000096827 001__ 96827
000096827 005__ 20201124104757.0
000096827 0247_ $$2doi$$a10.1063/1.5124967
000096827 0248_ $$2sideral$$a115857
000096827 037__ $$aART-2019-115857
000096827 041__ $$aeng
000096827 100__ $$aHenriques, F.
000096827 245__ $$aPhonon traps reduce the quasiparticle density in superconducting circuits
000096827 260__ $$c2019
000096827 5060_ $$aAccess copy available to the general public$$fUnrestricted
000096827 5203_ $$aOut of equilibrium quasiparticles (QPs) are one of the main sources of decoherence in superconducting quantum circuits and one that is particularly detrimental in devices with high kinetic inductance, such as high impedance resonators, qubits, and detectors. Despite significant progress in the understanding of QP dynamics, pinpointing their origin and decreasing their density remain outstanding tasks. The cyclic process of recombination and generation of QPs implies the exchange of phonons between the superconducting thin film and the underlying substrate. Reducing the number of substrate phonons with frequencies exceeding the spectral gap of the superconductor should result in a reduction of QPs. Indeed, we demonstrate that surrounding high impedance resonators made of granular aluminum (grAl) with lower gapped thin film aluminum islands increases the internal quality factors of the resonators in the single photon regime, suppresses the noise, and reduces the rate of observed QP bursts. The aluminum islands are positioned far enough from the resonators to be electromagnetically decoupled, thus not changing the resonator frequency nor the loading. We therefore attribute the improvements observed in grAl resonators to phonon trapping at frequencies close to the spectral gap of aluminum, well below the grAl gap.
000096827 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000096827 590__ $$a3.597$$b2019
000096827 591__ $$aPHYSICS, APPLIED$$b37 / 154 = 0.24$$c2019$$dQ1$$eT1
000096827 592__ $$a1.343$$b2019
000096827 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ1
000096827 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000096827 700__ $$aValenti, F.
000096827 700__ $$aCharpentier, T.
000096827 700__ $$aLagoin, M.
000096827 700__ $$aGouriou, C.
000096827 700__ $$0(orcid)0000-0002-9043-4691$$aMartínez, M.$$uUniversidad de Zaragoza
000096827 700__ $$aCardani, L.
000096827 700__ $$aVignati, M.
000096827 700__ $$aGrünhaupt, L.
000096827 700__ $$aGusenkova, D.
000096827 700__ $$aFerrero, J.
000096827 700__ $$aSkacel, S.T.
000096827 700__ $$aWernsdorfer, W.
000096827 700__ $$aUstinov, A.V.
000096827 700__ $$aCatelani, G.
000096827 700__ $$aSander, O.
000096827 700__ $$aPop, I.M.
000096827 7102_ $$12004$$2390$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Atóm.Molec.y Nucl.
000096827 773__ $$g115, 21 (2019), 212601  1-5$$pAppl. phys. lett.$$tApplied Physics Letters$$x0003-6951
000096827 8564_ $$s1236887$$uhttps://zaguan.unizar.es/record/96827/files/texto_completo.pdf$$yVersión publicada
000096827 8564_ $$s55860$$uhttps://zaguan.unizar.es/record/96827/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000096827 909CO $$ooai:zaguan.unizar.es:96827$$particulos$$pdriver
000096827 951__ $$a2020-11-22-12:40:03
000096827 980__ $$aARTICLE