modelo
Original de CycleGAN |1 1] entrenado y evaluado en nuestro dataset de entrenamiento
y validacion respectivamente. Se puede observar en la Figura 23b que el modelo intenta
mimetizar el coche blanco con el edificio del fondo y con la carretera, pero el coche sigue
siendo facilmente distinguible. Por otro lado, se aprecia que la estructura estética de la
imagen se mantiene estable, a falta de una ligera pérdida de definicién en las zonas de
alto gradiente de la imagen, como puede observarse en las sombras de la carretera en
el primer plano de la imagen. Por otro lado, si se ven las Figuras 23d y 23e, se puede
observar que el modelo es capaz de introducir artefactos en la imagen estética similares
a una fila de coches. A pesar de que estos artefactos no tienen la textura correcta
y se confunden unos coches con otros, la forma de los artefactos es similar a la que
querriamos conseguir. Siendo estos resultados el punto de partida de este trabajo de
fin de grado, se van a anadir diferentes mejoras para obtener imagenes méas dinamicas

/ estéticas y sobre todo mas realistas.
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(a) real dinamica (b) falsa estatica (¢) recuperada di-
namica

. ;4.' 7

(d) real estatica (e) falsa dinamica (f) recuperada esta-
tica

Figura 23: Resultados del Modelo Original

5.1.2 Modelo Mask

El Modelo Mask, el cual introduce la méascara binaria de los objetos dindmicos
en el entrenamiento, presenta una mejora importante en la traduccion de iméagenes
(Figura 24). Practicamente elimina cualquier aparicion de objetos dindmicos rellenando
las zonas implicadas, obteniendo asi un resultado muy realista. Més concretamente, en
la Figuras 24a y 24b se observa que las instancias dinamicas son casi completamente
eliminadas y, en el peor de los casos, son perfectamente mimetizadas con el fondo
estéatico, como es el caso de los dos focos traseros de la furgoneta negra. En cuanto a
la pérdida de definicion que aprecidbamos en el modelo original, no es tan notable en
el caso actual. Ademaés, en la traduccion de imégenes estaticas a dinamicas, se generan
elementos distinguibles como ventanas, ruedas, retrovisores, etc. Aunque los tipos de
objetos son facilmente distinguibles por su forma y algunos elementos, su textura ain

deja mucho que desear.

5.1.3 Modelo Weight

Las imagenes obtenidas como resultado en el Modelo Weight son muy similares a las
del Modelo Mask (Figura 25). Los pesos que se introducen con esta implementacioén en
la funcién de pérdida llevan a la red a compensar el bajo nimero de pixeles dinamicos
en el dataset frente a los estaticos. Lo importante de esta implementacion es obser-

var que en los resultados las partes estaticas de las imégenes se mantienen definidas.
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(b) falsa estatica (¢) recuperada di- maéscara para la
namica real dindmica
(e) real estatica (f) falsa dindmica (g) recuperada esta- maéscara para la
tica real estatica

Figura 24: Resultados del Modelo con méscaras.

Observando todo el conjunto de resultados se puede apreciar que las zonas originalmen-
te estaticas de las imagenes aparecen igualmente definidas, y las zonas reconstruidas

mantienen un grado de realismo ligeramente superior al de la implementacion anterior.

(a) real dinamica (¢c) recuperada di- (d) méascara para la
namica real dinamica
(e) real estatica (f) falsa dindmica (g) recuperada estéa- méascara para la

tica real estatica

Figura 25: Resultados del Modelo con mascaras y pesos.
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5.1.4 Modelo Noise

Los resultados presentados en la Figura 26 corresponden a la evaluacion del Modelo
Noise. En ellos, se puede observar que la traduccion de imagenes estéticas a dinamicas
empeora considerablemente en comparacion con el modelo anterior. En general, como
se ve en la Figura 26b, las instancias que se quieren eliminar se muestran ligeramente
transparentes apareciendo como fantasmas, lo cual no ocurria con las implementaciones

anteriores.

Por otro lado, la traducciéon a imagenes dinamicas también se ve afectada negativa-
mente por esta implementacion. Observando la Figura 26f se puede contemplar que no
se elimina completamente la estructura estatica de la imagen, aiin podrian apreciarse
la carretera y los edificios detras de los vehiculos. En este ejemplo, también se puede
contemplar como la méscara presenta pequenas zonas dindmicas dificiles de asociar con

algtin objeto dinamico, provocando irregularidades en la imagen generada.

(¢) recuperada dina- (d) maéscara para la
mica real dinamica

(e) real estatica (f) falsa dindmica (g) recuperada esta- (h) mascara para la
tica real estatica

Figura 26: Resultados del Modelo con mascaras, pesos y detecciéon de ruido.

5.1.5 Modelo FAST

Los resultados del Modelo FAST muestran una mejora visual respecto al Modelo
Noise presentado anteriormente, aunque se sigue observando que la calidad de las imé-

genes generadas es inferior al resto de modelos entrenados (Figura 27). En la Figura 27b
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todavia puede apreciarse la superficie del vehiculo negro junto a los reflejos sobre este.
Por otro lado, el vehiculo blanco se mimetiza correctamente con el fondo de la imagen,

a excepcion de una pérdida de definicion en la zona generada.

En el caso de la traduccion de imégenes estaticas a dinamicas se observa la misma
evolucion. Las instancias dindmicas aumentan su consistencia pareciendo més realista,

aun asi se sigue observando el fondo que habria detras de ellas (Figura 27f).

(b) falsa estatica (¢) recuperada dina- (d) maéscara para la
mica real dindmcia

(e) real estatica (f) falsa dinaAmica (g) recuperada esta- (h) maéscara para la
tica real estatica

Figura 27: Resultados del Modelo con maéascaras, pesos, deteccion de ruido y detector
FAST.

5.1.6 Modelo FAST without Noise

A la vista de que los resultados visuales empeoraban con la implementacion de la
deteccion de manipulacion (Sec.3.4), se ha decidido realizar una evaluacion sin esta
caracteristica. Para ello, se ha entrenado un nuevo modelo, al cual denominaremos

Modelo FASTwithoutNoise, y se ha traducido el conjunto de imégenes de validacion.

Como se esperaba, los resultados visuales obtenidos por el nuevo modelo mejoran
considerablemente. En la Figura 28b se observa que la fila de vehiculos se ha mimetiza-
do completamente con el fondo de la imagen. Aun asi, mirando en detalle el conjunto
de la imagen atn pueden apreciarse que queda trabajo por hacer, esto puede apreciarse

en la falta de definicién de la acera generada o en el fondo estatico de la imagen, el
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cual no deberia presentar ninguna modificacion.

Finalmente, en la traducciéon de imagenes estaticas a dinamicas recuperamos la
consistencia de las instancias, pudiéndose diferenciar vehiculos individuales y diferentes

partes de estos, como ruedas, ventanillas y faros.

(d) real estatica (e) falsa dinamica (f) recuperada estética

Figura 28: Resultados del Modelo FASTwithoutNoise

5.1.7 Modelo Empty Cities

A la hora de realizar la evaluacion también se tienen en cuenta los resultados obte-
nidos con el Modelo Empty Cities |1], ya que este trabajo continta su linea de investi-
gacion. Emtpy Cities solo realiza traduccion de imagenes dinamicas a estaticas. Por

lo tanto, solo se podré considerar la evaluacion de sus resultados para este caso.

Ademas, este modelo ha sido entrenado con un conjunto de imégenes sintéticas
(Dataset CARLA [28]), en escala de grises. Por ello, no se obtendran resultados tan
buenos para las imégenes reales RGB utilizadas en nuestro modelo, como para este
conjunto de imagenes. En las Figuras 29 y 30, se muestran algunos de los resultados

obtenidos para el Dataset CARLA y para el dataset Clity Scapes con este modelo.
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(a) sintética dindmica (b) falsa estatica (a) sintética dindmica (b) falsa estatica

Figura 29: Resultados del Modelo Empty Cities con el dataset CARLA.

(a) real dinamica (b) falsa estatica (a) real dindmica (b) falsa estética

Figura 30: Resultados del Modelo Empty Cities con el dataset City Scapes.

Como se observa, se obtienen buenos resultados para un conjunto de imégenes sin-
téticas a traducir pero, en el caso de querer traducir imagenes reales los resultados
obtenidos se muestran borrosos. La red no consigue generar zonas estéticas definidas

para una imagen real, ademaés, las imégenes obtenidas se muestran en escala de grises.

Finalmente, en las Figuras 31, 32, 33 y 34 se van a mostrar los resultados obtenidos

de la traducciéon de una imagen dinamica a estética y viceversa, para cada modelo,
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con la misma imagen de entrada. Se aprecia que el cambio mas significativo en los
resultados tiene lugar cuando se pasa de utilizar el modelo original a utilizar el de las
méscaras y pesos. En el caso de traduccion de una imagen dindmica a estética, los obje-
tos dindmicos desaparecen visualmente casi por completo o se mimetizan con el entorno
estatico. Por otro lado, en el caso de traducciéon de una imagen estatica a dinédmica,
los resultados mas relevantes son los obtenidos por el modelo que utiliza méscaras y el
que anade pesos, siendo estos muy similares. En ambos modelos, los objetos dindmi-
cos generados son distinguibles individualmente ademas de poder apreciarse elementos
como retrovisores, matriculas, etc. Aunque la mejora es menos incremental o menos
notoria, el modelo que utiliza FAST sin utilizar las caracteristicas de ruido también
genera imégenes realistas en ambos tipos de traduccion. Esto se aprecia sobre todo en
la dltima fila de la Figura 32b, en la cual es dificil reconocer que se ha eliminado a los

dos peatones. En el Anexo A se muestran més resultados obtenidos por cada modelo.
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Traduccion de una imagen dinamica a estatica con cada modelo

Modelo Original

Modelo Mask

Modelo Weight

Modelo Noise

Modelo FAST

M. withoutNoise

(a) real (b) falsa (¢) recuperada

Figura 31: Resultado obtenido de la traducciéon de una imagen dindmica a una estaticas
en los diferentes modelos entrenados.
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Traduccion de una imagen dinamica a estatica con cada modelo

M. Original

M. Mask

M. Weight

M. Noise

M. FAST

M. withoutNoise

(a) real (b) falsa (¢) recuperada

Figura 32: Resultado obtenido de la traducciéon de una imagen dindmica a una estaticas
en los diferentes modelos entrenados.
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Traduccion de una imagen estatica a dinamica con cada modelo

Modelo Original

Modelo Mask

Modelo Weight

Modelo Noise

Modelo FAST

M. withoutNoise

(a) real (b) falsa (¢) recuperada

Figura 33: Resultado obtenido de la traducciéon de una imagen estatica a una dindmica
en los diferentes modelos entrenados.
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Traduccion de una imagen estatica a dinamica con cada modelo

M. Original

M. Mask

W Tl

M. Weight

M. Noise

M. FAST

& .

'| - it

M. withoutNoise

(a) real (b) falsa (c) recuperada

Figura 34: Resultado obtenido de la traducciéon de una imagen dindmica a una estaticas
en los diferentes modelos entrenados.
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5.2 Evaluacion Semantica

Debido a que es muy dificil realizar una evaluaciéon numeérica de los modelos gene-
rados, al no disponer del ground-truth del conjunto de resultados de nuestras imagenes,
se ha optado por la utilizacion de una red de segmentacioén seméntica para comprobar
si efectivamente los pixeles dindmicos han sido convertidos en pixeles estaticos, y vice-

versa.

Los enfoques tradicionales basados en vision tenfan inicialmente como objetivo desa-
rrollar técnicas especificas para detectar elementos de trafico como el pavimento de las
carreteras, los automoviles, las sefiales o los peatones [29] [6]. Sin embargo, los avances
en el aprendizaje profundo han permitido unificar estos problemas de clasificacién en
una tarea: la segmentaciéon semantica. El objetivo de la segmentacién seméantica
es asociar una etiqueta o categoria a cada pixel presente en una imagen. Se utiliza para

reconocer conjuntos de pixeles que conforman distintas categorias.

ERFNet (del inglés Efficient Residual Factorized ConuvNet for Real-time Semantic
Segmentation) [0] es una arquitectura que logra una precisa y rapida segmentacion
semantica por pixeles, lo que la hace adecuada para innumerables aplicaciones, como
la compresion de escenas en vehiculos, que requieren tanto robustez como operatividad

en tiempo real.

Los resultados obtenidos de la traduccion del conjunto de validacion han sido pro-
cesados por la red ERFNet para evaluar la cantidad de pixeles dindmicos que contenia

cada imagen. Algunos de los resultados obtenidos son los siguientes.

5.2.1 Modelo Original

Los resultados mostrados en la Figura 35 corresponden a la evaluaciéon seméantica
de las imégenes falsas obtenidas con el Modelo Original. La Figura 35b es la segmen-
tacion semantica obtenida con la red ERFNet de la imagen falsa de la Figura 35a.
Se observan pixeles que corresponden a instancias dindmicas como coches y personas,
aunque en ninguno de estos casos se presenta un contorno definido que permita dis-
tinguir los objetos individualmente de manera visual. Por otro lado, en la Figura 35d,
que corresponde a la segmentacion semantica de la Figura 35c, se puede apreciar que
el coche del primer plano si que es interpretado como “acera”; pero se sigue detectando

la presencia de elementos dinamicos en el fondo de la imagen.
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(a) falsa dindmica  (b) segmentacion falsa (c) falsa estatica (d) segmentacion falsa
dindmica estatica

Figura 35: Resultados ERFnet del modelo original obtenidos para las imégenes mos-
tradas en la Figura 23. Los colores se encuentran definidos en la Tabla 1

5.2.2 Modelo Mask

Aunque se siguen detectando pequenos porcentajes de pixeles dinamicos en las
imégenes estaticas falsas presentadas por el Modelo Mask (Figura 36d), los resultados
de las dinamicas falsas mejoran considerablemente mostrando siluetas definidas de los
objetos dinamicos, pudiendo apreciarse en la Figura 36b. Se aprecia que la segmentacion

de los vehiculos de la Figura 36b es muy parecida a la del ground truth.

(a) falsa dindmica (b) segmentacion fake (c) falsa estética (d) segmentacion falsa
dindmica estatica

Figura 36: Resultados ERFnet del modelo con mascaras obtenidos para las imagenes
mostradas en la Figura 24. Los colores se encuentran definidos en la Tabla 1

5.2.3 Modelo Weight

La segmentacion semantica obtenida en los resultados del Modelo Weight es muy
similar a los resultados semanticos presentados por parte del Modelo Mask (Figura 37).
Como se ha explicado anteriormente, en este modelo lo importante es mantener defini-
das las zonas estaticas de las iméagenes, esto puede apreciarse en las Figuras 37b y 37d.

La segmentacion de estas zonas es de alta precision.
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(a) falsa dindmica  (b) segmentacion falsa (c) falsa estatica (d) segmentacion falsa
dindmica estatica

Figura 37: Resultados ERFnet del modelo con maéascaras y pesos obtenidos para las
imagenes mostradas en la Figura 25. Los colores se encuentran definidos en la Tabla 1

5.2.4 Modelo Noise

A pesar de que visualmente las imégenes presentan una degradacion en la calidad
obtenida, como veiamos en la Seccién 5.1.4, la red ERFNet continta detectando co-
rrectamente las instancias dindmicas generadas, asi como las estaticas reconstruidas.
Esto puede observarse en la Figura 38b, donde a pesar de que los vehiculos muestran
transparencias su informacion semantica sigue evaludndose como dinamica. Por el con-
trario, observando la evaluacion semantica del conjunto de resultados estaticos falsos
se contempla un aumento en el porcentaje de pixeles detectados como dinamicos. Ade-
més, a pesar de que no es el caso de la Figura 38b, gran parte de los objetos dinamicos

detectados pierden consistencia, obteniendo siluetas indistinguibles.

(a) falsa dindmica (b) segmentacion falsa (c) falsa estética (d) segmentacion falsa
dinamica estatica

Figura 38: Resultados ERFnet del modelo con mascaras, pesos y deteccion de ruido

obtenidos para las imagenes mostradas en la Figura 26. Los colores se encuentran
definidos en la Tabla 1
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5.2.5 Modelo FAST

Los resultados seménticos obtenidos para el Modelo FAST (Figura 39), en el caso
de la traduccion de iméagenes dindmicas a estaticas, son similares al Modelo Noise (Fi-
gura 39d). Por el contrario, se observa que el conjunto de pixeles dindmicos detectados
como seménticos en las imégenes dinamicas falsas aumenta en comparacion con el an-
terior. Aun asi, el problema comentado en el Modelo Noise, la perdida de definiciéon en

las siluetas, se sigue manteniendo.

(a) falsa dindmica segmentacion falsa (c) falsa estética segmentacion falsa
dmamlca estatlca

Figura 39: Resultados ERFnet del modelo con méascaras, pesos, deteccion de ruido y
detector FAST obtenidos para las imagenes mostradas en la Figura 27. Los colores se
encuentran definidos en la Tabla 1

5.2.6 Model FAST without Noise

(a) falsa dindmica (b) segmentacion falsa (c) falsa estatica (d) segmentacion falsa
dinamica estatica

Figura 40: Resultados ERFnet del modelo con méscaras, pesos y detector FAST obte-
nidos para las imagenes mostradas en la Figura 28. Los colores se encuentran definidos
en la Tabla 1

Finalmente, se evalia la informacion semantica del Modelo FASTwithoutNoise. Co-
mo se puede observar en la Figura 40b se obtiene una imagen totalmente definida,

en la cual se presentan figuras lisas sin irregularidades. En la generacion de imagenes
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estaticas no se obtienen los mejores resultados hasta el momento pero, ain asi, son

resultados destacables (Figura 40d).

5.2.7 Modelo Empty Cities

Los resultados seméanticos obtenidos con el Modelo Empty Cities no muestran nin-
guna figura definida, haciendo imposible la visualizaciéon de instancias en las escenas
generadas (Figura 41). Es importante destacar que el color de las imégenes de entrada
aporta a las redes de segmentacion semantica una alta cantidad de informacion. El
hecho de que Empty Cities sélo trabaje con imagenes en escala de grises hace que no

sea completamente “justo” el compararnos directamente con ellos con esta métrica.

(e) falsa estética (f) segmentacion falsa (g) falsa estatica (h) segmentacion falsa
estatica estatica

Figura 41: Resultados ERFnet del Modelo Empty Cities. Los colores se encuentran
definidos en la Tabla 1

5.3 Evaluacion Cuantitativa

Una vez obtenida la informaciéon semantica de cada imagen, se han realizado dos
evaluaciones. La primera evaluaciéon se basa en la clasificacion de las imagenes en
estaticas y dinadmicas y la segunda evaluacion, se basa en el porcentaje de pixeles

dindmicos que contiene cada imagen.

5.3.1 Clasificacién de las iméagenes.

A continuacion, se va a explicar como se ha realizado la clasificacion de las imagenes

en estéaticas o dindmicas a partir de la informacion semantica obtenida.
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Esta evaluacion ha seguido los valores de clasificacion utilizados inicialmente para
clasificar las imagenes utilizadas en el dataset de entrenamiento, es decir, las imagenes
que no contienen mas del 1.5 % de pixeles dinamicos son clasificadas como imégenes es-

taticas y, aquellas que tienen un minimo del 20 % de pixeles dinamicos como dinamicas.

A la hora de detectar los pixeles dinamicos de una imagen se ha observado el valor
RGB devuelto por ERFnet para cada pixel. ERFnet devuelve un valor RGB especifico
para cada clase (persona, conductor, coche, etc.) (Tab. 1). Por tanto, en funciéon a esa
informacion se ha realizado la clasificacion de cada imagen.

)

RGB
DESCONOCIDO (0, 0, 0)
PERSONA (220, 20, 60)
CONDUCTOR (255, 0, 0)
COCHE (0, 0, 142)
CAMION (0, 0, 70)
BUS (0, 60, 100)
TREN (0, 80, 100)
MOTO (0, 0, 230)
BICI (119, 11, 32)
CARRETERA (128, 64, 128)
ACERA (244, 35, 232)
EDIFICIO (70, 70,70)
MURO (102, 102, 156)
VALLA
SEMAFORO
SENAL
VEGETACION (107, 142, 35)
TERRENO
CIELO (70, 130, 180)

Tabla 1: Codificacion de ERFnet para clasificar los pixeles dinamicos.

Lo que se espera a la hora de evaluar los resultados es que, de manera general,
en todos los modelos implementados las imagenes que anteriormente eran dinamicas
ahora sean clasificadas como estaticas, y lo mismo para el caso contrario. Como se
puede observar (Tab. 2 y Tab. 3), en funcion a los resultados obtenidos por ERFnet,
la implementacién cuyos resultados han sido méas significativos, en los dos tipos de

traduccion, es la utilizacion de mascaras.
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Traduccion de imagenes dinamicas a estaticas

Dinamicas Estaticas No definidas
Modelo Empty Cities 22 63 63
Modelo Original ) 7 66
Modelo Mask 0 132 16
Modelo Weight 0 133 15
Modelo Noise 0 135 13
Modelo FAST 0 133 15
Modelo FASTwithoutNoise 0 135 13

Tabla 2: Clasificacion de los resultados obtenidos tras aplicar ERFnet sobre las iméa-
genes dinamicas que han sido traducidas a estaticas.

Por otro lado, en la traducciéon de imagenes dinamicas a estaticas podemos ver que,
aunque pequena, se produce una mejora de los resultados con el uso de pesos y la de-
teccion de ruido. Por el contrario, el detector FAST en este caso nos empeora levemente

los resultados obtenidos hasta el momento.

Ademas, se observa que con el Modelo FASTwithoutNoise aumentan los resultados
clasificados correctamente respecto al Modelo FAST pero, a su vez, se observa que
ofrecen el mismo ntmero de resultados clasificados correctamente que el Modelo Noise.
Esto nos lleva a pensar que la detecciéon de manipulacion de imagenes junto con la

deteccion FAST no esté funcionando correctamente en este tipo de traduccion.

Traduccion de imagenes estaticas a dinamicas

Dinamicas Estéaticas No definidas
Modelo Original 96 3 49
Modelo Mask 145 1 2
Modelo Weight 135 2 11
Modelo Noise 95 2 o1
Modelo FAST 113 0 35
Modelo FASTwithoutNoise 128 1 19

Tabla 3: Clasificacion de los resultados obtenidos tras aplicar ERFnet sobre las imége-
nes estaticas que han sido traducidas a dindmicas. En este caso no se incluye el Modelo
Empty Cities ya que no realiza traduccion de imégenes estaticas a dinamicas.

En la Tabla 3 se observa que tanto la utilizacion de pesos como la del detector de
ruido produce una reduccion en los resultados esperados en la traduccion de image-

nes estaticas a dinamicas. En cambio, el detector FAST en este caso nos mejora los
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resultados que habiamos empeorado con las caracteristicas anteriores. Finalmente, en
este tipo de traduccion, se aprecia un aumento considerable en las imagenes dinamicas

detectadas correctamente con el Modelo FASTwithoutNoise.

5.3.2 Evaluacién del porcentaje de pixeles dinamicos.

La segunda evaluacion, realizada a partir de las imagenes seméanticas obtenidas de
la red ERFnet, ha consistido en evaluar el porcentaje de pixeles dinamicos que con-
tiene cada imagen. Con esta evaluacion se quiere observar el aumento o disminucion,
en funciéon del tipo de traduccion realizada, en el porcentaje de pixeles dinamicos que
contiene cada imagen resultado de la traducciéon del conjunto de validacion, para cada
modelo entrenado. La deteccién de pixeles dinamicos se ha llevado a cabo igual que en

la evaluacion anterior, observando el valor RGB de cada pixel (Tab. 1).

El conjunto de valores, que representan los porcentajes de pixeles dinamicos para
cada una de las iméagenes, se muestran mediante un diagrama de caja (Figura 42 y
Figura. 43). De esta manera, el diagrama indica a simple vista la mediana, los cuartiles

y los percentiles de los porcentajes dindmicos calculados.

Inicialmente se observa que el Modelo Original ofrece una mejora significativa, en
los resultados obtenidos, respecto al Modelo Emtpy Cities en ambas traducciones (Fi-
gura 42 y Figura 43). Esto indica que el modelo de entrenamiento elegido CycleGAN

es completamente valido para nuestro objetivo.

En la traduccion de imagenes dinamicas a estaticas (Figura 42), se observa
que el Modelo Mask ofrece una mejora considerable en el porcentaje de pixeles dinami-
cos detectados, siendo mejorado levemente sus resultados en el Modelo Weight. Por otro
lado, los resultados obtenidos en el Modelo Noise muestran un aumento en el maximo
porcentaje de pixeles dinamicos obtenido, pero a su vez el cuartil Q3 (valor por debajo
del cual quedan las tres cuartas partes) se reduce considerablemente, siendo el mejor
resultado obtenido entre los modelos. Por otro lado, se observa que el Modelo FAST

ofrece un leve aumento en el porcentaje de pixeles dinamicos sobre el Modelo Noise.

Finalmente, los resultados obtenidos por el Modelo FASTwithoutNoise son similares
al Modelo FAST y al Modelo Noise, continuando este tltimo como el modelo con mejo-
res resultados obtenidos en relacion a los cuartiles. Ademaés, se observa una reducciéon
considerable en el maximo porcentaje de pixeles dinamicos obtenidos con el Modelo
FASTwithoutNoise.
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Traduccion de imagenes dinamicas a estaticas

Empty Cities

Original | bommmem e | |

Mask| [ |

Weight | :4 |

Noise| [ |

FAST| | l
FASTwithoutNoise | || .

| | | | | | | | | |
0 5 10 15 20 25 30 35 40 45
Porcentaje de pixeles dindmicos

Figura 42: Diagrama de caja - Porcentaje de pixeles dindmicos: Imagenes dinamicas
a estaticas. Cuanto menor sea el porcentaje de pixeles dinamicos mejor es la solucién
obtenida.

Por ultimo, en la traduccion de imégenes estaticas a dinamicas (Figura 43) se
observa como el Modelo Mask ofrece mejores resultados que el resto de modelos, siendo
el Modelo Noise el peor, por debajo incluso del Modelo Original. Ademés, el Modelo
FAST presenta un aumento en el porcentaje de pixeles dindmicos detectados respecto
al Modelo Noise, mejorando significativamente el cuartil Q1 (valor por debajo del cual
queda un cuarto), y respecto a la traduccion de imégenes dindmicas. Esto tltimo puede
deberse a que el detector FAST se centra en contornos, viéndose aumentados en el caso

de generar objetos dinamicos.

Ademas, en el caso del Modelo FASTwithoutNoise se aprecia un aumento relevante
en el porcentaje de pixeles dinamicos respecto al Modelo Noise y al Modelo FAST,
obteniendo unos resultados similares al Modelo Weight pero viéndose aumentado el

porcentaje maximo de pixeles dindmicos.

En general, se observa cierta incompatibilidad entre la deteccion de manipulacion

y el resto de implementaciones disenadas.
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Traduccion de imagenes estaticas a dinamicas

Original |- R — T e :

Mask + } -

Weight

Noise - 4{ -

FAST| | | |

FASTwithoutNoise [- }— } i

0 10 20 30 40 50 60
Porcentaje de pixeles dinamicos

Figura 43: Diagrama de caja - Porcentaje de pixeles dinamicos: Imagenes estaticas a
dinamicas. En este caso, no se podra obtener un porcentaje de pixeles dinamicos igual
al porcentaje total de la imagen. Debido a la aplicacion de méscaras se le indica a la red
la zona donde deberia generar los objetos dinamicos, por tanto, el maximo porcentaje
de pixeles dinamicos a obtener seria el porcentaje de pixeles dinamicos que contiene la
mascara.
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6 Conclusiones

Con este trabajo se ha presentado un marco de aprendizaje que coge como entrada
una imagen RGB con contenido dinamico, como vehiculos o peatones, y la traduce en

una imagen RGB estética realista.

Para ello, se utiliza el modelo CycleGAN [11], que utiliza un conjunto de entre-
namiento no emparejado. Ademas, el modelo anade un mapeo inverso, permitiendo

aprender también la traducciéon de imagenes estaticas a dinamicas.

El principal objetivo del trabajo es la traduccion de imagenes dinamicas a estaticas.
Por tanto, con la finalidad de mejorar los resultados obtenidos, se introducen diferen-
tes caracteristicas en el entrenamiento del modelo. Aunque no es el objetivo principal

también se tiene en cuenta la mejora producida en la traduccién de imagenes estaticas.

Los resultados preliminares son prometedores. Inicialmente, ya se observa una me-
jora importante del Modelo CycleGAN |11] frente al Modelo Empty Cities [2], en el que
se ve un aumento en el nimero de imagenes traducidas correctamente. Posteriormente,
los resultados evaluados correctamente se incrementan nuevamente anadiendo el con-
junto de implementaciones disenadas, produciéndose una mejora visual en la imagen

generada y en la informacion seméantica del pixel.

Por otro lado, aunque la deteccion de manipulacion funciona adecuadamente en
el trabajo original [23], se percibe cierta incompatibilidad en nuestro modelo entre la
implementacion desarrollada y el resto de caracteristicas, ocasionando un aumento en
el nimero de resultados erroneos cuando se encuentra activa. Apreciandose, en mayor
medida, en el caso de la traduccion de iméagenes estéaticas a dinamicas (Tabla 3 y Figura
43). Dicha incompatibilidad puede deberse a un ajuste erréneo en los hiperparametros,
dando mayor relevancia al error producido por la deteccion de manipulacion que por
el resto de la red. También es posible que la deteccion de manipulacion no funcione
correctamente a la hora de generar imagenes dindmicas ya que este es un caso que no

se ha contemplado en el trabajo original [23] .
Por tanto, como trabajo futuro se contempla la creaciéon de mascaras dindmicas,

teniendo en cuenta el entorno, el aumento de la informacién semantica de cada objeto

dindmico contenido en la imagen y la mejora de los hiperparametros utilizados.
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7 'Trabajo futuro

Como trabajo futuro se contempla la creaciéon de méscaras de manera inteligente,
mejorando asi la traduccién de iméagenes estaticas a dinamicas. Estas mascaras se di-
senaran teniendo en cuenta el marco de las imagenes estaticas. La finalidad de esta
idea consiste en obtener imagenes coherentes con el entorno, permitiendo que la red
aprenda las zonas idoneas donde establecer los nuevos objetos dinamicos. Ademés, se
pretende anadir mas informacién semantica permitiendo diferenciar individualmente
cada objeto dindmico contenido en una imagen, con ello se espera obtener objetos di-

namicos mas definidos y realistas.

También se desea realizar un ajuste del valor de los hiperparametros utilizados en
la deteccion de manipulacion. El objetivo es mejorar los resultados obtenidos con la
implementacion de esta caracteristica ya que, como se ha indicado anteriormente, se

observa cierta incompatibilidad con el resto de implementaciones disenadas.
Finalmente, se quiere realizar una evaluacion del conjunto de datos generados sobre

SLAM, ya que en un sistema de mapeo y localizacién simultaneos es comiin asumir

que la escena en la que se trabaja es estatica.
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Anexos

A Resultados - Traducciéon de imagenes

En las figuras que se presentan a continuacion (Figura 44 - Figura 49) se muestran
los resultados obtenidos para tres traducciones de imagenes dindmicas a estaticas y
tres traducciones de imagenes estaticas a dinamicas, con cada uno de los modelos en-

trenados.

Como se ha hablado anteriormente, el Modelo withoutNoise ofrece mejores resul-
tados para la traduccion de imégenes dinamicas. En cambio, los mejores resultados

obtenidos para la traduccion de imagenes estéticas se consiguen con el Modelo Mask.

En la Figura 44 se observa que el Modelo Mask y el Modelo Weight presentan bue-
nos resultados, viéndose empeorados a continuaciéon por los siguientes modelos hasta
llegar al Modelo withoutNoise, que consigue eliminar practicamente casi todas las zonas

dinamicas.

Si se observa con detenimiento la Figura 45 se pueden ver leves mejoras en la de-
finicion de la imagen falsa (fondo de la calle, acera, edificios). En este caso, el Modelo
Weight v el Modelo withoutNoise presentan resultados similares, aunque este tltimo
muestra una imagen mas definida y clara, esto puede apreciarse principalmente en el

fondo de la calle.

En la Figura 46 se puede apreciar que el mejor resultado obtenido es el presentado
por el Modelo withoutNoise, consiguiendo eliminar el mayor porcentaje de pixeles di-

namicos de la imagen, mostrando una carretera casi lisa.

En la traduccion de imagenes estéaticas a dinamicas los resultados obtenidos no son
tan buenos como en el caso anterior. En la Figura 47 el mejor resultado es el presentado
por el Modelo Weight ya que presenta un conjunto de vehiculos més definido que el

resto de modelos, pudiendo diferenciarse con mayor facilidad.

Los resultados obtenidos en la Figura 48 son muy similares entre si, a excepcion
del Modelo Original. Inicialmente, es posible diferenciar individualmente los objetos
representados en las imégenes. Observando detenidamente podria decirse que el mejor

resultado es el ofrecido por el Modelo Mask, ya que presenta una mayor definicién en



los objetos, apreciandose incluso una matricula en el primer coche, visible en la imagen,

de la derecha.

Finalmente, en la ultima figura (Figura 49) los mejores resultados obtenidos son los
presentados por el Modelo Mask y el Modelo withoutNoise, ya que el resto de image-
nes muestran objetos dindmicos transparentes. Aun asi, en el Modelo withoutNoise se
puede observa que el primer coche sigue permitiendo ver levemente los arbustos que se

encuentran detras.
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Traduccién de una imagen dinadmica a estatica con cada modelo

M. Original

M. Mask

M. Noise M. Weight

M. FAST

M. withoutNoise

(a) real (b) falsa (¢) recuperada

Figura 44: Resultado obtenido de la traducciéon de una imagen dindmica a una estaticas
en los diferentes modelos entrenados.
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Traduccion de una imagen dinamica a estatica con cada modelo

M. Original

M. Mask

M. Weight

M. Noise

M. FAST

M. withoutNoise

(a) real (b) falsa (¢) recuperada

Figura 45: Resultado obtenido de la traducciéon de una imagen dindmica a una estaticas
en los diferentes modelos entrenados.
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Traduccion de una imagen dinamica a estatica con cada modelo

M. Original

M. Mask

M. Noise M. Weight

M. FAST

M. withoutNoise

(a) real (b) falsa (¢) recuperada

Figura 46: Resultado obtenido de la traducciéon de una imagen dindmica a una estaticas
en los diferentes modelos entrenados.
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Traduccion de una imagen estatica a dinamica con cada modelo

M. Original

M. Mask

M. Weight

M. Noise

M. FAST

M. withoutNoise

(a) real (b) falsa (¢) recuperada

Figura 47: Resultado obtenido de la traducciéon de una imagen estatica a una dindmica
en los diferentes modelos entrenados.
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Traduccién de una imagen estatica a dinamica con cada modelo

M. Original

M. Mask

M. Noise M. Weight

M. FAST

M. withoutNoise

(¢) recuperada

Figura 48: Resultado obtenido de la traducciéon de una imagen estatica a una dindmica
en los diferentes modelos entrenados.
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Traduccion de una imagen estatica a dinamica con cada modelo

M. Original

M. Mask

M. Weight

M. Noise

M. FAST

M. withoutNoise

(a) real (b) falsa (¢) recuperada

Figura 49: Resultado obtenido de la traducciéon de una imagen estatica a una dindmica
en los diferentes modelos entrenados.
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B Diagrama de Gantt

En la Figura 50 se muestra el Diagrama de Gantt que se ha seguido durante la
elaboracion de este trabajo de fin de grado. Se compone de seis secciones dividas en

funciéon al conjunto de tareas que integran.

FASES INICIO| FIN 09/19-11/19 12/19-02/20 03/20-05/20 06/20
1- Estudio del arte I —
1.1 Esiudio de fundamentos basicos 15/09/19 |29/08/15|C
1.2 Estudio de la linea de investigacion Empty Cities 30/09/19 |25/11/19 3 —
1.3 Estudio del modeio empleado: CycleGAN 03/10/19 |19/10/19 [
1.4 Estudio del trabajo sobre deteccion de manipulacion de imagen 16/12/20 |30/01/20 | —
(Zhou st : :
1.5 Estudio Dynamic-to-static image translation for visual slam | 08/02/20 |05/03/20 —
1.6 Estudio del detector ORB 01/02/20 |06/02/20 =
1.7 Estudio modelo EfNET 15/04/20 |19/04/20 O
- ——
2- Preparacion
2 1 Configuracion del entorna de trabajo 20/10/19 |27/10/19 (]
2.2 Preparacion dataset CityScapes 28/10/15 |06/11/19 =
2.3 Estudio implementacion del madelo CycleGAN 07/11/19 |11/11/19 — —
3- Desarrollo —
3.1 Implementacién méscaras dindmicas 12/11/19 |25/11/19 —
3.2 Implementacion reescalado manual (pesos) 26/11/19 |15/12/19 —
3.3 implementacién deteccién de manipulacion de imagenes | 16/12/20 |30/01/20 | I—
3.4 Implementacién detector de esquinas 01/02/20 |05/03/20 —/
4- Entrenamiento —
4.1 Entrenamiento modelos 06/03/20 |15/05/20 m— =
5- Evaluacién I
5.1 Traduccion del conjunto de validacion con cada modelo 16/04/20 |15/05/20 O O
5.2 Extraccion informacion seméntica de los resultados mediante i Iner
el modelc ERFnet 20/04/20 [15/05/20 m] m}
5.3 Clasificacion de los resultados 23/04/20 |16/05/20 0= o
5.4 Evaluacion del porcentaje de pixeles dindmicos de cada P P
Teeultade 02/05/20 |17/05/20 = o
5.5 Estudio resultados 07/05/20 |22/05/20 [y
6- Elaboracién documento Memoria ]
6.1 Memoria 06/03/20 |14/06/20 [ 1
&2 Revision 01/06/20 |22/08/20 /

Figura 50: Diagrama de Gantt
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