1	Joint quantification of PAH and oxy-PAH from standard reference
2	materials (urban dust and diesel particulate matter) and diesel soot
3	surrogate by GC-MS
4	F. Viteri ^{b,a} , D. Pezo ^a , Á. Millera ^a , R. Bilbao ^a , M.U. Alzueta ^{a*}
5 6	^a Aragón Institute of Engineering Research (I3A), Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza 50018, Spain
7	^b Facultad de Ciencias de la Ingeniería e Industrias. Universidad UTE. Quito - Ecuador.
8	*Corresponding author: Phone: +34976761876, e-mail address: uxue@unizar.es
9	
10	

11 Abstract

The combustion of fossil fuels produces pollutants such as soot, which consists of carbonaceous 12 particles whose emission is regulated by environmental laws. Soot is mainly formed from 13 polycyclic aromatic hydrocarbons (PAH), through different reaction ways and, once formed, it 14 15 can adsorb PAH on its surface. These compounds have an environmental importance due to their carcinogenic and mutagenic potential. In the last years, the oxygenated derivatives of PAH 16 (oxy-PAH) have also been considered as dangerous since they have been found to be mutagenic 17 for bacterial and human cells. Therefore, the purpose of this work was to quantify 18 simultaneously selected PAH and oxy-PAH from different samples of soot. The quantification 19 method involves Soxhlet extraction and subsequent concentration by rotary evaporation that 20 21 allows to recover the analysed compounds from soot samples. The PAH and oxy-PAH were identified and quantified, by a single injection, using a gas chromatograph-mass spectrometer 22 (GC-MS). The method showed a good repeatability using a diesel soot surrogate test sample, 23 Printex-U. The validation process showed that most of the compounds are recovered between 24 the values established for the Standard Reference Materials analysed, 1650b and 1649b. The 25 26 values of the mass fraction of the oxy-PAH obtained in this work showed, in general, a good match with those indicated in other studies. 27

28

Keywords: Polycyclic aromatic hydrocarbons (PAH), oxygenated polycyclic aromatic
hydrocarbons (oxy-PAH), gas chromatography–mass spectrometry (GC-MS), Standard
Reference Materials (SRM), diesel, soxhlet extraction.

32

34 **1. Introduction**

The atmospheric pollutant emissions are mainly produced in the combustion processes, 35 especially through the combustion of fossil fuels. Among the common pollutants, the 36 37 particulate matter is one of the most controlled by environmental regulations and a significant fraction of it is soot, a carbonaceous material formed in the combustion process. Soot is 38 produced through the polycyclic aromatic hydrocarbons (PAH) formed in rich fuel conditions. 39 PAH formation and consecutive soot production are explained by some mechanisms such as 40 the hydrogen-abstraction/acetylene-addition (HACA) route, the combinative growth 41 mechanism, and the cyclopentadienyl recombination (Richter and Howard 2000). Oxy-PAH 42 43 can also be formed directly from combustion processes or in the atmosphere from PAH induced oxidation (Allen et al. 1997; Albinet et al. 2008). Thus, 9-fluorenone; 9,10 anthraquinone; 44 benzanthrone and benz-[a]anthracene-7.12-dione are the most abundant oxy-PAH found in 45 ambient air (Shen et al. 2011). 46

Moreover, polycyclic aromatic hydrocarbons can be adsorbed on soot surface (Mathieu et
al. 2007) and could be hazardous for human health, due to their toxic character (Bosetti et al.
2007). The toxicity of the PAH has been repeatedly demonstrated (Durant et al. 1996), being
benzo[*a*]pyrene used in many environmental studies as a toxicity reference compound
(Hattemer-Frey and Travis 1991; Masiol et al. 2012; Pongpiachan et al. 2015). The US
Environmental Protection Agency (EPA) has established a list of 16 PAH as priority pollutants
(EPA-PAH) found in the atmosphere, due to their carcinogenic potential.

In this way, oxy-PAH have also been studied in order to determine their toxicity (Lampi et al. 2005; Fu et al. 2012), in particular in human cells (Durant et al. 1996), where some ketones and quinones such as benzanthrone and benzo[*cd*]pyrenone are denoted as mutagenic compounds. Consequently, oxy-PAH have to be considered, according to Lundstedt et al. (2007), for monitoring programs in contaminated sites due to their high mobility in the environment. Hence, some studies involved in control of atmospheric pollution have considered
important to measure together oxy-PAH and PAH in urban air (Walgraeve et al. 2015; Bandowe
et al. 2014).

62 The quantification of PAH and oxy-PAH has been performed through different procedures. A method of quantification of the 16 most important EPA-PAH, from solid and gas phases, has 63 been developed previously by our group. The method includes Soxhlet extraction, 64 concentration by rotary evaporation and subsequent gas chromatography mass spectrometry 65 (GC-MS) analysis (Sánchez et al. 2013). On the other hand, oxy-PAH have been quantified in 66 different works. Nocun and Schantz (2013) and Layshock et al. (2010) used pressurized liquid 67 extraction (PLE) and later analysis with GC-MS. O'Connell et al. (2013) guantified oxy-PAH 68 by GC-MS and liquid chromatography-atmospheric pressure chemical ionization-mass 69 spectrometry (LC-APCI-MS) and Ahmed et al. (2015) used liquid chromatography-gas 70 chromatography-mass spectrometry system (LC-GC-MS). The works mentioned above have 71 employed different Standard Reference Materials (SRM) to validate their analytical 72 73 methodology.

In this context, it has been considered interesting to develop a relatively simple method through Soxhlet extraction, concentration by rotary evaporation and GC-MS analysis, that allow us to quantify simultaneously selected PAH and oxy-PAH. Printex-U was used to test the repeatability of the method and two Standard Reference Materials (SRM) to validate the results.

- 79 2. Materials and methods
- 80 2.1. Reagents

A PAH standard mixture (PAH-Mix 63, Dr. Ehrenstorfer-Shäfers) containing the 16 EPAPAH, and an oxy-PAH standard mixture (PAH Special Mix 7, A2S Analytical Standard
Solutions) containing 7 selected oxy-PAH, were employed for calibration purposes. Mix of the

PAH standards (Naphtalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, 84 Anthracene, Fluoranthene, Pyrene, Benzo[a]anthracene, Chrysene, Benzo[b]fluoranthene, 85 Benzo[k]fluoranthene, Benzo[a]pyrene, Indeno[1,2,3-cd]pyrene, Dibenz[ah]anthracene, 86 87 Benzo[ghi]perylene), mix of the deuterated standards of PAH (Acenaphthene d₁₀, Chrysene d₁₂, Naphthalene d₈, Perylene d₁₂, Phenanthrene d₁₀) and deuterated standard of injection 88 Anthracene d₁₀ were supplied by Dr. Ehrenstorfer-Shäfers. Mix of the standards of oxy-PAH 89 (Benzo[*cd*]pyrenone, 9,10-anthraquinone, 9-fluorenone, Benzo[*a*]fluorenone, 90 Benzo[a]anthracene-7,12-dione, Naphthacene-5,12-dione, Benzanthrone) and mix of the 91 deuterated standards of oxy-PAH (9,10-Anthraquinone d₈, 9-Fluorenone d₈) were supplied by 92 93 A2S Analytical Standard Solutions.

94

95 2.2. Experimental methodology

The analytical method consists of a combination of Soxhlet extraction, concentration of the 96 extract by rotary evaporation and subsequent analysis by gas chromatography-mass 97 spectrometry. The Soxhlet extraction system was operated according to the EPA method 3540C 98 recommendations. The solvent used during the Soxhlet extraction and in the calibration was 99 dichloromethane (DCM) 99.5%. The packaging of the cellulose cartridges employed was the 100 same as used in the method developed by Sánchez et al. (2013). The temperature during the 101 extraction was 40°C and the extraction time was 24 hours with 4 cycles per hour. 102 Recommendations of EPA methods 8270D and TO-13A for determination of semivolatile 103 organic compounds and toxic organic air pollutants were taken as a reference. Internal standards 104 were used for correcting the possible losses of analytes during sample preparation, since 105 chromatographic signal of both, target compounds and their internal standards, have similar 106 responses. Calibration curves with eight concentrations levels were built. Samples of Printex-107 U, a commercial carbon black considered as diesel soot surrogate (Arnal et al. 2012), were used 108

to test the repeatability of the method. Printex-U has been employed in different works with theaim to verify the repeatability of a method (Sadezky et al. 2005; Atribak et al. 2010).

In order to validate the results, Standards Reference Materials, Diesel Particulate Matter (1650b) (NIST 2013) and Urban Dust (1649b) (NIST 2009), were taken to verify the amount of each PAH and oxy-PAH obtained in each analysis of quantification. Additionally, a comparison between obtained results and those corresponding to other works was done in order to check the accuracy of the present method. The PAH and oxy-PAH were jointly detected and quantified by GC-MS.

117

118 *2.3. Instrumentation*

119 The extracts were analysed using GC with MS (Agilent 7890A gas chromatograph coupled 120 to an Agilent 5975C mass selective detector) operated in electron impact mode using a capillary 121 column DB-17ms (Agilent 60 m x 0.25 mm x 0.25μ m) with medium polarity, being identified 122 such as the one that provides the best results of PAH quantification, through chromatographic 123 analysis (Gómez and Wenzl 2009).

The chromatographic conditions always included helium as carrier gas (1 mL min⁻¹) and 2 124 µL of injection volume in splitless mode. The temperature program started at 60°C, raised 5°C 125 min⁻¹ up to 190°C, then 1.5°C min⁻¹ up to 226°C, then raised 2.5°C min⁻¹ up to 288°C, finally 126 raised 1°C min⁻¹ up to 320°C and held for 12 min. The transfer line temperature was 320°C. 127 The initial ion identification and determination of retention times were done using the NIST 128 spectral library, operating in SCAN mode. Once the compounds were clearly identified, the 129 analysis was performed with the selected ion monitoring (SIM), in order to increase the 130 sensitivity of the method. 131

132

133 **3. Results and discussion**

134 *3.1. Qualitative analysis by GC-MS*

140

Qualitative analysis of extracts of different soot samples such as Printex-U and Standard Reference Materials (SRM) 1649b and 1650b, was done in SCAN mode with the acquisition mass range from 40 to 400 m/z, as can be seen in the chromatograms shown in the Figures 1, 2 and 3 respectively. 157 compounds were qualified in the three samples, and the results are shown in the Table S1 of the Supplementary Material.

141 Fig. 1 GC chromatogram of the Printex-U sample in SCAN mode on a DB-17MS column

142143 Fig. 2 GC chromatogram of the SRM 1649b sample in SCAN mode on a DB-17MS column

145 Fig. 3 GC chromatogram of the SRM 1650b sample in SCAN mode on a DB-17MS column.

The identification of the compounds was done using the NIST spectral library. A good
identification was considered when match was above 70. Otherwise, the identification was only
considered as indicative.

149

151 *3.2. Quantification of PAH and oxy-PAH*

```
The linear fitting of the obtained calibration curves for each compound, indicated in section
2.1, showed correlation coefficients (r) between 0.988 and 0.999 within the linear range (469
ng mL<sup>-1</sup> - 50000 ng mL<sup>-1</sup>). The calibration curves were prepared in triplicate. The quantification
was carried out with the selected ion monitoring (SIM). The detection limit (LOD) and the
quantification limit (LOQ) with 95% of confidence level were also established, Table 1.
```

158 Table	1. Compounds	and analytical	parameters.
-----------	--------------	----------------	-------------

Compound	Molecular formula	Abbreviation	Monitored ions	RT (min)	r	Limit of detection LOD (ng/mL)	Limit of quantification LOQ (ng/mL)
Naphthalene ¹	$C_{10}H_8$	NAPH	128-129	18.909	0.997	11.32	34.32
Acenaphthylene ¹	C12H8	ACNY	152-153	27.308	0.997	16.82	50.98
Acenaphthene ¹	$C_{12}H_{10}$	ACN	154-153	27.992	0.997	13.85	41.96
Fluorene ¹	C13H10	FLUO	166-165	30.964	0.997	19.69	59.66
9-fluorenone ²	$C_{13}H_8O$	9-FLUO	180-152	38.433	0.997	19.59	59.36
Phenanthrene ¹	$C_{14}H_{10}$	PHEN	178-179	39.821	0.997	16.37	49.59
Anthracene ¹	$C_{14}H_{10}$	ANTH	178-179	40.102	0.996	24.40	73.95
9,10-anthraquinone ²	$C_{14}H_8O_2$	9,10-ANTH	208-152	50.996	0.999	15.56	47.17
Fluoranthene ¹	$C_{16}H_{10}$	FANTH	202-203	53.932	0.997	14.99	45.45
Pyrene ¹	$C_{16}H_{10}$	PYR	202-203	57.336	0.991	16.00	48.49
Benzofluorenone ²	$C_{17}H_{10}O$	BFLUO	230-202	67.442	0.998	23.46	71.10
Benzo[a]anthracene ¹	$C_{18}H_{12}$	B[a]A	228-226	70.696	0.998	24.08	72.96
Chrysene ¹	$C_{18}H_{12}$	CHR	228-226	71.594	0.997	19.40	58.79
Benzanthrone ²	C17H10O	BEZO	230-202	74.396	0.996	29.85	90.46
Benzo[<i>a</i>]anthracene-7,12- dione ²	$C_{18}H_{10}O_2$	7,12-BaAQ	258-202	76.765	0.999	33.05	110.16
Naphthacene-5,12-dione ²	$C_{18}H_{10}O_2$	5,12-NAPQ	258-202	80.308	0.988	55.25	184.17
Benzo[b]fluoranthene ¹	C20H12	B[b]F	252-253	82.433	0.992	28.77	87.18
Benzo[k]fluoranthene ¹	$C_{20}H_{12}$	B[k]F	252-253	82.708	0.988	45.11	136.71
Benzo[a]pyrene ¹	C20H12	B[a]P	252-253	87.353	0.993	26.53	80.39
Benzo[cd]pyrenone ²	$C_{18}H_{10}O$	B[cd]PYRO	254-226	89.047	0.994	121.94	406.46
Indeno[1,2,3-cd]pyrene ¹	C22H12	I[<i>123-cd</i>]P	276-277	101.197	0.990	31.48	95.38
Dibenz[ah]anthracene1	C22H14	DB[ah]A	278-279	101.339	0.989	38.43	116.45
Benzo[ghi]perylene1	$C_{22}H_{12}$	B[ghi]P	276-277	105.639	0.994	22.60	68.50

159 160 ¹Polycyclic aromatic hydrocarbons (PAH) ²Oxygenated Polycyclic aromatic hydrocarbons (oxy-PAH)

The chromatogram of standards and deuterated compounds used in the extraction and 161

quantification process can be seen in Figure 4. 162

163
164 Fig. 4 Chromatogram of PAH, oxy-PAH and deuterated compounds acquired in SIM mode on a DB-17MS
165 column using GC-Ms.

167 *3.3 Repeatability*

168 The repeatability of presented method was evaluated using Printex-U samples, considering169 for this purpose the results of three repetitions, using in each one 1500 mg of Printex-U.

Table 2 shows the average mass fraction values of the analysed PAH and oxy-PAH and their Relative Standard Deviation (RSD) values. This is a criteria acceptance for chromatographic methods, where the RSD value should be below 20% (Mahuzier et al. 2001; Choi et al. 2016). Thus, most of the obtained RSD values were lower than 27%, which can be taken as a good reference for the different quantified analytes. It can be also noticed that the higher the molecular mass was, the higher obtained. RSD value was.

Compounds	Average concentration (n=3) (mg/kg)	RSD (%)
NAPH	66.48	5.99
ACNY	33.82	6.43
ACN	0.22	7.30
FLUO	1.21	11.25
9-FLUO	164.02	5.47
PHEN	857.76	6.34
ANTH	80.97	2.25
FANTH	294.77	8.65
9,10-ANTH	8.53	6.53
PYR	277.54	9.08
B[a]A	6.17	16.98
BFLUO	6.07	17.35
BEZO	3.25	25.13
CHR	10.17	17.28
7,12-BaAQ	BDL	-
5,12-NAPQ	1.19	27.02
B[cd]PYRO	11.2	14.21
B[b]F	12.85	12.38
B[k]F	6.23	17.17
B[a]P	5.06	19.36
I[<i>123-cd</i>]P	3.87	16.66
DB[ah]A	0.38	22.57
B[ghi]P	5.69	27.14

Table 2. Average mass fraction values of PAH and oxy-PAH from Printex-U.

- Figure 5 shows the repeatability analysis performed with Printex-U sample. It can be seen 178 that repetitions have a high precision due to low differences among them.
- 179
- 180 The PAH mass fraction recovered in the present study are similar to those obtained by
- Sánchez et al. (2013), where PHEN were found in high amount and light PAH, such as NAPH 181
- and ACNY, were found in low amounts. 182

186 *3.4 Validation*

The quantification analysis was validated using the following SRM: Diesel Particulate Matter (SRM 1650b) and Urban Dust (SRM 1649b). These SRM were commonly used in analytical works (Nocun and Schantz 2013; Layshock et al. 2010; O'Connell et al. 2013; Ahmed et al. 2015) in order to verify that the amount of the compounds obtained in each analysis corresponds to a certified value of its concentration. In this way, a high accuracy of the method is guaranteed.

		Compounds	Average concentration (n=3) (mg/kg)	Certified or referenced concentration (mg/kg)
		NAPH	3.69 (1.03)	5.16 ^b
		ACNY	1.38 (0.68)	1.36 ^b
		ACN	0.28 (0.05)	0.23 ^b
		FLUO	0.95 (0.01)	0.76 ^b
		9-FLUO	20.46 (1.44)	NR
		PHEN	43.18 (2.01)	65.61ª
		ANTH	5.75 (0.46)	7.58 ^b
		FANTH	28.72 (2.46)	48.10 ^a
		9,10-ANTH	31.39 (1.89)	NR
		PYR	43.87 (7.62)	44.10 ^a
		B[a]A	5.66 (1.85)	6.45ª
		BFLUO	8.78 (1.99)	NR
		BEZO	7.34 (1.14)	NR
		CHR	8.53 (3.61)	13.40ª
		7,12-BaAO	BDL	NR
		5,12-NAPO	BDL	NR
		B[cd]PYRO	28.99 (1.29)	NR
		B[b]F	4.99 (1.77)	6.77ª
		B[k]F	2.08 (1.67)	2.30ª
		B[a]P	2.08 (0.33)	1.25ª
		I[<i>123-cd</i>]P	4.66 (2.42)	4.48 ^a
		DB[ah]A	0.67 (0.34)	0.37 ^a
		B[ghi]P	10.25 (1.98)	6.04 ^a
		^a Compared to ^b Compared to BDL (Below deto NR (No reference	certified values, mass fractio reference values, mass fracti ection limit) e)	n (mg/kg) on (mg/kg)
00	Three samp	les of each SRM we	ere used (each sample o	f 100 mg in c
01	30 mg in case o	of SRM 1650b) and	analysed to verify the q	uantified val
)2	method.			

deviations in parentheses).

Tables 3 and 4 show the comparison between the mass fraction values obtained using the presented method with the certified/reference values of mass fragment found for SRM 1650b and SRM 1649b. Two oxy-PAH: 7,12-BaAQ and 5,12-NAPQ could not be detected for analysed SRM samples and were below detection limit (BDL). Only it was possible the comparison for 7,12-BaAQ because the mass fraction of this compound reported in the SRM 1649b is 3.6 mg/kg.

Certified or Average referenced Compounds concentration concentration (n=3) (mg/kg) (mg/kg) NAPH 1.15 (0.18) 1.12^b ACNY 0.29 (0.05) 0.18^b ACN 0.16 (0.03) 0.19^b FLUO 0.16 (0.02) 0.22^b 9-FLUO 1.12 (0.17) 1.40^c PHEN 3.71 (0.11) 3.94ª ANTH 0.54(0.04)0.40^b FANTH 3.91 (0.18) 6.14^a 9,10-ANTH 1.87 (0.28) 1.80^c PYR 6.06 (0.79) 4.78^a B[a]A1.45 (0.08) 2.09ª BFLUO 1.14 (0.09) NR BEZO 1.54 (0.12) 1.60^c CHR 2.63 (0.076) 3.01^a 7,12-BaAQ 3.82 (1.49) 3.60^a 5,12-NAPQ 2.39 (0.33) NR B[cd]PYRO 21.60 (8.68) NR 4.43 (0.26) B[b]F5.99ª B[k]F1.07 (0.13) 1.75^a B[a]P2.49 (1.41) 2.47^a I[123-cd]P 2.50 (0.63) 2.96^a DB[ah]A 0.38 (0.03) 0.29^a 5.66 (0.76) B[ghi]P 3.94ª ^a Compared to certified values, mass fraction (mg/kg)

deviations in parentheses).

211	
212	

^b Compared to reference values, mass fraction (mg/kg)

^c Compared to information values, mass fraction (mg/kg)

213 214

NR (No reference)

Table 4 shows that the quantified amount of 9-FLUO is slightly lower and 9,10-ANTH is 215

slightly higher, compared to the theoretical concentrations. This results are similar to those 216

found in a previous study that analysed SRM 1649b (Albinet et al. 2006). 217

The mass fraction of PAH and oxy-PAH and the standard deviations from the SRM 1650b 218

- and 1649b, are shown in Figure 6. Error bars express the standard deviation (SD) of each 219
- quantified analyte. 220

Due to a lack of standard reference values, a comparison between the results obtained in 224 225 different studies (Nocun and Schantz 2013; Layshock et al. 2010; O'Connell et al. 2013) was performed for validation purposes of oxy-PAH compounds. The comparison was done between 226 studies that employed GC-MS analysis but with differences in the extraction method and 227 chromatographic columns, Tables 5 and 6. In the present work, Soxhlet extraction was applied, 228 while pressurized liquid extraction (PLE) was used for the rest of studies. Although PLE has 229 higher extraction efficiencies, especially in PAH extraction from diesel particulate matter, 230 compared to Soxhlet extraction (Schantz 2006), the present results show acceptable quantified 231 concentrations for analysed analytes. 232

Additionally, Nocun and Schantz (2013) employed the same chromatographic column (DB17-MS) as in the present study. Nevertheless, Layshock et al. (2010) and O'Connell et al. (2013) used a DB5-MS column.

236	As it was mentioned above, two compounds (oxy-PAH) have not been detected in the
237	present analysis. The same result was observed by Nocun and Schantz (2013), Layshock et al.
238	(2010) and O'Connell et al. (2013) for 5,12-NAPQ in the SRM 1650b analysis.
239	The mass fraction values of oxy-PAH recovered from SRM 1649b were similar to the values
240	obtained by other authors (Table 5). There is one exception, significant difference was obtained
241	for values recovered for BEZO, compared with the studies done by Nocun and Schantz (2013)
242	and Layshock et al. (2010).
242	On the other hand, the mass fraction values of 0.10 ANTH PELLIC and PEZO from SPM

On the other hand, the mass fraction values of 9,10-ANTH, BFLUO and BEZO from SRM 1650b showed a significant difference among the compared values, except for 9-FLUO (Table 6). Despite these differences, it is important to point that the values for 9-FLUO, 9,10-ANTH and BEZO were in line with the values reported for SRM 1649b. In case of B[*cd*]PYRO found in both samples mass fraction values were different comparing to the other authors.

248

 Table 5. Mass fraction values reported in mg/kg for oxy-PAH from SRM 1649b.

	Present work (n=3)	Nocun and Schantz (2013) (n=3)	Layshock et al. (2010) (n=3)	O'Connell et al. (2013) (n=5)
9-FLUO	1.12	1.19	0.78	0.76
9,10-ANTH	1.87	1.39	1.60	2.6
BFLUO	1.14	1.88	1.65	0.78
BEZO	1.54	3.13	4.46	1.18
7,12-BaAQ	3.82	3.75	3.16	1.4
5,12-NAPQ	2.39	1.25	2.20	0.72
B[cd]PYRO	21.60	4.19	2.42	0.56

249

250

Table 6. Mass fraction values reported in mg/kg for oxy-PAH from SRM 1650b.

	Present work (n=3)	Nocun and Schantz (2013) (n=3))	Layshock et al. (2010) (n=3)	O'Connell et al. (2013) (n=5)
9-FLUO	20.46	25.34	24.9	19
9,10-ANTH	31.39	53.11	47.7	64
BFLUO	8.78	15.34	15.9	18
BEZO	7.34	16.03	36.9	23
7,12-BaAQ	BDL	8.9	9	5.7
5,12-NAPQ	BDL	BDL	BDL	BDL
B[cd]PYRO	28.99	5.67	9.2	5

251 252 BDL (Below detection limit)

4. Conclusions

The present study shows a reliable and relatively simple method to identify and quantify simultaneously 23 polycyclic aromatic hydrocarbons: 16 PAH and 7 oxy-PAH from different samples of soot. The method involves Soxhlet extraction, concentration by rotary evaporation and GC-MS analysis.

The repeatability of the method showed good precision using Printex-U, diesel soot surrogate analysis. The present method accomplishes the objective of identification and quantification of the compounds present in different SRM.

The mass fraction values of oxy-PAH recovered from SRM 1649b showed a good agreement with the values obtained in other studies, while the values corresponding to the SRM 1650b material present some differences.

265

266 Acknowledgments and Funding

The authors express their gratitude to Aragon Government (Ref. T22_17R) co-funded by FEDER 2014-2020 "Construyendo Europa desde Aragón" and to MINECO and FEDER (Project CTQ2015-65226), for financial support. Dr. F. Viteri acknowledges to the "Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación" (SENESCYT) of Ecuador, for the predoctoral grant awarded.

272

273 Compliance with Ethical Standards

274 **Conflict of Interest:** The authors declare that they have no conflict of interest.

276 **References**

Ahmed TM, Bergvall C, Åberg M, Westerholm R. (2015) Determination of
oxygenated and native polycyclic aromatic hydrocarbons in urban dust and diesel
particulate matter standard reference materials using pressurized liquid extraction
and LC-GC/MS. Anal. Bioanal. Chem. 407:427-438.
https://doi.org/10.1007/s00216-014-8304-8.

Albinet A, Leoz-Garziandia E, Budzinski H, Viilenave E. (2006) Simultaneous analysis of oxygenated and nitrated polycyclic aromatic hydrocarbons on standard reference material 1649a (urban dust) and on natural ambient air samples by gas chromatography-mass spectrometry with negative ion chemical ionization. J. Chromatogr. A. 1121:106-113. https://doi.org/10.1016/j.chroma.2006.04.043.

Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo J-L. (2008)
Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the
ambient air of two French alpine valleys Part 1: Concentrations, sources and
gas/particle partitioning. Atmos. Environ. 42: 43-54.
https://doi.org/10.1016/j.atmosenv.2007.10.009.

Allen JO, Dookeran NM, Taghizadeh K, Lafleur AL, Smith KA, Sarofim AF.
(1997) Measurement of oxygenated polycyclic aromatic hydrocarbons associated
with a size-segregated urban aerosol. Environ. Sci. Technol. 31:2064-2070.
https://doi.org/10.1021/es960894g.

Arnal C, Alzueta MU, Millera Á, Bilbao R. (2012) Influence of water vapor
addition on soot oxidation at high temperature. Energy 43:55-63.
https://doi.org/10.1016/j.energy.2012.03.036.

Atribak I, Bueno-López A, García-García A. (2010) Uncatalysed and catalysed
soot combustion under NO_x +O₂: Real diesel versus model soots. Combust Flame
157:2086-2094. https://doi.org/10.1016/j.combustflame.2010.04.01.

- Bandowe BAM, Meusel H, Huang R-J, Ho K, Cao J. (2014) Hoffmann T, et al.
 PM_{2.5}-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the
 atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk
 assessment. Sci. Total Environ. 2014; 473-474:77-87.
 https://doi.org/10.1016/j.scitotenv.2013.11.108.
- Bosetti C, Boffetta P, La Vecchia C. (2007) Occupational exposures to polycyclic
 aromatic hydrocarbons, and respiratory and urinary tract cancers: A quantitative
 review to 2005. Ann. Oncol. 18:431-446. https://doi.org/10.1093/annonc/mdl172.
- Choi NR, Kim YP, Ji WH, Hwang G-S, Ahn YG. (2016) Identification and quantification of seven volatile n-nitrosamines in cosmetics using gas chromatography/chemical ionization-mass spectrometry coupled with head space-solid phase microextraction. Talanta. 148:69-74. https://doi.org/10.1016/j.talanta.2015.10.045.
- Durant JL, Busby Jr WF, Lafleur AL, Penman BW, Crespi CL. (1996) Human cell
 mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic
 hydrocarbons associated with urban aerosols. Mutat Res. 371:123-157.
 https://doi.org/10.1016/S0165-1218(96)90103-2.
- Fu PP, Xia Q, Sun X, Yu H. (2012) Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage, J. Environ. Sci.

Health Pt. C-Environ. Carcinog. Ecotoxicol. Rev. 30:1-41.
 https://doi.org/10.1080/10590501.2012.653887.

- Gómez JÁ, Wenzl T. (2009) Evaluation of gas chromatography columns for the
 analysis of the 15 + 1 EU-priority polycyclic aromatic hydrocarbons (PAHs). Anal
 Bioanal Chem. 393:1697-1707. https://doi.org/10.1007/s00216-008-2585-8.
- Hattemer-Frey HA, Travis CC. (1991) Benzo-a-Pyrene: environmental
 partitioning and human exposure. Toxicol. Ind. Health 7:141-157.
 https://doi.org/10.1177/074823379100700303.

330Lampi MA, Gurska J, McDonald KIC, Xie F, Huang X-D, Dixon DG, et al. (2005)

Photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna:
ultraviolet-mediated effects and the toxicity of polycyclic aromatic hydrocarbon
photoproducts, Environ. Toxicol. Chem. 25: 1079-1087.
https://doi.org/10.1897/05-276R.1.

Layshock JA, Wilson G, Anderson KA. (2010) Ketone and quinone-substituted polycyclic aromatic hydrocarbons in mussel tissue, sediment, urban dust, and diesel particulate matrices, Environ. Toxicol. Chem. 29:2450-2460. https://doi.org/10.1002/etc.301.

Lundstedt S, White PA, Lemieux CL, Lynes KD, Lambert IB, Öberg L, et al.
(2007) Sources, fate, and toxic hazards of oxygenated polycyclic aromatic
hydrocarbons (PAHs) at PAH-contaminated sites. Ambio. 36:475-485.
https://doi.org/10.1579/0044-7447(2007)36.

Mahuzier P-E, Altria KD, Clark BJ. (2001) Selective and quantitative analysis of
4-hydroxybenzoate preservatives by microemulsion electrokinetic

- 345 chromatography. J. Chromatogr. A. 924:465-470. https://doi.org/10.1016/S0021346 9673(01)00717-8.
- Masiol M, Hofer A, Squizzato S, Piazza R, Rampazzo G, Pavoni B. (2012)
 Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic
 aromatic hydrocarbons: A source apportionment, Atmos. Environ. 60:375-382.
 https://doi.org/10.1016/j.atmosenv.2012.06.073.
- Mathieu O, Frache G, Djebaïli-Chaumeix N, Paillard C-E, Krier G, Muller J-F, et
 al. (2007) Characterization of adsorbed species on soot formed behind reflected
 shock waves. Proc. Combust. Inst. 31:511-519.
 https://doi.org/10.1016/j.proci.2006.07.190.
- NIST. National Institute of Standards and Technology NIST. (2009) Certificate of
 Analysis, Standard Reference Material 1649b, Urban Dust. Gaithersburg.
- NIST. National Institute of Standards and Technology. (2013) Certificate of
 Analysis, Standard Reference Material 1650b, Diesel Particulate Matter.
 Gaithersburg.
- Nocun MS, Schantz MM. (2013) Determination of selected oxygenated polycyclic
 aromatic hydrocarbons (oxy-PAHs) in diesel and air particulate matter standard
 reference materials (SRMs). Anal. Bioanal. Chem. 405:5583-5593.
 https://doi.org/10.1007/s00216-013-6957-3.
- O'Connell SG, Haigh T, Wilson G, Anderson KA. (2013) An analytical
 investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas
 chromatography-mass spectrometry, Anal. Bioanal. Chem. 405:8885-8896.
 https://doi.org/10.1007/s00216-013-7319-x.

368	Pongpiachan S, Tip	omanee D, Kl	numsup C, Kitti	koon I, Hirunyat	rakul P. (2015)				
369	Assessing risks to adults and preschool children posed by PM _{2.5} -bound polycyclic								
370	aromatic hydrocart	aromatic hydrocarbons (PAHs) during a biomass burning episode in Northern							
371	Thailand,	Sci.	Total	Environ.	508:435-444.				
372	https://doi.org/10.1	016/j.scitoten	v.2014.12.019.						
373	Richter H, Howard	I JB. (2000) I	Formation of po	olycyclic aromatic	e hydrocarbons				
374	and their growth to	o soot-a revie	w of chemical r	eaction pathways	s. Prog. Energy				
375	Combust. Sci. 26:5	65-608. https:	//doi.org/10.101	6/\$0360-1285(00))00009-5.				
376	Sadezky A, Mucke	enhuber H, G	rothe H, Niessr	ner R, Pöschl U.	(2005) Raman				
377	microspectroscopy	of soot and re	elated carbonace	eous materials: Sj	pectral analysis				
378	and structur	al inf	ormation.	Carbon	43:1731-1742.				
379	https://doi.org/10.1	016/j.carbon.2	2005.02.018.						
380	Sánchez NE, Salafi	anca J, Calle	jas A, Millera Á	., Bilbao R, Alzue	eta MU. (2013)				
381	Quantification of p	olycyclic arc	omatic hydrocar	bons (PAHs) fou	and in gas and				
382	particle phases fr	om pyrolytic	c processes us	ing gas chroma	atography-mass				
383	spectrometry (GC-l	MS). 107:246	-253. https://doi	.org/10.1016/j.fue	el.2013.01.065.				
384	Schantz MM. (200)6) Pressurize	ed liquid extrac	tion in environm	nental analysis,				
385	Anal. Bioanal. Che	m. 386:1043-	1047. https://do	i.org/10.1007/s00	216-006-0648-				
386	2.								
387	Shen G, Tao S, W	ang W, Yang	g Y, Ding J, Xu	ue M, et al. (201	1) Emission of				
388	oxygenated polycyc	clic aromatic l	nydrocarbons fro	om indoor solid fu	el combustion.				
389	Environ. Sci. Techr	nol. 45:3459-3	3465. https://doi	.org/10.1021/es10)4364t				
390	Walgraeve C, Char	ntara S, Sopa	jaree K, De Wi	spelaere P, Dem	eestere K, Van				
391	Langenhove H. (2	015) Quantif	fication of PAH	Is and oxy-PAE	Is on airborne				

particulate matter in Chiang Mai, Thailand, using gas chromatography high
resolution mass spectrometry. Atmos. Environ. 107:262-272.
https://doi.org/10.1016/j.atmosenv.2015.02.051.

Joint quantification of PAH and oxy-PAH from standard reference materials (urban dust and diesel particulate matter) and diesel soot surrogate by GC-MS

F. Viteri^{b,a}, D. Pezo^a, Á. Millera^a, R. Bilbao^a, M.U. Alzueta^{a*}

^aAragón Institute of Engineering Research (I3A), Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza 50018, Spain

^bFacultad de Ciencias de la Ingeniería e Industrias. Universidad UTE. Quito - Ecuador.

*Corresponding author: Phone: +34976761876, e-mail address: uxue@unizar.es

SUPPLEMENTARY MATERIAL

Table of contents

1) Qualitative analysis

Table S1. Results of qualitative analysis of Printex-U, SRM 1649b and 1650b samples by GC-MS SCAN mode, 2 μ L of injection volume.

RT: Retention Time

Match: Can be defined as a factor that indicates correlation between structure of the detected compound and the compound present in the database.

Peak number	RT (min)	Compounds	CAS number	Match	Samples
1	10.501	cis-4,4-Dimethyl-2-pentene	000762-63-0	53	Printex-U
2	10.664	3-Methyl-1-pentene	000760-20-3	59	Printex-U SRM 1649b
3	11.758	1,1-Dichloro-2,2-dichloroethane	000079-34-5	95	Printex-U SRM 1649b SRM 1650b
4	13.993	Benzaldehyde	000100-52-7	94	Printex-U
5	14.547	Dodecane	000112-40-3	93	Printex-U
6	16.050	Benzyl alcohol	000100-51-6	96	Printex-U SRM 1650b
7	19.854	Tetradecane	000629-59-4	96	Printex-U
8	20.682	Naphthalene	000091-20-3	93	Printex-U SRM 1649b SRM 1650b
9	21.413	Benzo[c]thiophene	000270-82-6	95	Printex-U
10	21.432	2-Hydroxy-5-chlorobenzaldehyde	000635-93-8	98	SRM 1649b
11	23.257	Quinoline	000091-22-5	97	Printex-U
12	23.541	1-Methylnaphthalene	000090-12-0	96	Printex-U
13	24.318	2-Methylnaphthalene	000091-57-6	96	Printex-U
14	24.770	Heptadecane	000629-78-7	97	Printex-U
15	26.096	Biphenyl	000092-52-4	95	Printex-U
16	26.171	1,6-Dimethylnaphthalene	000575-43-9	94	Printex-U
17	26.236	1,7-Dimethylnaphthalene	000575-37-1	95	Printex-U
18	26.376	Phthalic anhydride	000085-44-9	91	Printex-U
19	26.799	2,6-Dimethylnaphthalene	000581-42-0	98	Printex-U
20	26.967	2,7-Dimethylnaphthalene	000582-16-1	97	Printex-U
21	27.502	2,3-Dimethylnaphthalene	000581-40-8	97	Printex-U
22	27.828 - 27.833	2,2,4-Trimethyl-1,3-pentanediol diisobutyrate	006846-50-0	90	SRM 1649b SRM 1650b
23	28.689	3-Methylbiphenyl	000643-93-6	94	Printex-U
24	29.043	4-Methylbiphenyl	000644-08-6	94	Printex-U
25	29.243	Acenaphthylene	000208-96-8	90	Printex-U SRM 1649b SRM 1650b

Table S1. Results of qualitative analysis of Printex-U, SRM 1649b and 1650b samples by GC-MS SCAN mode, 2 µL of injection volume.

26	29.541	Octadecane	000593-45-3	97	Printex-U	SRM 1649b	SRM 1650b	
27	29.974	Acenaphthene	000083-32-9	83	Printex-U	SRM 1649b	SRM 1650b	
28	30.724	Dibenzofuran	000132-64-9	87	Printex-U			
29	31.487	1-Naphthalenecarbonitrile	000086-53-3	97	Printex-U			
30	31.822	2-Naphthalenecarboxaldehyde	000066-99-9	98	Printex-U			
31	31.967	1,4-Dihydro-methylethylidene-1,4-methanonaphthalene	007350-72-3	76	Printex-U			
32	32.293	Nonadecane	000629-92-5	96	Printex-U	SRM 1649b	SRM 1650b	
33	32.493	2-Naphthalenecarbonitrile	000613-46-7	97	Printex-U			
34	32.847 - 32.856	Diethyl Phthalate	000084-66-2	98	Printex-U	SRM 1649b	SRM 1650b	
35	33.200	Fluorene	000086-73-7	97	Printex-U	SRM 1649b	SRM 1650b	
36	33.615	2-Pentadecanone, 6,10,14-trimethyl	000502-69-2	91		SRM 1649b		
37	33.764	[1,1'-Biphenyl]-4-carboxaldehyde	003218-36-8	91	Printex-U			
38	34.187	4-Methyldibenzofuran	007320-53-8	89	Printex-U			
39	34.271	2-phenyl-2,4,6-Cycloheptatrien-1-one	014562-09-5	86	Printex-U			
40	35.118	Dibenzo[a,e]pyran	000092-83-1	84	Printex-U			
41	35.407 - 35.440	Eicosane	000112-95-8	95	Printex-U	SRM 1649b	SRM 1650b	
42	36.250	1,2-dimethyl-naphtho[2,1-b]furan	129812-23-3	74	Printex-U			
43	37.097	Acridine	000260-94-6	65	Printex-U			
44	37.469	2-[(ethylamino)methyl]-4-nitro-phenol	1000400-09-7	59	Printex-U			
45	37.688	2-[2-Phenylethenyl]phenol	042224-48-6	72	Printex-U			
46	38.098	1,2-dimethyl-naphtho[2,1-b]furan	129812-23-3	60	Printex-U			
47	38.661	4-Carbomethoxy-3-methoxy-4-methyl-2,5-cyclohexadien-1-one	120696-19-7	90	Printex-U			
48	38.954 - 38.996	n-Hexadecanoic acid	000057-10-3	98	Printex-U	SRM 1649b	SRM 1650b	
49	41.338 - 41.347	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester	000084-69-5	86		SRM 1649b	SRM 1650b	
50	41.408	9-Fluorenone	000486-25-9	95	Printex-U	SRM 1649b	SRM 1650b	
51	41.566	Dibenzothiophene	000132-65-0	95	Printex-U			
52	41.952	Naphtho[1,2-b]thiophene	000234-41-3	97	Printex-U			

53	42.781 - 42.790	Docosane	000629-97-0	96		SRM 1649b	SRM 1650b
54	43.084	Phenanthrene	000085-01-8	78	Printex-U	SRM 1649b	SRM 1650b
55	43.223	Anthracene	000120-12-7	95	Printex-U	SRM 1649b	SRM 1650b
56	43.633	Naphtho[2,1-b]thiophene	000233-02-3	96	Printex-U		
57	44.247	Benzo[h]quinoline	000230-27-3	95	Printex-U		
58	44.811	Acridine	000260-94-6	95	Printex-U		
59	45.062	Dibenzothiophene	000132-65-0	93	Printex-U		
60	45.332	3-Methyldibenzothiophene	016587-52-3	97	Printex-U		
61	45.630	9-Ethenyl anthracene	002444-68-0	96	Printex-U		
62	46.231 - 46.240	Dibutyl phthalate	000084-74-2	96	Printex-U	SRM 1649b	SRM 1650b
63	46.314	Tetraethyl pyrazine	038325-19-8	64	Printex-U		
64	46.519	Benzo[f]isoquinoline	000229-67-4	91	Printex-U		
65	46.771	Anthrone	000090-44-8	93	Printex-U		
66	46.938	2,6,10-trimethyl tetradecane	014905-56-7	91		SRM 1649b	
67	46.952	Octacosane	000630-02-4	91	Printex-U		SRM 1650b
68	47.166	1-Methylphenanthrene	000832-69-9	96	Printex-U		
69	47.245 - 47.250	Octadecanoic acid	000057-11-4	99		SRM 1649b	SRM 1650b
70	47.450 - 47.501	Naphthalic anhydride	000081-84-5	96	Printex-U		SRM 1650b
71	47.674 - 47.702	3-Methylphenanthrene	000832-71-3	94	Printex-U		SRM 1650b
72	47.916	2-Methylanthracene	000613-12-7	90	Printex-U		
73	48.349	1-Phenanthrenol	002433-56-9	90	Printex-U		
74	48.609	6-Cyclohexylnonadecane	1000357-25-3	91			SRM 1650b
75	49.145	1a,9b-dihydro-1H-Cyclopropa[l]phenanthrene	000949-41-7	96	Printex-U		
76	49.457	Naphtho[2,3-b]norbornadiene	107426-38-0	90	Printex-U		
77	51.291 - 51.314	Tetracosane	000646-31-1	98		SRM 1649b	SRM 1650b
78	51.337	2-Phenylnaphthalene	000612-94-2	97	Printex-U		
79	51.524	1,2-Acenaphthylenedione	000082-86-0	98	Printex-U		

80	52.180	1-Docosene	001599-67-3	95		SRM 1649b	
81	52.189	Cyclotetracosane	000297-03-0	96			SRM 1650b
82	52.329	2,7-dimethylphenanthrene	001576-69-8	95	Printex-U		
83	52.511 - 52.557	1H-Phenalen-1-one	000548-39-0	94	Printex-U		SRM 1650b
84	53.069	Anthralin	001143-38-0	59	Printex-U		
85	53.097	n-Heptadecylcyclohexane	019781-73-8	93			SRM 1650b
86	53.479	4-Hydroxy-9-fluorenone	001986-00-1	93	Printex-U		
87	53.484	3,6-Dimethylphenanthrene	001576-67-6	62			SRM 1650b
88	54.037	1,7-Dimethylphenanthrene	000483-87-4	95	Printex-U		
89	54.270 - 54.321	9,10-Anthraquinone	000084-65-1	98	Printex-U	SRM 1649b	SRM 1650b
90	55.420 - 55.425	Pentacosane	000629-99-2	91		SRM 1649b	SRM 1650b
91	55.797	5,6-Dihydro-4H-benz[de]anthracene	004389-09-7	58	Printex-U		
92	56.212	2,4-Diamino-6-[3,4-dichlorophenyl]-5-methylthieno[2,3-d]pyrimidine	042160-12-3	60		SRM 1649b	
93	57.185 - 57.408	Fluoranthene	000206-44-0	96	Printex-U	SRM 1649b	SRM 1650b
94	57.780	Cyclopenta(def)phenanthrenone	005737-13-3	98	Printex-U		
95	57.990	1,2,3,6,7,8-Hexahydropyrene	001732-13-4	70	Printex-U		
96	58.069	4-Phenylpyridine	000939-23-1	35		SRM 1649b	
97	58.763	1,1'-(1,3-butadiyne-1,4-diyl)bisbenzene	000886-66-8	68	Printex-U		
98	58.842	Benzo[b]naphtho[2,3-d]furan	000243-42-5	87	Printex-U		
99	59.191	9-Anthracenecarbonitrile	001210-12-4	94	Printex-U		
100	59.219	Hexacosane	000630-01-3	94		SRM 1649b	
101	59.847	Phenaleno[1,9-bc]thiophene	079965-99-4	90	Printex-U		
102	60.015 - 60.313	Naphthalic anhydride	000081-84-5	98	Printex-U		SRM 1650b
103	60.313	Valerenic acid	003569-10-6	90		SRM 1649b	
104	60.527 - 60.732	Pyrene	000129-00-0	95	Printex-U	SRM 1649b	SRM 1650b
106	61.011	2,10-Dimethyl-2,3,4,5,6,7-hexahydro-1H-2-benzazonine	077581-13-6	86	Printex-U		
107	61.519	11H-Benzo[a]fluorene	000238-84-6	93	Printex-U		

108	61.691	Pyrene, 1-methyl-	002381-21-7	92	Printex-U		
109	61.868 - 61.877	cis-9,10-Octadecenoamide	000301-02-0	99	Printex-U	SRM 1649b	SRM 1650b
110	62.217	Benzo[b]naphtho[2,3-d]furan	000243-42-5	91	Printex-U		
111	62.734	Heptacosane	000593-49-7	85		SRM 1649b	
112	63.241	2-Methylpyrene	003442-78-2	89	Printex-U		
113	63.367	2-Methylfluoranthene	033543-31-6	83	Printex-U		
114	63.530 - 63.586	Methyl dehydroabietate	001235-74-1	89	Printex-U		SRM 1650b
115	63.855	Mitotane	000053-19-0	93	Printex-U		
116	64.773	4-Methylpyrene	003353-12-6	96	Printex-U		
117	65.992	Octacosane	000630-02-4	99		SRM 1649b	
118	66.104	11H-Benzo[b]fluorene	000243-17-4	70	Printex-U		
119	67.133 - 67.147	Bis(2-ethylhexyl) phthalate	000117-81-7	99	Printex-U	SRM 1649b	SRM 1650b
120	69.065	Nonacosane	000630-03-5	94		SRM 1649b	
121	69.121	4,4'-Biphenyldicarboxaldehyde	000066-98-8	41	Printex-U		
122	69.414	11H-Isoindolo[2,1-a]benzimidazol-11-one	002717-05-7	59	Printex-U		
123	70.317	1,2'-Binaphthalene	004325-74-0	96	Printex-U		
124	70.401	Benzofluorenone	000479-79-8	98	Printex-U	SRM 1649b	SRM 1650b
125	71.085	Benzo[b]naphtho[2,3-d]thiophene	000243-46-9	98	Printex-U		
126	71.188	5,6-Dihydro-6-oxodibenzo(b,f)-1,4-thiazepine	003159-07-7	64	Printex-U		
127	71.732	Cyclopenta[cd]pyrene	027208-37-3	95	Printex-U		
128	72.719	3-Chloro-5H-dibenz[b,f]azepine	039607-90-4	59	Printex-U		
129	72.845	7H-Benz[de]anthracen-7-one	000082-05-3	94	Printex-U		
130	73.627	Benz[a]anthracene	000056-55-3	96	Printex-U	SRM 1649b	SRM 1650b
131	74.404	3,4-Dihydrocyclopenta(cd)pyrene	025732-74-5	95	Printex-U		
132	74.511	Chrysene	000218-01-9	89	Printex-U	SRM 1649b	SRM 1650b
133	74.619	9,10-o-Benzenoanthracene	000477-75-8	89	Printex-U		
134	74.702	Hentriacontane	000630-04-6	96		SRM 1649b	

135	74.861	N-phenylthiazolo[4,5-c]pyridin-2-amine	1000400-95-0	50	Printex-U		
136	75.089	9-Phenylanthracene	000602-55-1	95	Printex-U		
137	76.132	3,3,5,5-Tetramethyl-2,3,5,6-tetrahydro-S-indacene-1,7-dione	055591-17-8	58	Printex-U		
138	77.370	Benzanthrone	000082-05-3	96	Printex-U	SRM 1649b	SRM 1650b
139	78.701	2-phenylphenanthrene	004325-77-3	86	Printex-U		
140	79.656	2,2'-Binaphthalene	000612-78-2	95	Printex-U		
141	79.888	Benz(a)anthracene-7,12-dione	002498-66-0	83	Printex-U	SRM 1649b	SRM 1650b
142	83.748	Naphthacene-5,12-dione	001090-13-7	83	Printex-U	SRM 1649b	
143	86.001	1,2-Diphenyl-3-chlorocarbonyl-cyclopropene	006415-58-3	53		SRM 1649b	
144	86.033	Benzo[b]fluoranthene	000205-99-2	99	Printex-U	SRM 1649b	SRM 1650b
145	86.322	Benzo[k]fluoranthene	000207-08-9	97	Printex-U	SRM 1649b	SRM 1650b
146	86.760	Perylene	000198-55-0	95	Printex-U		
147	87.044	Aceanthrenequinone	006373-11-1	42	Printex-U		
148	87.667	4,5-Dihydrobenzo[a]pyrene	57652-66-1	78	Printex-U		
149	90.689	Benzo[a]pyrene	000050-32-8	96	Printex-U	SRM 1649b	SRM 1650b
150	91.354	Benzo[e]pyrene	000192-97-2	98	Printex-U		
151	92.993	Benzo[j]fluoranthene	000205-82-3	96	Printex-U		
152	93.105	Benzo[cd]pyrenone	003074-00-8	96	Printex-U	SRM 1649b	SRM 1650b
153	98.700	Biacenaphthenylidene	002435-82-7	55	Printex-U		
154	104.510	Indeno[1,2,3-cd]pyrene	000193-39-5	95	Printex-U	SRM 1649b	SRM 1650b
155	105.474	Dibenz[a,h]anthracene	000053-70-3	38	Printex-U	SRM 1649b	SRM 1650b
156	105.972	Dibenzo[def,mno]chrysene	000191-26-4	94	Printex-U		
157	110.842	Benzo[ghi]perylene	000191-24-2	96	Printex-U	SRM 1649b	SRM 1650b