
Repositorio de la Universidad de Zaragoza – Zaguan

http://zaguan.unizar.es

Trabajo Fin de Grado

App para la carga de trenes militares: lectura

automatizada de materiales

Autor

Patricia Díaz Aguilar

Director/es

Director académico: Dr. D. Carlos Borau Zamora

Director militar: CAP D. Óscar Luis Gálvez Cortés

Centro Universitario de la Defensa-Academia General Militar

Año 2019-2020

I

En agradecimiento a los Oficiales, Suboficiales y Tropa de la Compañía de Ferrocarriles

y del Centro de Control de Movimientos por Ferrocarril del Regimiento de Pontoneros y

Especialidades Nº12, así como a los tutores directores de este proyecto y todo aquel

personal que se haya visto involucrado en la realización del mismo, por su ofrecimiento

y dedicación para llevar a cabo este trabajo.

II

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

III

Índice

Lista de figuras .. V

Lista de tablas ... VI

Lista de abreviaturas ... VII

1. Resumen ... VIII

ABSTRACT ... VIII

1. Introducción .. 1

1.1. Alcance y ámbito de aplicación ... 1

1.2. Objetivos y requisitos .. 2

1.3. Metodología y estructura de la memoria ... 3

2. Transporte por ferrocarril. .. 5

2.1. Compañía de Ferrocarriles. ... 5

2.2. Célula de Control de Movimiento por Ferrocarril (CCMR) .. 6

2.3. Estudio de las plataformas de carga. .. 8

2.4. Material de cargamento. ... 9

2.5. Tarifas. ... 10

3. Herramientas empleadas .. 12

3.1. Android. ... 12

3.2. Entorno: Android Studio. .. 13

3.2.1. Java .. 13

3.3. Bases de datos ... 14

3.4. Código QR .. 14

3.4.1. Estructura de un código QR ... 15

4. Desarrollo de la aplicación. ... 16

4.1. Capa de datos. ... 16

4.2. Capa de negocio. ... 18

4.2.1. Librerías usadas. .. 19

4.3. Capa de presentación. ... 20

4.3.1. Funcionalidad de la aplicación .. 22

4.4. Análisis de resultados y depuración de errores. ... 23

6. Comprobación. .. 25

7. Conclusiones y líneas futuras. ... 28

7.1. Objetivos alcanzados. .. 28

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

IV

7.2. Líneas futuras. ... 28

Bibliografía .. 30

ANEXO A. FICHA DE GÁLIBO. ... 32

ANEXO B. PLATAFORMAS: DETALLES TÉCNICO. .. 33

ANEXO C. MODELOS DE DOCUMENTACIÓN EN EL PROCESO DE TRANSPORTE POR

FERROCARRIL... 34

ANEXO D. MANUAL DE USUARIO DE LA APLICACIÓN. .. 40

ANEXO E. COMPARACIÓN DE RESULTADOS.. 42

ANEXO F. CÓDIGO FUENTE ... 1

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

V

Lista de figuras

Ilustración 1.Transportes internacionales el pasado año 2018. ... 1

Ilustración 2. Escenario híbrido del conflicto. Aplicación LifeUAMap. ... 2

Ilustración 3. Tren cargado del transporte de la BRIX. .. 5

Ilustración 4.Organigrama actual de la Cía. de Ferrocarriles. Elaborado por el jefe de la Cía. de

FFCC. .. 5

Ilustración 5. Proceso de transporte por ferrocarril. Elaboración propia. 8

Ilustración 6. Plataformas de carga. .. 9

Ilustración 7. Cuota de mercado de pedidos de smartphones a nivel mundial entre 2014 y 2020.

[13] .. 12

Ilustración 8. Logo tipo Android Studio. .. 13

Ilustración 9. Logotipo Java. .. 13

Ilustración 10. Logotipo DB Browser for SQLite. ... 14

Ilustración 11.Estructura de un código QR [15] .. 15

Ilustración 12. Clases de java de la capa de datos. Elaboración propia. 17

Ilustración 13. Encabezado de cada tabla de la base de datos (SQLite). Elaboración propia. 17

Ilustración 14. Clases de java de la capa de negocio. Elaboración propia. 18

Ilustración 15. Diseño de las pantallas. Elaboración propia. ... 20

Ilustración 16. Pantalla principal de la aplicación. Elaboración propia. 20

Ilustración 17. Pantalla de inicio de la aplicación. Elaboración propia. 20

Ilustración 18. Diagrama de casos de uso. Elaboración propia. .. 22

Ilustración 19. Representación grafica de la composición con sus respectivos QR asociados.

Elaboración propia. ... 26

Ilustración 20. Ejemplo pantalla de la plataforma 13 cargada. Elaboración propia. 26

Ilustración 21. Resultado que proporciona la aplicación de la composición del tren probado.

Elaboración propia. ... 27

file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520855
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520855
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520855
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520855
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520856
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520856
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520856
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520856
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520857
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520857
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520857
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520857
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520858
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520858
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520858
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520858
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520858
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520859
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520859
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520859
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520859
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520860
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520860
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520860
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520860
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520861
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520861
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520861
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520861
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520861
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520862
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520862
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520862
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520862
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520863
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520863
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520863
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520863
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520864
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520864
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520864
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520864
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520865
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520865
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520865
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520865
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520866
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520866
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520866
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520866
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520867
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520867
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520867
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520867
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520868
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520868
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520868
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520868
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520869
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520869
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520869
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520869
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520870
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520870
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520870
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520870
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520871
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520871
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520871
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520871
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520872
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520872
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520872
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520872
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520873
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520873
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520873
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520873
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520873
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520874
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520874
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520874
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520874
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520875
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520875
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520875
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520875
file:///C:/Users/patri/Desktop/TFG/MEMORIA_TFG.docx%23_Toc23520875

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

VI

Lista de tablas

Tabla 1. Itinerarios autorizados para los transportes. Elaboración propia con los itinerarios de

la consigna.[10] ... 10

Tabla 2. Tarifas aplicadas en el proceso de transporte. Elaboración propia con la información

del convenio. [10] ... 11

Tabla 3. Composición de los trenes. Elaboración propia .. 25

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

VII

Lista de abreviaturas

UE: Unión Europea

OTAN: Organización del Tratado del Atlántico Norte

TEN-T: Red Transeuropea de Transporte

CCMR: Célula de Control de Movimiento por Ferrocarril

FFCC: Ferrocarriles

ROC: Responsable de Operaciones de Carga

RENFE: Red Nacional de Ferrocarriles Españoles

ADIF: Administrador de Infraestructuras Ferroviarias

UCO: Unidad Central Operativa

ET: Ejército de Tierra

BESP: Batallón de Especialidades

MALE: Mando de Apoyo Logístico del Ejército

MING: Mando de Ingenieros

MINISDEF: Ministerio de Defensa

TO: Teatro de Operaciones

ZO: Zona de Operaciones

SIGLE: Sistema Integrado de Logística del Ejército

SUBGES: Subdirección de Gestión

PAP-T: Programación Anual

PT: Petición de transporte

IDC: International Data Corporation

RPEI12: Regimiento de Pontoneros y Especialidades Nº12

QR: Quick Response

UML: Unified Modeling Language

VIII

1. Resumen

El transporte militar por ferrocarril es una de las ramas más específicas de la especialidad

fundamental de Ingenieros, siendo uno de los medios más eficaces para transportar tanto

mercancía como personal. Para enfocar este proyecto, se ha centrado en el proceso del

transporte ferroviario, el cual engloba numerosos documentos a elaborar previamente por el

CCMR (Célula de Control de Movimiento por Ferrocarril), llegando al informe final del tren

cargado en cuestión, siendo este el que genera la necesidad de la aplicación desarrollada con

este proyecto.

Siguiendo esta línea, dentro de este proceso intervienen numerosos actores, entre los cuales

cabe destacar el papel que desempeña el Responsable de Operaciones de Carga (ROC), quien

ejerce como cargador durante el proceso de embarque de material en el tren. La tarea final que

ejecutar por este es identificar (a simple vista), cargar y registrar manualmente todo aquel

material que ocupa cada determinada plataforma en la composición del tren. Con el fin de

agilizar esta tarea y disminuir en gran medida el error humano, se ha desarrollado durante el

periodo de prácticas externas, una aplicación móvil para sistemas operativos Android, la cual se

encarga de automatizar este trabajoso proceso mediante la lectura de códigos QR. Además, ha

sido probada en un transporte real y ha cumplido satisfactoriamente sus objetivos,

encontrándose actualmente en estudio de implantación en el proceso de carga y a la espera de

ser homologada por los organismos competentes.

ABSTRACT

Military rail transport is one of the most specific branches of the fundamental specialty of

Engineers, being one of the most efficient means of transporting both goods and personnel. In

order to focus this project, it has focused on the railway transport process, which includes

numerous documents to be previously elaborated by the CCMR (Railway Movement Control

Cell), arriving at the final report of the train loaded in question, being this the one that generates

the need of the application developed with this project.

Along these lines, many actors are involved in this process, including the role played by the Cargo

Operations Manager, who acts as loader during the process of loading material onto the train.

The final task to be performed by him is to identify (at a glance), load and manually register all

the material that occupies each particular platform in the composition of the train. In order to

speed up this task and greatly reduce human error, a mobile application for Android operating

systems has been developed during the internship period, which automates this laborious

process by reading QR codes. In addition, it has been tested in a real transport and has

satisfactorily met its objectives, and is currently being studied for implementation in the loading

process and awaiting approval by the competent bodies.

I

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

1

1. Introducción
En esta memoria se va a desarrollar el Trabajo de Fin de Grado con título App para la carga de

trenes militares: lectura automatizada de materiales, realizado durante el periodo de prácticas

externas, las cuales han sido llevadas a cabo en el Regimiento de Pontoneros y Especialidades

nº12 (RPEI12).

1.1. Alcance y ámbito de aplicación

La presente existencia de una amenaza en el flanco este de la OTAN ha convertido al ferrocarril

en un transporte estratégico de primer nivel, originando la necesidad de proyectar y transportar

los medios y, principalmente, los vehículos pesados hacia las zonas fronterizas, adaptándose así

al escenario híbrido del conflicto1 al que nos enfrentamos actualmente.

Es por esto por lo que la OTAN pide mayor coordinación entre los países aliados, a la vez que

muestra su "profunda preocupación" por el aumento de la capacidad militar de Rusia y sus

constantes esfuerzos para desestabilizar a países de la región[1]. Así es como el transporte

ferroviario ha adquirido vital importancia en territorio internacional tratando de poner fin a las

tensiones en focos como Europa, Siria o Corea.

Por otro lado, la UE lleva a cabo un plan de acción sobre la movilidad militar, tratando de

identificar la Red Transeuropea de Transporte (TEN-T), mejorar las infraestructuras

internacionales, invertir en el desarrollo de la dualidad de los trenes (transporte de personal y

mercancía), y tratar de simplificar trámites aduaneros y los procedimientos del paso de

fronteras. Todo esto se debe a la evolución del escenario de conflicto, el cual engloba todos los

espectros del combate. [2]

1 En la Ilustración 2 se refleja dicho “escenario híbrido”. Dicha imagen se ha obtenido de la aplicación
LifeUAMap, la cual muestra en tiempo real todo tipo de conflicto de carácter militar en todas las
regiones del mundo y cada uno de estos viene representado por un icono con forma de circulo que
determina el tipo de acción. (p. ej: las acciones aéreas se corresponden el icono de un avión)

Ilustración 1.Transportes internacionales el pasado año 2018.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

2

A esto se le añade el desarrollo tecnológico de las últimas décadas, que ha posicionado a las

apps móviles como una de las herramientas más eficaces para optimizar tiempos en multitud de

escenarios. De esta forma, la Compañía de Ferrocarriles ha optado por lanzar la propuesta del

desarrollo de una aplicación que ayude a agilizar el proceso de transporte ferroviario.

Esta aplicación va dirigida a todos los órganos y personal del Regimiento que intervienen en el

transporte por ferrocarril (definidos en la NAI2403/17[3]),especialmente para los responsables

de operaciones de carga, quienes son los encargados de registrar todo aquel material que es

transportado por este medio y las plataformas donde se carga; y para el personal del CCMR,

cuya misión es coordinar los transportes por ferrocarril que realizan las distintas Unidades,

realizando la planificación y seguimiento de los movimientos y actuando de intermediarios entre

la empresa ferroviaria (RENFE) y las Unidades transportadas. Para ello, se ha dispuesto de las

siete semanas de prácticas externas para el estudio, la creación y el desarrollo de esta.

1.2. Objetivos y requisitos

En el caso de la definición de los objetivos, es muy importante reconocer qué problemas va a

resolver la aplicación. A continuación, se describen los inconvenientes que se presentan durante

el proceso de carga junto con los objetivos del proyecto y la finalidad que se persigue con el

alcance de estos:

• Principalmente, la creación de una aplicación de este tipo trata de simplificar al máximo

el proceso de carga. El problema actual a la hora de realizar el embarque del material es

que abarca un trabajo manual muy laborioso y, de esta forma, se facilitaría el

procedimiento quedando registrado el qué, dónde, cuándo y el orden en el que se ha

ido cargando el tren en un plazo de tiempo mucho más reducido.

• Por otro lado, debido a las reducidas variaciones en los distintos modelos de cada tipo

de vehículo/material (en cuanto a peso y dimensiones), la aplicación trata de evitar

equivocaciones humanas a la hora de reconocer el material que se está cargando y

Ilustración 2. Escenario híbrido del conflicto. Aplicación LifeUAMap.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

3

solventar los cambios de última hora en la configuración de las hojas de carga

resultantes.

• Asimismo, la aplicación llevará a cabo el cálculo de la tasación para la facturación del

transporte, conforme a las tarifas que aplica la operadora Renfe en función del peso del

tren y la distancia del trayecto recorrido, que serán explicadas posteriormente.

• En definitiva, se trata de una aplicación para la comprobación de los cuadros de

composición y las peticiones de transporte planificados previamente en un tiempo

mucho más reducido, dejando como resultado un proceso de carga más eficaz y, en caso

de incidencias como la no correspondencia con la hoja de carga ya programada, esta sea

actualizada en una franja de tiempo más corta.

Por otro lado, para definir los requisitos es necesario saber cuáles son las especificaciones

requeridas por el personal al que va destinado su uso, resultando los siguientes requisitos:

• Que la aplicación que sea de fácil uso y manejo.

• Que mediante la lectura de un código QR único asociado a cada material, permita

reconocer de forma inmediata el material exacto que se embarca en el tren.

• Que permita, a modo informativo, la visualización de las distintas fichas de gálibo2 y los

planos con las medidas del material, donde se detalla el ajuste del cargamento en

función de sus propias dimensiones y de la plataforma donde se cargan (destinado

principalmente para el personal con escasa experiencia). Se adjunta un ejemplo de una

de estas fichas en el ANEXO A.

• Por último, que se programe de tal forma que sea fácilmente legible y quede abierta a

futuras modificaciones a causa de la constante actualización de las normativas que se

aplican y los recurrentes cambios de software/hardware de los dispositivos móviles.

Asimismo, se aportará un manual de usuario que explique en detalle cómo manejar la aplicación

y en caso de ser necesario, como modificar las bases de datos conforme las actualizaciones que

surgen constantemente respecto al material autorizado a ser cargado.

1.3. Metodología y estructura de la memoria

1. Consulta información general:

a. Marco legal y documentación aplicable: convenio MINISDEF-RENFE, consigna C-41,

catálogos de vagones, NC-007-07-17, etc.

b. Estructura y funcionamiento del Regimiento de Pontoneros y Especialidades nº12

(RPEI12)

c. Consulta de programas ya existentes con una finalidad similar, así como programas

para el desarrollo de la aplicación y el lenguaje de programación.

2 El gálibo es un conjunto de datos destinados a definir las condiciones dimensionales de
circulación del material rodante regulado en Renfe para la Instrucción General N.º 66 [21]
actualizada. El gálibo de cargamento se compone de un contorno de referencia corresponde a
una sección tomada en línea recta y una de las reglas que hay que aplicar para tener en cuenta
los diversos elementos de desplazamiento de la curva.[22]

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

4

2. Consulta información específica a los encargados del transporte por ferrocarril. Con la

finalidad de establecer los objetivos y requisitos que deben cumplirse con este proyecto, se

han llevado a cabo una serie de entrevistas con el personal que resulta más experimentado

en este tipo de escenarios.

3. Estudio de la configuración de los ferrocarriles. Se analiza la infraestructura ferroviaria de

la unidad, la composición de las distintas plataformas de carga y la configuración de los

trenes, el material que está permitido cargar en las mismas, (regulado en las distintas

normativas) y las tarifas correspondientes que se aplican durante el proceso de transporte.

4. Creación y desarrollo de la app. Se procede a la creación de una aplicación para dispositivos

Android que, mediante la lectura de un código QR asociado a los distintos materiales

regulados en el convenio MINISDEF-RENFE, permita reconocer dicho material en el mismo

instante que se embarca y, una vez finalizado el cargamento de las plataformas, genera una

hoja de carga en formato .csv, donde además, también consta el importe total de la

facturación junto con el resto de datos del embarque (peso total del tren, plataformas,

material embarcado, etc.).

5. Comprobación y puesta en escena. El día 10 de octubre se realizó un transporte por

ferrocarril solicitado por la Brigada “Guzmán el Bueno” X por el itinerario Córdoba-El

Higuerón/ San Gregorio, en el que se hizo una puesta en escena de la aplicación para su

posterior evaluación y cuyo feedback se plasmará en el apartado 6 del presente trabajo.

6. Conclusiones. Se define el alcance de los objetivos previamente citados, así como las

incidencias y los inconvenientes que se han planteado durante el mismo proceso de

desarrollo de la aplicación.

7. Líneas futuras. Apartado donde se plantean una serie de trabajos futuros que ha dado lugar

este proyecto, añadiendo distintas funciones y hacer más amplio el uso de la aplicación.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

5

2. Transporte por ferrocarril.

Un subsistema de transporte es aquel

instrumento mediante el cual el jefe del

Mando de Apoyo Logístico (MALE), a su nivel,

transporta los recursos de personal, ganado y

material que el Ejército de Tierra (ET) necesita,

empleando con la máxima eficiencia para

situarlos con oportunidad y precisión en el

tiempo y lugar ordenados y en las condiciones

de empleo necesarias para el cumplimiento de

las misiones. [4]

En este caso, entre dichos instrumentos, se encuentran los trenes militares. Se trata de trenes

para uso exclusivo del Ejército, organizados normalmente con los medios de las compañías

ferroviarias. Su composición, recorrido y horario son consecuencia de las necesidades

específicas de transporte de aquellas unidades que lo solicitan. Estos pueden ser destinados

para el transporte del personal, material o trenes mixtos (personal, material y/o ganado). [5]

2.1. Compañía de Ferrocarriles.

El Regimiento de Pontoneros y especialidades nº12 se encuentra encuadrado dentro del Mando

de Ingenieros (MING) prestando capacidades con carácter de apoyo al combate. Las actividades

que se desempeñan exigen un alto grado de formación, nivel técnico y experiencia y, entre todas

estas actividades que desarrollan las unidades de especialidades, encontramos la capacidad de

apoyo a la movilidad mediante la reconstrucción y habilitación de vías de comunicación, la

capacidad de restablecimiento de vías de FF.CC. y la gestión trenes y operaciones de terminal;

las cuales son competencia de la Cía. de ferrocarriles junto con la responsabilidad de todo el

material rodante perteneciente a MINISDEF (Ministerio de Defensa). Esta es la disposición actual

de la compañía:

Ilustración 4.Organigrama actual de la Cía. de Ferrocarriles. Elaborado por

el jefe de la Cía. de FFCC.

Ilustración 3. Tren cargado del transporte de la

BRIX.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

6

Además, los cometidos que se le asignan ejecutar a esta unidad son los siguientes:

• Formación de las composiciones de los trenes cuando se va a realizar un transporte,

conforme a la Propuesta de Organización de Trenes remitida por el CCMR.

• Construcción, rehabilitación y mantenimiento de las instalaciones de la terminal y

ramales de acceso.

• Realizar el transporte táctico en TO/ZO de unidades militares, formando una

composición ferroviaria autónoma y de la forma más eficiente.

• Reconocimientos técnicos de terminales e infraestructura ferroviaria.

Es decir, dentro de las capacidades que presenta la unidad, son aptos a la hora de constituir,

activar y explotar una Unidad Terminal tanto en Territorio Nacional como en Zona de

Operaciones, incluyendo el embarque y desembarque de los medios transportados, tanto como

la expedición e inspección de los trenes militares.

2.2. Célula de Control de Movimiento por Ferrocarril (CCMR)

A continuación, se va a explicar el papel que desarrolla el CCMR dentro del transporte por

ferrocarril. Esta es Célula de Control de Movimiento por Ferrocarril y se encuentra en la Plana

Mayor del Batallón de Especialidades. Este ha sido el órgano de asesoramiento más valorado en

el desempeño de este proyecto.

Se trata de un subsistema de transporte que, con carácter general, es un órgano que se dedica

a asesorar e informar en todo el espectro que abarca su especialidad, tanto sus capacidades

como limitaciones dentro de la función logística de transporte; colaboran en la ejecución de los

transportes y están en constante estudio sobre sobre las normas que puedan incluirse o

modificarse dentro de lo que afecte a su especialidad.

El CCMR se articula en dos áreas a la hora de determinar sus cometidos y actúan sucesivamente.

En primer lugar, tenemos el área de transporte la cual se encarga de los siguientes cometidos:

[7] [6]

• Una vez elaborado el Programa Anual de Transporte Terrestre (PAP-T), el CCMR realiza

una valoración de las posibles composiciones para los transportes que se establecen en

el mismo, elaboran la propuesta organización de trenes y confeccionan los cuadros de

composición.

• Coordinan el transporte tanto con las unidades a transportar como con Renfe.

• Asesorar a la UCO a transportar, en procedimientos, amarres, etc., proporcionándole la

documentación necesaria y las fichas de gálibo correspondientes.

• Recabar de EF (RENFE) el correspondiente programa de transporte y prescripciones

técnicas y remitirlo a SUBGES y Unidades a transportar.

• Tramitar los pasaportes y las comisiones del personal que participa en los transportes.

• Coordinar con Renfe la consignación y posicionamiento del material. Así como, cargar

en el SIGLE (Sistema Integral de Gestión Logística del Ejército) todo el movimiento del

material cuando se dirige a talleres para el mantenimiento de este.

• Realizar la facturación de los trenes a transportar.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

7

Por otro lado, está el área de seguimiento, encargada de los siguientes cometidos:

• Preparación de la documentación del personal de embarque y acompañamiento.

• Impartir las instrucciones particulares y de coordinación, con la UCO y Renfe, al personal

de circulación, embarque y acompañamiento, actuando como intermediario a lo largo

de todo el proceso

• Operar los sistemas informáticos de seguimiento y establecer contacto telefónico con

personal de circulación, embarque y acompañamiento y, de esta forma, estar

constantemente informado respecto la situación y el estado del transporte.

• En caso de que se originen, poner en conocimiento de EF (RENFE) las incidencias.

• Recopilar toda la documentación generada y las novedades de desperfectos en el

material, propiedad de MINISDEF, empleado en los transportes y comunicarlo a la Cía.

FFCC, una vez finalice el transporte.

2.2.1. Documentación, programación y planificación.

En este proceso intervienen cuatro actores: la unidad transportada, la empresa RENFE, la Cía.

de Ferrocarriles y el CCMR, quien actúa como intermediario entre todos ellos.

A lo largo de este proceso se recopilan numerosos documentos que engloban la programación

y planificación de este [7][8]. Anualmente las distintas unidades elaboran el Programa Anual de

Transporte Terrestre (PAP-T), donde se prevén todos los movimientos que se pretenden realizar

por las unidades, ya sea por carretera o por ferrocarril; el CCMR elabora el cuadro de

composición con la Propuesta de Organización de los Trenes en función del material que vaya a

ser cargado; posteriormente, se realiza la Petición de Transporte (PT), donde se recoge el orden

de las plataformas que conforman el tren y el orden de embarque del material en las mismas;

RENFE envía el Programa de transporte, junto con el orden de marcha del tren con sus

respectivas horarios y paradas y, por último, se genera el cuadro de carga, siendo este objetivo

perseguido por la aplicación.

En este último se refleja, en orden de cabeza a cola del tren, el código identificativo y tipo de

plataforma utilizado, y la clase y el peso del material embarcado en la misma, así como, que

vehículos se ven afectados por la Consigna serie C-41[9]. Esta es la hoja resultante donde queda

registrada toda la información del tren que, en un principio, debería ser equivalente a la PT, pero

puede sufrir modificaciones dado que siempre hay que prever la posibilidad de tener que variar

el orden de embarque de los vehículos, en función de la composición de las plataformas. En el

ANEXO B se plasman los documentos tipo que se recogen a lo largo de este proceso.

No obstante, cabe destacar que estos son los documentos principales que se recogen a largo de

la organización del transporte. Existe además una cantidad considerable de pasos intermedios

que involucran en repetidas ocasiones a la Subdirección de Gestión (SUBGES), Renfe, las UCO

trasportadas, y a los distintos órganos del Regimiento en cuestiones de conformidad con la

programación que se establece.

Además, una vez que ya está todo embarcado en sus plataformas correspondientes, se lleva a

cabo la tasación del tren, la cual también calculará la aplicación conforme a las tarifas

establecidas con la empresa ferroviaria, que vendrán explicadas posteriormente.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

8

2.3. Estudio de las plataformas de carga.

Las plataformas son las superficies físicas donde se embarca todo aquel material que va a ser

transportado. Dentro de la composición de los trenes, existe una gran variedad de modelos de

plataformas que varían en función del uso al que están destinadas, ya que este medio se puede

transportar diversos vehículos sobre ruedas o cadenas, materiales a granel (en tolvas), material

de artillería, así como personal y/o ganado, etc.

Las que se han estudiado para la realización de la aplicación son las siguientes, ya que son las

más comúnmente usadas. Sin embargo, en el ANEXO C se adjuntan todos los tipos de vagones

recogidos por el Manual Técnico del Transporte por Ferrocarril (MT5_007) [10], donde se

reflejan los detalles técnicos de cada uno de ellos.

• PMME y PMMR. Estas son las plataformas pertenecientes a las unidades militares y son

las que se usan normalmente en el transporte militar. Ambas son aparentemente

iguales, su superficie es metálica y tienen las mismas dimensiones, pero, a diferencia de

las PMME, las PMMER son plataformas reforzadas, es decir, que soportan mayor pesaje,

y la distancia entre sus ejes es menor y soportan mayor carga. Actualmente el ET dispone

de 45 y 55 respectivamente y todas ellas están identificadas mediante códigos

denominados UIC, y se encuentran en la estación de ferrocarril ubicada en San Gregorio.

• MM2. Estas plataformas son de madera y pertenecen a la empresa Renfe. Son alquiladas

para numerosos transportes por ferrocarril y principalmente son ocupadas por los

vehículos de ruedas.

• A10X y B10X. Ambos dos son coches de viajeros, pero la distinción entre ellos es que los

primeros corresponden a coches de 1ª clase y los segundos de 2ª. En estos ejercicios se

usan para transportar al personal de escolta del tren, los auxiliares y los jefes de

vehículos embarcados. Por lo tanto, debe de haber al menos uno por cada tren

obligatoriamente.

Ilustración 5. Proceso de transporte por ferrocarril. Elaboración propia.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

9

• Muelles <<TRANSFER>> (PM). Se trata de un muelle testero3 transportable estas

plataformas llevan incorporado el muelle de carga que permiten el embarque tanto

frontal como lateral cuando no se dispone de playas de embarque4 en la propia estación.

2.4. Material de cargamento.

El material que está permitido cargar en estos trenes viene regulado por un convenio entre el

Ministerio de Defensa y la Operadora RENFE para el transporte de mercancías y personal [11].

Entre estos, podemos encontrar diversos tipos de mercancía como carros de combate, vehículos

blindados, vehículos automóviles, material de artillería, maquinaria, remolques y/o

semirremolques.

Además, debemos tener en cuenta que numerosos de los diseños de estos vehículos y/o

material se acogen a una serie de restricciones recogidas en la CONSIGNA C-41. Dicha consigna

expone las normas que deben cumplir los vehículos militares con características excepcionales

y se trata de la recopilación de una serie de apéndices que afectan a vehículos específicos, los

cuales muestran unas limitaciones por exceso estudiadas por ADIF.

3 El testero es la parte frontal de un tren o ferrocarril.
4 Las Playas de embarque son las zonas habilitadas para cargar los trenes dentro de una
estación.

PMME/PMMER COCHE VIAJEROS

MM2 MUELLE TRANSFER

Ilustración 6. Plataformas de carga.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

10

Por un lado, es necesario acondicionar el gálibo a los materiales que sufren el exceso del mismo.

Es por ello que la citada consigna recoge planos detallados sobre las condiciones particulares

que deben cumplir los materiales presentes en el documento en función del tipo de plataforma

donde serán cargados: estas son las fichas de gálibo. Además, quedan redactadas tanto las

disposiciones generales como particulares de circulación donde se limita la velocidad de los

trenes en función de los itinerarios, estaciones o vías que se transiten con dicho material

embarcado.

Por otro lado, es de tener en cuenta que todo material requiere un estudio detallado para ver si

es viable su transporte por vía férrea. Este se realiza por parte del CCMR con el objetivo de

analizar si es preciso tratarlo como “mercancía excepcional”; lo que sucede cuando el material

o el cargamento exceden los límites de gálibo de cargamento establecidos.

2.5. Tarifas.

En el convenio citado previamente [11], se establecen de la misma forma las tarifas que se

aplican en la facturación del proceso de transporte por ferrocarril. Estas están acordadas

dependiendo del tipo de plataforma donde se transporta la carga, el tipo de material que las

ocupan y su peso correspondiente, y la distancia recorrida, la cual ya está fijada para cada

itinerario en concreto.

- Los itinerarios autorizados están previamente definidos en la consiga C-41 y se trata de

16 trayectos cuya distancia ya está fijada a la hora de facturar el tren. También se

pueden realizar trayectos como combinación de las paradas intermedias en los distintos

itinerarios. [12]

ORIGEN DESTINO DISTANCIA(KMS)

Badajoz San Gregorio 967

Badajoz Chinchilla 601

Benahadux San Gregorio 967

Chinchilla Córdoba-El Higuerón 445

Chinchilla El Goloso 322

Chinchilla Valencia Fte. S. Luis 182

Córdoba-El Higuerón San Gregorio 816

El Goloso San Gregorio 387

Júndiz San Gregorio 303

Ronda San Gregorio 1012

San Gregorio Valencia Fte. S. Luis 543

San Gregorio Valladolid Argales 629

San Gregorio Villafría (Burgos) 355

Tarragona San Gregorio 285

Júndiz Chinchilla 702

Valladolid Argales Chinchilla 545

Tabla 1. Itinerarios autorizados para los transportes. Elaboración propia con los

itinerarios de la consigna.[11]

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

11

- Las tarifas que se aplican son las siguientes:

Material ferroviario propiedad de Renfe

TIPO DE MATERIAL PESO TARIFA

Vehículos blindados >= 15 Tm 0,1215€/Tm

Vehículos blindados < 15 Tm 0,1509€/Tm

Resto de material - 0,1931€/Tm

Transporte internacional - 0,1931€/Tm

Material ferroviario propiedad de MINISDEF

TIPO DE MATERIAL PESO TARIFA

Vehículos blindados >= 15 Tm 0,1057€/Tm

Vehículos blindados < 15 Tm 0,1298€/Tm

Resto de material - 0,1660€/Tm

Transporte internacional - 0,1660€/Tm

Coches de viajeros propiedad de MINISDEF (en trenes de mercancías)

Coche de viajeros 576,99€/coche

Vagones tipo <<J>> propiedad de Renfe

Varios de carga 0,1931€/Tm

Tabla 2. Tarifas aplicadas en el proceso de transporte. Elaboración propia con la

información del convenio. [10]

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

12

3. Herramientas empleadas

Actualmente existen multitud de dispositivos móviles que se han convertido en un elemento

fundamental en nuestro entorno, por características como su portabilidad, flexibilidad, que son

fácilmente programables y con gran facilidad de manejo. De esta forma, a medida que adquieren

mayor popularidad, los sistemas operativos con los que funcionan adquieren mayor

importancia. Por ello, se ha realizado un estudio acerca de cuál es el sistema operativo más

usado mundialmente y así determinar la plataforma para la que programar la app.

Como podemos comprobar en el siguiente gráfico, según los datos proporcionados por el IDC5,

los dispositivos con sistema operativo Android tiene la mayor cuota de mercado del mundo,

alcanzando en los últimos 5 años valores próximos al 80% y con previsiones alcistas [13].

Además, el acceso al software y librerías de desarrollo es totalmente gratuito. Es por ello por lo

que se ha decidido realizar la aplicación para la plataforma de Android, cuyas características

serán explicadas a continuación.

3.1. Android.

Android es un sistema operativo basado en Linux con un entorno de ejecución basado en

Java/kotlin que da soporte a gran variedad de dispositivos.

Este sistema, cuenta con un conjunto de herramientas y librerías propias (muchas de ellas

compartidas con Java), así como infinidad de funciones integradas por el usuario al tratarse de

una plataforma abierta. Además, es un sistema portable y adaptable a diferentes tipos de

5 International Data Corporation (IDC) es el principal proveedor mundial de inteligencia de mercado,
servicios de consultoría y eventos para los mercados de tecnología de la información, telecomunicaciones
y tecnología de consumo.[23]

Ilustración 7. Cuota de mercado de pedidos de smartphones a nivel mundial

entre 2014 y 2020. [13]

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

13

hardware, no estando enfocado únicamente a smartphones o tablets; sino también a otra serie

de dispositivos como relojes inteligentes o televisores, entre otros.

3.2. Entorno: Android Studio.

El desarrollo de este proyecto se ha llevado a cabo con la plataforma de Android Studio, esta se

trata de la herramienta oficial (y gratuita) de Google para desarrollar aplicaciones en teléfonos

móviles Android.

Esta plataforma cuenta con numerosas ventajas a la hora de programar por particularidades

como: ofrecer la corrección de errores en línea, proporcionar una rápida compilación, además

de tener todas las herramientas necesarias para programar en cualquier tipo de plataforma

y/o dispositivo Android, proporciona la posibilidad de ejecutar la aplicación mediante el uso

de emuladores (creando un dispositivo virtual) o directamente conectando el móvil al

puerto USB del dispositivo.

3.2.1. Java

Java es uno de los lenguajes de programación más ampliamente establecidos. Se ha optado por

el empleo de este puesto que es uno de los lenguajes oficiales para el desarrollo de aplicaciones

móviles en Android, junto con Kotlin que, a pesar de que está adquiriendo una creciente

importancia por su productividad, practicidad y eficacia, la comunidad y los recursos disponibles

(librerías, foros de ayuda etc.) todavía no están tan maduros en comparación con Java.

Entre las características más destacables de Java encontramos que es un lenguaje orientado a

objetos, es muy flexible; funciona en cualquier plataforma, dado que las aplicaciones que se

desarrollan con este lenguaje funcionan en cualquier entorno; su uso no acarrea inversiones

económicas, ya que no se precisa de ninguna licencia para programar; es de fuente abierta (u

open source), lo que quiere decir que ofrece libre acceso a sus librerías nativas para sacar

provecho de ellas y/o desarrollarlas; y es un lenguaje expansible, dado que es trabajado por

una amplia comunidad de usuarios que ofrecen mejoras y soluciones constantemente. [14]

Ilustración 8. Logo tipo Android Studio.

Ilustración 9. Logotipo Java.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

14

3.3. Bases de datos

La base de datos se ha creado en un primer momento en un archivo Excel, siendo cada una de

las hojas que lo componen una tabla de la base de datos. Posteriormente se guardaron con la

extensión .csv (formato abierto sencillo con valores separados con comas) para ser importados,

siendo previamente transformados al formato .db mediante el software DB Browser for SQLite.

SQLite es una biblioteca de C que implementa un motor de base de datos SQL de dominio público

y, debido a que es de tamaño reducido es muy utilizable en los dispositivos móviles y viene por

defecto integrada en el sistema Android.

3.4. Código QR

El código QR (Quick Response o Respuesta Rápida) se trata de un código bidimensional que

permite almacenar gran cantidad de información codificada de manera dinámica en la misma

superficie que el código de barras tradicional y ofrece la ventaja de la lectura de este a alta

velocidad y mayor capacidad de almacenaje de información. Además, tiene otras variantes como

los códigos de corrección de errores6 que ofrecen la capacidad de recuperar información

perdida.

La ventaja de estos códigos es que están al alcance de cualquier usuario. Existen multitud de

páginas web gratuitas con las que generarlos, donde solo es necesario asignarle la información

que queremos que resulte en el mismo para posteriormente descargarlo. Para leerlos con un

dispositivo móvil, normalmente se necesita la ayuda de alguna aplicación externa. En el caso de

este proyecto, la aplicación resultante incorporará la capacidad de leer códigos QR a través de

la librería ZXing.

Para el desarrollo de esta aplicación, por simplicidad, se ha optado por utilizar códigos QR

estáticos asignados a cada material, de forma que la información queda directamente

almacenada en los gráficos del código y, dichos datos asociados al mismo permanecen

invariables.

6 Los códigos de corrección de errores (también conocidos como códigos Red Salomon se aplican para
restaurar los datos cuando falta parte del código QR o cuando este está dañado. Los niveles de corrección
varían en función del área del código que está dañada.

Ilustración 10. Logotipo DB Browser for SQLite.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

15

3.4.1. Estructura de un código QR

Como ya se ha dicho, estos códigos son símbolos matriciales con una estructura en rejilla en

forma de cuadrado [15]. Tiene varios patrones funcionales para que la lectura de los datos sea

fácil y rápida. Los patrones que conforman el código son los que se muestran a continuación

[16], [17]:

1. Celda o módulo. Ese es elemento de menor tamaño del código QR. El código se compone

en su totalidad por una combinación de estas de color blanco y negro.

2. Patrón de posición. Se trata de patrones ordenados en tres de las esquinas del código, lo

que facilita la rápida detección del símbolo, el tamaño y la posición de este. Esto es, en

mayor medida, lo que permite efectuar una lectura fácil y rápida del mismo, mejorando así

la eficiencia de trabajo.

3. Patrón de alineamiento. Este sirve para corregir la distorsión y asegura que el código se

pueda leer en el caso de que esté impreso sobre una superficie curva o distorsionada debido

al ángulo. [18]

4. Patrón de tiempo. Se trata de un patrón de sincronización donde los módulos blancos y

negros se ordenan de forma alternada para determinar la coordenada.

5. Margen. Se trata de la zona en blanco que se encuentra alrededor del código QR.

6. Área de datos. Es la zona donde los datos serán codificados, que es lo que representa la

zona gris de la imagen. Esta información está cifrada mediante símbolos binarios, 1 y 0, que

se convertirán en los módulos negros y blancos del cuadrado respectivamente. Además, esta

área también incorporará los códigos de corrección de errores.

Ilustración 11.Estructura de un código QR [15]

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

16

4. Desarrollo de la aplicación.

A continuación, se exponen las etapas que se han seguido durante el desarrollo de la aplicación:

1) Conceptualización. En esta etapa se parte de la idea propuesta en un principio, para

que, a fin de cuentas, se adopte una formalización de esa idea. Todo ello se ha

conllevado una minuciosa investigación acerca de todos los factores que afectan a este

proyecto y los cuales se han redactado a lo largo de la presente memoria.

2) Definición. Con el objetivo de definir la funcionalidad del proyecto y asentar las bases

de la aplicación, se determina el alcance del proyecto, cuál va a ser la complejidad del

diseño, así como el lenguaje en el que se ejecutará la aplicación que, como ya se ha

dicho anteriormente, será Java.

3) Diseño. Partiendo de la idea inicial de la aplicación, en esta fase se trata de materializar

dicha idea, dándole un aspecto visual al objetivo que se quiere alcanzar, de tal forma

que el usuario final pueda interactuar con ella de una forma fluida e intuitiva.

4) Desarrollo. Aquí se trata de “dar vida” a los diseños y crear la estructura sobre la que se

va a apoyar el funcionamiento de la aplicación. Una vez que se decide emplear Java para

implementar las funcionalidades, se procede a programar la parte lógica de la app.

5) Depuración de errores. Finalmente, una vez ejecutada y probada la aplicación, se harán

las modificaciones pertinentes destinadas a mejorar la eficiencia de esta.

En base a esto, la aplicación se ha estructurado en base a la arquitectura por capas con el

objetivo de organizar y optimizar la estructura del código fuente. Esta se compone de la capa de

datos, capa de negocio y la capa de presentación; las cuales serán explicadas en los subsiguientes

apartados. El código fuente de la aplicación será anexado al final de este documento como

ANEXO F.

Por otro lado, el funcionamiento y las especificaciones técnicas vienen detalladas en el ANEXO

D, donde se facilita el manual técnico (destinado al usuario) de la aplicación con sus pertinentes

aclaraciones.

4.1. Capa de datos.

En primer lugar, esta es la capa que actúa como repositorio de datos. Las tablas de la base de

datos, en una primera instancia, se crearon cada una en una hoja de cálculo de un libro Excel.

Posteriormente se guardaron en formato “.csv” y se importaron en el programa DB Bowser para

trabajar con estas en SQLite.

Para facilitar y automatizar la lectura de la base de datos, se ha creado una clase auxiliar, la cual

se ha llamado DBHelper. Esta proporciona el canal de comunicación directo con la base de datos,

heredando para ello la clase SQLiteOpenHelper, que es la que Android facilita para gestionar

nuestra base de datos. [19]

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

17

La interacción que hace el sistema con esta capa sirve para realizar una serie de consultas a las

diferentes tablas de la base datos (descritas a continuación) en función de las distintas

necesidades de la aplicación. Por ejemplo, lecturas a la tabla de trayectos en función del

seleccionado, dado que necesitamos saber la distancia de este para la posterior facturación, las

consultas cada vez que se escanea un código QR, de plataforma y material respectivamente,

para obtener los datos a mostrar en pantalla y los necesarios que se deben agregar al documento

final a exportar.

A continuación, se muestran las tablas que componen la base de datos con sus correspondientes

campos.

Ilustración 12. Clases de java de la capa de

datos. Elaboración propia.

Ilustración 13. Encabezado de cada tabla de la base de datos (SQLite). Elaboración propia.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

18

4.2. Capa de negocio.

Esta actúa como puente o intermediario entre la capa de presentación y la capa de datos. Es

donde se programa la funcionalidad de la aplicación y donde se implementa la lógica de negocio,

es decir, todo lo que la aplicación debe considerar antes de realizar una acción y el proceso que

debe suceder a esta una vez que ha sido realizada. En nuestra aplicación corresponde con la

estructura, donde se han programado las siguientes clases de Java con sus respectivas funciones:

Sabiendo que estas son las clases lógicas que se implementan en la capa de negocio, se pasa a

explicar brevemente las características principales de las mismas:

- InitialActivity. Esta es la pantalla de inicialización de la aplicación. Contiene únicamente

un botón que envía al usuario a la pantalla principal, la cual permite ejecutar el resto de

las acciones. Esta pantalla cumple su papel de presentación, con los colores e imagen

corporativa, a la vez que evite que el usuario pase a la actividad principal por error (ej:

apertura de una aplicación no deseada).

- PDFActivity. Esta es la función final que obtiene el listado de los ficheros de ayuda.

- PrincipalActivity. Aquí se ha desarrollado la parte lógica con más peso. Dentro de esta

clase se han programado las principales funciones que debe proporcionar el sistema,

como el escaneo de los códigos QR, las condiciones que deben cumplirse una vez

efectuada la lectura, el acceso a los ficheros de ayuda en formato .pdf, la exportación

del fichero a csv, así como todas las consideraciones que tiene en cuenta la aplicación

para poder ejecutarse debidamente.

- Subcarpeta adapter:

o Adaptercargamento. Se ha creado una clase para crear el listado de los

cargamentos con un Adapter, la cual es una herramienta de Android que hace

de “puente” entre los datos y un listado seleccionable de forma táctil por el

usuario.

o Viewholdercargamento. Esta herramienta sirve para gestionar y optimizar el

uso de un Adapter, ya que el ViewHolder representa cada fila del listado (ej:

darle formato). Gracias a esto se ha generado la lista expansible de los

itinerarios disponibles.

o AdapterPDF. Al igual que con los cargamentos, este recoge un listado de todos

los documentos de consulta que proporciona la aplicación. En este caso, este

Ilustración 14. Clases de java de la capa de negocio.

Elaboración propia.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

19

Adapter hace de puente entre los documentos almacenados en la carpeta assets

y el listado de ficheros de ayuda que encontramos en el menú.

o ViewHolderPDF. Como en el caso de los cargamentos, el ViewHolder de los PDF

representa cada elemento del listado de documentos, es decir, cada archivo

PDF.

- Paquete “utils”. Dentro de este paquete sean desarrollado clases las cuales son

llamadas desde la PrincipalActivity. Entre las cuales se encuentran:

o DialogsUtils. Esta clase se ha creado para crear de una forma más ágil los

cuadros de diálogo emergente que aparecen en pantalla cada vez que se

necesita la confirmación del usuario para realizar una acción.

o Fileutils. Por último, esta clase es la que contiene la funcionalidad necesaria

para generar el fichero de salida con la información almacenada gracias a la

clase anterior.

o PDFUtils. El objetivo de esta clase es ejecutar una tarea en segundo plano. De

esta forma, la aplicación hace una copia temporal del fichero seleccionado para

abrirse en una ruta concreta y Android se encarga de buscar las aplicaciones

capaces de realizar dicha función, disminuyendo así la complejidad del código

(ello implica que el dispositivo donde se instale tenga previamente instalado un

lector de PDF).

o PreferenceUtils. Esta es la clase donde se ha implementado como almacenar la

información en el dispositivo de todos los registros que efectúa el usuario

mediante la lectura de los códigos. De esta forma, es posible recuperar la

información cuando el usuario minimiza la aplicación o apaga la pantalla del

móvil.

4.2.1. Librerías usadas.

Las librerías (o frameworks) son grandes conjuntos de algoritmos, instrucciones y funciones

preprogramadas que se pueden incorporar como un fragmento de código en el programa para

agilizar tareas que ya han sido previamente desarrolladas, así como ciertas clases y funciones

que facilitan el trabajo u objetivo que se desea alcanzar. Estas están destinadas a resolver un

problema específico y tienen un propósito concreto, lo que reduce eficazmente la carga en el

desarrollo. una de las ventajas de Java, y por tanto de Android, es la amplísima y activa

comunidad de usuarios que brindan sus desarrollos de forma pública, proporcionando de forma

libre una gran cantidad de herramientas para multitud de aplicaciones. A continuación, se

exponen las librerías a las que se ha recurrido en este proyecto y la finalidad que se persigue con

cada una de ellas:

• ZXING. La librería ZXing es un recurso que ofrece soporte para la lectura y decodificación

para la gran mayoría de códigos de barras, códigos BIDI o QR en múltiples plataformas [20].

Como bien se ha dicho, esta ha sido integrada para poder realizar la lectura de códigos QR.

• DEXTER. Esta última es la encargada de gestionar todos los permisos que son necesarios

confirmar por el usuario cuando se hace uso de alguna aplicación propia del dispositivo. En

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

20

este caso, ha administrado la gestión de los permisos destinados al uso de la cámara con sus

respectivas preguntas.

4.3. Capa de presentación.

Esta última es la capa final donde se establece la interacción del usuario con el sistema, se trata

de la interfaz de la aplicación, la cual se comunica únicamente con la capa de negocio y no

contiene algoritmos sino archivos .xml que definen la apariencia de las diferentes pantallas u

objetos visuales.

En cuanto al desarrollo de la parte gráfica de la aplicación, acorde con los requisitos que se han

establecido, se diseñó previamente un boceto inicial, el cual ha resultado en la siguiente interfaz

destinada al usuario. Esta se ha procurado que tenga el aspecto más “amigable” posible, es decir,

que sea entendible y fácil de usar. Contiene todos los controles interactivos necesarios para

poder cubrir los objetivos planteados y cuya función será explicada en el posteriormente.

Se trata de una serie pantallas o Activities: la primera (1) está enfocada a la presentación de la

aplicación y la segunda, es la pantalla principal que ejecutará el resto de las funciones:

Ilustración 17. Pantalla de inicio de la

aplicación. Elaboración propia.

Ilustración 16. Pantalla principal de la

aplicación. Elaboración propia.

Ilustración 15. Diseño de las pantallas.

Elaboración propia.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

21

Conforme a la definición de los objetivos y acorde con estas pantallas, los controles interactivos

o layouts7 que encontramos son los siguientes:

- Selector de trayectos (clase Android: Spinner). Lista desplegable con todos los

itinerarios autorizados según el convenio MINISDEF-RENFE. La selección de este

permitirá el posterior cálculo de la tasación del tren en función de la distancia

correspondiente preestablecida en la base de datos.

- Texto Índice de Plataforma (clase Android: Text View). Muestra en número u índice de

plataforma correspondiente del total en la que se encuentra el usuario en ese momento.

- Flechas (clase Android: ImageButton). Los botones que se encuentran a los laterales de

este texto permiten al usuario desplazarse de una plataforma a otra y ver su contenido

y/o modificarlo.

- Botón “Plus” (+) (clase Android: ImageButton). Este botón añade la “estructura” de una

plataforma a la composición. En caso de no almacenar información en dicha estructura

la aplicación proporciona la opción de desecharla a la hora de generar el cuadro de

carga.

- Botón “Delete” (papelera) (clase Android: ImageButton). Al contrario que el caso

anterior, este botón sirve para eliminar una plataforma. El hecho de eliminar la

plataforma elimina a su vez el material que se haya almacenado en esta. Este botón al

igual que los que se mencionan a continuación, las flechas, permanecen ocultos hasta

que no se almacena información de, al menos, dos plataformas.

- Botones seleccionables Plataforma/Material (clase Android: RadioButtons). La

elección entre el botón Plataforma o Material indica el tipo de lectura que va a realizar

el escáner y en que tabla de la base de datos ha de buscar la información asociada al

código escaneado.

- Botón de escanear (clase Android: Button). Este redirige a la cámara para efectuar la

lectura del código QR.

- Texto de la información (clase Android: Text View):

o Escoja plataforma. Este texto varía en función de la fase en la que se encuentre

la aplicación. En primer lugar, aparecerá como una indicación al usuario: “escoja

una plataforma”. Una vez realizada la lectura este muestra el UIC de la

plataforma y el tipo de esta.

o Cargamento. Permanece oculto mientras no se haya realizado una lectura de

tipo plataforma. Una vez realizada, aparecerá en este el número total de

mercancías que ocupan la plataforma y la suma de sus pesos. El color de este

texto varía en función de si dicha suma supera el máximo peso que es capaz de

soportar la plataforma, en cuyo caso se mostrará en rojo8.

- Listado de material almacenado (clase de Android: RecycleView). Lista donde se

almacenan los materiales que ocupan una plataforma. En cada fila de esta se muestra

7 Los layouts se consideran los contendores donde se organizan todos los controles interactivos.
8 La representación gráfica de este “TextView” se puede apreciar en la ejemplificación del apartado 6 en
la Ilustración 19 con el ejemplo de una plataforma cargada. Del mismo modo, las flechas laterales y la
papelera.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

22

información sobre el material leído y un símbolo de cruz para, en caso de error,

eliminarlo de la lista.

- Botón generar cuadro de carga (clase Android: Button). Este es botón que genera en

última instancia el fichero, con todos los datos almacenados, en formato csv.

Además, en el mencionado manual de usuario recogido en el ANEXO D se explica

detalladamente, y de la forma más natural posible, paso a paso cómo funciona la aplicación y la

secuencia que hay que seguir en el proceso de embarque del material en un transporte (con un

ejemplo desarrollado completamente), así como todas las consideraciones se han tenido en

cuenta a la hora de su desarrollo.

4.3.1. Funcionalidad de la aplicación

Para explicar la funcionalidad de la aplicación se ha usado una herramienta bastante gráfica y

fácil de comprender que se usa comúnmente en los sistemas orientados a objetos. Se trata del

modelo de casos de uso. Este es un tipo de notación UML (Unified Modeling Language en inglés)

o “lenguaje unificado de modelado” que sirve para especificar y describir los métodos y/o

procesos que permiten modelar el comportamiento de un sistema, concretamente

identificando los requisitos funcionales del mismo.

En el siguiente diagrama se muestran los casos de uso asociados al actor dentro del sistema.

Estos a su vez están relacionados mediante líneas de comunicación que definen la interacción

usuario-sistema con dicha funcionalidad y además muestra la relación, en caso de que la haya,

entre los propios casos de uso.

Una vez identificado cual será nuestro entorno del sistema, es decir, el software que vamos a

representar, que en este e caso es la aplicación “CARGA DE TRENES MILITARES”, identificamos

al actor externo que interactúa con el sistema, siendo este el ROC y personal del CCMR, y los

casos de uso, representados por un conjunto de funcionalidades que el sistema proporciona a

los actores y a las que pueden acceder libremente desde este.

Ilustración 18. Diagrama de casos de uso. Elaboración propia.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

23

➢ Identificar plataforma. El usuario puede obtener la información de una plataforma tras

leer su respectivo código QR. Posteriormente, obtiene los siguientes datos de esta:

código identificador UIC y tipo de plataforma (Obtenido a partir del identificador en la

base de datos).

➢ Identificar material. Del mismo modo que el caso anterior, tras leer el código qr del

material correspondiente, en pantalla se muestra de forma inmediata la denominación

táctica del material y su peso (de nuevo obteniendo los datos de la base de datos a

través del identificador escaneado en el QR).

➢ Consultar información. El usuario puede acceder a información a través del menú de la

aplicación. De esta forma, puede consultar los planos de amarres y las fichas de gálibo

de los materiales, las normativas que se aplican en el transporte por ferrocarril

(convenio MINISDEF-RENFE y consigna C-41) y las prescripciones particulares de los

materiales afectados por las citadas normativas.

➢ Calcular tasación del tren. Una vez que se genera el cuadro de carga, en el fichero

descargado podemos obtener el valor de la facturación del tren.

➢ Modificar información de la composición. El usuario puede modificar la información de

la composición, actualizando el listado de plataformas y los cargamentos que las

ocupan.

➢ Generar cuadro de carga. Una vez almacenada la información necesaria de la

composición del tren, el usuario puede generar el cuadro de carga, cuyo resultado será

un fichero con extensión “.csv” en el que se muestran las plataformas del tren y el

material embarcado en estas en el orden que el usuario las ha ido leyendo. Además, el

fichero contiene información adicional de ambos elementos respectivamente.

o Descargar cuadro de carga. Este caso de uso contiene una relación de inclusión

con el caso de uso anterior, lo que quiere decir que siempre que se genere un

cuadro de carga, este automáticamente procede a su descarga.

4.4. Análisis de resultados y depuración de errores.

En las pertinentes pruebas de la aplicación, hubo tropiezos con algunos detalles que no se habían

tenido en cuenta y los cuales se fueron resolviendo a medida que surgían inconvenientes en su

puesta en marcha. Entre ellos, se muestran a continuación algunos de los fallos encontrados y

la solución implementada para su corrección:

 La lectura de un código QR que no pertenezca a nuestra base de datos.

✓ Lo que provocaba el cierre inmediato de la aplicación ha pasado a convertirse en la

emisión de un mensaje que comunica que el código escaneado no es válido y permite

continuar con su uso adecuadamente.

 Teniendo en cuenta el error humano se han tenido varias consideraciones, estas son las

siguientes:

✓ No permite que la primera lectura sea de un material. Ha de ser de una plataforma para

que ese material tenga donde almacenarse. La aplicación lanza un mensaje avisando al

usuario: “Debe escoger una plataforma”.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

24

✓ Si el usuario pretende leer dos plataformas seguidas, avisa al usuario acerca del cambio

de plataforma y solicita confirmación.

✓ La eliminación de un cargamento almacenado en la lista. Además, cuando la suma de

los pesos de los materiales que ocupan una plataforma es mayor que el peso máximo

que es capaz de soportar la plataforma, la aplicación lanza un mensaje avisando al

usuario: “Peso máximo excedido”, impidiendo a su vez que esta plataforma sea

guardada. Debido a ello, se ha añadido a la lista de cargamentos un botón que permita

el borrado del material que se crea conveniente para poder continuar con la lectura de

códigos.

✓ Detecta si el usuario ha creado una plataforma y no tiene información sobre la misma,

considerándola como “no válida”. El sistema solicita confirmación para desecharla y no

tenerla en cuenta a la hora de generar el fichero, eliminándola automáticamente.

 Modificar la información de las plataformas y sus cargamentos.

✓ La posibilidad de navegar de una plataforma a otra. Esto permite que el contenido de

estas sea modificado y actualizado previamente a generar el informe.

 Perdida de información almacenada.

✓ Recuperar la información en caso de que el dispositivo se apague o el usuario salga de

la aplicación temporalmente.

Para probarla finalmente, se ha tomado como ejemplo uno de los transportes ya realizados por

la Cía. de Ferrocarriles, el cual servirá a su vez de ejemplo para explicar la secuencia a seguir por

el usuario, y será expuesto en el apartado de la comprobación (apartado 6). El resultado que

recoge el documento final es el siguiente:

1. Trayecto. Muestra el trayecto que realiza el transporte.

2. Fecha. Fecha en la que se efectúa el ejercicio.

3. Campos de la composición. El contenido que se muestra en la tabla sigue este orden:

plataforma; tipo de plataforma; denominación táctica; peso; dimensiones, C-41 y tipo

de material.

4. Tabla resumen. Al final del documento aparecen dos tablas a modo resumen de la

composición del tren. En primer lugar, se muestran las plataformas agrupadas por tipo

y la cantidad de cada uno de ellos. Por consiguiente, se muestran los materiales

agrupados por nombre, la cantidad de cada uno y el sumatorio total de sus pesos.

5. Facturación. Junto a las tablas anteriores aparece el valor final de la tasación del tren

(sin IVA incluido).

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

25

6. Comprobación.

Para la puesta en escena de la app de CARGA DE TRENES MILITARES, se aprovechó que la Cía. de

Ferrocarriles del Regimiento de Pontoneros y Especialidades de Ingenieros nº12 (MING)

participó durante los días 9 y 10 de octubre en el transporte por ferrocarril de vehículos

acorazados y mecanizados y personal, de la Brigada “Guzmán el Bueno” X, desde Córdoba hasta

el CENAD San Gregorio (Zaragoza), para la realización del ejercicio BETA “CERVANTES 19”.

El proceso de transporte entre la estación de mercancías del Higuerón y la estación militar de

ferrocarril de San Gregorio fue gestionado por el CCMR y la Cía. de Ferrocarriles del BESPII/12,

en coordinación con RENFE, constituyendo dos Terminales Terrestres Ferroviarias.

Teniendo este transporte como ejemplo base para validar la aplicación con sus respectivos

destinatarios, se imprimieron los códigos QR asociados a los materiales y plataformas que

conformaban el ejercicio, formando así la composición de los trenes sobre papel y simulando la

integración de la aplicación en el proceso de embarque del material. La composición de las

plataformas con su respectivo material embarcado eran los siguientes.

A continuación se muestra la representación gráfica de la composición simulada del segundo

tren (tabla derecha) para poder hacer su respectiva comprobación junto con sus códigos QR

asociados: los que se encuentran por encima de los vehículos corresponden a los materiales; los

que están por debajo de la vía, del mismo modo, corresponden a las plataformas. Además, junto

con esta última, se presenta la captura de la pantalla de una de las plataformas con su

cargamento correspondiente de manera demostrativa:

NUMERACIÓN
(UIC)

CONTENIDO

507105080059 Z118006

837139710029 CC LEOPARDO 2E

837139710201 CC LEOPARDO 2E

837139710433 CC LEOPARDO 2E

837139710011 CC LEOPARDO 2E

837139710144 CC LEOPARDO 2E

837139710060 CC LEOPARDO 2E

837139710276 CC LEOPARDO 2E

837139710177 CC LEOPARDO 2E

837139710219 VEC M1

837139710136 VEC M1

837139710128
CREC LEOPARDO 2ER

“BÚFALO”

NUMERACIÓN
(UIC)

CONTENIDO

507105080034 Z118004

837139710037 CC LEOPARDO 2E

837139710052 CC LEOPARDO 2E

837139710102 CC LEOPARDO 2E

837139710086 CC LEOPARDO 2E

837139710383 CC LEOPARDO 2E

837139710466 CC LEOPARDO 2E

837139710532 VCI/C PIZARRO FASE II

837139710540 VCI/C PIZARRO FASE II

837139710375 VCI/C PIZARRO FASE II

837139710482 VCI/C PIZARRO PC BON

837139710516 VCI/C PIZARRO PC BON

837139710284 2 TOA M113 MCCLA TOW

837139710169 CC M47 ER3

Tabla 3. Composición de los trenes. Elaboración propia

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

26

Como podemos comprobar en este ejemplo, se trata de una

captura de pantalla de una de las plataformas del tren leídas con

su cargamento correspondiente. En este caso se trata de la

plataforma 13, con código UIC-837139710284 (PMMER) y cuyo

cargamento son dos vehículos TOA (Transporte Oruga

Acorazado). Podemos ver como la aplicación muestra en

pantalla estos datos tras haber leído sus códigos

correspondientes, además del resto de elementos que aparecen

en la pantalla actual ya mencionados en el apartado anterior.

Ilustración 19. Representación grafica de la composición con sus

respectivos QR asociados. Elaboración propia.

Ilustración 20. Ejemplo pantalla de la

plataforma 13 cargada. Elaboración propia.

LOCOMOTORA

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

27

En el ANEXO E podemos ver como los documentos oficiales tramitados en el transporte y, a

continuación de estos, en el mismo anexo, se adjuntará el resultado generado por la aplicación

tras haber realizado la lectura de los trenes. De esta forma, se podrá hacer una clara

comparación con los resultados obtenidos.

El resultado obtenido resultó totalmente satisfactorio, teniendo en cuenta que, en base a los

objetivos planteados, se han cumplido todos:

✓ Reducción eficazmente del tiempo empleado en el proceso de carga. La lectura de los

códigos conllevó un tiempo de 8 minutos, comparado con los 90, aproximadamente,

que hubiera costado hacerlo de forma tradicional. Sin embargo, ha de tenerse en cuenta

que la comprobación se puso sobre papel, a lo que habría que sumarle el

desplazamiento entre las distintas plataformas, y el uso eficiente de la aplicación por

parte del ROC.

✓ Las fichas de galibo resultan de gran apoyo para realizar rápidas consultas y resolver

pequeñas incidencias que surgen durante el proceso de embarque, principalmente para

centrar los vehículos adecuadamente en las plataformas.

✓ El reconocimiento inmediato del material cargado gracias a la lectura de código QR

facilita la automatización del proceso, evitando así equivocaciones humanas que

puedan generar agravantes en el proceso.

✓ Como se ha comprobado, la aplicación es capaz de realizar la tasación del tren y, gracias

a proporcionar estos datos de manera inmediata al CCMR facilita la comprobación y el

control que se ha de gestionar por parte de este.

Ilustración 21. Resultado que proporciona la aplicación de la composición del tren probado. Elaboración propia.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

28

7. Conclusiones y líneas futuras.

7.1. Objetivos alcanzados.

En primer lugar, el mayor inconveniente que se ha presentado a la hora de desarrollar este

proyecto ha sido la falta de experiencia en el ámbito de la programación, y partir el aprendizaje

desde cero teniendo que aprender el qué era y cómo había que desarrollar cada uno de los

componentes que conforman la aplicación final.

A pesar de ello, como ya se ha mencionado en el apartado anterior, el proyecto ha sido capaz

de paliar todos los objetivos abordados: agiliza la tarea que desempeña el ROC a gran escala;

facilita la información necesaria en caso de necesidad de consulta de esta; calcula la tasación del

tren y permite el reconocimiento inmediato de los elementos de una composición

Además, la aplicación actual cuenta con varios aspectos con los que no se había contado al

principio, como por ejemplo la autorrecuperación de la información registrada en caso de que

la aplicación se pare o el dispositivo se apague o la opción de modificar información en caso de

equivocación. Por ello, se ha ido adaptando el diseño del interfaz a medida que se ha ido

desarrollando el proyecto, haciendo las variaciones necesarias en el código para que al final esta

presentase de la forma más intuitiva posible, facilitando del mismo modo su manejo.

En conclusión, de este proyecto se han obtenido unos conocimientos y habilidades muy positivas

a pesar de trabajar con tecnologías con las que no se había tratado anteriormente. Se ha

generado una aplicación funcional que ha cumplido los objetivos que se habían planteado en un

primer momento. Además, la Cía. de Ferrocarriles y el personal del CCMR, ya están trabajando

la posibilidad de implementar oficialmente la aplicación en el proceso de carga de los trenes.

7.2. Líneas futuras.

Durante la realización de este trabajo también se han planteado otras variantes, las cuales dejan

la cabida a un margen de ampliación.

Por un lado, debido al incremento de esa amenaza en el flanco este de Europa y al fomento del

transporte por ferrocarril mencionada al inicio de esta memoria, queda la posibilidad de que

esta aplicación abarque el marco internacional, generando los códigos QR cuyo identificativo

sea el código OTAN que esté asignado a ese material. Además, en un futuro también sería

posible implantar dichos QR de carácter dinámico, de forma que la información contenida no

contenga directamente la identificación del material, sino que redirija a una url cuyo contenido

sea controlable de forma externa.

Por otra parte, estudiar la viabilidad de mostrar el proceso de embarque de material en línea.

De esta forma, permite que el órgano encargado de gestionar esta información, el CCMR, tenga

la posibilidad de estar al corriente en todo momento del desarrollo del proceso de carga.

Además, se puede implementar a la aplicación una consulta particular de la información de un

material cuando se efectúa una lectura de este. De esta forma, cada vez que se escanee un

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

29

código se pueda acceder directamente a las fichas de galibo y documentación adicional

perteneciente al mismo en vez de buscar el documento en el menú actual de la aplicación.

Por último, otra de las variables necesarias para la ejecución real de este proyecto es el estudio

de los posibles materiales con los que grabar el código QR (tipo pintura o pegatina) e incorporar

al cargamento, que presenten la aptitud para cualquier tipo de condiciones meteorológicas

adversas a las que puede estar sometido un tren en un transporte.

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

30

Bibliografía

[1] Unkonwn, “Países del flanco oriental de la OTAN piden una Alianza más fuerte,” 2018.
[Online]. Available:
https://www.lavanguardia.com/politica/20180608/444216732059/paises-del-flanco-
oriental-de-la-otan-piden-una-alianza-mas-fuerte.html. [Accessed: 10-Sep-2019].

[2] J. R. Arévalo, “LLegar. Manual Técnico de operaciones.” (PE-07), 2007.

[3] “NAI2403/17. Seguimiento y servicios de Ferrrocaril.” Mando de Ingenieros (RPEI12-
BESPII/12).

[4] “SUBSISTEMA DE TRANSPORTE.” Norma General 02/13. Estado Mayor del Ejército de
Tierra, 2013.

[5] “Instrucción Técnica 09/02. Procedimiento operativo sobre transporte en trenes
miliares especiales.” Mando de Apoyo Logístico del Ejército (Dirección de Transportes),
p. 15, 2002.

[6] “NAI 2403/09. SOBRE SEGUIMIENTO Y CONTROL DE TRENES MILITARES.” Plana Mayor
de Mando (Regimiento de Pontoneros y Especialidades no12), 2009.

[7] “PROCEDIMIENTO PARA LA PREPARACIÓN Y EJECUCIÓN DE LOS TRANSPORTES
INCLUIDOS EN EL PROGRAMA ANUAL DE TRANSPORTE TERRESTRE (PAT-T).” Apéndice 1
al ANEXO VII (PAT-T) del PROAL DINFULOG 2019. DIRECCIÓN DE INTEGRACIÓN DE
FUNCIONES LOGÍSTICAS . SUBDIRECCIÓN DE GESTIÓN., 2019.

[8] “Normas para la gestión de Peticiones de transporte, Órdenes de transporte y
utilización del impreso T-5OO.” ESTADO MAYOR DEL EJÉRCITO., 2006.

[9] ADIF, “Consigna serie C-41. Normas para el transporte de vehículos militares de
caracaterísticas excepcionales.” Dirección de Seguridad en la Circulación, p. 46, 2012.

[10] “Manual técnico. Transporte por ferrocarril.” (MT5_007) Mando de Adiestramiento y
Doctrina.Dirección de Doctrina, Orgánica y Materiales., p. 130, 2000.

[11] BOD, “Convenio entre el Ministerio de Defensa y Renfe-Operadora para el transporte
de mercancías y personal.” Boletín Oficial del Ministerio de Defensa., p. 36, 2018.

[12] Renfe Mercancías, “Normativa de cargamento. NC-007-07-17.” Dirección General de
Mecancías. Gerencia de Seguridad y Autoprotección., 2017.

[13] Statista Research Department, “Cuota de mercado de sistemas operativos para
smartphones por pedidos 2014-2020.,” 2019. [Online]. Available:
https://es.statista.com/estadisticas/600731/cuota-de-mercado-de-sistemas-
operativos-para-smartphones-por-pedidos--2020/. [Accessed: 05-Oct-2019].

[14] J. Pérez and A. Gardey, “Definición de Java,” 2013. [Online]. Available:
https://definicion.de/java/. [Accessed: 10-Oct-2019].

[15] M. Lozano, “DESARROLLO DE UNA APLICACIÓN MÓVIL ANDROID PARA CONTROL
REMOTO DE UN SERVICIO WEB.” UNIVERSIDAD CARLOS III DE MADRID. ESCUELA
POLITÉCNICA SUPERIOR., 2012.

[16] Unkonwn, “¿Qué es el código QR?,” KEYENCE. [Online]. Available:

APP PARA LA CARGA DE TRENES MILITARES: LECTURA AUTOMATIZADA DE MATERIALES

31

https://www.keyence.com.mx/ss/products/auto_id/barcode_lecture/basic_2d/qr/inde
x.jsp.

[17] J. F. Avila de Tomás, “¿Qué es un código QR?. Definición y estructura,” Grupo de Nuevas
Tecnologías de la SoMaMFyC, 2012. [Online]. Available:
https://nuevastecsomamfyc.wordpress.com/2012/05/08/que-es-un-codigo-qr-
definicion-y-estructura/.

[18] Unkonwn, “Funcionamiento de un código QR,” uQR.me, 2016. [Online]. Available:
https://uqr.me/es/qr-code-generator-marketing/como-funciona-codigo-qr/. [Accessed:
20-Oct-2019].

[19] IAvilaE, “Programación Android, Base de Datos II,” 2013. [Online]. Available:
http://www.proyectosimio.com/es/programacion-android-base-de-datos-ii/.

[20] Unkonwn, “Librería zXing para lectura de códigos QR en Android,” BILJET APP, 2013.
[Online]. Available: https://biljetapp.wordpress.com/2013/03/04/presentacion/.
[Accessed: 12-Oct-2019].

[21] “Inspección General no.66. Sistema de Apoyo Logístico.” Estado Mayor del Ejército,
2012.

[22] Renfe, “Catálogo de vagones.” 28036 Madrid, 2015.

[23] IDC, “Sobre IDC,” Información por sector dirigida a compradores de tecnología, 2019.
[Online]. Available: https://idcspain.com/sobre-idc. [Accessed: 05-Oct-2019].

ANEXOS

ANEXO A. FICHA DE GÁLIBO.

ANEXOS

ANEXO B. PLATAFORMAS: DETALLES TÉCNICO.

ANEXOS

ANEXO C. MODELOS DE DOCUMENTACIÓN EN EL PROCESO DE TRANSPORTE POR FERROCARRIL.

Apéndice 1. Programa Anual de Transporte Terrestre (PAP-T).

Resumen transporte BRIX.

ANEXOS

Apéndice 2. Cuadro de composición para un programa de transporte.

 (Propuesta de Organización de Trenes)

ANEXOS

Apéndice 3. Justificación de petición de transporte. (T-500)

ANEXOS

ANEXOS

ANEXOS

Apéndice 4. Orden de marcha.

ANEXOS

ANEXO D. MANUAL DE USUARIO DE LA APLICACIÓN.
(Página siguiente)

MANUAL TÉCNICO
APP PARA LA CARGA DE TRENES MILITARES:
LECTURA AUTOMATIZADA DE MATERIALES

TRABAJO DE FIN DE GRADO

AUTOR: PATRICIA DÍAZ AGUILAR

ACADEMIA GENERAL MILITAR

CURSO 2019/2020

CARGA DE TRENES MILITARES

MANUAL TÉCNICO

MANUAL PARA USO INTERNO DE LA CÉLULA DE CONTROL DE

MOVIMIENTO POR FERROCARRIL

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

I

Contenido
Lista de figuras .. II

1. Introducción .. 1

1.1. Objetivos abordados ... 1

2. Instalación ... 2

3. Herramientas empleadas. ... 3

3.1. Android Studio. ... 3

3.2. Java. ... 3

3.3. DB Browser for SQLite. .. 4

4. Funcionalidades... 5

5. Características. .. 7

5.1. Secuencia paso por paso (EJEMPLIFICADA). ... 7

5.2. Consideraciones. ... 14

6. Modificación del sistema. ... 1

6.1. Modificación base de datos en SQLite. .. 1

6.2. Implementación de la base de datos en Android Studio. .. 4

6.3. Modificación de la información. .. 6

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

II

Lista de figuras
Ilustración 1. Icono de la aplicación. ... 2

Ilustración 2. Logo de Android Studio ... 3

Ilustración 3. Logo Java. .. 3

Ilustración 4. Logo de DB Browser for SQLite ... 4

Ilustración 5. Diagrama de casos de uso de la aplicación. .. 5

Ilustración 6. Composición grafica del tren ... 7

Ilustración 7. Pantalla de inicio ... 8

Ilustración 8. Estado inicial de la pantalla principal .. 8

Ilustración 9. Ubicación botones de plataforma y escanear. .. 8

Ilustración 10. Pantalla del escáner (cámara). .. 8

Ilustración 11. Información de la plataforma 1 (coche de viajeros). .. 8

Ilustración 13. Plataforma añadida. .. 9

Ilustración 13. Ubicación botón añadir plataforma. ... 9

Ilustración 15. Mensaje al usuario cuando pretende escanear material sin haber una

plataforma registrada. .. 9

Ilustración 15. Información plataforma 2. .. 9

Ilustración 16. Información de la plataforma 2. .. 10

Ilustración 17. Información de las plataformas 3, 4, 5 y 6. ... 10

Ilustración 18. Información de las plataformas 11, 12, 13 y 14. ... 11

Ilustración 19. Información de las plataformas 7,8 9 y 10. ... 11

Ilustración 20. Selección del trayecto ... 12

Ilustración 21. Cuadro de carga generado. ... 13

Ilustración 22. Resultado final de la composición. .. 13

Ilustración 23. Menú superior y documentación con ficheros de ayuda. 14

Ilustración 24. Mensaje que lanza la app al usuario cuando este quiere almacenar material sin

plataforma registrada. .. 14

Ilustración 25. Solicitud para modificar la información de una plataforma ya guardada. 15

Ilustración 26. Aviso al usuario cuando hay plataformas vacías. .. 15

Ilustración 27. Estructura de plataforma: plataforma sin ninguna información. 15

Ilustración 28. Mensaje de código no valido. .. 16

Ilustración 29. Mensaje de peso de plataforma excedido. ... 16

Ilustración 30. El sistema pide confirmación para eliminar el cargamento. 16

Ilustración 31. El sistema pide confirmación para eliminar la plataforma 17

Ilustración 32. Ubicación botón Delete: eliminar plataforma. .. 17

Ilustración 33. El sistema pide confirmación para borrar la información del tren. 18

Ilustración 34. Aviso al usuario de que se va a eliminar la información del tren........................ 18

Ilustración 35. Descarga de DB Browser for SQLite .. 1

Ilustración 36. Pantalla inicial del programa ... 2

Ilustración 37. Icono de la base de datos .. 2

Ilustración 38. Programa una vez abierta la base de datos en el sistema 2

Ilustración 39. Pestaña hoja de datos. Lista de las tablas de la base de datos. 3

Ilustración 40. Campos de cada tabla de la base de datos. .. 3

Ilustración 41. Descarga de Java. .. 4

Ilustración 42. Descarga de Android Studio .. 5

file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282553
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282553
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282553
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282553
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282554
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282554
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282554
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282554
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282555
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282555
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282555
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282555
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282556
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282556
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282556
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282556
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282557
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282557
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282557
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282557
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282558
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282558
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282558
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282558
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282559
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282559
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282559
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282559
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282560
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282560
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282560
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282560
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282561
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282561
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282561
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282561
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282562
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282562
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282562
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282562
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282563
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282563
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282563
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282563
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282564
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282564
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282564
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282564
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282565
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282565
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282565
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282565
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282566
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282566
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282566
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282566
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282566
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282566
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282567
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282567
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282567
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282567
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282568
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282568
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282568
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282568
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282569
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282569
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282569
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282569
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282570
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282570
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282570
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282570
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282571
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282571
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282571
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282571
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282572
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282572
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282572
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282572
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282573
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282573
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282573
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282573
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282574
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282574
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282574
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282574
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282575
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282575
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282575
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282575
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282576
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282576
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282576
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282576
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282576
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282576
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282577
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282577
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282577
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282577
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282578
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282578
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282578
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282578
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282579
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282579
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282579
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282579
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282580
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282580
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282580
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282580
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282581
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282581
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282581
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282581
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282582
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282582
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282582
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282582
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282583
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282583
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282583
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282583
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282584
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282584
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282584
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282584
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282585
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282585
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282585
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282585
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282586
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282586
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282586
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282586
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282587
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282587
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282587
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282587
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282588
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282588
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282588
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282588
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282589
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282589
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282589
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282589
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282590
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282590
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282590
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282590
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282591
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282591
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282591
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282591
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282592
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282592
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282592
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282592
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282593
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282593
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282593
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282593
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282594
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282594
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282594
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282594

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

III

Ilustración 43. Pantalla inicio Android Studio ... 5

Ilustración 44. Carpeta assets en vista Android. ... 5

Tabla 1. Composición de uno de los dos trenes del transporte. ... 7

file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282595
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282595
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282595
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282595
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282596
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282596
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282596
file:///C:/Users/patri/Desktop/TFG/manual%20tecnico.docx%23_Toc23282596

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 1 de 29

1. Introducción

Este manual busca explicar paso a paso cada una de las operaciones que se puede realizar en la

aplicación. Se trata de un manual muy gráfico, con lenguaje de fácil interpretación y se construye de

tal manera que sea de fácil comprensión para los usuarios finales de la aplicación con el objetivo final

de que el usuario irresponsable de este proyecto sea capaz de reconocer fácilmente los aspectos,

características y funciones que les proporciona la aplicación.

1.1. Objetivos abordados

Este ha sido el resultado del Trabajo de Fin de Grado cuyo objetivo era llevar a cabo el desarrollo de

una aplicación para dispositivos Android que simplifique al máximo el proceso de carga de un tren

militar. Para ello, se ha empleado la lectura de un código QR asignado a cada material/vehículo, el

cual recopilará las características de estos, para que la aplicación confeccione automáticamente en

formato Excel los cuadros de carga y la tasación del tren conforme las tarifas establecidas con la

operadora RENFE.

El proceso de carga de todo el material en el tren abarca un trabajo manual muy laborioso realizado

por los responsables de operaciones de cargas, por lo que es interesante tratar de automatizar el

proceso asignando diferentes códigos QR a cada material. De esta forma, mediante la lectura de

dicho código, se registrarán todos los datos relacionados con el mismo (peso, dimensiones, código

de identificación, etc). Además, esta aplicación solventa el problema de reconocimiento visual de

determinados materiales, ya que las variaciones entre algunos modelos/versiones son reducidas,

pero pueden generar alteraciones en el documento generado (de coste principalmente).

En definitiva, se trata de una aplicación para la comprobación de las peticiones de transporte

planificadas previamente en un tiempo mucho más reducido y disminuyendo el error humano,

dejando como resultado un proceso de carga más eficaz, facilitando, además, en caso de incidencias,

que estas sean solventadas con la mayor brevedad posible.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 2 de 29

2. Instalación

Para la instalación de la aplicación en cualquier dispositivo Android, se procederá a la instalación de

esta mediante un archivo APK (Android Aplication Package). Un archivo APK es un formato utilizado

para la instalación de software en Android y permite la instalación de aplicaciones cuando no las

encontramos disponibles de otra forma (Google Play, Amazon, etc.). El archivo APK contiene la

aplicación en sí misma y el instalador que permite guardarla y ejecutarla en el dispositivo terminal.

Lo primero que hay que hacer previamente a descargar cualquier archivo APK, es activar la opción

de instalar aplicaciones que procedan de orígenes desconocidos en el propio dispositivo. Para ello,

hay que ir a los ajustes del teléfono, buscar la opción de seguridad y ahí dentro estará la opción de

consentir que el dispositivo instale aplicaciones de fuentes desconocidas. Después de hacer esto

podemos instalar la aplicación ejecutando el APK y, además, para un uso eficiente de la aplicación

tendremos que acceder a los permisos de la misma desde los ajustes del dispositivo y activarlos. De

esta forma, se puede comenzar a disfrutar de la app CARGA PARA TRENES MILITARES abriéndola

desde el menú de aplicaciones del dispositivo.

Ilustración 1. Icono de la
aplicación.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 3 de 29

3. Herramientas empleadas.

3.1. Android Studio.

El desarrollo de este proyecto se ha llevado a cabo con la plataforma de Android Studio, esta se trata

de la herramienta oficial y gratuita de Google para desarrollar aplicaciones en teléfonos móviles

Android.

Esta plataforma cuenta además con numerosas ventajas a la hora de programar por particularidades

como: ofrecer la corrección de errores en línea y proporcionar una rápida compilación, además de

tener todas las herramientas necesarias para programar en cualquier tipo de plataforma y/o

dispositivo Android, proporciona la posibilidad de ejecutar la aplicación mediante el uso de

emuladores (creando un dispositivo virtual) o directamente conectando el móvil al puerto USB

del dispositivo.

3.2. Java.

Java es uno de los lenguajes de programación más ampliamente establecidos. Se ha optado por el

empleo de este puesto que es uno de los lenguajes oficiales para el desarrollo de aplicaciones móviles

en Android, junto con Kotlin que, a pesar de que está adquiriendo una creciente importancia por su

productividad, practicidad y eficacia, la comunidad y los recursos disponibles (librerías, foros de

ayuda etc.) todavía no están tan maduros en comparación con Java.

Entre las características más destacables de Java encontramos que es un lenguaje orientado a

objetos, es muy flexible; funciona en cualquier plataforma, dado que las aplicaciones que se

desarrollan con este lenguaje funcionan en cualquier entorno; su uso no acarrea inversiones

económicas, ya que no se precisa de ninguna licencia para programar; es de fuente abierta , lo que

quiere decir que ofrece libre acceso a sus librerías nativas para sacar provecho de ellas y/o

desarrollarlas; y es un lenguaje expansible, dado que es trabajado por una amplia comunidad de

usuarios que ofrecen mejoras y soluciones constantemente.

Ilustración 2. Logo de Android Studio

Ilustración 3. Logo Java.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 4 de 29

3.3. DB Browser for SQLite.

La base de datos se ha creado en un primer momento en un archivo Excel, siendo cada una de

las hojas que lo componen una tabla de la base de datos. Posteriormente se guardaron con la

extensión .csv (formato abierto sencillo con valores separados con comas) para ser importados,

siendo previamente transformados al formato .db mediante el software DB Browser for SQLite.

SQLite es una biblioteca de C que implementa un motor de base de datos SQL de código abierto

y, debido a que es de tamaño reducido es muy utilizable en los dispositivos móviles y viene por

defecto integrada en el sistema Android.

Ilustración 4. Logo de DB Browser for
SQLite

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 5 de 29

4. Funcionalidades.

Para explicar la funcionalidad de la aplicación se ha usado una herramienta bastante gráfica y fácil de

comprender que se usa comúnmente en los sistemas orientados a objetos. Se trata del modelo de

casos de uso. Este es un tipo de notación UML (Unified Modeling Language en inglés) o “lenguaje

unificado de modelado” que sirve para especificar y describir los métodos y/o procesos que permiten

modelar el comportamiento de un sistema, concretamente identificando los requisitos funcionales

del mismo.

En el siguiente diagrama se muestran los casos de uso asociados al actor dentro del sistema. Estos a

su vez están relacionados mediante líneas de comunicación que definen la interacción usuario-

sistema con dicha funcionalidad y además muestra la relación, en caso de que la haya,

Una vez identificado cual será nuestro entorno del sistema, es decir, el software que vamos a

representar, que en este e caso es la aplicación “CARGA DE TRENES MILITARES”, identificamos al

actor externo que interactúa con el sistema, siendo este el ROC y los casos de uso, representados por

un conjunto de funcionalidades que el sistema proporciona a los actores y a las que pueden acceder

libremente desde este.

➢ Identificar plataforma. El usuario puede obtener la información de una plataforma tras leer

su respectivo código QR. Posteriormente, obtiene los siguientes datos de esta: código

identificador UIC y tipo de plataforma.

Ilustración 5. Diagrama de casos de uso de la aplicación.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 6 de 29

➢ Identificar material. Del mismo modo que el caso anterior, tras leer el código qr del material

correspondiente, en pantalla se muestra de forma inmediata la denominación táctica del

material y su peso.

➢ Consultar información. El usuario puede acceder a información a través del menú de la

aplicación. De esta forma, puede consultar los planos de amarres y las fichas de gálibo de los

materiales, las normativas que se aplican en el transporte por ferrocarril (convenio

MINISDEF-RENFE y consigna C-41) y las prescripciones particulares de los materiales

afectados por las citadas normativas.

➢ Calcular tasación del tren. Una vez que se genera el cuadro de carga, en el fichero

descargado podemos obtener el valor de la facturación del tren.

➢ Modificar información de la composición. El usuario puede modificar la información de la

composición, actualizando el listado de plataformas y los cargamentos que las ocupan.

➢ Generar cuadro de carga. Una vez almacenada la información necesaria de la composición

del tren, el usuario puede generar el cuadro de carga, cuyo resultado será un fichero con

extensión “.csv” en el que se muestran las plataformas del tren y el material embarcado en

estas en el orden que el usuario las ha ido leyendo. Además, el fichero contiene información

adicional de ambos elementos respectivamente.

➢ Descargar cuadro de carga. Este caso de uso contiene una relación de inclusión con el caso

de uso anterior, lo que quiere decir que siempre que se genere un cuadro de carga, este

automáticamente procede a su descarga.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 7 de 29

5. Características.

5.1. Secuencia paso por paso (EJEMPLIFICADA).

La ejemplificación del uso de la aplicación se llevará a cabo mediante el caso del transporte realizado

los días 9 y 10 de octubre de 2019, el cual consistía en la ejecución de un ejercicio de transporte de

vehículos y material procedentes de la BRI “GUZMÁN EL BUENO” X por el itinerario entre las

terminales ferroviarias de Córdoba (El Higuerón) y la estación de San Gregorio (Zaragoza). Se va a

utilizar la siguiente composición para clarificar su funcionamiento siguiendo la siguiente secuencia.

Posteriormente, se expondrán distintas consideraciones que tiene en cuenta a aplicación de forma

que maximice la prevención de errores en el proceso de carga.

A continuación, se va a mostrar lo que sería el proceso de carga de este tren, mostrando la lectura

plataforma por plataforma de esta misma y su contenido. Los respectivos códigos QR se adjuntar en

una leyenda para que el usuario pueda probar la aplicación particularmente.

1. Iniciamos la aplicación y pulsamos botón “EMBARQUE”. Comprobaremos que nos dirige a la

pantalla principal de la aplicación.

NUMERACIÓN
(UIC)

CONTENIDO

507105080034 Z118004

837139710037 CC LEOPARDO 2E

837139710052 CC LEOPARDO 2E

837139710102 CC LEOPARDO 2E

837139710086 CC LEOPARDO 2E

837139710383 CC LEOPARDO 2E

837139710466 CC LEOPARDO 2E

837139710532 VCI/C PIZARRO FASE II

837139710540 VCI/C PIZARRO FASE II

837139710375 VCI/C PIZARRO FASE II

837139710482 VCI/C PIZARRO PC BON

837139710516 VCI/C PIZARRO PC BON

837139710284 2 TOA M113 MCCLA TOW

837139710169 CC M47 ER3

Tabla 1. Composición de uno de los dos trenes del transporte.

Ilustración 6. Composición grafica del tren

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 8 de 29

2. Seleccionamos el botón de Plataforma (aunque ya está programado para que este

seleccionado por defecto desde un primer momento).

3. Pulsamos el botón de escanear, la aplicación nos redirige a la cámara, mostrando un marco

en el que “encajar” nuestro código a leer.

4. Una vez leído este, veremos cómo en pantalla nos cambia el texto “debe escanear una

plataforma” por el código UIC de la plataforma escaneada y el tipo de esta y, bajo la misma,

un texto que comunica al usuario el contenido actual de esa plataforma. En este caso la

primera plataforma de la composición es el coche de viajeros. Como podemos comprobar,

muestra su correspondiente código y tipo, y notifica que la plataforma va vacía en ese

instante (“ningún cargamento”).

En este caso, esta plataforma se considerará como “vacía”, debido a que no es ocupada por

ningún tipo de cargamento.

Ilustración 7. Pantalla de
inicio

Ilustración 8. Estado inicial de la
pantalla principal

Ilustración 9. Ubicación botones
de plataforma y escanear.

Ilustración 10. Pantalla
del escáner (cámara).

Ilustración 11. Información
de la plataforma 1 (coche de

viajeros).

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 9 de 29

5. Pulsamos el botón “+” (situado a la derecha del texto que muestra Plataforma 1 en este

momento) para añadir una nueva plataforma a nuestra composición. Podemos observar

cómo ha cambiado el índice de la plataforma 1 por “Plataforma 2 de 2” y aparecen las flechas

en sus laterales, así como el icono de la papelera, para poder consultar y modificar la

información de la plataforma ya escaneada anteriormente.

6. Procedemos de nuevo a escanear una plataforma. Como ya se ha dicho anteriormente, ha

de seleccionarse el botón de plataforma.

7. Por el contrario, veamos qué pasa si la aplicación detecta que está seleccionado el botón de

material. En la siguiente figura podemos observar que el sistema avisa al usuario de que el

elemento que debe escanear es una plataforma.

8. Siguiendo con el proceso de embarque, vamos a leer el material que contiene la plataforma.

Ha de seleccionarse el botón “material” y posteriormente el de escanear. Este paso ha de

repetirse las veces que sea necesario, es decir, si mi plataforma contiene dos mercancías, se

comprueba que este el botón de material seleccionado y se procede a la lectura de su código

QR correspondiente. De esta forma, ahora nos aparece:

Ilustración 13. Plataforma
añadida.

Ilustración 13. Ubicación botón
añadir plataforma.

Ilustración 15. Mensaje al
usuario cuando pretende

escanear material sin haber
una plataforma registrada.

Ilustración 15. Información
plataforma 2.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 10 de 29

• Un listado con los cargamentos leídos (su denominación táctica, su peso y la opción

de eliminarlo de la lista).

• El texto debajo del código y tipo de plataforma se actualiza en consonancia con los

materiales escaneados, mostrando en pantalla el número total de materiales que

contiene en ese momento la plataforma, así como la suma del peso de estos.

En este caso, vamos a leer la primera

plataforma cargada, por lo que nos tiene que

aparecer en pantalla los siguientes datos:

• 837139710037-PMMER

• 1 cargamento – 63 Tm (en verde, dado que

no excede el peso máximo que soporta la

plataforma PMMER)

• CC LEOPARDO 2E- 63 Tm y su

correspondiente botón de borrado.

9. Para continuar con la lectura de la composición habría que ejecutar de nuevo desde el paso

6 al 9, es decir, añadimos una nueva plataforma, leemos su código QR, y comenzamos a leer

el material que la ocupa. De esta forma, este sería el resultado que se obtendría de cada una

de ellas:

Ilustración 16. Información de la
plataforma 2.

Ilustración 17. Información de las plataformas 3, 4, 5 y 6.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 11 de 29

10. Una vez el usuario ha terminado de registrar toda la información de la composición, se

procede a generar el cuadro de carga. Para ello se ha de tener en cuenta que:

• No se hayan añadido plataformas con el botón “+” sin haber almacenado ningún

tipo de información en ella, puesto que se pueden crear infinitas “estructuras” de

una plataforma, pero la aplicación detecta si no se tienen datos sobre ella. De esta

forma, el sistema pregunta al usuario si las quiere conservar para escanear sus datos

o bien desecharlas y no tenerlas en cuenta a la hora de generar el cuadro de carga.

• Ha de haber un trayecto seleccionado. Esto se hace pulsando en la lista desplegable

nombrada como “Seleccione un trayecto”. En caso de que no esté seleccionado, el

sistema lanza un mensaje al usuario avisándole de que debe seleccionarlo.

• Estas consideraciones se exponen en el siguiente apartado.

Ilustración 18. Información de las plataformas 11, 12, 13 y 14.

Ilustración 19. Información de las plataformas 7,8 9 y 10.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 12 de 29

11. Una vez se ha generado el cuadro de carga, si deslizamos la barra de estado y herramientas

de nuestro dispositivo podemos ver como se está descargando el fichero csv donde ha

quedado registrada la información.

12. Para obtener este fichero se ha creado una ruta donde el usuario ya puede operar con el

archivo libremente. Esta ruta predefinida es la siguiente:

- Ir a la carpeta propia del dispositivo de descargas, ahí el usuario encontrara una

carpeta que recibe el nombre de “Cuadros de carga”, todos los ficheros que se

generen desde un dispositivo se almacenaran en esa carpeta de cada uno

respectivamente.

- Los archivos quedan nombrados por su trayecto, fecha y hora, de esta forma

facilita la diferenciación entre los mismos: “TRAYECTO_FECHA.csv”

Ilustración 20. Selección del trayecto

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 13 de 29

13. El fichero final que se obtiene es el siguiente:

Como podemos comprobarnos muestra el trayecto que seguirá el transporte, la fecha en la que se

realiza este, la tabla de la composición del tren con sus datos correspondientes (plataforma, tipo,

denominación táctica, peso, dimensiones, C-41 y tipo de material), dos tablas resumen de la

composición (una para las plataformas y otra para los materiales, agrupados por tipo y nombre

respectivamente) y finalmente, el valor final de la tasación del tren.

Ilustración 22. Resultado final de la composición.

Ilustración 21. Cuadro de carga generado.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 14 de 29

5.2. Consideraciones.

Las consideraciones que tiene la aplicación se han desarrollado situándonos desde la perspectiva del

cargador. De esta forma, la aplicación cuenta con:

 La aplicación cuenta con una sección de documentación. Se puede acceder desde el menú

de la aplicación, situado en la esquina superior derecha. Podremos observar el listado de

documentos. Entre ellos se encuentran las fichas de gálibo de los materiales, la consigna C-

41, las prescripciones de los vehículos afectados por esta última, el convenio MINISDEF-

RENFE y otros planos acerca de los amarres de los distintos materiales.

 Para poder escanear el material, la aplicación tiene en cuenta que se debe de haber

registrado previamente la plataforma donde va a ser cargado. De esta forma, si se selecciona

el botón “material” y le damos a escanear sin haber escaneado una plataforma, el sistema

nos lo impide, lanzando un aviso al usuario notificando que “Debe escanear una plataforma”.

Ilustración 24. Mensaje que lanza la app al usuario
cuando este quiere almacenar material sin

plataforma registrada.

Ilustración 23. Menú superior y documentación con ficheros de ayuda.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 15 de 29

 El sistema detecta si el usuario quiere leer dos plataformas sucesivamente, encontrándose en la

misma posición, es decir, me encuentro en la plataforma X (índice superior), escaneo el código de

la plataforma Y, mostrándose en pantalla su código identificativo y tipo. Ahora le doy de nuevo al

botón de escanear (estando seleccionado el botón “plataforma” en la misma plataforma X), por

lo que la aplicación avisa al usuario sobre el cambio de plataforma solicitando confirmación por

parte de este. En caso de aceptar, se lee el nuevo código y se actualiza la información de la

plataforma que se encuentra en esa posición.

 Como hemos dicho, se puede crear una estructura de plataforma sin necesidad de almacenar

información en ella. De esta forma, cuando pulsamos el botón “Generar cuadro de carga”, la

aplicación detecta si hay una de esas estructuras de plataforma vacías en las que no se ha

almacenado ningún dato. El sistema considera estas como plataformas “No válidas”, por lo que

avisa al usuario y solicita su confirmación para desecharlas, lo que implica que se eliminen

automáticamente y no se tengan en cuenta al generar el archivo final.

Ilustración 25. Solicitud para modificar la información de
una plataforma ya guardada.

Ilustración 27. Estructura de plataforma:
plataforma sin ninguna información.

Ilustración 26. Aviso al usuario
cuando hay plataformas vacías.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 16 de 29

 Si en algún momento se escanea un código que no pertenezca a la base de datos, ya sea de

plataforma o material, la aplicación avisa al usuario de que el código no es válido.

 Cuando se almacena un listado de materiales dentro de una plataforma, vemos como el texto

bajo el código de la plataforma se actualiza en función del número de materiales leídos y la suma

de sus pesos. Por ello, el sistema detecta si el peso de los materiales que ocupan una plataforma

es superior al máximo peso que esta es capaz de soportar. Por ello, dicho texto cambia de color

(se pone en rojo) y no deja generar el cuadro de carga. Para solventar este problema, se puede

eliminar el cargamento que se seleccione de la lista pulsando la cruz ubicada en la fila de cada

material, y avisa al usuario solicitando su confirmación.

Ilustración 28. Mensaje de código no valido.

Ilustración 29. Mensaje de
peso de plataforma excedido.

Ilustración 30. El sistema pide
confirmación para eliminar el

cargamento.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 17 de 29

 De la misma forma que el cargamento, también se puede eliminar una plataforma. De este modo,

se eliminaría toda la información que se hubiese almacenado en ella. Para ello solo hay que

seleccionar el botón de “Delete”, representado mediante el icono de una papelera. Para borrarla,

el sistema pedirá confirmación al usuario.

 Finalmente, cuando ya se ha registrado toda la información de la composición, al darle al botón

de “Generar cuadro de carga”, el sistema detecta si el usuario no ha seleccionado ningún trayecto

de la lista. De esta forma, la aplicación lanza un mensaje al usuario avisándole de que “seleccione

un trayecto”. (Ilustración 20)

 Una vez este todo correcto al pulsar el botón de “generar cuadro de carga”, la aplicación generará

el archivo y lo descarga automáticamente. En este caso lanza el mensaje de “Saved” y, para la

descarga del fichero final, se ha creado una ruta concreta para facilitar la localización del archivo.

Esta es una carpeta que recibe el nombre de “Cuadros de carga” y se encuentra dentro de la

carpeta “Downloads” de nuestro dispositivo. El nombre del fichero será el del trayecto, la fecha y

la hora (trayecto_fecha.csv). (Ilustración 21)

Ilustración 32. Ubicación botón Delete:
eliminar plataforma.

Ilustración 31. El sistema pide confirmación
para eliminar la plataforma

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 18 de 29

 Por último, para generar un tren nuevo o borrar toda la información que se haya leído hasta el

momento. En el menú de la barra superior, a parte de la opción de los documentos PDF (primer

punto del presente apartado), tenemos la opción de “Cerrar tren”, lo que implica el borrado de

toda la información registrada. Al igual que los casos anteriores, la aplicación avisará y pedirá la

confirmación al usuario para el borrado de información almacenada en la memoria del dispositivo.

Ilustración 34. Aviso al usuario de que se
va a eliminar la información del tren.

Ilustración 33. El sistema pide
confirmación para borrar la información

del tren.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 19 de 29

CÓDIGOS QR DE LA COMPOSICIÓN DEL TREN

PLATAFORMA
(UIC)

837139710284

837139710169

CONTENIDO

2X TOA M113 MCCLA TOW

CC M47 ER3

PLATAFORMA
(UIC)

507105080034

837139710037

837139710052

837139710102

837139710086

837139710383

CONTENIDO -

CC LEOPARDO
2E

CC LEOPARDO
2E

CC LEOPARDO
2E

CC LEOPARDO
2E

CC LEOPARDO
2E

PLATAFORMA
(UIC)

837139710466

837139710532

837139710540

837139710375

837139710482

837139710516

CONTENIDO

CC LEOPARDO
2E

VCI/C PIZARRO
FASE II

VCI/C PIZARRO
FASE II

VCI/C PIZARRO
FASE II

VCI/C PIZARRO
PC BON

VCI/C PIZARRO
PC BON

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 1 de 29

6. Modificación del sistema.

6.1. Modificación base de datos en SQLite.

En primer lugar, para poder hacer las modificaciones necesarias en la base de datos se requiere

tener instalado el programa DB Browser for SQLite, el cual se puede encontrar en la siguiente

dirección: https://sqlitebrowser.org/dl/.

A continuación, se van a explicar los pasos a seguir para modificar y actualizar la base de datos,

los cuales serán representados a posteriori gráficamente mediante imágenes del sistema.

1. Descarga del DB Browser for SQLite. Dentro de las distintas versiones, descargar la que

se ajuste a las propiedades del ordenador donde se ejecute la modificación.

2. Abrir el programa. Se debería mostrar como aparece en la Ilustración 35

3. Pinchar en el botón de abrir base de datos. (Ilustración 36)

4. Buscar en nuestro equipo la base de datos que se ha creado para este proyecto. Debe

de aparecer como el icono y el nombre de la Ilustración 37.

5. La base de datos nos aparecerá cargada como aparece en la Ilustración 38. de esta

forma, cambiando de pestaña a la “hoja de datos” veremos, la información de la base

de datos almacenada en forma de tabla. Se puede modificar las tablas mediante los

botones de “Nuevo Registro”, donde se añadirá una fila nueva o “Borrar registro”,

eliminando la fila seleccionada. (Ilustración 39)

6. Los campos a rellenar cada elemento de cada tabla son los que se muestran en la

Ilustración 40.

Ilustración 35. Descarga de DB Browser for SQLite

https://sqlitebrowser.org/dl/

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 2 de 29

Ilustración 37. Icono de
la base de datos

Ilustración 36. Pantalla inicial del programa

Ilustración 38. Programa una vez abierta la base de datos en el sistema

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 3 de 29

Ilustración 40. Campos de cada tabla de la base de datos.

Ilustración 39. Pestaña hoja de datos. Lista de las tablas de la base de datos.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 4 de 29

6.2. Implementación de la base de datos en Android Studio.

Al igual que en el caso anterior, necesitamos instalar Android Studio para hacer las pertinentes

modificaciones. En este apartado se va a explicar el procedimiento a seguir para actualizar la

base de datos con la que trabajará la aplicación. Por lo tanto, del mismo modo que con SQLite,

se va a exponer previamente los pasos a seguir, y posteriormente se mostraran de forma gráfica.

1. Descargar JavaScript, dado que este ha sido el lenguaje de programación que se ha

empleado para desarrollar la app dentro del entorno Android. Disponible en

https://www.java.com/es/download/. (Ilustración 41)

2. Descargar Android Studio. Se puede encontrar en la siguiente página:

https://developer.android.com/studio/index.html?hl=es-419. (Ilustración 42)

3. Una vez descargado y ejecutado en nuestro equipo, abrir el programa. De esta forma se

mostrará la pantalla inicial donde seleccionaremos la opción de abrir un proyecto

existente. (Ilustración 43)

4. Una vez se abra la aplicación, poner el programa en vista Android, como se indica en la

Ilustración 44. De esta forma, buscaremos en la carpeta assets y borraremos la base de

datos que contiene la aplicación en ese momento (clic derecho → “Delete”) y pegamos

en la misma carpeta (assets) la base de datos actualizada.

5. El hecho de actualizar la base de datos implica actualizar de la misma forma la aplicación

en los dispositivos móviles. En este caso hay que reinstalar la aplicación como se explica

anteriormente en el apartado 2.

Ilustración 41. Descarga de Java.

https://www.java.com/es/download/
https://developer.android.com/studio/index.html?hl=es-419

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 5 de 29

Ilustración 42. Descarga de Android Studio

Ilustración 43. Pantalla inicio Android Studio

Ilustración 44. Carpeta assets en vista Android.

APP PARA LA CRAGA DE TRENES MILITARES: LETCURA AUTOMATIZADA DE MATERIALES
MANUAL TÉCNICO

Página 6 de 29

6.3. Modificación de la información.

Al igual que en el caso anterior, para modificar la información o añadir más documentos PDF al

listado, se ha de proceder al igual que para actualizar la base de datos.

1. Ir a la carpeta de assets.

2. Eliminar los documentos que se quieran sustituir.

3. Añadir los archivos en la citada carpeta copiando y pegando.

(*) Al igual que el caso anterior, toda modificación del sistema conlleva la reinstalación de

este en el dispositivo.

En el caso de la reinstalación mediante el APK, se ha de saber que cada vez que se actualiza el
código, se actualiza el APK automáticamente. De esta forma, con ir a la carpeta “app” dentro de
nuestro proyecto, posteriormente a la carpeta “release” y copiamos el fichero con extensión
.apk en el dispositivo y, por último, desde el gestor de archivos de nuestro dispositivo vamos a
la carpeta donde hayamos guardado el archivo APK y lo ejecutamos de nuevo.

ANEXOS

ANEXO E. COMPARACIÓN DE RESULTADOS.
Apéndice 1. Peticiones de transporte.

ANEXOS

ANEXOS

Apéndice 2. Cuadros de carga generados por el CCMR con los datos proporcionados por el ROC.

COMPOSICIÓN

TREN 1

N
º

P
L

A
T

<
=

2
tn

>

 2
tn

N

º
C

C

TIPO

NUMERACIÓN CONTENIDO C-41
PESOS PESO

PLATAF TOTAL

1 BC10X 507105080059 Z118006 2 2

1 1 1 PMMER 837139710029 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710201 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710433 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710011 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710144 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710060 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710276 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710177 CC LEOPARDO 2E C-41 63 63

1 1 PMMER 837139710219 VEC M1 16 16

1 1 PMMER 837139710136 VEC M1 16 16

1 1 PMMER 837139710128 CREC LEOPARDO 2ER “BÚFALO” C-41 63 63

 0

 TOTALES 601

OBSERVACIONES: S/N

leonciom@renfe.es; pgomezm@renfe.es; mercancias24horas@renfe.es; csc.facturacion@renfe.es;

opterminales@renfe.es; madridmerc1@renfe.es; segcentro.mercancias@renfe.es

sevillamerc1@renfe.es; sevillamerc2@renfe.es

 Nº PLATAFORMAS PESOS

COCHE VIAJEROS 1 2

PMMER 11 599

MM2

M-1

TOTALES 12 601

VEHICULOS KM

<= 2 TN 0
816 > 2 TN 11

nº CC 8

ESTACIÓN: CORDOBA EL HIGUERON(COR) - SAN

GREGORIO (ZRGZ)

TREN MILITAR N.º: M 015 I

N.º PETICION TRANSPORTE: 358232

N.º EXPEDICIÓN: 17599

FECHA PT: 09/10/19

mailto:le
mailto:opterminales@renfe.es
mailto:opterminales@renfe.es
mailto:segcentro.mercancias@renfe.es
mailto:opterminales@renfe.es
mailto:opterminales@renfe.es
mailto:opterminales@renfe.es
mailto:opterminales@renfe.es
mailto:opterminales@renfe.es
mailto:opterminales@renfe.es

ANEXOS

COMPOSICIÓN

TREN 2

N
º

P
L

A
T

<
=

2
tn

>

 2
tn

N

º
C

C

TIPO

NUMERACIÓN CONTENIDO C-41
PESOS PESO

PLATAF TOTAL

1 BC10X 507105080034 Z118004 2 2

1 1 1 PMMER 837139710037 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710052 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710102 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710086 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710383 CC LEOPARDO 2E C-41 63 63

1 1 1 PMMER 837139710466 CC LEOPARDO 2E C-41 63 63

1 1 PMMER 837139710532 VCI/C PIZARRO FASE II 28 28

1 1 PMMER 837139710540 VCI/C PIZARRO FASE II 28 28

1 1 PMMER 837139710375 VCI/C PIZARRO FASE II 28 28

1 1 PMMER 837139710482 VCI/C PIZARRO PC BON 24 24

1 1 PMMER 837139710516 VCI/C PIZARRO PC BON 24 24

1 2 PMMER 837139710284 2 TOA M113 MCCLA TOW 10 10 20

1 1 PMMER 837139710169 CC M47 ER3 C41 45 45

 TOTALES 577

OBSERVACIONES: S/N

leonciom@renfe.es;pgomezm@renfe.es; mercancias24horas@renfe.es; csc.facturacion@renfe.es;

madridmerc1@renfe.es; segcentro.mercancias@renfe.es; opterminalesmer@renfe.es;

sevillamerc1@renfe.es; sevillamerc2@renfe.es

 Nº PLATAFORMAS PESOS

COCHE VIAJEROS 1 2

PMME 13 575

MM2

M-1

TOTALES 14 577

VEHICULOS KM

<= 2 TN 0
816 > 2 TN 14

nº CC 6

ESTACIÓN: CORDOBA EL HIGUERON (COR) - SAN

GREGORIO (ZAR)

TREN MILITAR N.º: M-017-I

N.º PETICION TRANSPORTE: 358252

N.º EXPEDICIÓN: 17623

FECHA PT: 09/10/19

mailto:sevillamerc2@renfe.es

ANEXOS

Apéndice 3. Tasación de los trenes.

ANEXOS

Apéndice 4. Resultados de la aplicación CARGA DE TRENES MILITARES.

RESULTADO TREN 1.

RESULTADO TREN 2.

ANEXOS

Apéndice 5. Códigos QR de las respectivas composiciones

Para hacer la respectiva comprobación, se adjuntan en este apéndice los códigos QR asociados

a las plataformas y los materiales de las distintas composiciones ferroviarias.

CÓDIGOS QR COMPOSICIÓN TREN 1

PLATAFORMA
(UIC)

507105080059

837139710029

837139710201

837139710433

837139710011

837139710144

CONTENIDO -

CC LEOPARDO

2E

CC LEOPARDO

2E

CC LEOPARDO

2E

CC LEOPARDO

2E

CC LEOPARDO

2E

PLATAFORMA
(UIC)

837139710060

837139710276

837139710177

837139710219

837139710136

837139710128

CONTENIDO

CC LEOPARDO

2E

CC LEOPARDO

2E

CC LEOPARDO

2E

VEC M1

VEC M1

CC REC
LEOPARDO 2 ER

(BÚFALO)

ANEXOS

CÓDIGOS QR COMPOSICIÓN TREN 2

PLATAFORMA

(UIC)

507105080034 837139710037 837139710052 837139710102 837139710086 837139710383

CONTENIDO -

CC LEOPARDO

2E

CC LEOPARDO

2

CC LEOPARDO

2E

CC LEOPARDO

2E

CC LEOPARDO

2E

PLATAFORMA

(UIC)

837139710466

837139710532

837139710540

837139710375

837139710482

837139710516

CONTENIDO

CC LEOPARDO

2E

VCI/C PIZARRO

FASE II

VCI/C PIZARRO

FASE II

VCI/C PIZARRO

FASE II

VCI/C PIZARRO

PC BON

VCI/C PIZARRO

PC BON

PLATAFORMA

(UIC)

837139710284 837139710169

CONTENIDO

2X TOA M113 MCCLA TOW CC M47 ER3

ANEXO F. CÓDIGO FUENTE

En base al proyecto desarrollado, en el presente anexo se recopilan todas las clases de Java
empleadas y programadas que han determinado el alcance de este. Dichas clases son las que se
reflejan en la siguiente ilustración y, cuya función, en líneas generales, ya se ha definido en el
apartado 5 de la memoria. Además, en dicho código se han añadido los comentarios pertinentes
para facilitar la legibilidad del mismo.

CÓDIGO FUENTE:

Java Classes

InitialActivity .. 1

PrincipalActivity .. 2

PDFActivity ... 16

DBHelper .. 18

Cargamento .. 20

Plataforma .. 22

Trayecto .. 25

Tarifa .. 26

DialogUtils ... 28

FileUtils .. 31

PFDUtils .. 33

PreferenceUtils ... 36

AdapterCargamento ... 39

AdapterPDF .. 40

ViewHolderCargamento .. 41

ViewHolderPDF ... 42

CÓDIGO FUENTE:

1

InitialActivity

RRI

InitialActivity

package com.example.borradoruno.ui;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import androidx.appcompat.app.AppCompatActivity;

import com.example.borradoruno.datos.DBHelper;

import com.example.borradoruno.R;

public class InitialActivity extends AppCompatActivity{

public static DBHelper dbHelper;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

dbHelper = new DBHelper(this);

Button button =(Button)this.findViewById(R.id.button);

final View view = getWindow().getDecorView().getRootView();

button.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view){

Intent button = new Intent(view.getContext(),

PrincipalActivity.class);

startActivity(button);

}

});

}

}

CÓDIGO FUENTE:

2

PrincipalActivity

RRI

PrincipalActivity

package com.example.borradoruno.ui;

import android.Manifest;

import android.content.DialogInterface;

import android.content.Intent;

import android.graphics.Color;

import android.os.Bundle;

import android.util.Pair;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.ImageButton;

import android.widget.RadioGroup;

import android.widget.Spinner;

import android.widget.TextView;

import android.widget.Toast;

import androidx.annotation.NonNull;

import androidx.appcompat.app.AlertDialog;

import androidx.appcompat.app.AppCompatActivity;

import androidx.core.app.ActivityCompat;

import androidx.recyclerview.widget.LinearLayoutManager;

import androidx.recyclerview.widget.RecyclerView;

import com.example.borradoruno.R;

import com.example.borradoruno.datos.Cargamento;

import com.example.borradoruno.datos.Plataforma;

import com.example.borradoruno.datos.Tarifa;

import com.example.borradoruno.datos.Trayecto;

import com.example.borradoruno.ui.adapter.AdapterCargamento;

import com.example.borradoruno.ui.adapter.ViewHolderCargamento;

import com.example.borradoruno.utils.DialogsUtils;

import com.example.borradoruno.utils.FileUtils;

import com.example.borradoruno.utils.PreferenceUtils;

import com.google.zxing.integration.android.IntentIntegrator;

import com.google.zxing.integration.android.IntentResult;

import com.karumi.dexter.Dexter;

import com.karumi.dexter.PermissionToken;

import com.karumi.dexter.listener.PermissionDeniedResponse;

import com.karumi.dexter.listener.PermissionGrantedResponse;

import com.karumi.dexter.listener.PermissionRequest;

import com.karumi.dexter.listener.single.PermissionListener;

import java.text.SimpleDateFormat;
import java.util.ArrayList;

import java.util.Date;

import java.util.HashMap;

import java.util.List;

import java.util.Locale;

public class PrincipalActivity extends AppCompatActivity implements

ViewHolderCargamento.CargamentoListener {

// Controles

private Spinner spinnerTrayectos;

private RadioGroup radioGroupOperacion;

CÓDIGO FUENTE:

3

PrincipalActivity

RRI

private TextView textViewPlataformaActual;

private RecyclerView recyclerViewCargamento;

private TextView textViewPlataformaActual_Peso;

private ImageButton imageButtonRemovePlataforma;

private List<Plataforma> listPlataformas; // Todas las

plataformas guardadas

private Plataforma plataformaActual; // Plataforma escaneada

private boolean pesoTotalSuperiorPermitido;

private int indexPlataformaActual;

private ImageButton imageButtonPlataforma_Prev;

private ImageButton imageButtonPlataforma_Next;

private TextView textViewPlataformaIndex;

// Tipo de operación

private enum TipoOperacion { toSelectPlataforma,

toSelectCargamento }

private TipoOperacion tipoOperacion;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_principal);

setTitle("COMPOSICIÓN");

// Recoger controles

spinnerTrayectos = findViewById(R.id.spinnerTrayectos);

radioGroupOperacion = findViewById(R.id.radioGroupOperacion);

textViewPlataformaActual =

findViewById(R.id.textViewPlataformaActual);

recyclerViewCargamento =

findViewById(R.id.recyclerViewCargamento);

textViewPlataformaActual_Peso =

findViewById(R.id.textViewPlataformaActual_Peso);

imageButtonPlataforma_Next =

findViewById(R.id.imageButtonPlataforma_Next);

imageButtonPlataforma_Prev =

findViewById(R.id.imageButtonPlataforma_Prev);

textViewPlataformaIndex =

findViewById(R.id.textViewPlataformaIndex);

imageButtonRemovePlataforma =

findViewById(R.id.imageButtonRemovePlataforma);

// Gestión del spinner para mostrar trayectos

///

// Conseguir la lista de trayectos

List<Trayecto> listTrayectos = Trayecto.getListTrayectos();

// Convertir la lista de trayectos en una lista de Strings para que

lo entienda el adapter del spinner

List<String> listNombreTrayectos = new ArrayList<>();

listNombreTrayectos.add("Seleccione un trayecto"); //*

for (Trayecto trayecto : listTrayectos)

listNombreTrayectos.add(trayecto.getDescription());

// Crear el adapter con la lista de trayectos en texto, y asociarlo

al spinner

ArrayAdapter<String> adapterTrayectos = new

ArrayAdapter<String>(this, android.R.layout.simple_spinner_item,

listNombreTrayectos);

CÓDIGO FUENTE:

4

PrincipalActivity

RRI

spinnerTrayectos.setAdapter(adapterTrayectos);

//

//////////////

// Eventos

radioGroupOperacion.setOnCheckedChangeListener(new

RadioGroup.OnCheckedChangeListener() {

@Override

public void onCheckedChanged(RadioGroup radioGroup, int i)

{

switch (radioGroupOperacion.getCheckedRadioButtonId())

{

case R.id.radioButtonPlataforma: tipoOperacion

= TipoOperacion.toSelectPlataforma; break;

case R.id.radioButtonMaterial: tipoOperacion

= TipoOperacion.toSelectCargamento; break;

}

}

});

// Estado inicial de la ficha

recyclerViewCargamento.setAdapter(new

AdapterCargamento(this));

radioGroupOperacion.check(R.id.radioButtonPlataforma);

// Configurar listado de cargamento y crear la plataforma inicial

recyclerViewCargamento.setLayoutManager(new

LinearLayoutManager(this));

// Recoger tren desde preferencias si existe

getTrainFromPreferences();

indexPlataformaActual = 0;

plataformaActual = listPlataformas.get(0);

showPlataformaActual();

}

private void getTrainFromPreferences() {

// Si la lista de plataformas no existe, es que se han perdido al

pasar la app a segundo plano

// En ese caso se intenta cargar la información desde preferencias

int indexPlataforma = 0;

String textPlataforma= null;

do {

textPlataforma =

PreferenceUtils.GetStringFromDefaultsPrefs(this,

Plataforma.PREF_FIELD_PLATAFORMA + indexPlataforma, null);

// Si existe la clave buscada (PLATAFORMA3), tendrá

contenido PLATAFORMA3 453543,345345,345345, El primer número es el uic

de la plataforma y el resto son los ids de los cargamentos

if (textPlataforma != null) {

CÓDIGO FUENTE:

5

PrincipalActivity

RRI

String values[] = textPlataforma.split(",");

Plataforma plataforma =

Plataforma.getPlataforma(values[0]);

if (plataforma != null) {

for (int i = 1; i < values.length; i++) {

Cargamento cargamento =

Cargamento.getCargamento(values[i]);

if (cargamento != null)

plataforma.addCargamento(cargamento);

}

if (listPlataformas == null)

listPlataformas = new ArrayList<>();

listPlataformas.add(plataforma);

}

}

indexPlataforma++;

}

while (textPlataforma != null);

if (listPlataformas == null) {

listPlataformas = new ArrayList<>();

buttonAddPlataforma_Click(null);

}

}

@Override

protected void onStop() {

super.onStop();

saveAllPlatformsToPrefs();

}

/** Este evento se ejecuta al volver a este activity, en este caso

desde la pantalla de captura de Zxing */

@Override

protected void onActivityResult(int requestCode, int resultCode,

Intent data) {

IntentResult result =

IntentIntegrator.parseActivityResult(requestCode, resultCode, data);

if (result != null && result.getContents() != null) {

handleQRResult(result.getContents());

} else {

super.onActivityResult(requestCode, resultCode, data);

}

}

/** Botón de escanear, se pide o se comprueba el permiso de acceso

a la cámara y si es correcto se llama a Zxing */

public void btnEscanear(View v){

// No se puede escanear si no hay plataforma escogida

if (!plataformaActual.isPlataformaIsValid() &&

CÓDIGO FUENTE:

6

PrincipalActivity

RRI

tipoOperacion == TipoOperacion.toSelectCargamento) {

Toast.makeText(this, "Debe escanear primero una

plataforma", Toast.LENGTH_LONG).show();

return;

}

// Si hay una plataforma y se quiere escoger otra, se

solicita confirmación

else if (plataformaActual.isPlataformaIsValid() &&

tipoOperacion == TipoOperacion.toSelectPlataforma) {

AlertDialog.Builder builder =new

AlertDialog.Builder(this);

builder.setTitle("Cambio de plataforma");

builder.setMessage("Va a cambiar de plataforma, ¿está

seguro?");

builder.setPositiveButton("Adelante", new

DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialogInterface,

int i) {

scanQR();

}

});

builder.setNegativeButton("Cancelar", new

DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialogInterface,

int i) {

}

}

});

AlertDialog alertDialog = builder.create();

alertDialog.show();

// Se va a escanear un cargamento y hay plataforma, o se va a

escanear la primera plataforma

else

scanQR();

}

public void buttonAddPlataforma_Click(View view) {

listPlataformas.add(new Plataforma());

indexPlataformaActual = listPlataformas.size()-1;

plataformaActual = listPlataformas.get(indexPlataformaActual);

showPlataformaActual();

}

public void buttonRemovePlataforma_Click(View view) {

DialogsUtils.ShowDialogActionYesNo(this, "Atención", "Va a

eliminar la plataforma actual, ¿está seguro?", "Eliminar", "Cancelar",

new DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialogInterface, int i) {

CÓDIGO FUENTE:

7

PrincipalActivity

RRI

listPlataformas.remove(plataformaActual);

// Obtener el índice de la nueva plataforma

if (indexPlataformaActual > 0)

indexPlataformaActual--;

plataformaActual =

listPlataformas.get(indexPlataformaActual);

showPlataformaActual();

saveAllPlatformsToPrefs();

}

});

}

public void buttonPlataformaPref_Click(View view) {

indexPlataformaActual--;

plataformaActual = listPlataformas.get(indexPlataformaActual);

showPlataformaActual();

}

public void buttonPlataformaNext_Click(View view) {

indexPlataformaActual++;

plataformaActual = listPlataformas.get(indexPlataformaActual);

showPlataformaActual();

}

/** Muestra y ajusta todos los controles asociados a la posición de

la plataforma actual */

public void showPlataformaIndex() {

int numPlataformas = listPlataformas.size();

textViewPlataformaIndex.setText(numPlataformas == 1 ?

"Plataforma 1" : "Plataforma " + (indexPlataformaActual+1) + " de " +

numPlataformas);

imageButtonPlataforma_Prev.setVisibility(indexPlataformaActual

> 0 ? View.VISIBLE : View.INVISIBLE);

imageButtonPlataforma_Next.setVisibility(indexPlataformaActual

< numPlataformas-1 ? View.VISIBLE : View.INVISIBLE);

imageButtonRemovePlataforma.setVisibility(numPlataformas <= 1

? View.GONE : View.VISIBLE);

}

/** Proceder con el escaneo, primero se comprueban los permisos */

private void scanQR() {

// Capturar QR comprobando primero el prermiso

Dexter.withActivity(this)

.withPermission(Manifest.permission.CAMERA)

.withListener(new PermissionListener() {

@Override

public void

onPermissionGranted(PermissionGrantedResponse response) {

startQRScanner();

}

CÓDIGO FUENTE:

8

PrincipalActivity

RRI

@Override

public void

onPermissionDenied(PermissionDeniedResponse response) {

Toast.makeText(PrincipalActivity.this, "No has

dado permiso para usar la cámara", Toast.LENGTH_LONG).show();

}

@Override

public void

onPermissionRationaleShouldBeShown(PermissionRequest permission,

PermissionToken token) {

if

(ActivityCompat.shouldShowRequestPermissionRationale(PrincipalActivity

.this, permission.getName()))

Toast.makeText(PrincipalActivity.this, "Si

no das permiso no podrás capturar el QR", Toast.LENGTH_LONG).show();

}

}).check();

}

/** Acciones a realizar con un QR capturado correctamente */

public void handleQRResult(String codeScanned) {

switch (tipoOperacion) {

case toSelectPlataforma: Plataforma plataformaScanned =

Plataforma.getPlataforma(codeScanned);

if (plataformaScanned == null)

Toast.makeText(this,

"Código de plataforma inválido", Toast.LENGTH_LONG).show();

else {

plataformaActual.CopyInfo(plataformaScanned);

showPlataformaActual();

}

break;

case toSelectCargamento:

selectCargamento(Cargamento.getCargamento(codeScanned)); break;

}

// Guardar en preferencias

saveAllPlatformsToPrefs();

}

/** Mostrar datos de la plataforma actual */

private void showPlataformaActual() {

// Añadir el listado de cargamentos al recyclerView

((AdapterCargamento)recyclerViewCargamento.getAdapter()).setListCargam

entos(plataformaActual.getListCargamentos());

// Mostrar sus propiedades

textViewPlataformaActual.setText(plataformaActual.getDescription());

// Mostrar info de cargamentos (por ahora vacía)

showCargamentosInfo();

CÓDIGO FUENTE:

9

PrincipalActivity

RRI

showPlataformaIndex();

}

/** Se acaba de escanear un cargamento, se muestra su descripción,

* y se comprueban los pesos
*

* Si cargamento vale null, se ignora*/
private void selectCargamento(Cargamento cargamento) {

if (cargamento == null) {

Toast.makeText(this, "Código de cargamento inválido",

Toast.LENGTH_LONG).show();

return;

}

// Añadir el cargamento a la lista

plataformaActual.addCargamento(cargamento);

// Recargar el listado

recyclerViewCargamento.getAdapter().notifyDataSetChanged();

// Mostrar el sumatorio de pesos

showCargamentosInfo();

}

/** Muestra número de cargamentos y la suma de peso

* Se mostrará en rojo si es superior a lo permitido y se mostrará
un aviso */

private void showCargamentosInfo() {

if (!plataformaActual.isPlataformaIsValid()) {

textViewPlataformaActual_Peso.setVisibility(View.INVISIBLE);

return;

}

textViewPlataformaActual_Peso.setVisibility(View.VISIBLE);

int numCargamentos = plataformaActual.getNumCargamentos();

String numCargamentosText = numCargamentos == 0 ? "Ningún

cargamento" : numCargamentos == 1 ? "1 Cargamento - " :

numCargamentos + " Cargamentos - ";

String pesoTotalText = String.format("%.2f",

plataformaActual.calculateSumPesos()) + " Tm";

textViewPlataformaActual_Peso.setText(numCargamentosText +

(numCargamentos >0 ? pesoTotalText:""));

pesoTotalSuperiorPermitido = plataformaActual.pesoExcedido();

textViewPlataformaActual_Peso.setTextColor(pesoTotalSuperiorPermitido

? Color.RED : Color.DKGRAY);

if (pesoTotalSuperiorPermitido)
Toast.makeText(this, "Peso de la plataforma excedido",

Toast.LENGTH_LONG).show();

}

CÓDIGO FUENTE:

10

PrincipalActivity

RRI

/** Iniciar la captura QR */

private void startQRScanner() {

new IntentIntegrator(this).initiateScan();

}

///

// INTERACCIÓN CON EL LISTADO

//

/** Este método se llamará desde la fila donde se ha pulsado el botón

de borrar */

@Override

public void onCargamentoDelete(final Cargamento cargamento) {

AlertDialog.Builder builder =new AlertDialog.Builder(this);

builder.setTitle("Eliminar cargamento");

builder.setMessage("Va a eliminar el cargamento " +

cargamento.getDenominacionTactica() + " ¿está seguro?");

builder.setPositiveButton("Eliminar", new

DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialogInterface, int

i) {

// Eliminar el cargamento de la lista

plataformaActual.removeCargamento(cargamento);

//recalcular pesos

showCargamentosInfo();

// Actualizar el listado

recyclerViewCargamento.getAdapter().notifyDataSetChanged();

}

});

builder.setNegativeButton("Cancelar", new

DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialogInterface, int

i) { }

});

AlertDialog alertDialog = builder.create();

alertDialog.show();

}

@Override

public void onCargamentoShowInfo(Cargamento cargamento) {

}

/** Botón para generar documento CSV */

public void buttonGenerateCSV_Click(View view) {

CÓDIGO FUENTE:

11

PrincipalActivity

RRI

// Primera comprobación: debe haber una ruta seleccionada

int indexRuta = spinnerTrayectos.getSelectedItemPosition();

if (indexRuta == 0) {

Toast.makeText(this, "Debes escoger una ruta",

Toast.LENGTH_SHORT).show();

return;

}

// Segunda comprobación: hay plataformas inválidas

boolean thereIsInvalidPlataforms = false;

for (Plataforma plataforma : listPlataformas)

if (!plataforma.isPlataformaIsValid()) {

thereIsInvalidPlataforms = true;

break;

}

// Tercera comprobación: hay plataformas con peso excedido

for (Plataforma plataforma : listPlataformas)

if (plataforma.pesoExcedido()) {

Toast.makeText(this, "Plataforma con peso excedido",

Toast.LENGTH_LONG).show();

return;

}

// Comprobar si hay alguna inválida

if (thereIsInvalidPlataforms)

DialogsUtils.ShowDialogActionYesNo(this, "Atención",

"Hay plataformas que no ha escaneado", "Desecharlas y continuar",

"Cancelar el documento", new DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface

dialogInterface, int i) {

// Si se pulsa el botón de continuar, se genera el csv

generateCSV();

else

}

});

generateCSV();

}

/** Generar el documento csv una vez realizadas las comprobaciones */

private void generateCSV() {

// Cabecera trayecto

Trayecto trayectoSelected =

Trayecto.getListTrayectos().get(spinnerTrayectos.getSelectedItemPositi

on()-1); // El -1 es por la línea añadida 'seleccione trayecto'

String textCSV = "TRAYECTO: " + trayectoSelected.getNombre()

+ "\n\n";

// Añadir fecha

SimpleDateFormat simpleDateFormat = new

SimpleDateFormat("dd/MM/yyyy", Locale.getDefault());

String date = simpleDateFormat.format(new Date());

textCSV = textCSV + date + "\n\n";

textCSV = textCSV + "COMPOSICIÓN\n\n";

// Cabecera materiales

textCSV = textCSV + "UIC;TIPO;DENOMINACIÓN TÁCTICA;PESO;C-

CÓDIGO FUENTE:

12

PrincipalActivity

RRI

41;ALTO;LARGO;ANCHO;TIPO DE MATERIAL\n";

// Generar lineas materiales

for (Plataforma plataforma : listPlataformas)

if (plataforma.isPlataformaIsValid()) {

String cabeceraPlataformaCSV = "=\"" +

plataforma.getUic() + "\";" + plataforma.getTipo();

if (plataforma.hasCargamentos())

for (Cargamento cargamento :

plataforma.getListCargamentos()) {

String cargamentoCSV = cabeceraPlataformaCSV

+ ";" + cargamento.getDenominacionTactica() + ";" +

String.format("%.2f", cargamento.getPeso()) + ";" +

cargamento.getC41() + ";" + cargamento.getAlto() + ";" +

cargamento.getLargo() + ";" + cargamento.getAncho() + ";" +

cargamento.getTipomaterial() + "\n";

textCSV = textCSV + cargamentoCSV;

}

else {

textCSV = textCSV + cabeceraPlataformaCSV + "\n";

}

}

// Tabla resumen plataformas

//

// Cabecera

textCSV = textCSV + "\n\nTIPO PLATAFORMA;NÚMERO\n";

// Obtener resumen de plataformas y para cada una el número de

veces que se repite

HashMap<String, Integer> listPlataformasByTipo = new

HashMap<>();

for (Plataforma plataforma : listPlataformas)

if (plataforma.isPlataformaIsValid()) {

String key = plataforma.getTipo();

int numPlataformas =

listPlataformasByTipo.containsKey(key) ?

listPlataformasByTipo.get(key) : 0;

listPlataformasByTipo.put(key, numPlataformas + 1);

}

// Mostrar resumen de plataformas

for (String plataformaTipo : listPlataformasByTipo.keySet())

textCSV = textCSV + plataformaTipo + ";" +

listPlataformasByTipo.get(plataformaTipo) + "\n";

// Totales

textCSV = textCSV + "TOTALES;" + listPlataformas.size() +

"\n";

// Tabla resumen cargamentos

///

CÓDIGO FUENTE:

13

PrincipalActivity

RRI

// Cabecera

textCSV = textCSV + "\n\nDENOMINACIÓN TÁCTICA;NÚMERO;PESO\n";

// Obtener resumen de plataformas y para cada una el número de veces

que se repite

HashMap<String, Pair<Cargamento, Integer>>

listCargamentosByTipo = new HashMap<>();

for (Plataforma plataforma : listPlataformas)

if (plataforma.isPlataformaIsValid())

for (Cargamento cargamento :

plataforma.getListCargamentos()) {

String key = cargamento.getDenominacionTactica();

int numCargamentos =

listCargamentosByTipo.containsKey(key) ?

listCargamentosByTipo.get(key).second : 0;

listCargamentosByTipo.put(key,

Pair.create(cargamento, numCargamentos + 1));

}

// Mostrar resumen de cargamentos

double totalPesos = 0;

int numTotalCargamentos = 0;

for (String cargamentoDenominación :

listCargamentosByTipo.keySet()) {

Cargamento cargamento =

listCargamentosByTipo.get(cargamentoDenominación).first;

int numCargamento =

listCargamentosByTipo.get(cargamentoDenominación).second;

textCSV = textCSV + cargamentoDenominación + ";" +

numCargamento + ";" + cargamento.getPeso() + "\n";

totalPesos += cargamento.getPeso() * numCargamento;

numTotalCargamentos += numCargamento;

}

// Totales

textCSV = textCSV + "TOTALES;" + numTotalCargamentos + ";" +

totalPesos + "\n\n";

// Mostrar tasación del tren (la suma es sin iva)

textCSV = textCSV + " COSTE TOTAL (IVA no incluido):;" +

String.format("%.2f ", Tarifa.CalcularTarifa(listPlataformas,

trayectoSelected.getDistanciaKms())) + "€;";

// Generar fichero

SimpleDateFormat simpleDateFormatForFilename = new

SimpleDateFormat("dd-MM-yyyy", Locale.getDefault());

String dateForFilename =

simpleDateFormatForFilename.format(new Date());

String filename = trayectoSelected.getNombre() + "_" +

dateForFilename + ".csv";

FileUtils.WriteFile(this, filename, textCSV);

DialogsUtils.ShowDialogActionOk(this, "Atención", "Se ha

generado un informe de con el nombre '" + filename + "' en la carpeta

de descargas.\nCuando se asegure que es correcto y no va a realizar

ninguna modificación en la información de las plataformas o materiles,

CÓDIGO FUENTE:

14

PrincipalActivity

RRI

pulse en el menú la opción 'Cerrar tren'.", "Entendido");

}

//////////////////

// MENÚ SUPERIOR

//////////////////

@Override

public boolean onCreateOptionsMenu(Menu menu) {

MenuInflater inflater = getMenuInflater();

inflater.inflate(R.menu.menu_principal, menu);

return true;

}

@Override

public boolean onOptionsItemSelected(@NonNull MenuItem item) {

switch (item.getItemId()) {

case R.id.action_close_train: actionCloseTrain(); break;

case R.id.action_info_pdf: actionInfoPdf(); break;

}

return super.onOptionsItemSelected(item);

}

private void actionCloseTrain() {

DialogsUtils.ShowDialogActionYesNo(this, "Atención", "Va a

cerrar este tren.\n\nSi confirma la operación se eliminará toda la

información asociada.\n\nAsegurese que ha generado el fichero 'csv',

lo tiene en lugar seguro, y es correcto.", "Cerrar tren", "Cancelar",

new DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialogInterface, int

i) {

DialogsUtils.ShowDialogActionYesNo(PrincipalActivity.this, "Atención",

"¿Está seguro?", "Cerrar tren", "Cancelar", new

DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface

dialogInterface, int i) {

// Eliminar todas las plataformas de preferencias

removeAllPlatformsFromPrefs();

// Borrar el tren de memoria

listPlataformas.clear();

// Reiniciar ficha

// Reinciar spinner

spinnerTrayectos.setSelection(0);

// Crear la plataforma inicial (aunque esté vacía) y mostrarla

// Esta llamada mostrará la plataforma recién creada

CÓDIGO FUENTE:

15

PrincipalActivity

RRI

}

});

}

}

});

buttonAddPlataforma_Click(null);

private void removeAllPlatformsFromPrefs() {

int index = 0;

String plataforma = null;

do {

String plataformaPrefKey =

Plataforma.PREF_FIELD_PLATAFORMA + index;

plataforma =

PreferenceUtils.GetStringFromDefaultsPrefs(PrincipalActivity.this,

plataformaPrefKey, null);

if (plataforma != null)

PreferenceUtils.RemovePrefInDefaultPrefs(PrincipalActivity.this,

plataformaPrefKey);

index++;

}

while (plataforma != null);

}

private void saveAllPlatformsToPrefs() {

removeAllPlatformsFromPrefs();

int index = 0;

for (Plataforma plataforma : listPlataformas)

if (plataforma.isPlataformaIsValid())

plataforma.savePlataformaInPreferencias(this,

index++);

}

private void actionInfoPdf() {

startActivity(new Intent(this, PDFActivity.class));

}

}

CÓDIGO FUENTE:

16

PrincipalActivity

RRI

PDFActivity

package com.example.borradoruno.ui;

import androidx.appcompat.app.AppCompatActivity;

import androidx.recyclerview.widget.LinearLayoutManager;

import androidx.recyclerview.widget.RecyclerView;

import android.Manifest;

import android.os.Bundle;

import android.view.MenuItem;

import com.example.borradoruno.R;

import com.example.borradoruno.ui.adapter.AdapterPDF;

import com.karumi.dexter.Dexter;

import com.karumi.dexter.PermissionToken;

import com.karumi.dexter.listener.PermissionDeniedResponse;

import com.karumi.dexter.listener.PermissionGrantedResponse;

import com.karumi.dexter.listener.PermissionRequest;

import com.karumi.dexter.listener.single.BasePermissionListener;

import com.karumi.dexter.listener.single.PermissionListener;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

public class PDFActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity_pdf);

getSupportActionBar().setDisplayHomeAsUpEnabled(true); //

Mostrar flecha de volver

setTitle("Ficheros de ayuda");

// Obtener listado de pdfs

List<String> listPDFs = new ArrayList<>();

try {

String listFilesInAssets[] = getAssets().list("pdf");

listPDFs.addAll(Arrays.asList(listFilesInAssets)); // Si

se usa directamente listPDFs = Arrays.asList(listFilesInAssets), se

crea una lista de tamaño fijo, pero es necesario eliminar el fichero

de la bd

} catch (IOException e) {

e.printStackTrace();

}

RecyclerView recyclerViewPdfs =

findViewById(R.id.recyclerViewPdfs);

recyclerViewPdfs.setLayoutManager(new

LinearLayoutManager(this));

recyclerViewPdfs.setAdapter(new AdapterPDF(listPDFs));

Dexter.withActivity(this)

CÓDIGO FUENTE:

17

PrincipalActivity

RRI

.withPermission(Manifest.permission.WRITE_EXTERNAL_STORAGE)

.withListener(new PermissionListener() {

@Override

public void

onPermissionGranted(PermissionGrantedResponse response) {

}

@Override

public void

onPermissionDenied(PermissionDeniedResponse response) {

}

@Override

public void

onPermissionRationaleShouldBeShown(PermissionRequest permission,

PermissionToken token) {

}

}).check();

}

/** Para que la flecha de volver funcione, debe añadirse este

método de control del menú */

@Override

public boolean onOptionsItemSelected(MenuItem item) {

if (item.getItemId() == android.R.id.home) {

finish();

}

return super.onOptionsItemSelected(item);

}

}

CÓDIGO FUENTE:

18

DBHelper

RRI

DBHelper

package com.example.borradoruno.datos;

import android.content.Context;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import android.text.TextUtils;

import java.io.FileOutputStream;

import java.io.InputStream;

import java.io.OutputStream;

public class DBHelper extends SQLiteOpenHelper {

// Si se cambia la estructura de la base de datos se debe

incrementar el número de versión

public static final int DATABASE_VERSION = 1;

public static final String DATABASE_NAME = "plataforma.db";

public final SQLiteDatabase database;

private boolean dbOk;

public DBHelper(Context context) {

super(context, DATABASE_NAME, null, DATABASE_VERSION);

// Copiamos la base de datos como asset

try {

OutputStream myOutput = new

FileOutputStream(context.getApplicationInfo().dataDir + "/" +

DATABASE_NAME);

byte[] buffer = new byte[1024];

int length;

InputStream myInput =

context.getAssets().open(DATABASE_NAME);

while ((length = myInput.read(buffer)) > 0) {

myOutput.write(buffer, 0, length);

}

myInput.close();

myOutput.flush();

myOutput.close();

} catch (Exception ex) {

dbOk = false;

} finally {

dbOk = true;

database =

SQLiteDatabase.openDatabase(context.getApplicationInfo().dataDir + "/"

+ DATABASE_NAME, null, SQLiteDatabase.OPEN_READONLY);

}

}

public boolean getDbOk()

{

return dbOk;

}

@Override

public void onCreate(SQLiteDatabase sqLiteDatabase) {

}

CÓDIGO FUENTE:

19

DBHelper

RRI

@Override

public void onUpgrade(SQLiteDatabase sqLiteDatabase, int i, int

i1) {

}

public Cursor getTableData(String table) {

return database.rawQuery("select * from " + table, null);

}

public Cursor getTableData(String[] fields, String[] tables,

String where, String[] values) {

if (fields == null)

throw new IllegalArgumentException("Debe indicarse el

parámetro fields");

if (tables == null)
throw new IllegalArgumentException("Debe indicarse el

parámetro tables");

String _fields = TextUtils.join(",", fields);

String _tables = TextUtils.join(",", tables);

String sql = "select " + _fields + " from " + _tables +

((where != null) ? " where " + where : "");

return database.rawQuery(sql, values);

}

}

CÓDIGO FUENTE:

20

Cargamento

Cargamento

package com.example.borradoruno.datos;

import android.database.Cursor;

import com.example.borradoruno.ui.InitialActivity;

public class Cargamento {

private String denominacionTactica;

private String noc;

private double alto;

private double ancho;

private double largo;

private String tipomaterial;

private String c41;

private double peso;

public Cargamento (String denominacionTactica,String noc, double

alto, double ancho, double largo,

String tipomaterial, String c41, double peso){

this.denominacionTactica=denominacionTactica;

this.noc=noc;

this.alto=alto;

this.ancho=ancho;

this.largo=largo;

this.tipomaterial=tipomaterial;

this.peso=peso;

this.c41=c41;

}

public String getDenominacionTactica(){

return denominacionTactica;

}

public String getNoc() {

return noc;

}

public double getAlto() {

return alto;

}

public double getAncho() {

return ancho;

}

public double getLargo(){

return largo;

}

public String getTipomaterial(){

return tipomaterial;

}

public String getC41(){

return c41;

}

public double getPeso(){

return peso;

}

public static Cargamento getCargamento(String noc){

Cursor cursor= InitialActivity.dbHelper.getTableData(new

String[]{"denominaciontactica","noc","alto","ancho",

"largo","tipomaterial","c41","peso"},

CÓDIGO FUENTE:

21

Cargamento

new String[] {"cargamento"},

"noc=?", new String[] {noc});

if (cursor.getCount()==0)

return null;

else {

cursor.moveToNext();

return new Cargamento(cursor.getString(0),

cursor.getString(1),cursor.getDouble(2),cursor.getDouble(3),

cursor.getDouble(4),cursor.getString(5),cursor.getString(6),cursor.get

Double(7));

}

}

}

CÓDIGO FUENTE:

22

Plataforma

Plataforma

package com.example.borradoruno.datos;

import android.content.Context;

import android.database.Cursor;

import com.example.borradoruno.ui.InitialActivity;

import com.example.borradoruno.utils.PreferenceUtils;

import java.util.ArrayList;

import java.util.List;

public class Plataforma {

private String uic;

private String tipo;

private String propietario;

private double pesoMax;

private List<Cargamento> listCargamentos; // Cargamentos para

ersta plataforma

public static final String PREF_FIELD_PLATAFORMA = "PLATAFORMA";

private boolean plataformaIsValid; // Una plataforma es válida si

se ha escaneado

/** Constructor para una plataforma vacía sin escanear (no válida)

*/

public Plataforma() {

plataformaIsValid = false;

listCargamentos = new ArrayList<>();

}

/** Constructor para una plataforma recogida de BD */

public Plataforma(String uic, String tipo, String propietario,

double pesoMax){

this.uic=uic;

this.tipo=tipo;

this.propietario=propietario;

this.pesoMax=pesoMax;

listCargamentos = new ArrayList<>();

plataformaIsValid = true;

}

/** Recoge info de una plataforma escaneada y la coloca en esta

plataforma

* Esta plataforma pasa a ser válida */

public void CopyInfo(Plataforma plataforma) {

this.uic = plataforma.uic;

this.tipo = plataforma.tipo;

this.propietario = plataforma.propietario;

this.pesoMax = plataforma.pesoMax;

this.plataformaIsValid = true;

}

CÓDIGO FUENTE:

23

Plataforma

public String getUic(){

return uic;

}

public String getTipo(){

return tipo;

}

public String getPropietario(){

return propietario;

}

public double getPesoMax(){

return pesoMax;

}

public boolean isPlataformaIsValid() { return

plataformaIsValid; }

public List<Cargamento> getListCargamentos() { return

listCargamentos; }

public void addCargamento(Cargamento cargamento) {

listCargamentos.add(cargamento); }

public int getNumCargamentos() { return listCargamentos.size(); }

public void removeCargamento(Cargamento cargamento) {

listCargamentos.remove(cargamento); }

public boolean hasCargamentos() { return

!listCargamentos.isEmpty(); }

public boolean isEmpty() { return listCargamentos.isEmpty(); }

public boolean pesoExcedido() {

return getPesoMax() < calculateSumPesos();

}

public float calculateSumPesos() {

float pesoTotal = 0;

for (Cargamento cargamento : listCargamentos)

pesoTotal += cargamento.getPeso();

return pesoTotal;

}

public String getDescription() { return !plataformaIsValid ? "Debe

escanear una plataforma" : uic + " - " + tipo; }

public static Plataforma getPlataforma(String uic)

{

Cursor cursor = InitialActivity.dbHelper.getTableData(new

String[]{"uic", "tipo", "propietario", "pesomax"},

new String[]{"plataformas"},

"uic = ?",

new String[]{uic});

if (cursor.getCount() == 0)

return null;

else

{

cursor.moveToNext();

return new Plataforma(cursor.getString(0),

CÓDIGO FUENTE:

24

Plataforma

cursor.getString(1),cursor.getString(2), cursor.getDouble(3));

}

}

public void savePlataformaInPreferencias(Context context, int

indexPlataforma) {

// PLATAFORMA0 58747848, 67548, 4359458, 482343 (la primera

es 0)

",";

// PLATAFORMA1 58747848, 67548, 4359458

// Guardar la plataforma actual

String textPlataforma = uic + ",";

for (Cargamento cargamento : listCargamentos)

textPlataforma = textPlataforma + cargamento.getNoc() +

// Guardar el texto de la plataforma

PreferenceUtils.PutStringInDefaultPrefs(context,

PREF_FIELD_PLATAFORMA+indexPlataforma, textPlataforma);

}

}

CÓDIGO FUENTE:

25

Trayecto

Trayecto

package com.example.borradoruno.datos;

import android.database.Cursor;

import com.example.borradoruno.ui.InitialActivity;

import java.util.ArrayList;

import java.util.List;

public class Trayecto {

private String nombre;

private int distanciaKms;

public Trayecto(String nombre, int distanciaKms) {

this.nombre = nombre;

this.distanciaKms = distanciaKms;

}

public String getNombre() {

return nombre;

}

public int getDistanciaKms() {

return distanciaKms;

}

public String getDescription() {

return nombre + " (" + distanciaKms + " kms.)";

}

public static List<Trayecto> getListTrayectos() {

Cursor cursor =

InitialActivity.dbHelper.getTableData("TRAYECTOS");

if (cursor.getCount()==0)
return null;

else {

List<Trayecto> listTrayectos = new ArrayList<>();

while (cursor.moveToNext()) {

listTrayectos.add(new Trayecto(cursor.getString(0),

cursor.getInt(1)));

}

return listTrayectos;

}

}

}

CÓDIGO FUENTE:

26

Tarifa

Tarifa

package com.example.borradoruno.datos;

import android.database.Cursor;

import com.example.borradoruno.ui.InitialActivity;

import java.util.List;

public class Tarifa {

private String propietario;

private String tipoMaterial;

private double tarifa;

public Tarifa (String propietario, String tipomaterial, double

tarifa){

this.propietario=propietario;

this.tipoMaterial=tipomaterial;

this.tarifa=tarifa;

}

public String getPropietario(){

return propietario;

}

public String getTipomaterial() {

return tipoMaterial;

}

public double getTarifa() {

return tarifa;

}

public static Tarifa getTarifa(String propietario, String tipo,

String peso){

Cursor cursor= InitialActivity.dbHelper.getTableData(new

String[]{"propietario","tipomaterial","peso","tarifa"},

new String[] {"tarifas"},

"propietario=? AND tipomaterial=? AND peso=?",

new String[] {propietario, tipo, peso});

if (cursor.getCount()==0)

return null;

else {

cursor.moveToNext();

return new Tarifa(cursor.getString(0),

cursor.getString(1), cursor.getDouble(3));

}

}

private static final String TIPO_BLINDADO = "Vehículos

blindados";

private static final String TIPO_OTROS = "Resto de material";

private static final String TIPO_VIAJEROS = "Coche de viajeros";

private static final String PROPIETARIO_VIAJEROS = "viajeros";

public static float CalcularTarifa(List<Plataforma>

listPlataformas, int kms) {

CÓDIGO FUENTE:

27

Tarifa

float total = 0f;

for (Plataforma plataforma : listPlataformas) {

// Si una plataforma es de tipo viajeros no se recorren

sus cargamentos y se suma su tarifa directamente

if

(plataforma.getPropietario().equalsIgnoreCase(PROPIETARIO_VIAJEROS)) {

Tarifa tarifa =

Tarifa.getTarifa(plataforma.getPropietario(), TIPO_VIAJEROS, "-");

total += tarifa.getTarifa();

}

else

for (Cargamento cargamento :

plataforma.getListCargamentos()) {

// Valores posibles para peso:

// ">=15" o "<15" o "-"

// Hay que construir la cadena para encontrar el

precio por el peso apropiado

String pesoText = "-";

String cargamentoTipo =

cargamento.getTipomaterial();

// Si es blindado el texto del peso depende del

peso del cargamento

// En el resto de casos se usa "-"

if

(cargamentoTipo.equalsIgnoreCase(TIPO_BLINDADO))
if (cargamento.getPeso() >= 15f)

pesoText = ">=15";

else

pesoText = "<15";

// Texto para el tipo de material

String cargamentoTipoText = cargamentoTipo;

if

(!cargamentoTipo.equalsIgnoreCase(TIPO_BLINDADO))

cargamentoTipoText = TIPO_OTROS;

// Obtener la tarifa y el precio correspondiente

Tarifa tarifa =

Tarifa.getTarifa(plataforma.getPropietario(),

cargamentoTipoText,

pesoText);

double precio = tarifa.getTarifa();

// REalizar el cálculo del total

total += precio * cargamento.getPeso() * kms;

}

}

return total;

}

}

CÓDIGO FUENTE:

28

DialogUtils

DialogUtils

package com.example.borradoruno.utils;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.Context;

import android.content.DialogInterface;

import androidx.appcompat.app.AppCompatActivity;

public class DialogsUtils {

/////////////////////////////////

// DIALOGO NORMAL DOS BOTONES

/////////////////////////////////

/** Mostrar diálogo de confirmación para realizar alguna acción con dos botones

*/

public static void ShowDialogActionYesNo(Context context, String title, String

message, String textButtonOk, String textButtonCancel,

DialogInterface.OnClickListener onClickListener) {

ShowDialogActionYesNo(context, title, message, textButtonOk,

textButtonCancel, onClickListener, null);

}

/** Mostrar diálogo de confirmación para realizar alguna acción con dos botones

* VERSIÓN ID RECURSOS */

public static void ShowDialogActionYesNo(Context context, int title, int

message, int textButtonOk, int textButtonCancel, DialogInterface.OnClickListener

onClickListener) {

ShowDialogActionYesNo(context, title, message, textButtonOk,

textButtonCancel, onClickListener, null);

}

/** Mostrar diálogo de confirmación para realizar alguna acción con dos botones

*/

public static void ShowDialogActionYesNo(Context context, String title, String

message, String textButtonOk, String textButtonCancel,

DialogInterface.OnClickListener onClickListenerOk, Dialog.OnClickListener

onClickListenerCancel) {

ShowDialogActionYesNo(context, title, message, textButtonOk,

textButtonCancel, onClickListenerOk, onClickListenerCancel, null);

}

/** Mostrar diálogo de confirmación para realizar alguna acción con dos botones

* VERSIÓN ID RECURSOS */

public static void ShowDialogActionYesNo(Context context, int title, int

message, int textButtonOk, int textButtonCancel, DialogInterface.OnClickListener

onClickListenerOk, Dialog.OnClickListener onClickListenerCancel) {

ShowDialogActionYesNo(context, title, message, textButtonOk,

textButtonCancel, onClickListenerOk, onClickListenerCancel, null);

}

/** Mostrar diálogo de confirmación para realizar alguna acción con dos botones

*/

public static void ShowDialogActionYesNo(Context context, String title, String

message, String textButtonOk, String textButtonCancel,

DialogInterface.OnClickListener onClickListenerOk, Dialog.OnClickListener

onClickListenerCancel, Dialog.OnDismissListener onDismissListener) {

ShowDialogActionYesNoNeutral(context, title, message, textButtonOk,

textButtonCancel, null, onClickListenerOk, onClickListenerCancel,

null, onDismissListener);

}

CÓDIGO FUENTE:

29

DialogUtils

/** Mostrar diálogo de confirmación para realizar alguna acción con dos botones

* VERSIÓN ID RECURSOS */

public static void ShowDialogActionYesNo(Context context, int title, int

message, int textButtonOk, int textButtonCancel, DialogInterface.OnClickListener

onClickListenerOk, Dialog.OnClickListener onClickListenerCancel,

Dialog.OnDismissListener onDismissListener) {

ShowDialogActionYesNoNeutral(context, title, message, textButtonOk,

textButtonCancel, -1, onClickListenerOk, onClickListenerCancel, null,

onDismissListener);

}

/** Mostrar diálogo de confirmación para realizar alguna acción con tres

botones */

public static void ShowDialogActionYesNoNeutral(Context context, String title,

String message, String textButtonOk, String textButtonCancel, String

textButtonNeutral, DialogInterface.OnClickListener onClickListenerOk,

Dialog.OnClickListener onClickListenerCancel, Dialog.OnClickListener

onClickListenerNeutral, Dialog.OnDismissListener onDismissListener) {

if (context == null || (context instanceof AppCompatActivity &&

((AppCompatActivity) context).isFinishing()))

return;

AlertDialog.Builder builder = new AlertDialog.Builder(context);

if (title != null)

builder.setTitle(title);

if (message != null)

builder.setMessage(message);

if (textButtonOk != null)

builder.setPositiveButton(textButtonOk, onClickListenerOk);

if (textButtonCancel != null)

builder.setNegativeButton(textButtonCancel, onClickListenerCancel);

if (textButtonNeutral != null)

builder.setNeutralButton(textButtonNeutral, onClickListenerNeutral);

if (onDismissListener != null)
builder.setOnDismissListener(onDismissListener);

AlertDialog dialog = builder.create();

dialog.show();

}

/** Mostrar diálogo de confirmación para realizar alguna acción con tres

botones

* VERSIÓN ID RECURSOS */

public static void ShowDialogActionYesNoNeutral(Context context, int title, int

message, int textButtonOk, int textButtonCancel, int textButtonNeutral,

DialogInterface.OnClickListener onClickListenerOk, Dialog.OnClickListener

onClickListenerCancel, Dialog.OnClickListener onClickListenerNeutral,

Dialog.OnDismissListener onDismissListener) {

if (context == null || (context instanceof AppCompatActivity &&

((AppCompatActivity) context).isFinishing()))

return;

AlertDialog.Builder builder = new AlertDialog.Builder(context);

if (title != -1)

builder.setTitle(title);

if (message != -1)

CÓDIGO FUENTE:

30

DialogUtils

builder.setMessage(message);

if (textButtonOk != -1)

builder.setPositiveButton(textButtonOk, onClickListenerOk);

if (textButtonCancel != -1)

builder.setNegativeButton(textButtonCancel, onClickListenerCancel);

if (textButtonNeutral != -1)

builder.setNeutralButton(textButtonNeutral, onClickListenerNeutral);

if (onDismissListener != null)

builder.setOnDismissListener(onDismissListener);

AlertDialog dialog = builder.create();

dialog.show();

}

/////////////////////////////////

// DIALOGO NORMAL UN BOTÓN

/////////////////////////////////

/** Mostrar diálogo de confirmación con un botón */

public static void ShowDialogActionOk(Context context, String title, String

message, String textButtonOk) {

ShowDialogActionYesNo(context, title, message, textButtonOk, null, null);

}

/** Mostrar diálogo de confirmación con un botón

* VERSIÓN ID RECURSOS */

public static void ShowDialogActionOk(Context context, int title, int message,

int textButtonOk) {

ShowDialogActionYesNo(context, title, message, textButtonOk, -1, null);

}

/** Mostrar diálogo de confirmación con un botón */

public static void ShowDialogActionOk(Context context, String title, String

message, String textButtonOk, Dialog.OnDismissListener onDismissListener) {

ShowDialogActionYesNo(context, title, message, textButtonOk, null, null,

null, onDismissListener);

}

/** Mostrar diálogo de confirmación con un botón

* VERSIÓN ID RECURSOS */

public static void ShowDialogActionOk(Context context, int title, int message,

int textButtonOk, Dialog.OnDismissListener onDismissListener) {

ShowDialogActionYesNo(context, title, message, textButtonOk, -1, null,

null, onDismissListener);

}

}

CÓDIGO FUENTE:

31

FileUtils

FileUtils

package com.example.borradoruno.utils;

import android.Manifest;

import android.app.Activity;

import android.app.DownloadManager;

import android.os.Environment;

import android.widget.Toast;

import com.karumi.dexter.Dexter;

import com.karumi.dexter.PermissionToken;

import com.karumi.dexter.listener.PermissionDeniedResponse;

import com.karumi.dexter.listener.PermissionGrantedResponse;

import com.karumi.dexter.listener.PermissionRequest;

import com.karumi.dexter.listener.single.PermissionListener;

import java.io.File;

import java.io.FileOutputStream;

import java.io.FileWriter;

import java.io.IOException;

import java.io.OutputStreamWriter;

import java.nio.charset.StandardCharsets;

import static android.content.Context.DOWNLOAD_SERVICE;

public class FileUtils {

public static void WriteFile(final Activity activity, final String

filename, final String text) {

Dexter.withActivity(activity)

.withPermission(Manifest.permission.WRITE_EXTERNAL_STORAGE)
.withListener(new PermissionListener() {

@Override

public void

onPermissionGranted(PermissionGrantedResponse response) {

FileUtils.saveFile(activity, filename, text);

}

@Override

public void

onPermissionDenied(PermissionDeniedResponse response) {

}

@Override

public void

onPermissionRationaleShouldBeShown(PermissionRequest permission,

PermissionToken token) {

}

}).check();

}

private static void saveFile(Activity activity, String filename,

String text) {

CÓDIGO FUENTE:

32

FileUtils

try {

File root = new

File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTO

RY_DOWNLOADS), "Cuadros de carga");

if (!root.exists()) {

root.mkdirs();

}

File file = new File(root, filename);

//FileWriter writer = new FileWriter(file);

FileOutputStream fileStream = new FileOutputStream(file);

OutputStreamWriter writer = new

OutputStreamWriter(fileStream, StandardCharsets.UTF_16LE);

writer.append(text);

writer.flush();

writer.close();

// Colocar en carpeta de descarga

DownloadManager downloadManager = (DownloadManager)

activity.getSystemService(DOWNLOAD_SERVICE);

downloadManager.addCompletedDownload(file.getName(),

file.getName(), true,

"text/plain",file.getAbsolutePath(),file.length(),true);

Toast.makeText(activity, "Saved",

Toast.LENGTH_SHORT).show();

} catch (IOException e) {

e.printStackTrace();

}

}

}

CÓDIGO FUENTE:

33

PDFUtils

PFDUtils

package com.example.borradoruno.utils;

import android.app.DownloadManager;

import android.content.Context;

import android.content.Intent;

import android.content.res.AssetManager;

import android.net.Uri;

import android.os.AsyncTask;

import android.os.Environment;

import android.util.Log;

import androidx.core.content.FileProvider;

import com.example.borradoruno.BuildConfig;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.lang.ref.WeakReference;

import static android.content.Context.DOWNLOAD_SERVICE;

/**

*

* Esta clase usa un asynctask para copiar un fichero desde assets a la

carpeta pública de la app, y luego le pide a Android que abra el pdf

* La parte de copiar el fichero se ejecuta en otro hilo, la apertura del

fichero se hace tras la copia

*/

public class PDFUtils {

private static String TAG = PDFUtils.class.getSimpleName();

private WeakReference<Context> contextWeakReference;

private String fileNameIn;

private String fileNameOut;

public PDFUtils(Context context, String fileNameIn, String filenameOut) {

this.contextWeakReference = new WeakReference<>(context);

this.fileNameIn = fileNameIn;//fileNameIn.endsWith("pdf") ? fileNameIn :

fileNameIn + ".pdf";

this.fileNameOut = filenameOut;

}

public void execute() {

Context context = contextWeakReference.get();

if (context != null) {

new CopyFileAsyncTask().execute();

}

}

private class CopyFileAsyncTask extends AsyncTask<Void, Void, File>{

final String appDirectoryName = BuildConfig.APPLICATION_ID;

final File fileRoot = new

File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMEN

TS), appDirectoryName);

CÓDIGO FUENTE:

34

PDFUtils

/** El contenido de este método de AsyncTask es el único que se ejecuta

en otro hilo

* Cuando se ha acabado la tarea, se llama a onPostExecute() * */

@Override

protected File doInBackground(Void... params) {

Context context = contextWeakReference.get();

AssetManager assetManager = context.getAssets();

File fileOut = new File(fileRoot, fileNameOut);

InputStream in = null;

OutputStream out = null;

try {

fileOut.mkdirs();

if (fileOut.exists()) {

fileOut.delete();

}

fileOut.createNewFile();

in = assetManager.open(fileNameIn);

Log.d(TAG, "In");

out = new FileOutputStream(fileOut);

Log.d(TAG, "Out");

Log.d(TAG, "Copy file");

copyFile(in, out);

Log.d(TAG, "Close");

in.close();

out.flush();

out.close();

return fileOut;

} catch (Exception e)

{

Log.e(TAG, e.getMessage());

}

return null;

}

private void copyFile(InputStream in, OutputStream out) throws

IOException

{

byte[] buffer = new byte[1024];

int read;

while ((read = in.read(buffer)) != -1)

{

out.write(buffer, 0, read);

}

}

/** Tras copiar el fichero, se pide a Android que abra el pdf */

@Override

protected void onPostExecute(File file) {

super.onPostExecute(file);

Context context = contextWeakReference.get();

CÓDIGO FUENTE:

35

PDFUtils

Uri uri = FileProvider.getUriForFile(context,

BuildConfig.APPLICATION_ID + ".provider", file);

Intent intent = new Intent(Intent.ACTION_VIEW);

intent.setDataAndType(

uri,

"application/pdf");

intent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

context.startActivity(intent);

}

}

}

CÓDIGO FUENTE:

36

PreferenceUtils

PreferenceUtils

package com.example.borradoruno.utils;

import android.content.Context;

import android.content.SharedPreferences;

import android.preference.PreferenceManager;

public class PreferenceUtils {

public static String GetStringFromDefaultsPrefs(Context context,

String campo, String defaultValue) {

return

PreferenceManager.getDefaultSharedPreferences(context).getString(campo

, defaultValue);

}

public static int GetIntegerFromDefaultsPrefs(Context context,

String campo, int defaultValue) {

return

PreferenceManager.getDefaultSharedPreferences(context).getInt(campo,

defaultValue);

}

public static boolean GetBooleanFromDefaultsPrefs(Context context,

String campo, boolean defaultValue) {

return

PreferenceManager.getDefaultSharedPreferences(context).getBoolean(camp

o, defaultValue);

}

public static void PutStringInDefaultPrefs(Context context, String

campo, String value) {

SharedPreferences.Editor editorPrefs =

PreferenceManager.getDefaultSharedPreferences(context).edit();

editorPrefs.putString(campo, value);

editorPrefs.apply();

}

public static void PutBooleanInDefaultPrefs(Context context,

String campo, boolean value) {

SharedPreferences.Editor editorPrefs =

PreferenceManager.getDefaultSharedPreferences(context).edit();

editorPrefs.putBoolean(campo, value);

editorPrefs.apply();

}

public static void PutIntegerInDefaultPrefs(Context context,

String campo, int value) {

SharedPreferences.Editor editorPrefs =

PreferenceManager.getDefaultSharedPreferences(context).edit();

editorPrefs.putInt(campo, value);

editorPrefs.apply();

}

public static void RemovePrefInDefaultPrefs(Context context,

CÓDIGO FUENTE:

37

PreferenceUtils

String campo) {

SharedPreferences.Editor editor =

PreferenceManager.getDefaultSharedPreferences(context).edit();

editor.remove(campo);

editor.apply();

}

public static boolean GetBoolean(Context context, String

prefsFile, String campo, boolean defaultValue) {

return context.getSharedPreferences(prefsFile,

Context.MODE_PRIVATE).getBoolean(campo, defaultValue);

}

public static String GetString(Context context, String prefsFile,

String campo, String defaultValue) {

return context.getSharedPreferences(prefsFile,

Context.MODE_PRIVATE).getString(campo, defaultValue);

}

public static int GetInteger(Context context, String prefsFile,

String campo, int defaultValue) {

return context.getSharedPreferences(prefsFile,

Context.MODE_PRIVATE).getInt(campo, defaultValue);

}

public static float GetFloat(Context context, String prefsFile,

String campo, float defaultValue) {

return context.getSharedPreferences(prefsFile,

Context.MODE_PRIVATE).getFloat(campo, defaultValue);

}

public static void PutBoolean(Context context, String prefsFile,

String campo, boolean value) {

SharedPreferences.Editor editor =

context.getSharedPreferences(prefsFile, Context.MODE_PRIVATE).edit();

editor.putBoolean(campo, value);

editor.apply();

}

public static void PutString(Context context, String prefsFile,

String campo, String value) {

SharedPreferences.Editor editor =

context.getSharedPreferences(prefsFile, Context.MODE_PRIVATE).edit();

editor.putString(campo, value);

editor.apply();

}

public static void PutInteger(Context context, String prefsFile,

String campo, int value) {

SharedPreferences.Editor editor =

context.getSharedPreferences(prefsFile, Context.MODE_PRIVATE).edit();

editor.putInt(campo, value);

editor.apply();

}

CÓDIGO FUENTE:

38

PreferenceUtils

public static void PutFloat(Context context, String prefsFile,

String campo, float value) {

SharedPreferences.Editor editor =

context.getSharedPreferences(prefsFile, Context.MODE_PRIVATE).edit();

editor.putFloat(campo, value);

editor.apply();

}

}

CÓDIGO FUENTE:

39

AdapterCargamento

AdapterCargamento

package com.example.borradoruno.ui.adapter;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.annotation.NonNull;

import androidx.recyclerview.widget.RecyclerView;

import com.example.borradoruno.datos.Cargamento;

import com.example.borradoruno.R;

import java.util.List;

public class AdapterCargamento extends

RecyclerView.Adapter<ViewHolderCargamento> {

// LIstado de cargamentos, que llega cuando se crea una nueva plataforma

tras escanear QR (método setListCargamentos())

private List<Cargamento> listCargamentos;

// Listener que atiende a los eventos de la fila

private ViewHolderCargamento.CargamentoListener cargamentoListener;

/** Constructor del adapter */

public AdapterCargamento(ViewHolderCargamento.CargamentoListener

cargamentoListener) {

this.cargamentoListener = cargamentoListener;

}

/** Este método se llama cada vez que se necesita crear una nueva fila*/

@NonNull

@Override

public ViewHolderCargamento onCreateViewHolder(@NonNull ViewGroup parent,

int viewType) {

View v =

LayoutInflater.from(parent.getContext()).inflate(R.layout.item_cargamento,

parent, false);

return new ViewHolderCargamento(v, cargamentoListener);

}

/** Este método se llama cada vez que se va a pintar un cargamento en una

fila ya creada */

@Override

public void onBindViewHolder(@NonNull ViewHolderCargamento holder, int

position) {

holder.showCargamento(listCargamentos.get(position));

}

@Override

public int getItemCount() {

return listCargamentos == null ? 0 : listCargamentos.size();

}

public void setListCargamentos(List<Cargamento> listCargamentos) {

this.listCargamentos = listCargamentos;

notifyDataSetChanged();

}

}

CÓDIGO FUENTE:

40

AdapterPDF

AdapterPDF

package com.example.borradoruno.ui.adapter;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.annotation.NonNull;

import androidx.recyclerview.widget.RecyclerView;

import com.example.borradoruno.R;

import java.util.List;

public class AdapterPDF extends RecyclerView.Adapter<ViewHolderPDF> {

private List<String> listPDFs;

public AdapterPDF(List<String> listPDFs) {

this.listPDFs = listPDFs;

}

@NonNull

@Override

public ViewHolderPDF onCreateViewHolder(@NonNull ViewGroup parent,

int viewType) {

View v =

LayoutInflater.from(parent.getContext()).inflate(R.layout.item_pdf,

parent, false);

return new ViewHolderPDF(v, parent.getContext());

}

@Override

public void onBindViewHolder(@NonNull ViewHolderPDF holder, int

position) {

holder.showPdf(listPDFs.get(position));

}

@Override

public int getItemCount() {

return listPDFs.size();

}

}

CÓDIGO FUENTE:

41

ViewHolderCargamento

ViewHolderCargamento

package com.example.borradoruno.ui.adapter;

import android.view.View;

import android.widget.ImageButton;

import android.widget.TextView;

import androidx.annotation.NonNull;

import androidx.recyclerview.widget.RecyclerView;

import com.example.borradoruno.datos.Cargamento;

import com.example.borradoruno.R;

/** Clase que controla una fila del listado */

public class ViewHolderCargamento extends RecyclerView.ViewHolder {

// Controles del viewholder

private TextView textViewItemCargamento_Nombre;

private TextView textViewItemCargamento_Peso;

private ImageButton imageButtonItemCargamento_Delete;

// Interface o normas que debe cumplir la clase que va a recibir eventos desde la

tabla

public interface CargamentoListener {

void onCargamentoDelete(Cargamento cargamento);

void onCargamentoShowInfo(Cargamento cargamento);

}

private CargamentoListener cargamentoListener;

/** Constructor del viewholder, crea una fila para un cargamento */

public ViewHolderCargamento(@NonNull View itemView, CargamentoListener

cargamentoListener) {

super(itemView);

this.cargamentoListener = cargamentoListener;

textViewItemCargamento_Nombre =

itemView.findViewById(R.id.textViewItemCargamento_Nombre);

textViewItemCargamento_Peso =

itemView.findViewById(R.id.textViewItemCargamento_Peso);

imageButtonItemCargamento_Delete =

itemView.findViewById(R.id.imageButtonItemCargamento_Delete);

}

/** Mostrar un cargamento en la fila que indique el adapter */

public void showCargamento(final Cargamento cargamento) {

// Mostrar propiedades del cargamento

textViewItemCargamento_Nombre.setText(cargamento.getDenominacionTactica());

textViewItemCargamento_Peso.setText(String.format("%.2f",

cargamento.getPeso()) + " Tm");

// Eventos

imageButtonItemCargamento_Delete.setOnClickListener(new

View.OnClickListener() {

@Override

public void onClick(View view) {

cargamentoListener.onCargamentoDelete(cargamento);

}

});

}

}

CÓDIGO FUENTE:

42

ViewHolderPDF

ViewHolderPDF

package com.example.borradoruno.ui.adapter;

import android.content.Context;

import android.view.View;

import android.widget.TextView;

import androidx.annotation.NonNull;

import androidx.recyclerview.widget.RecyclerView;

import com.example.borradoruno.R;

import com.example.borradoruno.utils.PDFUtils;

import com.karumi.dexter.Dexter;

public class ViewHolderPDF extends RecyclerView.ViewHolder {

private TextView textViewItemPDF_Name;

private Context context;

public ViewHolderPDF(@NonNull View itemView, Context context) {

super(itemView);

this.context = context;

textViewItemPDF_Name =

itemView.findViewById(R.id.textViewItemPDF_Name);

}

public void showPdf(final String pdfName) {

textViewItemPDF_Name.setText(pdfName);

textViewItemPDF_Name.setOnClickListener(new

View.OnClickListener() {

@Override

public void onClick(View view) {

new PDFUtils(context, "pdf/" + pdfName,

pdfName).execute();

}

});

}

}

