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ABSTRACT  
 
From the climatological point of view, northeast Spain is an area of large interest due 

its varied geographical, topographical and climatic characteristics. In this work, a 

spatially and temporarily high-resolution daily dataset of temperature was developed 

for northeastern Spain. Data derived from a high number of observatories (1583) 

spanning some period between 1900 and 2006 was tested for internal and external 

consistency to check data quality. To improve data completeness, a linear 

regression model was then utilized to infill gaps in the daily temperature series using 

the best correlated data from nearby sites. Discontinuities in the reconstructed series 

were then determined by combining the results of three homogeneity relative tests: 

the Standard Normal Homogeneity Test (SNHT), the Easterling and Peterson two-

phased regression method, and the Vincent test. The newly complied dataset seems 

to be more robust and reveals more coherent spatial and temporal patterns of 

temperature compared with the original dataset. This finding was confirmed by 

means of a suite of statistics (e.g., semivariance models and L-moment statistics). 

From the temporal and spatial perspectives, the new dataset comprises the most 

complete register of temperature in northeast Spain (1900-2006), with a reasonably 

spatial coverage. Therefore, this database provides a more reliable base for studying 

temperature changes and variability in the region.   

 

This thesis analyzed the surface air temperature variability and trends over the study 

domain for the 20th century based on the new compiled dataset. An assessment of 

long-term change and variability of temperature was provided using a dataset of 19 

observatories from 1920 to 2006. In addition, a more detailed analysis of the spatial 

and temporal variability of maximum, minimum, and mean temperatures, and the 
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diurnal temperature range (DTR) was also carried out employing 128 observatories 

spanning the period from 1960 to 2006. In general, maximum, minimum, and mean 

temperatures increased significantly, mostly from contributions in the late decades of 

the 20st century. At the seasonal scale, the analysis revealed that the weakest 

trends (mostly insignificant at the 95% level [p<0.05]) were observed during autumn, 

while the strongest warming rates were found during summer and spring. Spatially, 

the observed warming was more robust in the coastal portions compared with 

mainland observatories.  

Spatial and temporal characteristics of extreme temperature events were also 

investigated. A total of 21 indices were used to assess changes in the cold and warm 

tails of the daily temperature distribution, calculated at the annual timescale. The 

presence of trends in temperature extremes was assessed by means of the Mann-

Kendall statistic. However, prior to assessing trends, the autocorrelation function 

(ACF) and bootstrap methodologies were used to account for the influence of serial 

correlation and cross-correlation on the trend assessment. In general, the observed 

changes were more prevalent in warm extremes than in cold extremes. The results 

indicated a significant increase in the frequency and intensity of most of warm 

extremes. An increase in warm nights (TN90p: 3.3 days decade-1), warm days 

(TX90p: 2.7 days decade-1), tropical nights (TR20: 0.6 days decade-1) and the annual 

high maximum temperature (TXx: 0.27ºC decade-1) was detected in the 47-year 

period (1960-2006). In contrast, majority of the indices related to cold extremes (e.g., 

cold days [TX10p], cold nights [TN10p], very cold days [TN1p], and frost days [FD0]) 

demonstrated a decreasing but statistically insignificant trend. Spatially, similar to 

temperature means, the coastal areas along the Mediterranean Sea and the 

Cantabrian Sea experienced stronger warming compared with mainland areas.  
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In this thesis, a procedure for classifying daily temperature extremes into 

homogenous regions was also presented and evaluated. This procedure employed 

characteristics of temperature extremes calculated for summer (JJA), including 

temperature frequency (e.g., warm days), intensity (e.g., warmest day), and duration 

(e.g., maximum length of warm spell). Following the results of the principal 

components analysis (PCA) and the Ward´s method of clustering, the study area 

was divided into four homogenous sub-regions: the Mediterranean region, the 

mainland and the Cantabrian region, the moderately elevated areas westward and 

southward, and the mountainous region. The quality of this clustering was evaluated 

and ensured by means of an internal cluster validation measure (Silhouette width). 

Overall, the delineated sub-regions were proved as homogenous in terms of both the 

geographic and climatic meanings. The temporal evolution of the long-term (1960-

2006) temperature extremes was assessed for each of these sub-regions. The 

Mediterranean and the highly elevated regions revealed the strongest signals in both 

day-time and night-time extremes.  

 

This study also explored the forcing mechanisms that can explain temperature 

variability at seasonal timescales. The results indicated that this variability can 

markedly be connected to variations in the large-scale atmospheric patterns. 

Notably, the Eastern Atlantic (EA), the Scandinavian (SCA), and the Western 

Mediterranean Oscillation (WeMO) patterns exerted significant influences on 

temperature variations in the study domain. Temperature tended to increase during 

the positive (negative) modes of the EA (WeMO and SCA) patterns. Also, the 

possible physical processes and mechanisms favoring for the occurrence of the 

anomalous extreme heat events (very warm days [VWD: daily Tmax>99th percentile] 

and very cold nights [VCN: daily Tmin<1st percentile]) were examined. This included 
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configurations of Seal level pressure (SLP) and 200hPa and 500hPa geopotential 

height fields. The occurrence of VCN was mainly associated with predominance of 

the meridional circulation over much area of the Western Europe, with strong 

advection of cool air from northern continental Europe and the North Atlantic. On the 

other hand, the most likely factors contributing to VWD were the north-eastward 

displacement of the Atlantic subtropical high and the increase in the European 

blockings. In spite of the small spatial extent of the study domain (approximately 

160,000 km2), the results interestingly confirmed that circulation patterns had 

spatially variable influences on both temperature means and extremes.  

This work also assessed how well a set of regional climate models (RCMs) can 

reproduce observed changes in seasonal temperatures over northeastern Spain. 

The projected changes in seasonal temperatures were assessed under the A1B 

emission scenario of climate change for the 21st century based on comparison of the 

control period (1971-2000) and two future time slices: 2021-2050 and 2071-2100. 

The results indicated that the current substantial warming will continue during the 

21st century. The largest temperature changes were projected for the second half of 

the 21st century, with the strongest trends being on the order of 0.7 and 0.5°C 

decade-1 in summer and winter, respectively. The results demonstrated a rapid 

increase in wintertime minimum temperature and summertime maximum 

temperature. Spatially, almost the whole domain will be dominated by a positive 

temperature anomaly during the 21st century, relative to the present climate (1971-

2000), with the largest warming in the central Ebro valley and the least over the 

Pyrenees and near the Cantabrian coast. In order to assess how the lower and 

upper tails of temperature distributions will change over the 21st century and 

whether these changes will be consistent with changes in the mean in both the sign 

and the magnitude, an analysis of the trends in various time-varying percentiles 
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(e.g., the 10th, 25th, 75th and 90th) was performed on a seasonal basis. Linear 

trends of temperature percentiles showed clear warming trend over the late decades 

of the 21st century (2071-2100), compared with both the mid century (2021-2050) 

and the observed (1971-2000) changes. The largest warming was projected for the 

lower (upper) percentiles of the minimum (maximum) temperature distributions 

during summer (winter). A warming rate of 0.9ºC and 0.8ºC decade-1 was observed 

for the 10th and 25th percentiles of summer minimum temperature, whereas the 75th 

and 90th percentiles of wintertime maximum temperature distribution increased by 

0.5ºC and 0.6ºC decade-1, respectively. In addition, the results indicated that, among 

all seasons, summer will exhibit the largest interannual variability of temperature in 

the future. This increase could drastically increase the probability of exhibiting more 

extremely warm events in the region. This study also emphasized that changes in 

the upper and lower tails of temperature distribution may not follow the warming rate 

of the mean. This suggests that much of changes in the temperature percentiles will 

be driven by a shift in the entire distribution of temperature rather than only changes 

in the central tendency.  

 

In such a complex climatic and geographic region, an assessment and attribution of 

regional temperature variability based on high-quality, long-term and dense network 

of observatories can be advantageous for extracting finer scale information, which 

may prove useful for the vulnerability assessments and the development of local 

adaptation strategies for various disciplines such as hydrology, agriculture, water 

resources management, ecology and human health.  
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RESUMEN 
 
El noreste de España es un área de gran interés  por su variedad geográfica, 

topográfica y climática. En el marco de este trabajo se ha desarrollado una base de 

datos de temperatura diaria para el noreste de España de una elevada densidad 

espacial. Se ha utilizado un gran número de observatorios (1583) con datos desde 

1900 hasta 2006. La calidad de los datos fue examinada atendiendo a su 

consistencia interna y externa. Los datos ausentes fueron rellenados mediante 

modelos lineales de regresión utilizando las series cercanas de temperatura diaria 

que mostraban mejor correlación. Una vez reconstruidas las series, se aplicaron tres 

test de homogeneidad para detectar posibles discontinuidades: El Standard Normal 

Homogeneity Test (SNHT), el método de regresión de dos fases Easterling and 

Peterson, y el test de Vincent.  Diversos análisis estadísticos (e.g., semivariance 

modelos and L-moment statistics) han confirmado que la base de datos resultante 

muestra una mayor coherencia espacial y temporal que la base de datos original. La 

base de datos obtenida representa el conjunto de datos de temperatura más 

completo del noreste de España para el periodo 1900-2006, siendo una base de 

datos idónea para estudiar la variabilidad y el cambio de la temperatura en la región. 

 

Esta tesis analiza la variabilidad y tendencia de las temperaturas en la zona de 

estudio durante el siglo XX. 19 series de temperatura han sido utilizadas para 

analizar el periodo 1920-2006, mientras que para análisis más detallados de la 

variabilidad espacial y temporal  de las temperaturas máximas, mínimas, medias y 

rango diario (DTR) se utilizaron 128 observatorios que cubren el periodo 1960-2006. 

Se ha detectado un incremento generalizado de las temperaturas, determinado en 

gran medida por la evolución que han mostrado en las últimas décadas del periodo 

de estudio. Estacionalmente, los análisis indican que las tendencias más moderadas 
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han sucedido durante otoño, mientras el mayor calentamiento se ha detectado en 

verano y primavera. Espacialmente, el calentamiento detectado resulta mucho más 

consistente en las zonas de costa frente al detectado en los observatorios en zonas 

de interior. 

 

También se ha estudiado el comportamiento espacial y temporal en la ocurrencia de 

eventos extremos. Un total de 21 índices fueron seleccionados para caracterizar los 

extremos fríos y cálidos de la distribución de frecuencias de las series de 

temperatura diaria. La existencia de tendencias temporales se detectaron mediante 

el test de Mann-Kendall. Además funciones de autocorrelación (AF) y la técnica de 

bootstrap sirvió para eliminar el efecto de la correlación serial y la croscorrelación en 

la detección de tendencias. En general, los cambios observados son más marcados 

en la ocurrencia de eventos fríos que cálidos. Un incremento en la ocurrencia de 

noches cálidas (TN90p: 3.3 días/década), días cálidos (TX90p: 2.7 días/década), 

noches tropicales (TR20: 0.6 días/década) and la temperatura máxima más alta 

anual (TXx: 0.27ºC/década) se encontró para el periodo1960-2006. La mayoría de 

los índices relacionados con extremos fríos (p.e., días fríos [TX10p], noches frías 

[TN10p], días muy fríos [TN1p], y días de helada [FD0]) mostraron un descenso que 

generalmente no fue estadísticamente significativo. Parecido a lo observado con las 

temperaturas medias, las zonas costeras Mediterráneas y Cantábricas mostraron un 

mayor calentamiento respecto a las zonas de interior. 

 

Se ha clasificado la zona de estudio en cuatro regiones homogéneas según la 

ocurrencia, intensidad y duración de eventos de temperaturas extremas aplicando 

Análisis de Componentes Principales (PCA) y análisis clúster (método Ward). Las 

regiones identificadas han sido: la Mediterránea, la Cantábrica, el sector Ibérico y 
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las estaciones más elevadas del Pirineo y el Sistema Ibérico. La robustez de la 

clasificación se validó utilizando el estadístico de Silhouette. La evolución temporal 

de los eventos extremos en las series más largas (1960-2006) muestra un 

comportamiento distinto entre las diferentes regiones. La región mediterránea y los 

observatorios en zonas de montaña mostraron la señal más clara de calentamiento 

tanto en las temperaturas máximas y mínimas. 

 

Este trabajo también ha analizado los mecanismos atmosféricos que pueden 

explicar la variabilidad térmica. Los resultados indican que los cambios observados 

en las temperaturas y sus diferencias espaciales y estacionales están relacionados 

con patrones atmosféricos de gran escala. En particular el patrón del Atlántico Este 

(EA), el patrón Escandinavo (SCA) y la Oscilación del Mediterráneo Occidental 

(WeMO) ejercen un papel muy importante en la variabilidad térmica de la zona de 

estudio. La temperatura tiende a incrementarse durante las fases positivas 

(negativas)  del patrón EA (SCA y WeMO). Los posibles mecanismos físicos que 

favorecen la ocurrencia de los días más cálidos (TX99) y noches frías (TN1) han 

sido también examinados utilizando series diarias de presión a nivel de superficie 

(SLP) y las alturas geopotenciales de 200hPa y 500hPa. La ocurrencia de noches 

muy frías (VCN) está asociada a un incremento de la circulación meridional sobre 

grandes áreas de Europa occidental, con una clara advección de aire frío del norte 

de Europa y el Atlántico norte. La situación más favorable para la ocurrencia de días 

muy cálidos (VWD) es un desplazamiento norte-este del anticiclón Atlántico 

subtropical y situaciones de bloqueo sobre Europa. Sin embargo, los resultados 

confirman que los patrones de circulación afectan de forma espacialmente 

diferenciada a las temperaturas medias y extremas. 
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Este trabajo también ha analizado la capacidad de los modelos climáticos regionales 

(RCMs) de reproducir los cambios observados en las temperaturas a escala 

estacional en la zona de estudio. Las series de temperatura simuladas, asumiendo 

un escenario de emisión de gases de efecto invernadero A1B, para dos periodos del 

siglo XXI (2021-2050) y (2071-2100), se han comparado a los simulados para un 

periodo control (1971-2000). Los resultados indican que los procesos de 

calentamiento van a continuar durante el siglo XXI, acelerándose en sus últimas 

décadas. El mayor incremento corresponde a verano e invierno, con unos ratios de 

calentamiento de 0.7 y 0.5 ºC por década respectivamente. Espacialmente, se 

espera un mayor incremento térmico en las zonas del interior del valle del Ebro, y un 

calentamiento más suave en el área pirenaica y la costa del Cantábrico. Se ha 

valorado la magnitud de los cambios proyectados en distintas partes de la 

distribución de frecuencia de las temperaturas, y sus efectos sobre los cambios en 

el signo y magnitud de los valores medios. Para ello se han aplicado análisis de 

tendencia a las series de evolución temporal de distintos percentiles (p.e., los 

percentiles 10, 25, 75 y 90) tanto en el periodo control como en los dos periodos 

futuros (2021-2050 y 2071-2100). El mayor calentamiento ha afectado a los 

percentiles más bajos (altos) de la temperatura máxima (mínima) de las 

distribuciones de verano (invierno). Se ha estimado un ritmo de calentamiento de 

0.9 y 0.8ºC por década para los centiles 10 y 25 de la temperatura mínima de 

verano, mientras los percentiles 75 y 90 de la temperatura máxima de invierno 

pueden aumentar 0.5 y 0.6ºC por década respectivamente. Los resultados indican 

que verano mostrará la mayor variabilidad interanual en las próximas décadas. Este 

incremento puede aumentar notablemente la probabilidad de ocurrencia de eventos 

extremos cálidos en la región. Los cambios en los extremos de la distribución de 

frecuencia de las series de temperatura no siguen necesariamente el ritmo de 
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calentamiento de la temperatura media, sugiriendo que los cambios proyectados 

para los distintos percentiles se deben a una alteración completa de la distribución 

de frecuencia y no sólo de sus valores centrales. 

  

La detección y caracterización de la variabilidad y cambio de las temperaturas 

mediante el uso de una red de observatorios de gran longitud y elevada densidad 

espacial han resultado de gran utilidad en una región tan compleja desde un punto 

de vista climático y geográfico. La información generada puede resultar de gran 

interés para valorar la vulnerabilidad de la región ante los efectos del cambio 

climático proyectado, permitiendo el desarrollo de estrategias de adaptación en 

sectores como la gestión de los recursos hídricos, agricultura, ecología y salud.  
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1. INTRODUCTION 

The following introductory paragraphs provide an overview of the research context, the 

fundamental questions of this thesis, and the framework applied for this work. Finally, 

a summary of each main chapter is given in the thesis outline. 

 

1.1 . Climate Change 

Climate change is one of the most pressing global problems, which is likely projected 

to become a progressively more significant threat in the next decades. Natural 

scientists have described it as perhaps the preeminent environmental risk confronting 

the world in the 21st century. Indeed, there is increasing evidence that climate is 

changing worldwide and most of the pronounced change is mainly observed during the 

past few decades (IPCC, 2007). Some potentially climate driven changes include 

observed changes in sea level, snow cover, ice extent, species extinctions and 

distributions, and extreme weather events. Changes in climate can be attributable to 

internal and external variability. The influence of external factors on climate system 

can be broadly seen in the context of radiative forcing. In its 4th Assessment Report 

(AR4) in 2007 the IPCC indicated that there is a very high confidence (99% probability) 

that recent climate change is mainly driven by anthropogenic influences rather than 

natural variations. Recently, Jansen et al. (2007) emphasized this notion indicating that 

the global climate change cannot be explained without considering the role of the 

human activities. This finding has also been confirmed by Hegerl et al. (2007) who 

indicated that the observed change in the global climate during the 20th century 

cannot fully be attributed to the internal variability of climate. In other words, the 

significant anthropogenic warming, mainly caused by burning fossil fuels, industry, 
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deforestation, land-use changes that modify surface albedo and other man-made 

activities, has induced considerable alterations of the global energy balance leading to 

both positive and negative radiative forcings (Ruddiman, 2003). Overall, the key role of 

increasing the GHG concentrations in the atmosphere is the imbalance between 

incoming and outgoing radiation. A clear positive radiative forcings is the rise of 

greenhouse gas (GHG) concentrations such as carbon dioxide (CO2), methane (CH4), 

nitrous oxide (N2O), ozone (O3) and chloroflurocarbons (CFCs) (Figure 1.1). From 

1970 to 2004, the atmospheric CO2 concentration has raised from 180 parts per 

million (ppm) to 385ppm, while the Methan has elevated from 715 parts per billion 

(ppb) to 1790ppb (IPCC, 2007).  

 

 

Figure 1.1: The key GHG with positive feedback on the global energy (IPCC, 2007)  
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Contrarily, other atmospheric components such as aerosols (e.g., sulphur) have a 

negative forcing, inducing below-normal temperatures. The GHG absorb the long 

wavelength (infrared) radiation, causing a reduction of the outgoing radiation in the 

atmosphere and in turn increase in temperature. In order to keep a radiative 

equilibrium between the Earth surface and the atmosphere, the GHG provides a 

driving force for heating the Earth.  

 

Climate change, as induced by modifications in the energy balance of the earth 

system, can not only be linked to the anthropogenic forcing. Natural forcings can, to 

some extent, be another driver of climate change and variability. Internal variability in 

the climate system can be due to, among others, changes in solar radiation, orbital 

characteristics, volcanic eruptions or natural greenhouse gases (e.g., water vapor). For 

instance, Beer et al. (1998) attributed the coldest temperature during the late half of 

the 17th century to a reduction in solar activity. During this period Luterbacher et al. 

(2004) also found the coldest winter on record across Europe, with a negative anomaly 

of −3.6ºC. In their study to assess the strength of the Asian monsoon over the last 

9000 years, Wang et al. (2005) found cycles in the monsoon activity, that are 

compatible with variations in solar activity. In the same context, numerous studies 

attributed much of warming during the first half of the 20th century to increasing solar 

irradiance. Similarly, large and short lived volcanic eruptions can be seen as a 

significant natural radiative forcing, which likely induce a cooling of the global 

temperature (Hansen and Lacis, 1990). Following Barry and Chorley (1992), the 

volcanic eruptions emitted from EI Chichon (March 1982) significantly accounted for a 

reduction of the global temperature in the following decade, as these volcanic particles 

scattered the short-wave radiation and in turn increased the surface albedo causing 
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cooling. Contrarily, the increase in sunspots, which occurs on an 11-year cycle, often 

results in a rise of solar radiation emission, particularly when they are mainly centered 

close to the equator of the sun (Albregtsen and Maltby, 1981).  

 

Taken together, it is important to gain knowledge about changes in external forcing 

affecting the global climate as well as the internal dynamics of the climate system. This 

approach addresses the principal question whether the observed warming is an 

ongoing trend driven by “unusual” external forcings or simply due to natural internal 

variability. This approach could therefore improve the understanding of the way in 

which the present climate behaves. Furthermore, it contributes to better projections of 

future climate changes. 

 

According to the IPCC (2007), natural systems are more vulnerable to climate change 

as a consequence of their limited adaptive capacity. Nonetheless, the vulnerability of 

these systems may considerably vary according to the geographic location and time, 

besides the effect of other social, economic, and environmental conditions. The 

literature on the response of natural systems and human ecosystems to climate 

change is large and growing. For example, numerous recent works have linked 

changes in ecosystem structure and function, including changes in species physiology, 

phenology, distributions, community composition, to changes in climate (e.g., Hellman 

2002; Oberhauser and Peterson 2003; Parmesan and Yohe 2003; Root et al. 2003; 

Thomas et al., 2004; Visser and Both, 2005; Parmesan, 2006). One example is 

Thomas et al. (2004) who projected an extinction of roughly 15-37% of species in the 

next 50 years, due to climate change. Several studies have also addressed the direct 

or indirect effects of climate change. A representative example is the drastic 
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consequences of the 2003 European summer, the warmest summer over the last 1500 

years as revealed by Luterbacher et al. (2004). According to the WHO (2003), this 

unprecedented heat event caused more than 30,000 fatalities (at least 15,000 in 

France), besides economic losses of US$ 14 billion resulting principally from the 

devastating consequences of forest fires and crop losses.  

 

Under climate change conditions, more attention has recently been paid to understand 

climate variability and change, particularly with the rapid improvement of the 

instrumental measurements. Correspondingly, substantial progress has also been 

made to assess the wide-ranging impacts of increasing atmospheric carbon dioxide 

concentration and globally rising temperatures. In this regard, an increasing number of 

studies endeavored to further understanding of changes in climate mean and 

extremes. Particular concern has been pertained to investigate long-term changes in 

temperature and precipitation patterns, being the most common variables describing 

climate change.  

 

Nonetheless, while climate change is a global phenomenon, its effects are not 

homogenous in all regions of the world. The magnitude and impacts of climate change 

on ecosystems, health, energy demand and human activities vary from region to 

another. Therefore, assessing impacts of climate change at a more local and regional 

scale is critical and more important for ecosystem dynamics and human societies. 

Understanding changes in climatic patterns and the dynamics behind them at finer 

spatial scale is a key to assessing their possible changes in the future, which could 

provide high quality advice to local policymakers for adaption and mitigation.  
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1.2 . Global Warming 

While the term “climate change” is generally used to denote long-term and significant 

changes in the Earth’s pattern of weather, including different variables (e.g., 

temperature, precipitation, wind, cloudiness, dew point, evapotranspiration, 

snow…etc), whether due to natural variability or anthropogenic influences, the phrase 

“global warming”, on the other hand, is commonly used to refer to human-induced 

temperature rise, which has already and will continue to occur. Historically, the 

warming effect induced by the enhanced greenhouse effect was first recognized by 

Jean-Baptiste Fourier in 1827 (Wallington et al., 2004). Few years later, the Swedish 

chemist Svante Arrhenius estimated the effect of a doubling of the atmospheric carbon 

dioxide concentrations on the global temperature by 5-6ºC. Recently, ongoing scientific 

evidence supports this claim based on results derived from various proxies such as 

tree rings, ice cores and ocean sediments, suggesting higher increase in the global 

mean surface temperature during the last few decades relative to periods since at 

least the last millennium. This warming is mainly driven by the enhanced greenhouse 

effect resulting from anthropogenic, or human-caused, emissions of greenhouse gases 

(carbon dioxide, methane, nitrous oxide, halocarbons, and ozone) to the atmosphere. 

 

During the course of the 20th century, the global warming occurred at a linear rate of 

0.7°C decade-1 (IPCC, 2007). As indicated in Figure 1.2, this warming has been more 

pronounced over the past 25 years (1.8°C decade-1). Globally the 1990s and 2000s 

were the warmest decades on record, and the 1990, 1994, 1998, 2003 and 2010 were 

the warmest years. Based on reconstructed temperature time series since 1500, 

Luterbacher et al. (2004) concluded that the global trends in temperature during the 
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latter half of the 20th century are very likely higher than during the past five decades. 

This feature has also been found for the global land (Figure 1.2, left panel), the 

northern hemisphere (Figure 1.2, right panel) and Europe (Figure 1.3). The increase in 

temperature during the last two decades of the 20th century was the largest compared 

with the past 130 years. In general, the observed warming has not been uniform over 

space and time (Jones and Moberg 2003). The observed anomalous temperatures 

during recent decades can be seen as one of the most arising effects of the global 

warming. According to the IPCC (2007), this unusual warming mostly corresponds to a 

rapid increase in the carbon dioxide concentration, which was markedly larger in the 

last two decades (1.9 ppm per year) compared to previous decades (1.4 ppm per year 

from 1960 to 2005).  

 

 
Figure 1.2: (Left) Annual anomalies of (left) the global average land-surface and (right) 

northern hemisphere (NH) land-surface air temperature (ºC) from 1880 to 2010. The 

anomalies were calculated relative to normal mean over the base period 1961-1990. 

Solid line indicates the smoothed curve using a 7-yrs low pass filtering. The original 

data were derived from CRU (Jones et al., 2001). 
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Numerous studies confirmed global warming at regional, continental and global scales 

(e.g., Jones et al., 1999; Jones and Moberg, 2003). Nevertheless, this observed 

warming has not been uniform over space and time (Jones and Moberg, 2003). It has 

been noted that a great part of this warming was in the mid and high latitudes, 

particularly during the cold season, suggesting more increase in minimum temperature 

than in maximum temperature. This feature corresponds to a tendency towards a 

narrower yearly temperature range.  

 
Numerous recent works on the Earth’s climate make clear that the recent global 

warming will continue in the future in response to elevated atmospheric greenhouse 

gases, indicating a tendency of temperature to increase over large areas of the world. 

Based on predictions from numerous global climate models (GCMs), the IPCC (2007) 

reported that the global average temperature will further increase by a range from 1.4 

to 5.8ºC by the end of the 21st century, in response to an increase in CO2 

concentrations by as much as 350%. Temperature increase in Europe is consistent 

with this global trend. Some authors have consistently projected a significant increase 

in surface air temperatures over Europe within the 21st century (e.g., Kjellström, 2004; 

Moberg and Jones, 2004; Deque et al., 2005). For example, Parry (2000) studied the 

future climatic trend in Europe and found that the mean temperature might increase by 

2–6.3°C at the end of this century. A more recent work by Schar et al. (2004) also 

projected an increase in the annual mean temperature over Europe, concluding that 

the unusual 2003 summer will become increasingly more common by the end of the 

current century, as the climate progressively warms. 
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Figure 1.3: Annual anomalies of the European land & ocean air temperature (ºC) from 

1880 to 2010. The anomalies were calculated relative to the normal mean over the 

base period 1961-1990. Solid line indicates the smoothed curve using a 10-yrs low 

pass filtering. The original data were derived from CRU (Jones et al., 2001). 

 

Similarly, In response to the global warming, much more attention has recently been 

paid to assess the potential impacts of future climate change on both natural 

environments (e.g., Thomas et al., 2004; Ryan et al., 2008) and human activities (e.g., 

Patz et al., 2005; Ruiz-Ramos and Minguez, 2010). These efforts are largely motivated 

by the fast improvement in the capability of numerical climate models, which allow not 

only for improving their spatial resolution but also including more physical processes 

(e.g., cloud formation, aerosol influences, radiation balance and atmospheric fronts). In 

this context, numerous European projects have designed experiments to dynamically 

downscale regional climate projections from GCMs to regional scale by means of 
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either dynamical or statistical approaches. Numerous modeling studies have been 

accomplished with a selection of the high-quality simulation data provided by some of 

these projects, such as PRUDENCE (Christensen et al., 2007), STARDEX (Haylock et 

al., 2006), ENSEMBLE (Hewitt and Griggs, 2004) and MISTRA-SWECIA (Kjellstrom, 

2007). With these high-resolution climate simulations, it has been possible to 

quantitatively assess possible future impact of global warming, to perform model inter-

comparison studies and to assess the possible impacts of anthropogenic climate 

change on natural environments and socio-economic activities.  

 

1.3 . Temperature Changes 

Temperature is a climate variable of high importance from the view of various areas 

including, among others, hydrology, agriculture, ecology, ecosystem, health and 

energy. The estimation of temperature changes is critical to understanding land 

surface–atmosphere interactions. This is principally because it is a key variable in both 

the water and energy cycles in the globe. As indicated in Figure 1.4, among different 

feedbacks, surface air temperature determines the magnitude of fluxes of outgoing 

longwave, sensible, latent and ground (surface) heat. In addition, it controls, to some 

extent, the proportion of rainfall partitioned into runoff through evaporation process. 

Also, surface temperature can largely affect crop yields through changes in the length 

of the growing season. Similarly, the number of days that lie outside physiological 

tolerable limits may negatively affect the regional biodiversity (Root et al. 2003). Thus, 

assessing changes in surface air temperature can be of particular importance for 

different hydrological, environmental and societal applications. 
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Figure 1.4: Surface air temperature as a key component in many hydrological, 

climatic, energy transfer and environmental interactions. Black (white) arrows indicate 

positive (negative) feedbacks. 
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Due to the adverse societal, economic and environmental potential impacts, there has 

been increasing interest in the analysis of temperature variability and trends over the 

last few decades (Diaz and Murnane, 2008; Solomon et al., 2007). The spatial and 

temporal variability of surface air temperature have increasingly been the focus of 

climatic research worldwide (e.g., Jones et al., 1999a; Folland et al., 2001). Global 

changes in the character of temperature have been observed in the past decades 

(Jones et al., 1999a; Jones and Moberg, 2003). For instance, Jones and Moberg 

(2003) reported that the global average earth surface temperature had increased by 

about 0.7°C in the 20th century. The most prominently observed changes were an 

increase in the mean during summer and winter periods, suggesting less seasonal 

variations.  

 

At a more localized scale, there is a good deal of evidence on significant increases in 

average temperature over Europe in recent decades (Klein Tank et al., 2005). The 

average increase in the observed annual mean temperature across the continent was 

0.8ºC. The strongest changes were observed in northwestern Russia and southern 

Europe, particularly the Iberian Peninsula (Beniston et al., 2007; Della-Marta et al. 

2007a,b). In their study on Switzerland, Scherrer et al. (2004), for example, found the 

most significant changes in mean temperature during summer. Also, roughly half of the 

north Atlantic warming since the last ice age was noted in the last decade (NRC, 

2002). 

 

While the early detection of anthropogenic change in mean temperature is of growing 

concern, the impacts of climate change on society are more likely to be connected to 

extreme events. Typically, climate change detection is more often associated with the 
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analysis of changes in extreme events than with changes in the mean (Katz and 

Brown, 1992; Meehl and Tebaldi, 2004). Recently, there have been a number of 

extreme cold and heat events that have caused loss of lives and serious economic 

damages to private property and infrastructure. For this reason, much attention has 

recently been paid to learn more about the frequency and intensity of extreme 

temperature events, as being induced by climate change (e.g., Easterling et al., 2000; 

Jones et al., 2001; Frich et al., 2002; Klein Tank and Konnen, 2003; Kostopoulou and 

Jones, 2005; Moberg and Jones, 2005; Vincent et al., 2005; Alexander et al., 2006; 

Moberg et al., 2006; Brown et al., 2008). Some of impact studies gave much more 

concern to assess influences of extreme temperature events on different aspects of 

human life including: mortality, comfort, ecology, agriculture, and hydrology (Schindler, 

1997; Ciais et al., 2005; Garcia-Herrera et al., 2005; Patz et al., 2005). Among them, 

the immediate impacts of extreme events on mortality (Karl and Knight, 1997, Garcia-

Herrera et al., 2005), hospital admissions (Diaz et al., 2002), forestry (Miller and Urban 

1999), ecology (Chust et al., 2011), agriculture (Adams et al., 1998), water resources 

(Vicente-Serrano et al., 2011a), tourism (Breiling and Charamza, 1999), energy 

demand (Smoyer-Tomic et al., 2003) and other socio-economic sectors (Hanemann et 

al., 2011) have been discussed. Overall, majority of studies have analyzed 

temperature extremes at different spatial scales ranging from the regional to the 

global. In general, most of the findings revealed significant upward (downward) trend in 

duration and frequency of warm (cold) extremes. Examples of these extreme events 

are found regularly in instances around the world (e.g., Haylock and Nicholls, 2000; 

Klein Tank and Konnen, 2003; Barriopedro, et al., 2011). The study by Alexander et al. 

(2006) gave the most current assessment of changes in observed daily temperature 

extremes from 1951 to 2003 at the global scale. They concluded that changes in 
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temperature extremes were mainly linked to daily minimum temperatures. More than 

70% of the global land areas showed a significant rise (decrease) in the annual 

amount of warm nights (cold nights). At a narrower scale, Frich et al. (2002) similarly 

found positive trends in warm extremes in Europe, the USA, China, Canada and 

Australia.  

 

With a more focus on the European continent, one can designate the August 2003 

heat wave and the January 2012 cold wave as examples for extreme temperature 

events causing drastic impact and damage. According to Christopher and Gerd (2003), 

the unusual summer heat wave of 2003 had a significant influence on numerous 

European communities. For the Mediterranean region, a series of studies has also put 

a great deal of effort into exploring the behavior of temperature extremes (e.g., 

Maheras et al., 1999; Meehl and Tebaldi, 2004; Della-Marta et al., 2007a,b; Kuglitsch 

et al., 2010). According to Meehl and Tebaldi (2004), among the European regions, 

the Mediterranean is more vulnerable to intense, frequent and severe extreme heat 

events during the late of the 20th and the early 21st century. 

 

1.4. Temperature Changes in the Iberian Peninsula: a general context 

While assessment of temperature trends at a global scale is markedly important, it is 

also of great interest to explore temperature variability at local and regional scales, 

which could have wide-ranging impacts on human society and the natural environment 

(e.g., agriculture, hydrology, human health.... etc).  Recently, numerous studies have 

investigated temperature behavior in the Iberian Peninsula. The spatial coverage of 

these works varies considerably from the whole peninsula or Spain (e.g., Oñate and 

Pou, 1996; Hulme and Sheard, 1999; Rodriguez-Puebla et al., 2001b; Brunet et al., 
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2001, 2005, 2006, 2007a), sub-regions (e.g., Esteban Parra et al., 1995, 2003; 

Morales et al., 2005; Miro et al., 2006; Martinez et al., 2010) to a specific observatory 

(e.g., Serra et al., 2001). According to these works, the temperature increase in the 

Iberian Peninsula was even higher than the global average. Hulme and Sheard (1999) 

noted that the annual mean temperature increased by 1.6ºC during the last century. 

The strongest warming was detected since the mid of the 1970s. Nonetheless, this 

warming did not occur everywhere and in all seasons, but since 1972 it clearly 

dominated during winter and summer and over land areas. Notably, the warmest years 

during the 20th century occurred after 1990. Similarly, Brunet et al. (2007a) analyzed 

long-term variability of temperature in Spain employing a new daily adjusted dataset of 

the longest and quality records 22 Spanish daily time series covering the period 1850-

2005. According to this study, the mean temperature increased at a rate of 0.10ºC 

decade-1 over the mainland Spain. Most of this increase attributed to the warming in 

maximum temperature, which raised at a rate twice the minimum temperature. Among 

the regional studies, Quereda et al. (2000) reported a strong trend in the annual mean 

temperature in the Spanish Mediterranean region during the period between 1870 and 

1996 (0.71ºC decade-1). This warming has also been noted by Pausas (2004) who 

examined temperature variability in the eastern Mediterranean Peninsula using a daily 

dense network of 350 observatories and Miro et al. (2006) who analyzed daily summer 

temperature in a Mediterranean area (Valencia) for the period 1958-2003.  

 

Over the last few decades, many studies have also put a great deal of effort into 

exploring the behavior of temperature extremes in Iberia (e.g., Prieto et al., 2004; 

Brunet et al. 2007b; Bermejo and Ancell, 2009; Rodriguez-Puebla et al., 2010). Among 

these studies, Brunet et al. (2007b) assessed variability of temperature extremes in 
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Spain over the course of the 20th century. They reported evidence of larger changes in 

high temperature extremes than low temperature extremes. Based on daily data from 

26 observatories coupled with a gridded dataset, Rodriguez-Puebla et al. (2010) 

recently investigated spatial and temporal changes in warm days and cold nights 

across the Iberian Peninsula during 1950-2006. At a more localized scale, Miro et al. 

(2006), for example, reported a significant increase in the frequency of warm and 

extreme temperature days in Valencia from 1958 to 2003. Lana and Burgueño (1996) 

examined spatial distribution of extreme minimum temperature in Catalonia (NE Spain) 

during the cold season (December-March). Also, Burgueño et al. (2002) analyzed daily 

temperature extremes at the Fabra station (Barcelona). 

 

1.5. Knowledge gaps 

Anthropogenic greenhouse gas emissions are a key driver of recent changes in 

temperature means and extremes. However, these effects will not be homogeneous 

across the globe. In other words, the regional temperature change may vary markedly 

from the global average temperature change, and therefore assessment of 

temperature change and variability should be undertaken at a regional scale to explore 

the extent to which regional temperature variability interacts with the global warming. 

This kind of detailed regional analysis of temperature variations is still demanded in the 

Iberian Peninsula given that it is bounded by the Atlantic Ocean and the Mediterranean 

Sea, which makes its climate largely influenced by the complex interactions of the 

Mediterranean and the Atlantic configurations. As a part of the western Mediterranean, 

the Iberian Peninsula has been proposed by many authors as “warm spot” region in 

terms of the global warming (e.g., Giorgi, 2006, Coppola and Giorgi, 2010). Indeed, a 

considerable portion of the peninsula is mountainous with clear topographical gradient, 
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which makes it more sensitive to climate change.. The complex land–sea interactions 

along with latitude, altitude and orography variations make the local and regional 

climate very variable. Topography and continentality may also produce more or less 

complicated patterns of temperature and therefore the impact of changes in 

temperature can largely depend on these local and regional conditions. For example, 

differences in topography can cause local variations in the angle at which the solar 

radiation gets to the ground surface. Also, the aspect and the slope may considerably 

affect the magnitude of surface heating and cooling. For instance, as a portion of the 

northern hemisphere, south-facing slopes of the peninsula often receive more nearly 

direct solar radiation relative to north-facing slopes. The impacts of these local patterns 

may vary from season to season. In addition, the natural environment in the peninsula 

is characterized by its unique flora, fauna and ecosystems which make it more 

vulnerable to even slight variations in temperature (Pasho et al., 2011a, b). In this 

context, mesoscale and regional-scale climate processes can play a key role in this 

diversity. Taken together, the magnitude and rate of observed, and even simulated, 

changes in temperature can depend on these local conditions.  

 

In Iberia, the regional studies which have investigated temperature behavior almost 

exclusively give much more concern to the Mediterranean region as a consequence of 

availability of dense station network (e.g., Quereda et al., 2000; Pausas, 2004; Miro et 

al., 2006, Martinez et al., 2010), but generally there is less focus on mainland and the 

Cantabrian regions. Also, some of these studies were restricted to very smaller 

number of observatories, where reliable data were available (e.g., Lana and Burgueño, 

1996; Burgueño et al., 2002) for the Fabra station (Barcelona).  
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From the temporal perspective, so far, there is no comprehensive view of the long-

term variability of temperature at the regional and sub-regional scales in a way that 

can significantly contribute to more accurate and robust assessment of climate 

variability and change. Indeed, changes of temperature variability over the earlier 

decades of the 20th century have poorly been addressed. The only few exceptions 

(e.g., Brunet et al., 2007a) were generally based on a very limited number of 

observatories. In a similar way, while numerous studies were conducted to trace 

spatial and temporal patterns of precipitation in Iberia, as traditionally being the most 

important climate variable over the peninsula (e.g., Martin-Vide, 2004; Begueria-

Portugues and Vicente Serrano, 2006; Costa and Soares; 2009a; López-Moreno et al., 

2010), there are only very few assessments of trends in temperature means and 

extremes (e.g., Lana and Burgueño, 1996; Burgueño et al., 2002; Prieto et al., 2004; 

Brunet et al. 2007a,b; Bermejo and Ancell, 2009; Rodriguez-Puebla et al., 2010). In 

these regional studies, some regions (e.g., NE Spain) have received less concern.  

 

In the same context, an increasing range of studies have projected changes in 

precipitation in the peninsula, allowing for assessing model-to-model differences (e.g., 

Sumner et al., 2003; Rodriguez-Puebla and Nieto, 2010; Sanchez et al., 2011; 

Vicente-Serrano et al., 2011b). On the other hand, a comprehensive assessment of 

temperature projections at the regional and sub-regional scales is still lacking and 

worth investigating. Some studies have already been made to assess future 

temperature rise over the Peninsular Spain (e.g., Taplador et al., 2009; Errasti et al., 

2011; Brands et al., 2011a). Among them, Brands et al. (2011a), for example, 

employed 12 different GCMs to assess their ability to simulate the Probability Density 

Function (PDF) of daily temperature at various pressure levels over southwestern 
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Europe, including Iberia. Other studies also undertook assessment, but only for a 

particular region including: the Spanish Mediterranean (Vargas et al., 2008), the 

Pyrenees (López-Moreno et al., 2008b), NW the peninsula (Brands et al., 2011b; 

Gimeno et al., 2011) and the Basque Country (Gonzalez-Aparicio and Hidalgo, 2011). 

Nonetheless, the main challenges to these works are: (i) the lack of complete, reliable 

and spatially dense observational temperature datasets, which can be used for 

validation purposes and in turn ensuring the robustness of the future projections. For 

example, under the A1B emission scenario, Gonzalez-Aparicio and Hidalgo (2011) 

employed a very limited number of observatories to assess future changes in a suite of 

temperature-derived extreme indices over the Basque Country (northern Spain). (ii) 

Due to lack of dense network of observatories, most of the simulations employed 

GCMs to project changes in the future. GCMs are always inappropriate to describe 

climate at the regional scale compared with RCMs. This is particularly because 

regional climate is largely influenced by complex topographical variations, land-sea 

contrasts, and marked gradients of vegetation and land cover, which are difficult to 

capture by the coarse resolution of GCMs (on average 50 km). (iii) Previous work 

examining simulated changes in temperature has not explicitly indicated how they are 

related to the climatological probability distribution. The question still remains, at either 

national or regional scales, how far changes in the upper and lower tails of 

temperature distribution are driven by changes in the central tendency or whether they 

are actually related to shift in the entire distribution of temperature. In this regard, 

further assessment is needed motivating by the notion that the impacts of future 

changes on natural environments and human activities are more likely associated with 

changes in climate variability and extreme events than with changes in the mean 

conditions (Ciais et al., 2005; Barriopedro et al., 2011). At the local and regional 
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scales, changes in the upper and lowermost temperature records are particularly 

important for different reasons. First, extreme events are exceptional from the 

statistical point of view given that they are located at the upper and lower tails of 

temperature distributions, which could give a good indication on the possible impact of 

global warming on temperature change and variability in terms of both changes in the 

mean and standard deviation. Second, the sensitivity of both natural systems and 

human welfare to changes in temperature are maximized when changes in the mean 

corresponds to changes of similar sign and magnitude in extreme events. Expectedly, 

the impacts of future temperature changes on mortality, human health and even 

biological adaptation mechanisms, among others, will largely be more severe under 

frequent and intense extreme temperature records. Therefore, an assessment and 

attribution of the dependency between changes in the mean and extreme events can 

be valuable for different climate impact and assessment studies. For this reason, there 

is an essential need to explore not only future changes of the mean climate state but 

also changes of the warm/cold tail of temperature distribution at the regional scale. 

 

To conclude, it can be seen that despite the well-studied precipitation changes and 

distributions in many areas across the Iberian Peninsula, there are gaps in current 

knowledge with respect to temperature response to climate change, particularly at the 

regional scale. Unfortunately, owing to low density of observatories or data quality 

limitations, spatial and temporal variability of temperature are still poorly understood at 

the regional and sub-regional scales. Numerous datasets still include gaps that are 

distributed randomly in space and time as a consequence of various institutional and 

financial constraints. Other datasets suffer from lack of data quality assurance, as a 
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consequence of relocation of the meteorological observatories, which degrades the 

utility of daily climate datasets in much of the peninsula. 

 

Due to lack of spatially dense and temporarily complete, homogenous and reliable 

time series, most studies focusing on temperature response to climate change in Iberia 

have focused on the whole peninsula or employed low density of observatories (e.g., 

Morales et al., 2005; Brunet et al., 2006, 2007a). Details and sources about different 

available climate datasets in the peninsular Spain are listed in Table 1.1. One 

representative example is Brunet et al. (2006) who developed a new daily adjusted 

dataset of 22 time series of maximum and minimum temperatures in the whole Spain. 

Although this dataset covers a long period (1850-2003), the coverage is still 

inadequate for several spatial studies. For this reason, there is still a necessity for the 

improvement of daily datasets for monitoring, detecting and attributing changes in 

temperature. Recently, developing complete and homogenous climatic datasets has 

been of considerable interest in Iberia. Nonetheless, most of the recent works have 

mainly been devoted to precipitation (e.g., Romero et al., 1998; Eischeid et al., 2000; 

Brunetti et al., 2006; Vicente-Serrano et al., 2010) and to a less extent to temperature 

(Eischeid et al., 2000; Brunet et al., 2006).  

 

Developing a new compiled dataset with high spatial and temporal resolution can 

improve the understanding of temperature variability and changes at the regional 

scale. Daily complete, long and homogenous datasets can provide a more detailed 

analysis of temperature changes and variability at the regional scale. Moreover, the 

complex orography of the Iberian Peninsula requires high density of observatories to 

capture temperature variability. In their study on the Mediterranean region, Gao et al. 
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(2006) found that the spatial variability of temperature in Iberia has a clear fine scale 

structure, mainly induced by the complex topography. This dataset can therefore help 

determining how regional temperature responds to the global change. More 

specifically, assessment of possible changes of temperature at a regional scale 

encompasses a large spatial and temporal variation, which may indicate how local and 

regional climate systems will react to the global changing climate. 

 

Also, acknowledging the possible consequences of climate change processes on 

different natural and socioeconomic systems (e.g., hydrology, forestry, crop 

production, energy demand…etc), it is still important to assess the magnitude and 

spatial extent of temperature changes at a more detailed spatial scale. While climate 

change is a global phenomenon, issues in addressing this problem will vary markedly 

from one region to another worldwide. 

 

In this motivate, developing reliable and homogenous compiled temperature dataset 

can also be very useful for a wide variety of applications, including, for example, 

characterization of extreme events (e.g., warm and cold spells), climate risk 

assessment (e.g., frost), hydrological and environmental modeling, and verification of 

numerical model simulations to assessing possible future impacts of climate change. 

Understanding climatic changes at this high spatial and temporal resolution can 

contribute to consistent prediction of future behavior of temperature. Therefore, the 

potential impacts of climate change largely depend on regional context. This strongly 

implies that any development plans must have a regional character and requires an 

assessment at a more regional scale. The regional assessment of observed and 

projected temperature variations can therefore provide considerable responses to vital 
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questions which may arise by local policy makers attempting to adopt and mitigate the 

global change. Such kind of assessment can also be valuable to improve adaptation 

and mitigation polices at more local scale. 

 
Table 1.1: List of sources and description of selected datasets covering 

northeastern Spain 
 

Reference Variables Temporal 
resolution

Region Type Time 
period 

The Global Historical Climatology 
Network version2 (GHCN)(Vose 

et al., 1992)  

Precipitation, 
temperature, 

sea-level 
pressure and 

air pressure

monthly Globe land-
based

morf 
1950  
ot  
raen 
tneserp 

The Global daily Climatology 
Network version 1, US National 

Climate Data Centre, NCDC, 
(Gleason, 2002) 

Precipitation 
and 

temperature

daily Globe land-
based

2001-
1840

Herrera et al., 2012 Precipitation daily Spain (0.2º 
resolution)  

Gridded 
dataset

1950-
2003

Haylock et al., 2008 Precipitation 
and 

temperature

daily Europe (different 
resolutions) 

Gridded 
dataset

1950-
2006

ECA&D (Klein Tank et al. 2002 
and Klok and Tank, 2009) 

Precipitation 
and 

temperature

daily Europe Land-
based

1900-
2006

ELPIS (Semenov et al. 2010) Precipitation. 
Temperature 

and solar 
radiation

daily Europe (25km) Gridded 
dataset

1982-
2008

E-OBS (Hofstra et al., 2009) Precipitation 
and 

temperature

daily Europe (0.25º 
resolution) 

Gridded 
dataset

1950-
2006

EMULATE (Moberg et al., 2006) Precipitation 
and 

temperature

daily Europe Land-
based

morf 
1850  
ot  
raen 
tneserp 

SDATS (Brunet et al., 2006) temperature daily Spain Land-
based

1850-
2003

NESATv2 (north-eastern Spain 
Adjusted Temperature) 

(http://wwwa.urv.cat/centres/Depa
rtaments/geografia/clima/archive.

htm)  

temperature monthly Catalonia Gridded 
dataset

1869-
1998
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1.6. Study area: geographical perspectives and climate characteristics 

In this section, an overall image of the main geographical characteristics of the 

northeast Spain and its climates is provided in the following paragraphs.  

 

1.6.1. Location and geographical setting 

The study area occupies the northeastern region of the Iberian Peninsula. It extends 

over 18 administrative provinces, namely Alava, Barcelona, Burgos, Cantabria, 

Castellón, Girona, Guadalajara, Guipuzcoa, Huesca, La Rioja, Lleida, Navarra, 

Palencia, Soria, Tarragona, Teruel, Vizcaya and Zaragoza (Figure 1.5). It covers an 

area of about 159,424 km2, which covers approximately 1/4 of the whole area of the 

Iberian Peninsula. As illustrated in Figure 1.5, the domain roughly lies in a spatial 

window between the latitudes of 39° 43' N and 43° 29' N, and the longitudes of 05° 01' 

W and 03° 17' E. This geographical position makes the region unique from the climatic 

perspective as; first, it includes the most southern arid and semiarid region in the 

European continent. Second, with the latitudinal location, the dynamics of the mid 

latitude circulation and the subtropics are thoroughly linked and compete against each 

other. This region also encompasses a variety of geological and geographical settings 

that are expressed in a diversity of fluvial regimes and biological diversity. 

 

1.6.2. Topography 

As depicted in Figure 1.6 (upper panel), the study area is heterogeneous in terms of 

terrain complexity, with elevation up to 3000 m a.s.l. (the Pyrenees). In particular, the 

elevation across the domain varies from 0 to 3404 m, with a mean elevation of 775.4 

m above mean sea level (m.s.l). However, the elevation varies greatly over short 

distances, suggesting high spatial gradient of elevation. The Ebro depression is the 
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main physiographic unit as it represents approximately 53.7% of the whole domain. It 

extends inland along a northwest-southeast axis. This depression is a semi-enclosed 

basin, surrounded by mountain belts including the Pyrenees (north), the Cantabrian 

belt (northwest), the Catalan chain (east) and the Iberian system (south and 

southwest) (Figure 1.6, lower panel).  

 

Figure 1.5: Location of the study domain and its administrative provinces. 

 

1.6.3. Hydrology 

Hydrologically, the largest Mediterranean river of the Iberian Peninsula and the study 

area is the Ebro, with a basin of nearly 85,000 km2 and a channel length of 930 km 

(Figure 1.7). The Ebro River originates from the southern facing slopes of the 

Cantabrian Range and the western Pyrenees before connecting to the Mediterranean 

Sea through a smaller opening in the Ebro Delta at Tortosa (180 km south of 



1. INTRODUCTION 
 

26 
 

Barcelona) (Bejarano et al., 2010). The Pyrenees contributes nearly 70% of the total 

water runoff (López-Moreno et al., 2006). Major tributaries include Gallego, Aragon, 

Cinca, Segre, Jalon, Huerva, Zadorra and Ginel. In its middle reach, the river has a 

floodplain of an extent of 739 km2, representing the most extensive one in the 

peninsula (Ollero, 2010).  

 

Figure 1.6: (Upper) Topography of the study domain and, (lower) its main 

physiographical units.  
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Figure 1.7: (Upper) the main hydrological divisions and, (lower) drainage network in 

the study domain. The percentages indicate the area represented by each basin. 

 

From the hydrological perspective, the flow peak of the Ebro occurs during February, 

while low water levels occur during summer (particularly in June). This is mainly 

because the rainfall originating over the Atlantic affects the headwaters of the Ebro 

during winter and early spring. Historically, the Ebro has constituted a major 

component of the Spanish water policy. The Confederación Hidrográfica del Ebro 
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(CHE) (http:// www.chebro.es), found in 1926, is the oldest basin agencies in the 

world. Recently, there has been intense exploitation of water resources for sectors of 

agriculture irrigation, electricity production, cattle breeding, domestic consumption and 

industrial activities. According to Bouza-Deaño et al. (2008), the water of the Ebro is 

usually used for agriculture and cattle breeding (89.3%), domestic supply (7.2%) and 

industrial activities (3.5%). 

 

1.6.4. Climate 

While the study domain has a relatively small geographical space, it encompasses 

large variations of climates, including oceanic, Mediterranean, continental and 

mountainous. According to the Koeppen classification (1936), much of the study 

domain is defined as a semiarid Mediterranean climate (BWh); a classification that has 

also been confirmed by Thornthwaite (1948) (see Peel et al., 2007). In the study 

domain, there are clear climate contrasts between the continental portions and the 

closing coasts. Also, there is a strong gradient from central flatland areas to adjacent 

mountainous belts. More specifically, the climate is highly varied, from semi-arid 

conditions in central portions (i.e., the Ebro valley), moderate conditions along the 

Mediterranean and the Cantabrian regions to mountainous climate. This diversity in 

climate comes mostly from weather systems interactions with a complex terrain that 

includes from sea-land interfaces to mountainous ranges. The interaction of the 

atmospheric circulation, the latitude, the altitude, the terrain topography, vegetation 

cover, the land-sea interactions and the atmospheric circulation are the main factors 

contributing to climate variations in the region (Rodriguez-Puebla et al., 1998; López-

Bustins et al., 2008; Vicente-Serrano et al., 2009). From a global perspective, this 

region encompasses a climatic gradient between mid-latitude and subtropical regimes. 
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Also, it is situated in a transitional zone where the Mediterranean configurations and 

the Atlantic influences at the mid-latitudes are the main driving forces of the regional 

climate. These closing seas are the most important source of moisture for surrounding 

land areas. The climate is therefore influenced by the large-scale configurations, 

originating from the north Atlantic and the Mediterranean. The various modes of the 

large-scale atmospheric circulation include, among others, the north Atlantic 

subtropical High and Sea Surface Temperature (SST). Generally, winters are 

characterized by cyclonic disturbances and negative pressure anomaly whereas 

subtropical high pressure system is prevalent during summers. 

 

Figure 1.8 indicates the annual cycle of mean temperature in the region. As indicated, 

January is the coldest month with an average surface air temperature of 5.2ºC, 

meanwhile July is the warmest month with an average of 21.4ºC. The mean annual 

temperature fluctuations are about 16.2ºC in the whole region. The annual 

temperatures range from about 17.9ºC in the lowest sites in the Ebro valley to 5ºC in 

the mountain areas. However, due to the complex topography of the region, the annual 

diurnal range, defined as the difference between the highest maximum temperature 

and the lowest minimum temperature in the year, is apparently high suggesting more 

continental influences in the region. For example, the mean maximum temperature 

during summer may reach 45ºC in the Ebro valley; meanwhile winter mean minimum 

temperatures may fall below -15ºC in very elevated sites in the Iberian system and the 

Pyrenees. This also suggests great interannual contrasts. This contrast is also evident 

over space, as revealed in Figure 1.9, in which interannual variations of mean 

temperature at three different observatories with varied elevation are plotted. It can be 

noted that temperature variations are elevation dependent. The highest temperatures 
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often occur in the flattened areas in the Ebro valley (e.g., Zaragoza airport, Zaragoza) 

and in areas close to the Mediterranean Sea (e.g., Sort Piraguisme, Lleida). On the 

other hand, mountainous areas (e.g., Pantano de Compuerto, Palencia) and areas 

close to the Cantabrian Sea are relatively cooler. However, it is noteworthy indicating 

that this temperature-elevation dependency may vary from one season to another as a 

consequence of influences of other local variables such as the slope, aspect, land 

cover, vegetation canopy, and maritime influences.  

 

Figure 1.8: The annual cycle of mean temperature climatology in the study domain, 

calculated as the long-term average for the period 1960-2006. The median, 10th, 25th, 

75th and 90th percentiles are shown as vertical boxes. The red line represents the 

mean while the dots indicate the 5th and 95th percentiles. 

 
The study region also includes diverse pluviometric regions, varying from arid, semi-

arid to humid. According to Martin-Vide and Olcina (2001), the precipitation isoline 

between 600 and 800 mm/year distinguishes between the humid and arid areas, 
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meanwhile isoline between 300 and 350 mm/year differentiates the arid from the 

semi-arid regions. The humid area (above 1000 mm/year) is mainly located to the 

north close to the Cantabrian Sea and over the mountain ranges (e.g., the Iberian, 

Cantabrian and Catalan systems and the Pyrenees). Dry conditions occur in central 

portions, particularly over the Ebro valley and along the Mediterranean littoral area to 

the east. 

 

 

Figure 1.9: Interannual variability of mean temperature climatology at three different 

observatories in the study domain, calculated as the long-term average for the base 

period 1960-2006. The altitude is given in meters. 

 

As illustrated in Figure 1.10, precipitation is mainly concentrated in spring and autumn. 

The dry conditions typically prevail in the period from June to September, The average 

of total precipitation varies from 25.6mm (July) to 64.1mm (October). There are also 

large spatial variations, with a remarkable gradient from south to north and from east 

to west (De-Castro et al., 2005; Gonzalez-Hidalgo et al., 2010). These spatial 

contrasts are presented in Figure 1.11, which compares the interannual variations of 
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total precipitation at three different localities in the region. As illustrated, the 

precipitation peak is located in October, with values ranging from 22.4 mm at Artieda 

(Navarra) to 71.2 mm at Segorbe (Castellon). On the other hand, total precipitation in 

the drier month varied from 7.9 mm in August at Artieda (Navarra) to 24.2 mm in July 

at Huesca Monflorite (Huesca). Most annual precipitation falls as snow in mountainous 

regions (e.g., the Pyrenees). A more detailed summary of the climate of the study area 

can be found in Capel-Molina (1981) and Font-Tullot (1983). 

 

Figure 1.10: The annual cycle of total precipitation climatology in the study domain, 

calculated as long-term average for the period 1960-2006. The median, 10th, 25th, 

75th and 90th percentiles are shown as vertical boxes. The red line represents the 

mean while the dots indicate the 5th and 95th percentiles. 
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Figure 1.11: Interannual variability of precipitation climatology in three different there 

observatories in the study domain, calculated for the base period 1960-2006. The 

altitude is given in meters. 

 

1.7. Aims of the thesis  

The main focus of this thesis is to improve the understanding of the regional variability 

of temperature in northeast Spain using daily temperature dataset. The research line 

examines the observed space-time variability of temperature means and extremes 

from 1960 to 2006. 

 

The primary objectives of this study were: 

- To develop a complete, reliable and homogenous daily temperature dataset for 

northeastern Spain, with the aim of improving the spatial and temporal 

coverage of temperature time series in the study domain. This new compiled 

dataset was developed using a very dense network of 1583 daily raw time 

series distributing across the region. Herein, this research also aspires to 

assess the methodology used to quality control, reconstruct and adjust breaks 
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(inhomogeneities) in the series on trends, spatial and temporal coherence, and 

statistical properties of the final series. In order to draw a comparison between 

the series before and after adjustments, a suite of different statistical methods 

(e.g., semivariance models, L-moment statistics, and Pearson order moment 

correlation) was used to accomplish this task. There are emphasizing needs to 

develop temperature dataset with high spatial and temporal resolution for the 

study area. 

 

- To examine spatial and temporal variability of surface air maximum, minimum 

and mean temperatures and daily temperature range (DTR) at both seasonal 

and annual timescales during the period from 1960 to 2006. This aim extends 

further to analyze the possible physical causes behind the observed regional 

variability. The purpose was to quantify possible large-scale atmospheric 

configurations that control the observed local trends.   

 
-  To analyze extreme heat events based on (i) defining extreme events by 

means of both arbitrary and percentile-based thresholds, (ii) calculating their 

linear trends, and (iii) tracing spatial variability of the observed trends. To meet 

this goal, trends in daily maximum and minimum temperatures were assessed 

using 21 extreme temperature indices. 

 

- To divide the study domain into regions as homogenous as possible based on 

the information derived from a set of extreme temperature indices using the 

Principal Component Analysis (PCA) and Cluster Analysis (CA), and to assess 

the connections between spatial and temporal variability of temperature 
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extremes in the defined sub-regions on the one hand and the main modes of 

atmospheric circulation over Western Europe and the Mediterranean region on 

the other hand. 

 
- To examine the spatial and temporal variability of the anomalous severe heat 

events over the study domain. This incorporates very warm days (VWD) and 

very cold nights (VCN). The anomalous extreme days were first defined using 

the uppermost (99th: VWD) and lowermost (1st: VCN) percentiles of daily 

maximum and minimum temperature distributions, respectively. Then, the main 

spatial modes corresponding to these very extreme events were identified. 

Further aim involves the analysis of large-scale atmospheric circulation patterns 

at different geopotential levels (200hPa and 500hPa) as well as at the Mean 

Sea Level (MSL) to identify synoptic conditions favoring for the occurrence of 

these extreme days and explain their spatial structure.  

 
- To evaluate the capability of different RCMs to represent regional temperature 

variability as simulated from the Special Report on Emissions Scenarios (SRES) 

A1B moderate greenhouse gasses emission scenario for the 21st century. This 

study investigated 9 regional climate simulations from the EU-ENSEMBLES project 

and examined projected climate change signals for the near future (2021-2050) 

and far future (2071-2100), with respect to present-day climatic conditions (1971-

2000). Through this aim, this thesis endeavored to (i) assess potential uncertainties 

of future projections through a detailed comparison of the individual model-

projections, (ii) to quantify the projected climate change signal of mean maximum 

and minimum temperature on a seasonal basis, (iii) to simulate the regional 
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climatology of the anomalous severe extreme events in the region, (iii)  to evaluate 

projected changes in a set of time-varying percentiles (e.g., the 10th, 25th, 75th 

and 90th) representing the cold and warm tails of temperature distributions under 

the future warming conditions, (iv) to determine whether changes in extreme 

events may already be consistent with simulated changes in the central tendency 

and in turn how the distribution of daily maximum and minimum temperature will 

change seasonally in the future,  

1.8. Outline of the thesis  

This thesis is structured as follows: chapter 1 is intended to give a brief overview on 

the scientific background of the research topic and its arising questions. In addition to 

a literature review that summarizes the current state of knowledge, a short 

geographical and climatological description of the study domain supplements this 

introduction. Chapter 2 outlines the full protocol applied to develop a spatially and 

temporarily high-resolution dataset of temperature for northeast Spain. The daily 

dataset development is complemented with statistical analyses focusing on the 

robustness of the final dataset. A comparison between the dataset before and after 

homogeneity adjustment is also provided. Chapter 3 provides a detailed description of 

the methodological framework employed to trace the observed and projected changes 

in surface air temperature during the 20th and 21st century. The chapter on methods 

also includes theoretical explanations on some of the techniques and statistical tests 

used in this work. This will include basic equations, numerical methods, and physical 

parameterizations used. Chapter 4, “Results”, is devoted to present the primary 

research results, organized around the research questions. In chapter 5, “Discussion”, 

an insight of the results is given, providing a comparison with similar studies and 
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findings. In chapter 6 a summary and the main concluding remarks are presented. 

Chapter 7 gives an outlook on possible future developments of the present work. 

Finally, the appendix section includes the supplementary material to this thesis. This 

Ph.D. study has resulted in six manuscripts, whose full citations are included in 

appendix B. 

 

1.8. Significance of the study 

The novelty of this work is that, as opposed to most previous studies, it depends on a 

new developed dataset which represents the most complete register and the densest 

network of temperature observatories in the study area. Therefore, this work is critical 

to understanding the variability of temperatures changes in the region and can 

therefore contribute to better understanding of the impact of climate change in this 

climatically complex region. This study also gives much more concern to changes in 

the both the moderate and most severe extreme events in the region. While this study, 

similar to previous works, has been confined to use a threshold value of 10 (90) 

percentiles of daily minimum (maximum) temperature distribution to define an extreme 

event, the uppermost (99th) and lowermost (1st) intervals of daily data distributions 

were also considered in temperature extreme events analyses. Understanding the 

spatial and temporal variability of these unusual events and the driving forces behind 

their variability has received less concern in climate research and thus remain poorly 

understood. In the framework of this thesis not only the present changes in 

temperature are of importance, but there is also a focus on the future behavior. In this 

regard, the inclusion of simulations from different RCMs to assess future climate 

projections of seasonal temperature and their spatial variations raises the potential of 
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certainty about the final conclusions that are to be drawn in this work. The findings 

could thus improve our understanding and prediction of the long-term trends of 

temperature simulations, which could be of particular importance for different 

disciplines in the region such as hydrology, water resources management and 

ecology. Overall, understanding changes in temperature patterns and the dynamics 

behind them is a key to assessing the possible changes in the future and thus can 

provide high quality advice to societies for mitigation. The gained results can be placed 

in a larger climate context, providing insights into the long-term behavior of 

temperature and its driving forces in the Iberian Peninsula, the Mediterranean region 

and southwestern Europe.  
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2. DATASET DEVELOPMENT AND DESCRIPTION 

2.1. Introduction 

   In recent years, there is ongoing global increase about climate change and its 

natural and socioeconomic consequences (e.g., water resources, hydrology, forestry, 

agriculture, energy...etc). Assessing these impacts requires climate datasets of high 

spatial and temporal resolution. Beside data availability, the quality and homogeneity 

of climate series are prerequisites for detailed and trustworthy climate studies. 

Complete, reliable and spatially dense climatic datasets are mandatory for different 

types of climatic analyses (Eischeid et al., 2000). For example, an appropriate analysis 

of climate variability and trends necessitates climatic datasets of fine spatial and 

temporal resolution. If the inhomogeneities are not accounted for properly, the results 

of climate analyses based on the non-adjusted data can be erroneous and misleading 

(Peterson et al., 1998).  

The study domain is characterized by its complex topography, moderately high 

latitude, and transitional location between the Atlantic and the Mediterranean 

configurations. In addition, this domain encompasses diverse climate regimes, varying 

from semi-arid to humid, continental to maritime and lowlands to mountainous. 

Therefore, assessing temperature changes in a region of these high geographical and 

climatic contrasts necessitates a dataset of high spatial and temporal resolution. 

Unfortunately, the insufficient number of temperature observatories and its uneven 

spatial distribution has been the main features of recent studies focusing on air 

temperature change and variability in the region. In addition, most long-term time 

series covering the region are generally affected by some inhomogeneities caused by 

changes in instruments, observers, site displacements, observing practices, and the 
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surrounding environment (e.g., urbanization, land use and vegetation canopy). These 

inhomogeneities in temperature data do not make possible to consider temporal 

variations as induced only by climate processes.  

In this chapter, a detailed description of the different techniques conducted to 

reconstruct, quality control and test homogeneity of the available time series is 

provided. In general, the rationale behind this multistep procedure was to improve 

quality, temporal extension and spatial coverage of temperature time series in the 

study region. This chapter is structured in four main parts. A description of the original 

dataset is given in section 2.2. The methodology employed to check data quality, infill 

gaps, and test homogeneity of daily temperature time series are outlined in sections 

from 2.3 to 2.7. An assessment of the possible impact of data adjustment (correction) 

on spatial and temporal characteristics of the final temperature time series is included 

in section 2.8. Finally, a description of the final adjusted dataset is presented in section 

2.9.  

2.2. Raw dataset description 

This study employed a database of 1583 daily maximum and minimum temperature 

time series spanning some period between 1900 and 2006. This dataset was provided 

by the Spanish Meteorological Agency (Agencia Estatal de Meteorologia, AMET). The 

spatial distribution of temperature observatories is illustrated in Figure 2.1. A quick 

inspection of the network of stations clearly reveals that the spatial density of stations 

is inhomogeneous across the administrative 18 provinces. As depicted in Figure 2.2, 

the most data-rich provinces are Barcelona, Guipuzcoa and Cantabria with a density of 

1 station for each 481.9, 493.6 and 515.5 km2, respectively. In contrast, the coarser 
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coverage is found in Soria, Guadalajara and Burgos, with a density of 1 station for an 

extent of 3430.4, 2711.8 and 2458.9 km2, respectively. The average of inter-station 

distance in the whole dataset is nearly 23.7 km.  

In terms of topography, majority of observatories are located in lowlands and 

moderately elevated areas. Figure 2.3 informs that 34, 52.7, 73.6 and 86 % of 

observatories are situated in sites below than 300, 500, 800 and 1000 m, respectively. 

Areas above 1500 m are only represented by 2.6% of the network observatories.  

Temporarily, the stations density markedly differs with a sharp increase from 1970 

onwards (Figure 2.4). About 21.3 % of stations extend back to 1950 or earlier, while 

98.7 % of the observatories have their most recent records until 2002.  

 

Figure 2.1: Location of the study area and spatial distribution of temperature 

observatories in the original dataset (N=1583).   
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Figure 2.2: Distribution of temperature observatories according to the province. 
 
 

 

Figure 2.3: The cumulative distribution of the number of observatories as a function 

of altitude. Altitude is given in meters.  
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Figure 2.4: The number of available daily maximum-minimum temperature 
observatories in the original dataset from 1900 to 2006. 

 

As illustrated in Figure 2.5, the raw dataset, particularly those series with long-term 

temperature records (e.g.,> 50 yrs), suffers from presence of missing values and 

temporal gaps. Changes in stations opening, closing and locations are being the 

reason. More importantly, Figure 2.5 indicates that parts of the available observatories 

have archives of instrumental climate records which, in some cases, date back to the 

first decades of the 20th century. Also, the region provides promising amount of data, 

as revealed by the dense network of observatories, which can allow for potential 

reconstruction of very useful long-term temperature time series making a good use of 

data from short interval time series (e.g., < 30yrs).   
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Figure 2.5: Scatter plot representing the relationship between the length (in years) and 

the percentage of missing values in the time series of the original dataset. The solid 

line indicates the best fitted model curve. The length is defined as the difference 

between the opening date of the observatory and its more recent record. 

 

In the following section, a full description of the multistep approach used for quality 

control, reconstruction and homogenization of the daily temperature series is detailed. 

A scheme that represents the different steps of this procedure is summarized in Figure 

2.6. 
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2.3. Quality control of daily time series 

Quality control is a fundamental task to remove incorrect data and to check for data 

consistency and reliability (Feng et al., 2004). In this work, the original series were 

subjected to several quality checks. First, typical tests were performed to identify 

systematic errors, which resulted from different sources (e.g., archiving, transcription, 

and digitization). This can include non-existent dates, Tmin ≥ Tmax, Tmax > 50ºC, 

Tmin < - 50ºC and runs of at least 7 consecutive days with identical records. Next, the 

data were screened for internal consistency by comparing the value in question 

against other values in the same time series following Reek et al. (1992).  

 

Finally, the data were checked for external consistency by comparing each time series 

with nearby sites. The rationale behind this procedure was to trim outliers that 

markedly differ from the majority of neighbors while keeping the valuable extreme 

information. To accomplish this task, daily data of each testable observatory were 

compared with a minimum of 3 nearby observatories located within a maximum 

distance of 30 km. More specifically, the rank of each value in a testable time series 

was obtained as a quantile of all values in this series. Then, these quantiles were 

compared with the quantiles of nearby stations for each particular day. Values which 

exceed a user-defined difference threshold in this between-station comparison was 

flagged and set to missing values. In order to screen for appropriate interquantiles 

range threshold, this research tested different thresholds (e.g., 0.1, 0.2, 0.3, etc) using 

a random subset representing 1 % of all time series.  
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Figure 2.6: Schematic representation of the integrated approach applied to quality 

control, reconstruction, and homogenization of daily temperature time series in the 

study area. Shaded areas indicate the main steps. 
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The results suggested a threshold of 0.5 as a more suitable compromise for all 

seasons apart from winter, whereby a more restricted threshold (0.3) was set. This 

was principally done to account for the thermal and dynamical conditions originating 

from topography influences in winter. As the study domain is topographically 

complicated, the topography can significantly influence different atmospheric and 

climate processes through modification or blocking atmospheric flows and air masses. 

In areas of strong topography gradient, meso-scale weather systems can be found as 

a result of thermodynamic processes associated with the vertical (ascending and 

descending) movement of air (Barry and Chorley, 1987; Whiteman, 2000). 

Accordingly, the spatial dependency among observatories can markedly degrade over 

short distances. A similar approach was recently adopted by Stepanek et al. (2009) 

and Vicente-Serrano et al. (2010) to detect erroronous records in climate data.   

 

 2.4. Reconstruction of daily time series 

Short-term and fragmented time series may introduce noise to estimates of long-term 

climate changes. This is the typical case in many climatic datasets worldwide, where 

many gaps are introduced in the series. Peterson and Vose (1997) indicated that short 

or fragmented series may significantly alter the magnitude and sign of climate 

variability trends, particularly at regional-scale resolution. For this reason, many 

techniques have recently been applied for serial reconstruction in climatology 

including, for example, the neural artificial network (Rigol et al., 2001), interpolation 

algorithms (Vicente-Serrano et al., 2010), and the singular spectrum analysis (Ghil et 

al., 2002). The basic idea behind these methods is to obtain long-term complete 

dataset using all available data within a region. In general, the reconstruction can be 
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carried out as a function of the weighted distance (Shen et al., 2001) and/or correlation 

(Young, 1992). Nevertheless, these approaches differ in their applicability according to 

terrain complexity and spatial density of stations (Allen and DeGaetano, 2001; Hofstra 

et al., 2010). For instance, many interpolation techniques (e.g., optimal interpolation, 

Kriging, and splines-surface fitting) can give good results in regions with no gradients 

(Jarvis and Stuart, 2001a, b). Contrarily, their performance in terms of both bias and 

amount of variance is predominantly poor in areas of complex terrain or uneven 

density of observatories (Romero et al., 1998; Eischeid et al., 2000; Hubbard and You, 

2005). In such environments, the regression-based methods can be a superior 

solution. These methods take into account data from adjoining stations with the best 

temporal correlation and the highest spatial dependence. The primary advantage of 

these methods is that they show less sensitivity to outliers (Romero et al., 1998), and 

can therefore better represent systematic temperature differences associated with 

topographic influences in heterogeneous regions (Hubbard and You, 2005). Compared 

to other meteorological variables, such as precipitation, temperature often has a 

statistically normal distribution. Accordingly, the regression-based approaches seem to 

be an adequate choice for this research. In literature, numerous previous studies 

proved the advantages of the regression methods to reconstructing temperature time 

series relative to other methods (e.g., Eischeid et al. 1995; Allen and DeGaetano, 

2001; Hubbard and You, 2005; You et al., 2008).  

In this work, the standard linear regression model was simply applied to estimate 

missing value at the target observatory on a given day (i), as follows:  

ii bxaY +=                                                                                                           (2.1) 
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where a  refers to the intercept, b is the slope between the y (target) and x 

(neighboring) time series and iy  and ix  are  the values of the target and neighboring 

stations at the day i. 

This research took advantage of the large number of available observatories in the 

original dataset to rebuild long-term time series based on comprising nearby series of 

short time span. It is assumed that information introduced from nearby stations 

identically reflects uniform climatic conditions of the target station. To accomplish this 

task, the daily temperature series of the original dataset were firstly divided in two 

broad groups. The first category included all the series that are still in operation (2004 

or more recently), hereafter labeled as target series. This step resulted in 668 target 

observatories. The remaining data (915 observatories) were served as a pool for the 

reconstruction process. Since the final output of the reconstruction procedure is largely 

influenced by the selected neighboring stations, a set of similarity measures (distance 

and correlation) is used to rebuild the target series. The procedure for the pre-selection 

of the adequate neighbors only comprised those stations which fulfilled a set of 

restricted multi-criterion, including:  a) a minimum common observing period of 4 years 

shared by the target station, b) a positive correlation coefficient exceeding 0.90, and c) 

location within a radius of 15 km around the target station. This procedure helped 

avoiding suspicious information and only sacrificing quality-assured data that 

experienced similar climate conditions to the target observatory. In order to maximize 

the series length, priority of infilling a target station was firstly given to the longest 

nearby series that best correlated with the target station. For this reason, the stations 

were firstly ranked on the basis of the available record length and data completeness. 

When data from an adjacent series were used to reconstruct a target station, they 
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were automatically discarded from the bulk series to avoid introduction of redundancy 

information. The redundant information can actually decrease the reconstruction skill 

since they can dismiss important information from other nearby sites. However, it is 

worthwhile to indicate that the regression model was applied iteratively to maximize 

the value of information used from all nearby observatories. Nevertheless, the number 

of surrounding stations for each target (candidate) station was not fixed in time as it 

depended on data availability on each particular day.   

2.5. Homogeneity testing 

Most long-term climatological time series are often affected by a number of non-

climatic factors that make these data unrepresentative of the actual climate variations. 

These factors include, for example, changes in observatory locations, observers, 

surrounding environments, measurement practices or instruments (Peterson et al., 

1998, Costa and Soares, 2009b). Historically, numerous attempts have already been 

made to develop appropriate methods to detect and correct inhomogenities at low 

temporal resolution (i.e., monthly and annual) (e.g., Alexandersson, 1986; Jones et al., 

1986; Petrovic, 2004). However, less attention has been devoted toward testing 

homogeneity of climatic data at daily and sub-daily resolution (e.g., Vincent et al., 

2002; Wijngaard et al., 2003). This task is more challengeable due to noise and high 

variability introduced in daily data compared with monthly and annual data. A 

comprehensive review of different homogenization approaches is given in Peterson et 

al. (1998) and Costa and Soares (2009b). In absence of accurate, complete and well-

documented metadata (i.e., station history), the relative homogeneity tests (RHTs), 

which rely on comparing the station´s own data with its neighborings, are favored to 

identify supporting evidence of significant changes on observational routines. The NE 
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Spain dataset shows a typical example. The relative homogeneity test procedure 

included two main steps: the creation of reliable reference series and the application of 

proper homogeneity tests.  

Building reference time series is mandatory for undertaking the relative homogeneity 

tests. The reference time series is assumed to reveal the same variability of weather 

and climate exhibited in the candidate station. In this regard, this research used 

composite reference series to test homogeneity of each candidate series. This was 

mainly because temperature shows less spatial variations compared to other climatic 

variables, such as precipitation, which can vary greatly over space. Similar to previous 

works (e.g., Peterson and Easterling, 1994; Klein Tank et al., 2002; Vicente-Serrano et 

al., 2010), this work brought together factors of distance, correlation, elevation 

dependence, and stations density to select the most useful sites to create reliable 

composite reference series. Herein, nearby observatories with high temporal 

correlation were assumed to exhibit the same variability of weather and climate. More 

specifically, the reference series were composited from nearby localities lying within a 

maximum distance of 100 km, with correlation greater than 0.7. In practice, a distance 

threshold of 100 km was considered as high enough so as to secure reasonable 

number of nearby stations in sparse network areas (e.g., southwestern portions). In 

the same sense, although higher correlation coefficient is desirable to build a reliable 

reference series, a threshold of 0.8 between the candidate and the reference series 

still suits the purpose of this work given that the correlation was computed between the 

first difference series (Xt+1-Xt) to avoid additional inhomogeneities from the reference 

series. This correlation threshold was in the range being considered in numerous 

previous studies (e.g., Peterson et al., 1998; Vicente-Serrano and López-Moreno, 
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2006; Costa and Soares, 2006; Stepanek et al., 2008; Savic et al., 2010). In addition to 

distance and correlation thresholds, a minimum overlap period of 20 years of records 

between the candidate and nearby observatories was also set. This common period is 

long enough to construct reliable composite reference series. Furthermore, it helped 

overcoming the problem of discontinuities in the nearby series. Lastly, a maximum 

altitude difference of 500 m between the candidate and the nearby sites was adopted 

to limit the influence of topographical gradients.  

Based on the aforementioned criteria, a well-defined monthly reference series was 

created for each testable series using a weighted average of data from the highly 

correlated neighboring stations following the standard procedure of Peterson and 

Easterling (1994), as follows: 
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where iRT ,  is the reference series for the i month, iRn
T ,  is the value of temperature in 

the neighboring observatory n during  the month i, IR is the correlation coefficient  

between the first difference time series of the target (candidate) series and the 

neighboring observatory n during the month i.  

Herein, it is noteworthy indicating that the values of the selected nearby stations were 

firstly standardized by their mean and standard deviation for each month 

independently. This procedure reduces possible biases from the reference series. In 

general, the procedure to create the reference series was run automatically using the 

PROCLIM-DB software (Stepanek, 2008). However, it is worthwhile to indicate that 
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although the main target was to obtain a homogenous dataset at daily resolution, the 

reference series were created at monthly, seasonal and annual timescales. This 

helped avoiding problems released from the high variability of daily data at small 

spatial scales (Feng et al., 2004). Indeed, daily data exhibit a complex and non-linear 

behavior. Therefore, they may comprise nonlinear events resulting from very local 

processes, such as orography and surface albedo. The combination of the high day to 

day differences and the generally high spatial heterogeneity of the climate add another 

difficulty to capture daily variations in the reference series.  

Detecting breakpoints in the time series is one of the most relevant problems among 

those addressed by the RHTs. In practice, there is no one single test to be 

recommended as optimal to detect breaks in all situations (Costa and Soares, 2009b). 

This is mainly because RHTs vary in their theoretical background, algorithms and 

sensitivities to detecting breaks in the series. Thus, application of different statistical 

methods could largely improve the degree of certainty related to the detectable breaks 

in the series, especially when metadata is unavailable (Wijngaard et al., 2003). This 

approach has been favored by many researchers to verify the possible discontinuities 

in climatic time series (e.g., Wijngaard et al., 2003; Costa and Soares, 2009b). In this 

research, three well-established RHTs were chosen to test homogeneity of the series, 

including: the Standard Normal Homogeneity Test (SNHT) for a single break 

(Alexandersson, 1986), the Easterling and Peterson test (Easterling and Peterson, 

1995) and the Vincent method (Vincent, 1998). The SNHT single break test 

determines the most significant break in the time series and has the advantage of 

detecting breaks close to the beginning and the end of the series (Wijngaard et al., 

2003). For this reason, it has increasingly been recommended to define the breaks in 
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climatic series (e.g., Slonosky et al., 1999; Wijngaard et al., 2003). On the other hand, 

the Easterling and Peterson two-phase regression-based technique has the advantage 

of detecting multiple breaks in the series, specifically when they are very close in time 

(Easterling and Peterson, 1995). More recently, Vincent (1998) proposed a multiple 

linear regression approach to identify multiple breaks in temperature series, 

particularly undocumented change points. Vincent et al. (2002) used this test to 

identify multiple breaks in the daily Canadian temperature series.  

In this study, all the RHTs were carried out at monthly, seasonal and annual 

timescales. These temporal resolutions fulfilled normality, which is a prerequisite for 

the SNHT. Moreover, seasonal resolution allowed a better detection of 

inhomogeneities given that some sources of inhomogeneity show different impacts 

from season to season (e.g., summer vs. winter). The AnClim software developed by 

Stepanek (2004) was used for testing homogeneity. Only detectable breaks at a 

confidence level of 95% (p<0.05) were considered statistically significant. Following 

this approach, all possible inhomogeneities in the series were defined and grouped 

together. This procedure enabled to detect all possible inhomogenities in the series 

because it did not only identify the same break in one series, but it also allowed 

tracking down inhomogenities not identified by any of the other two tests. Recalling 

that the underlying hypothesis of the RHTs is based on comparing the mean from two 

sides of the data, inhomogeneities found within the first and the last 5 years of the 

series were not considered. As a consequence of the reduced sample size close to the 

boundaries of the series, there is an increasing probability to have high T values 

(Hawkins, 1977). Previous studies rejected inhomogenities 5 years or more at the start 
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and/or the end of the series, particularly if they are not fully explained by metadata 

(e.g., Gonzalez-Rouca et al., 2000, Gokturk, et al., 2008). 

The homogeneity adjustments make it possible to consider temporal variations of 

temperature time series as caused only by climate variations. Therefore, an 

adjustment (correction) model was applied to account for statistically significant abrupt 

changes. The correction factor was computed for each month individually based on a 

comparison of percentiles of the differences between the candidate and the reference 

series before and after any detectable break. To obtain daily corrections, the pre-

defined monthly corrections were interpolated into the daily time series following the 

approach described by Sheng and Zwiers (1998) and recommended by Vincent et al., 

(2002). This procedure is advantageous in various ways. First, it reduces 

discontinuities on the first and last days of each month (Vincent et al., 2002). Second, 

it maintains characteristics of daily extreme events, such as frequency and intensity. 

Lastly, it preserves temperature trends and variability presented in monthly 

temperatures. Altogether, it can be expected that the homogenized daily temperature 

series will be compatible with those of monthly resolution. 

Finally, it is worthwhile to indicate that testing homogeneity was applied iteratively as 

all time series in the dataset were considered repeatedly as candidate and reference 

series. However, more restricted criteria were considered in this iterative procedure. 

First, multiple reference series were used as alternative to the composite reference 

series to test homogeneity. Accordingly, each candidate time series was tested 

independently and iteratively against each of the best correlated 5 neighboring 

stations. Although this procedure involved intensive use of the data, it reduced the 

possible effects of temperature spatial variation originating from terrain complexity in 



2. DATASET DEVELOPMENT AND DESCRIPTION 
 

58 
 

the study domain. In the following iterations homogeneity was tested again using the 

composite reference series, but applying more restricted criteria (e.g., r= > 0.9, number 

of observatories<= 10). This procedure mainly aimed to verify the regional consistency 

among nearby sites. At this stage, combining both multiple and composite reference 

series and testing all the time series several times was important to ensure that the 

final dataset is relatively free from any significant breaks. 

2.6. Impacts of the adjustment protocol on trends and statistical 

properties of the series  

Evaluation of the impact of series adjustment is of great importance to determining the 

reliability of the final time series for different climate analyses such as trends and 

climate extremes. Given that homogenization procedures are more subjective and 

therefore can have adverse and complex influences on time series, many authors 

(e.g., Peterson et al., 1998; Vincent et al., 2002) highlighted the importance of 

identifying the possible impacts of inhomogeneity adjustment on climatic data. In this 

research, a set of techniques was used to account for such possible impacts. Herein, 

the main hypothesis was that the degree to which a station’s data reveals spatial and 

temporal coherence with their immediate surroundings can be a good indication of the 

reliability of the applied methodology. Therefore, the validity of the final dataset can be 

evaluated by examining spatial and temporal characteristics of the new dataset, as 

compared to the original dataset. All the assessment tests were applied to a set of 98 

observatories covering the period from 1950 to 2006. The spatial distribution of these 

observatories is given in Figure 2.7. 
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Firstly, linear trends of maximum and minimum temperatures were calculated at 

seasonal and annual timescales before and after eliminating inhomogeneities. The 

main purpose was to assess the relative influence that the homogeneity procedure 

exerted on the trend assessment in terms of both the magnitude and sign (direction) of 

the trend. The significance of the trends was assessed using the nonparametric 

Spearman (Rho) test at a confidence level of 95% (p value < 0.05). The Spearman 

Rho statistic was computed, as follows: 
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where iR   is the rank of ith observation in the time series and n is the length of the time 

series. 

 

Figure 2.7: Spatial distribution of temperature observatories from 1950 to 2006 

(N=98). 
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This test is robust to outliers and does not assume prior probability distribution of the 

residuals. The slope was estimated using the ordinary least squares (OLS) fitting and 

expressed in ºC per decade. Seasonal averages were obtained from monthly data for 

each year and defined as winter (December-February; DJF), spring (March-May; 

MAM), summer (June-August; JJA), and autumn (September-November; SON). A 

comparison between the trends sign (direction) before and after corrections was 

conducted by means of the cross-tabulation analysis, which illustrated pairwise 

relationships between the categories of the trend signs (i.e., significant positive [+], 

significant negative [-], and statistically insignificant [N]). In this context, the pivot tables 

were constructed to represent the cross-categorized frequency data in a matrix format 

following the results of the trend assessment.   

To assess the degree of spatial dependence between the seasonal and annual trends 

before and after homogeneity correction, the semivariance models were computed for 

the magnitude of change. A detailed explanation of semivariance theory can be found 

in Webster and Oliver (2001). Semivariance analysis has widely been applied in 

ecology (e.g., Urban et al., 2000) and climatology (e.g., Vicente-Serrano et al., 2010) 

to detect scales of variability in spatial data. The semivariance describes the spatial 

variance as a function of distance between the observatories. The value of the 

semivariance decreases as the pair of data points is separated by a short distance, 

meanwhile it increases when the distance increases. In this study this geostatistic was 

employed to analyze variations in spatial structure of the trends before and after 

homogeneity correction. It can be expected that the semivariance will be lower after 

correcting inhomogeneities as a consequence of introducing a relatively free-of-error 

and homogenous series. Spatial semivariance was obtained, as: 
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(2.4) 

where y(h) is semivariance at lag distance h, N (h) is the number of station pairs that 

are separated by h distance, Z (si) and Z (si+h) are the values of Z variable in stations 

si and si + h. 

Secondly, adjustment of the series may alter the probability distribution of extreme 

temperature (e.g., frequency and intensity). Therefore, this study used two extreme 

temperature indices to assess possible impacts of adjustment on occurrence of 

extreme values. In practice, the annual count of warm and cold days before and after 

breaks adjustment was computed for each daily time series from 1950 to 2006. The 

warm (cold) day was simply defined as the day higher (lower) than the 90th (10th) 

percentile of the average maximum (minimum) temperature. The definition of extreme 

values based on the percentiles is objective, site-independent and facilitates direct 

comparisons between regions of diverse climates (Jones et al., 1999). However, it is 

worthwhile to indicate that the key question behind this analysis was to assess the way 

in which the adjustment procedure affected spatial continuity of the trends rather than 

the trends themselves. Therefore, the spatial continuity of the extreme temperature 

trends before and after homogenization was compared using semivariance of the 

magnitude of change.  

Thirdly, to determine how the adjustment procedure affected the statistical distribution 

of daily temperature values in the series, a suite of statistical indicators were computed 

for the time series before and after correction. In this regard, L-moment statistics were 

computed for each independent daily maximum and minimum time series before and 
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after homogeneity correction. These statistics provide information on the scale (L-

coefficient of variance [t2]), shape (L-coefficient of skewness [t3]), and peakedness of 

the series (L-coefficient of kurtosis [t4]). L-moment statistics are independent of the 

sampling size and also resistant to outliers. Moreover, they show less bias in 

comparison with other conventional product moments, such as standard deviation, 

skewness and kurtosis. These statistics have therefore been used in climatological 

and hydrological studies (e.g., Guttman, 1993; Guttman et al. 1993; Vicente Serrano et 

al., 2010). More details on the L-moment theory are given in Asquith (2003). In short, 

the L-moment coefficients are defined according to Hosking and Wallis (1997), as 

follows: 
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where ( 1λ , 2λ , 3λ , 4λ ) are the probability-weighted moments (PWMs) defined by 

Greenwood et al. (1979), as: 
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0123 66 βββλ +−=                                                                     (2.10) 

01234 123020 ββββλ −+−=                                       (2.11) 

The PWMs of order r is given by: 
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where iF  is the cumulative distribution of a given ordered sample ( 1x < 2x < 3x < ix ) 

 calculated, as: 
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Also, to get a closer picture of the spatial structure of L-moment coefficients, values of 

these statistics were also plotted against distance by means of the semivariance 

models before and after inhomogeneities correction.  

Lastly, while the statistical methodologies described above can provide a guidance to 

assessing the reliability of the final dataset, perhaps the most outstanding feature to 

assess the effect of the homogeneity procedure is to account for the correlation 

between the time series before and after correcting breaks. In this research an 

assessment of this effect was achieved by deriving the Pearson correlation matrix 

between temperature series at different distance orders. The correlation matrix was 

computed for both the original series (i.e. raw and corrected) and the series of first 

differences (Xt+1-Xt) for the raw and corrected data. Considering the correlation 

between the first difference series is of special interest to give insights into the strength 

of the temporal dependency among the series after isolating the influence of 
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inhomogeneities which may be introduced in the independent series. Overall, 

introducing inhomogeneities in the series is assumed to degrade correlation among 

nearby sites and, in this study, the inter-station correlation could act as a kind of 

filtering for non-adjusted series. 

2.7. Homogeneity testing results 

Table 2.1 summarizes the percentage of flagged data following the quality control 

procedure. On average, the percentage of erroneous data was higher for minimum 

(0.11%) than for maximum temperature (0.09%). The highest errors for maximum and 

minimum temperatures occurred during spring and summer, respectively. Spatially, the 

fraction of flagged data was greater in station-dense areas (e.g., Catalonia and 

Cantabria), compared with relatively sparse areas (e.g., Burgos and La Rioja). One 

representative example for the erroronous data was the daily minimum temperature at 

the observatory of San Mateo (Castellon) which recorded -88.8ºC on the second day 

of January in 1960. Figure 2.8 also illustrates an example of one outlier detected in 

daily maximum temperature at the observatory of Pamplona on 23rd June 1983, in 

which the percentile of this daily value was 0.37, which differed largely from other 

neighboring observatories (0.75±0.82). This value was flagged and set as missing 

value. 

After quality control checks, a linear regression model was used to comprise nearby 

and best correlated series of short-term span in order to rebuild long-term time series. 

Figure 2.9 illustrates an example of the reconstruction procedure. As presented in 

Figure 2.9.A, the reconstructed wintertime daily minimum temperature time series at 
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the observatory of Calatorao Cooperative (9428E, Zaragoza) has records from 1940 to 

2006 as a consequence of joining data from two nearby sites (9425I and 9432).  

 

Table 2.1: Summary statistics of the flagged data following the quality control 
procedure. The numbers refer to the fraction of the flagged data in daily maximum 
(Tmax) and minimum (Tmin) temperature series. The mean indicates the average of 
the flagged data for the whole dataset, while the lowest (highest) shows the maximum 
(minimum) percentage of flagged data at the station-based level. 
 

    Winter Spring Summer Autumn Annual 
Tmax Lowest 0 0 0 0 0 
  Highest 0.47 0.97 0.55 0.6 1.99 
  Mean 0.01 0.04 0.02 0.02 0.09 

Tmin Lowest 0 0 0 0 0 
  Highest 0.52 1.41 1.35 0.99 3.85 
  Mean 0.02 0.02 0.04 0.03 0.11 

 

 
 
Figure 2.8: The percentiles of the daily summer temperature at the observatory of 

Pamplona (red line) and its nearby observatories. The percentiles were calculated for 

each day in the period from 1st June to 31st August in 1983 (total of 92 Julian days), 

relative to the entire daily records of each observatory.  



2. DATASET DEVELOPMENT AND DESCRIPTION 
 

66 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9: The reconstructed wintertime minimum temperature series at the 

observatory of Calatorao Cooperative (9428E, Zaragoza) based on joining data from 

two nearby sites (9425I and 9432). Pearson correlation coefficient (r) indicates the 

correlation between the reconstructed time series and each of the nearby 

observatories. The green line denotes the final time series. 
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The temporal evolution of the final reconstructed series fits well that of the nearby 

localities (9425I: r= 0.92, 9432: r= 0.93). This clearly implies that this procedure can 

provide a robust basis for the series reconstruction. The quality-controlled 

reconstructed daily dataset of 668 maximum-minimum temperature series covering 

some periods between 1900 and 2006 was then subjected to homogeneity testing and 

adjustment.  

One of the most common problems in handling long-term climate data is the presence 

of inhomogenities. Box plots summarizing the criteria used to building the composite 

reference series are illustrated in Figure 2.10. On average, values of the 10 best 

correlated neighboring observatories with average distance lower than 50 km were 

considered to create the reference series for both maximum and minimum temperature 

series. More importantly, the Pearson correlation coefficient was generally higher than 

0.9 for a vast majority of observatories, with only very few exceptions. Taken together, 

these criteria comply with the common standards required to build reliable reference 

series in previous homogeneity studies. Figure 2.11 illustrated two example reference 

time series created for two target (candidate) time series. The first corresponds to May 

maximum temperature at the observatory of Sabadell Aerodromo [Barcelona], while 

the latter informs about August minimum temperature at the observatory of Reus 

Aeroport [Tarragona].  

Table 2.3 summarizes the homogeneity testing results for maximum and minimum 

temperature time series. As presented, only 12 (17) time series out of the whole 

maximum (minimum) temperature datasets were not testable due to lack of closing 

observatories, poor correlation or shortness of the series (< 20yrs). Table 2.3 also 

demonstrates that 307 (46%) and 302 (45.2%) of the minimum and maximum 
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temperature time series, respectively, did not show statistically significant 

inhomogeneities. However, 82 (79%) of the minimum (maximum) temperature series 

classified as homogenous were relatively short (generally < 30 yrs). Majority of the 

series longer than 30 years experienced some homogeneity problems. The results 

indicate, for instance, that maximum and minimum temperature time series of more 

than 40 (50) years of records had an average of 2.7(3) and 2.3 (2.6) breakpoints, 

respectively.  

 

Figure 2.10: Box plots summarizing (a) the number of nearby observatories (b) 

distance threshold, (c) Pearson correlation threshold and, (d) altitude difference of the 

series used to create the composite reference series for break detection. Dotted line 

indicates the mean. The median, 10th, 25th, 75th and the 90th percentiles are plotted 

as vertical boxes with errors bar. 
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Figure 2.11: The composite reference time series for (a) May maximum temperature 

at the observatory of Sabadell Aerodromo [Barcelona] and (b) August minimum 

temperature at the observatory of Reus Aeroport [Tarragona]. Pearson correlation 

coefficients between the target (candidate) and the reference time series are provided. 
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Table 2.3: Summary of the homogeneity testing results (significance level =95%) 

   Tmin Tmax 

Number of testable series  651 656 
Number of non‐testable series  17 12 
Total number of the series  668 668 
Number of homogenous series  307 302 
Number of series with significant breaks  344 354 

Total number of significant breaks  865 969 
 

Table 2.3 also suggests that the number of inhomogeneities was larger for maximum 

temperature (n = 969) than for minimum temperature (n = 865). This can largely be 

attributed to the high spatial correlation among maximum temperature time series, 

which makes it easier to detect even small shifts in the series. Another possible reason 

is that the impact of station relocations, as a common cause of inhomogeneities, is 

expected to be minimal during nighttime due to low vegetation activity (Stepanek and 

Mikulová, 2008).  

As presented, the reconstruction procedure only accounted for 10.3 and 10.4 % of the 

detectable inhomogeneities in maximum and minimum temperature, respectively. 

These breaks often occurred when joining very short-term fragments from different 

time series. Temporarily, majority of the breaks dated back to the 1970s and 1980s for 

both maximum and minimum temperature, which agrees well with other earlier studies 

(e.g., Tuomenvirta, 2001; Wijngaard et al., 2003; Auer et al., 2005). Spatially, 

inhomogeneities were randomly distributed for both maximum and minimum 

temperature suggesting that these breaks can be attributed to changes in instruments 

or observing practices. Nonetheless, it is noteworthy mentioning that most of strong 

inhomogeneities in terms of the amount of change were mainly localized in complex 
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terrain regions (e.g., the Pyrenees and the Iberian system). This is reasonable given 

that stations in high elevated regions are more vulnerable to changes in locations 

and/or surrounding environment as climate conditions are less stable relative to 

lowlands (Tuomenvirta, 2001). This finding also comes in agreement with previous 

works (e.g., Tuomenvirta, 2001; Syrakova and Stefanova, 2008). 

A comparison between the performances of the three RHTs revealed that the SNHT 

was markedly efficient in detecting the most significant break in the series. Although 

the gradual breaks were not determined using the single shift SNHT, the regression-

based methods (i.e., the Easterling & Peterson method and the Vincent method) were 

proven to have more power in defining such multiple breaks. Overall, the statistically 

significant breaks (p<0.05) defined by one or more of the three tests were combined 

altogether for each particular observatory. Then, a monthly correction model was 

applied to account for each detectable break. Figure 2.12 shows the frequency 

distribution of the correction factors applied to adjust seasonal maximum and minimum 

temperature datasets. The correction factor did not vary greatly from one season to 

another. However, there was a bias to decrease temperature means after correction. 

On average, the magnitudes of the correction factor were generally higher for 

minimum temperature than for maximum temperature. The decrease in the means of 

maximum temperature largely occurred during summer (-0.04ºC) and spring (-0.05ºC). 

In all seasons, a correction factor higher than 1ºC was needed only in very few series. 

Figures 2.13 and 2.14 illustrate the results of the SNHT applied to two different time 

series. The results corresponding to summer maximum temperature at the observatory 

of Fuenterrabia aeropuerto (Guipuzoca) are given in Figure 2.13.   
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As shown, T statistic reached its critical value (95% significance level) around the year 

1968. Nonetheless, the displacement from the mean disappeared after eliminating the 

detected inhomogeneity. Another example is presented in Figure 2.14, which 

corresponds to spring minimum temperature at Els Hostalets de Balenya (Barcelona). 

As illustrated, a statistically significant break was presented close to the year 1956. 

The differences between the candidate and the reference series and their t-test results 

indicate that T-value for the adjusted data was below the 95% confidence limit.  

 

Figure 2.13: Test results of the SNHT applied to summer maximum temperature 
series at Fuenterrabia aeropuerto, [Guipuzoca] (a) before and (b) after homogeneity 
corrections. Dashed lines indicate the 95% significance level. The test statistic (T) is 
plotted against the critical value. 
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Figure 2.14: Same as Figure 2.13, but for spring minimum temperature series at Els 
Hostalets de Balenya [Barcelona]. 

 

2.8. Indicators on the reliability of the adjusted dataset 

In the following section, an evaluation of the reliability of the newly developed daily 

adjusted dataset is outlined. The aim was to assess the sensitivity of temperature 

series to the adjustment procedure in terms of any significant change in their 

statistical properities (e.g., the mean, variance, extremes and statistical distribution). 

 2.8.1. Impact of the homogeneity protocol on trends 

Table 2.4 presents the results of the cross-tabulation analysis applied to trends in the 

annual maximum and minimum temperature for each pair of stations (i.e. before and 

after homogeneity correction). In this section, construction of the pivot tables was only 
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restricted to the annual trends to give an indicative example of the cross-categorized 

frequency of the trends. In general, the results did not largely reflect considerable 

differences in the sign (direction) of the trends. As shown in Table 2.4, the cells lie off 

the diagonal of the pivot table (grey shading) implies that the corrections did not affect 

trends direction The oppositely directed trends were only evident in 25 (25.5 %) and 44 

(44.9 %) of maximum and minimum temperature series, respectively. This clearly 

implies that in most cases the adjustment had no discernible effect on the direction of 

the gained trends. Perhaps this arises from the small correction factors applied to the 

majority of observatories at the monthly scale, which in turn disappear when 

aggregated to the annual timescale (refer to Figure 2.12). Another possible 

explanation can be linked to the fact that most of the detectable inhomogeneities were 

found in the 1970s and 1980s, a period which exhibited a remarkable warming trend 

worldwide (Jones and Moberg, 2003). Under this warming, the low magnitudes of 

correction factors failed to alter the direction of the observed variability in the series. 

Spatial differences between the trends in the raw and corrected annual temperature 

series are illustrated in Figure 2.15. It seems that the adjustments had a very local 

impact on trends, whereby observatories located along the Mediterranean coast 

experienced more warming after homogeneity correction. This is more apparent for 

minimum temperature. The picture is almost uniform since the trends of the series 

before and after adjustment showed coherent spatial structure of the signs. A quick 

inspection of the trend assessment results indicates that the most convincing impact of 

adjustments on trends was mainly related to changes in the magnitude rather than the 

sign (direction) of the trend.  
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Table 2.4: Results of the cross-tabulation analysis applied to trends in annual 
maximum and minimum temperature series from 1950 to 2006 before and after 
homogenization. Significance is assessed at the 95% level. Numbers between 
brackets indicate the fraction of observatories.  
 

 

After 
homogenization 

Before homogenization 

Maximum temperature Minimum temperature 

Positive Negative Insignificant Positive Negative Insignificant

Positive  63 (64.3 %) 2 (2 %) 18 (18.4 %) 49 (50 %) 5 (5.1 %) 36 (36.8 %) 

Negative 0   (0 %) 0 (0 %) 0   (0 %) 0   (0 %) 0 (0 %) 0 (0 %) 

Insignificant 5   (5.1 %) 0 (0 %) 10 (10.2%) 1 (1 %) 2 (2 %) 5 (5.1 %) 

Total 98 98 
 

 

 

Figure 2.15: Spatial distribution of the trends in the annual (a) maximum and (b) 
minimum temperature time series before and after homogeneity corrections. Trend 
calculation is based on the period 1950-2006 and statistical significance is assessed 
at the 95% level. 
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Figure 2.16 depicts scatter plots showing the differences in the magnitude of the linear 

trends (ºC decade-1) between the original and adjusted time series. For most seasons, 

the trends after correction were not linearly consistent with those before correction. 

The correction was generally in the range of -0.23 (summer minima) to 0.17 (autumn 

maxima). This suggests a considerable impact of the adjustment procedure on the 

slope of both seasonal and annual time series. 

One typical example corresponding to the observatory of Yebra de Basa (Huesca) is 

shown in Figure 2.17. The linear fit of the raw and homogenized series indicates that 

both series showed uptrend over the period from 1950 to 2006. Nevertheless, the 

tendency toward warmer conditions was weaker after adjusting the series (0.1ºC 

decade-1), compared with the series prior to correction (0.3ºC decade-1). Another 

example corresponding to the annual minimum temperature at the observatory of San 

Sebastian “Igueldo” [Guipuzcoa] confirmed the same finding as minimum temperature 

showed slightly more warming (0.22ºC decade-1) after adjusting the series (Figure 

2.18). 

In the same sense, Figure 2.19 strongly suggests that the temporal behavior of the 

adjusted series as predicted by the semivariance models was spatially more 

dependent compared with the raw series. This higher spatial continuity was markedly 

apparent in all seasons for both maximum and minimum temperatures. Given that 

eliminating inhomogenities likely reduces signal-to-noise ratio in the time series, it can 

thus be expected that the homogeneity adjustment accounted for the improvement in 

the spatial continuity of the trends after correction.   
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Figure 2.16: Scatter plots of the magnitude of the trends (ºC decade-1), as derived 
from the seasonal and annual trend analysis for (a) maximum and (b) minimum 
temperature before and after homogeneity corrections. The trends were assessed for 
the period from 1950 to 2006.  
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Figure 2.17: Trends in wintertime minimum temperature at the observatory of Yebra 
de Basa (Huesca) (1950-2006) (a) before and (b) after homogeneity corrections. Gray 
line corresponds to a low-pass filter of 9-years. 

 

Figure 2.18: Same as Figure 2.17, but for annual-average minimum temperature at 

the observatory of San Sebastian “Igueldo” [Guipuzcoa].  
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2.8.2. Impact of the homogeneity protocol on extreme events 

The homogeneity procedure applied in this work may affect extreme temperatures in 

different ways including: frequency, intensity and persistence. Figure 2.20 compares 

the semivariance models of the trends in warm and cold days indices before and after 

homogeneity correction. A quick visual inspection of the semivariance models 

indicates that the spatial heterogeneity of the series markedly decreased after applying 

the homogeneity correction.  

Trends in extreme events did show high level of spatial consistency for the adjusted 

series, as neighboring observatories tended to have more identical patterns. In 

contrast, the raw series exhibited certain abrupt jumps over small distances. This 

implies that the variance of the raw data was higher, suggesting a weaker spatial 

component. By contrast, the high spatial continuity of the corrected data simply 

indicates that the spatial coherence among observatories was predominantly attributed 

to similar temporal evolution at short distances. It is worthwhile to indicate that the 

influence of adjustments on spatial dependency of cold days climatology was slightly 

less apparent compared with warm days (Figure 2.19). This can primarily be linked to 

the fact that minimum temperature during wintertime shows higher spatial variability 

compared with other seasons, as a consequence of the joint effect of strong circulation 

influences and high topographic-induced thermal contrasts. Overall, the high degree of 

spatial coherence in temperature extremes after correcting inhomogeneities provides a 

strong guidance on the reliability of the adjusted dataset.  
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Figure 2.19: Semivariance of the magnitude of the annual and seasonal trends for (a) 
maximum and (b) minimum temperature before and after homogeneity corrections. 
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Figure 2.20: Semivariance of the magnitude of trends in the annual count of (a) warm 
and (b) cold days calculated for the 57-year time series (1950-2006) before and after 
homogeneity corrections. 

 

2.8.3. Impact of the homogeneity protocol on statistical properties of the 

series 

Figure 2.21 shows the relationships between L-moment statistics (i.e. variance, 

skewness and kurtosis) before and after homogenization. A comparison of the parent 

distribution of L-moments permits the assumption that the frequency distribution of 

temperature series before and after adjustment was generally coincided with a clear 

linear well-fit. This was evident for both maximum and minimum temperature time 
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series, whereby strong and statistically significant positive correlations were 

remarkably apparent between the series before and after adjustment (generally r > 

0.8). This clearly implies that the statistical attributes of the adjusted series in terms of 

variance, skewness and kurtosis were almost attained to similar values as inferred 

from the series prior to the homogeneity adjustment. The observed bias in the 

frequency distribution of a few time series was generally negligible.  

 

Figure 2.21: L-moment coefficients calculated for (a) maximum and (b) minimum 
temperature time series before and after homogeneity corrections. 
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Taking these results together, it can be noted that the homogenous dataset preserved 

the same statistical distribution of the original dataset. The same finding was also 

confirmed by means of the semivariance models as illustrated in Figure 2.22.  

 

Figure 2.22: Semivariance of L-moment coefficients of (a) maximum and (b) minimum 

temperature time series before and after homogeneity corrections. 
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The semivariance models of L-moment statistics reveal that the statistical properties of 

the adjusted series were rather similar to those of the raw series. In addition, the 

spatial association of L-moment coefficients still suggests a decrease in the spatial 

association between the series as distance increases. Distant observatories likely had 

larger variance which in turn pointed toward heterogeneous spatial patterns. This also 

gave good indication on the spatial dependence of the statistical attributes of the 

series after homogeneity correction.  

2.8.4. Impact of the homogeneity protocol on inter-station correlation 

Inter-station correlation is one of the most important features that can describe the 

improvement in the temporal dependency of the dataset after eliminating 

inhomogenities. Figure 2.23 depicts the inter-station correlation before and after 

correcting inhomogeneities. It clearly reveals higher inter-station correlations for the 

adjusted series with relevance to the raw data for both maximum and minimum 

temperatures. This was particularly the case for correlation matrices calculated for the 

original as well as the first difference series. As Peterson and Easterling (1994) 

demonstrated that correlation coefficients among the series are very sensitive to the 

presence of inhomogeneities, the inter-station correlation improved as a consequence 

of the removal of the noise from the series after adjusting the detectable breaks. 

Figure 2.23 also indicates that the inter-station correlation was higher among nearby 

locations, while it gradually decreased beyond large distances. This demonstrates that 

the homogenized dataset is spatially dependent, with more similar temporal variability 

among nearby sites. This finding implies that the new compiled dataset is more robust 

to capture the regional variability of temperature across the study region.  
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Figure 2.23: Average Pearson correlation coefficient of (a) maximum and (b) 
minimum temperature time series computed for all observatory pairs as a function of 
distance before and after homogeneity corrections. The upper (lower) panel belongs 
to the first-difference (original) temperature dataset. 

 

2.9 . The final dataset: a description and evaluation  

In this work a dense daily temperature database spanning the period between 1900 

and 2006 was developed for northeastern Spain. The main focus of this study was to 

employ all available information in the original dataset (1583 raw series) provided by 
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the Spanish Meteorological Agency to build a spatially and temporarily high-resolution 

temperature dataset. Figure 2.24 illustrates the temporal evolution of the number of 

available series in the newly compiled dataset. The temporal coverage of the new 

dataset clearly improved in terms of series completeness. The number of complete 

and homogenous time series that dates back to 1920, 1950, 1960 and 1970 is 19, 98, 

128 and 189, respectively. A list of all available observatories in this adjusted dataset 

and their main spatial and temporal characteristics is provided in Appendix A. 

 

Figure 2.24: The number of the final complete and homogenous temperature series 

for the period from 1900 to 2006. 

 

The spatial distribution of the final dataset is given in Figure 2.25, while their 

distribution according to the administrative province is shown in Figure 2.26. Both 

figures inform that the spatial density of the series is satisfactory across much of the 
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study domain (e.g., Catalonia and Lerida in the east, and Cantabria and Vizcaya in the 

northwest), with the exception of some areas in the southern and south-central 

portions (e.g., Soria and Guadalajara). This is expectable due to lack of station density 

in such regions in the original network.  

 

Figure 2.25: Spatial distribution of the final network of complete and homogenous 

temperature series from 1900 to 2006. 

As illustrated in Figure 2.25, the densest network is found from 1970 onwards. During 

this period, the observatories distribution across portions of the mountainous areas 

(e.g., the Pyrenees and the Iberian system) is irregular since only 14.4 % of 

observatories are located above 1000 m. As depicted in Figure 2.27, the observatories 

are mainly located in the elevation range of 6 up to 1920 m a.s.l., with the majority of 

them (70.1 %) being placed at elevations below 800 m a.s.l. This uneven vertical 
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distribution is expected given that higher elevations were not adequately represented 

by the data in the original dataset.  

 

Figure 2.26: Distribution of the final dataset according to the province from 1970 to 
2006.  

 
Figure 2.27: The cumulative distribution of the number of observatories in the final 

dataset as a function of altitude from 1970 to 2006. 
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2.10. Summary 

In this work the procedure used to create the daily adjusted dataset for northeast 

Spain can be seen with confidence. This dataset passed through multiple steps to 

assure its quality, completeness and homogeneity. The original dataset was first 

quality controlled to remove anomalous and suspious data. This procedure was proved 

to be sensitive to trim outliers and keep only valuable extremes. A linear regression 

model was then undertaken to infill gaps in daily temperature series using information 

captured from the surrounding observatories. This regression model is simple, 

straightforward, applicable and robust when dealing with extreme values. Furthermore, 

it accounted for the dependency between temperature and topography gradients, 

particularly in areas of complex terrain. To account for possible breakpoints in the 

reconstructed time series, three well-established RHTs were used to test homogeneity 

of the series at monthly, seasonal and annual timescales. Afterwards, a monthly 

correction factor was calculated and interpolated to daily values to eliminate 

inhomogeneities from the daily series. A combination of the results of three 

homogeneity tests was advantageous because these tests had different sensitivities to 

defining discontinuities in the time series. Moreover, this approach helped determining 

not only strong breakpoints in temperature time series, but also small shifts.  

In this thesis, a great deal of effort being put into developing techniques to assess how 

the homogeneity methodology affected spatial and temporal characteristics of the final 

time series. For this reason, this work provided a suite of statistical tests for screening 

of different aspects in which the break correction can affect temperature series. By 

means of the spatial semivariance statistic and L-moment statistics, it was possible to 

look at a broad array of time series characteristics (e.g., means, extreme values and 
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frequency distribution). These methodologies were applied comparatively to the series 

before and after adjustment to realistically evaluate impacts of the break correction on 

the final dataset. In practice, the semivariance models were proven as efficient in 

describing and analyzing spatial structure of temperature means and extremes. L-

moment statistics also provided a consistent tool to assess changes in the statistical 

properities of the series (i.e., variance, kurtosis, and skewness). Following these 

techniques, it was clearly evident that the homogeneity adjustment significantly 

improved the spatial and temporal structure of both temperature means and extremes. 

Given that evaluation of the impact of homogeneity routines on final climatological 

products has not obtained much attention in the literature, these methodologies can 

offer a useful approach for the assessment of homogeneity impacts on climate time 

series. In general, these methodologies are objective, flexible, reproducible, and can 

therefore be applied in similar environments. 

 

To conclude, this newly compiled database comprises the most complete and 

homogenous time series of maximum and minimum temperature for northeastern 

Spain. From the spatial and temporal perspectives, this dataset is unique and 

represents an advance compared with previous datasets available for surface air 

temperature in the Iberian Peninsula.  Considering the high spatial and temporal 

resolution of the final dataset, it can contribute to better understanding of space-time 

variability of temperature and its driving causes at both local and regional scales. 

Moreover, this dataset can be useful to understanding the causes and impacts of local 

and regional climate changes on hydrological systems, ecosystems, natural resources 

and human activities. In the study domain, this feature is of high importance due to its 

complex topography and diverse climates. Moreover, this dataset considerably 
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overlaps with some available precipitation datasets over the region (e.g., Vicente-

Serrano et al., 2009). For instance, from 1960 to 2006, 82.8% of temperature 

observatories have adjacent precipitation data. This sounds important as it permits a 

detailed regional analysis of the combined effect of temperature and precipitation on 

different disciplines in the region. Finally, this developed climatology can enhance the 

grid resolution of any climatic study in future with more potential to validate climate 

simulations from Regional Climate Models (RCMs).  
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3. METHODOLOGICAL FRAMEWORK 
 
3.1. Introduction 

    The primary objective of this thesis was to determine quantitatively the observed 

and projected changes of surface air temperature in northeastern Spain and to assess 

the main drivers behind this variability. The following paragraphs will elaborate the 

methods used to achieve this goal in more detail. Unless mentioned, the analyses 

were based on daily maximum and minimum temperatures of a dataset of 128 

observatories spanning the period from 1960 to 2006. The prerequisites for selecting 

these observatories for subsequent analyses include length, data completeness (i.e., 

no missing values), and quality (i.e., consistence and homogenous data). Also, as 

previously detailed, this dataset is free from the effects of non-climatic factors (e.g., 

urbanization, industrialization and changes in surrounding environments). This is 

critical to ensure that the observed changes in temperature across the study domain 

reflect natural variability and/or global warming rather than non-climatic processes. 

The (1960-2006) time interval was selected as a base period in this thesis due to the 

observed rise in the global temperature since the 1960s, as reported in many previous 

studies (e.g., Jones et al., 1999). Additionally, the dataset offered a reasonable spatial 

density of temperature observatories from 1960 onwards, which can adequately give 

insights into the main climate regimes across much of the study domain. Locations of 

the weather observatories belonging to the 1960-2006 period are illustrated in Figure 

3.1. The analyses were conducted at both seasonal and annual timescales. Seasons 

were defined as: winter (December-February; DJF), spring (March-May; MAM), 

summer (June-August; JJA) and autumn (September-November; SON). 
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3.2. Observed changes in seasonal and annual mean temperatures 

Seasonal and annual changes in maximum, minimum, and mean temperatures and 

DTR were assessed using the ordinary least squares (OLS) method, while the 

significance of the observed trends was tested at a confidence interval of 95% using 

the non-parametric Spearman Rho statistic. In case of normally distributed and serially 

independent climate variables (e.g., temperature), the OLS method often yields the 

maximum likelihood estimator of the regression coefficients. In the same context, the 

Spearman Rho is advantageous because it is robust to outliers and does not assume 

prior probability distribution of the residuals (Sneyers, 1990). The slope of the least 

squares regression was used to assess the magnitude of change and was expressed 

in units of ºC per decade. In this analysis, the trend was firstly calculated for a subset 

of 19 observatories that has data from 1920 to 2006. The availability of a reasonable 

number of temperature time series, which dates back to the earlier decades of the 20th 

century, motivates a detailed assessment of such long-term changes in temperature 

across the study domain. This kind of assessment has poorly been addressed in 

previous studies in the region in particular and over Iberia in general. The spatial 

distribution of temperature observatories covering the period from 1920 to 2006 is 

presented in Figure 3.2 and their main characteristics are provided in Table 3.1. The 

analysis was then extended to the denser network from 1960 to 2006 in order to obtain 

a more detailed regional assessment of temperature variability. In this work, 3000 

Monte Carlo simulations were used following the procedure described by Kundzewick 

and Robson (2000). This procedure was applied to each season and annually. 

Numerous previous studies applied this technique to resampling climate data at 

random. This procedure aimed to ensure that the observed variability in climate data is 
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real and not a statistical artifact originating from suspious variability (e.g., Lettenmaier 

at al., 1994; Adamowski and Bougadis, 2003).  

 

Figure 3.1: Spatial distribution of temperature observatories from 1960 to 2006. 

 

Figure 3.2: Spatial distribution of temperature observatories from 1920 to 2006. 
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A low-path Gaussian filter was then applied to the original time series to smooth out 

the interannual variability and provide more robust trends by removing high-frequency 

fluctuations from the data (Sneyers, 1992). 

Table 3.1: List of the observatories used for trend analysis from 1920 to 2006. 

WMO CODE OBSERVATORY PROVINCE 
0120 MOIA BARCELONA 
0213 CARDEDEU BARCELONA 
1006 SANTESTEBAN NAVARRA 
1024E SAN SEBASTIAN 'IGUELDO' GUIPUZCOA 
1035U AYA-LAURGAIN GUIPUZCOA 
9174 SARTAGUDA NAVARRA 
9198 CANFRANC LOS ARA/ONES HUESCA 
9246 CARCASTILLO LA OLIVA NAVARRA 
9269 ALSASUA NAVARRA 
9281 FALCES NAVARRA 
9283 CADREITA NAVARRA 
9390 DAROCA OBSERVATORIO ZARAGOZA 
9434 ZARAGOZA AEROPUERTO ZARAGOZA 
9474 LA PEðA 'EMBALSE' HUESCA 
9547 LA PUEBLA DE HIJAR TERUEL 
9562 MORELLA CASTELLON 
9657 ESTERRI D'ANEU LLEIDA 
9900 NUENO HUESCA 
9910 PALLARUELO DE MONEGROS HUESCA 

 

To reveal the overall picture of temperature variations in the study area as a whole, 

regional series of maximum, minimum, and mean temperatures and DTR were 

constructed on an annual basis and for all seasons. The regional series were built 

using two different manners. Over the period 1920-2006, a regional series based on 

the arithmetic average of the daily records from the 19 observatories belonging to this 

time interval was composed. This approach is simple, straightforward, and standard 

when dealing with a limited and a sparse station network. Recalling that the regional 
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series for the period 1960-2006 were built from a dense network of 128 observatories, 

a weighted average from all the observatories on the basis of the scale of the area on 

which the series is aggregated was computed by means of the Thiessen polygon 

method (Jones and Hulme, 1996). This approach is advantageous given that the 

spatial coverage of the data is relatively uneven in particular areas (e.g., southern 

portions), which may distort the large-scale area average. In other words, this method 

controls the bias that can be yielded from averaging regions with a higher spatial 

density of observing stations.  

 

3.3. Observed changes in temperature extreme events 

3.3.1. Definition of temperature extreme events. 

Extreme weather refers to infrequent, but significant, departures from the normal 

weather conditions. Climate change may affect extreme temperatures in different ways 

(e.g., frequency, intensity, persistence). However, assessment of changes in weather 

extremes remains a challenge because of the rare occurrence of these events. In 

particular, the likelihood of this assessment also decreases significantly with increasing 

rarity of the event (Frei and Schär, 2001; Klein Tank and Können, 2003; Schär et al., 

2004). In literature, there is no unique definition of extreme event as several definitions 

have already been proposed and applied in recent climate studies (e.g., Alexander et 

al., 2006; IPCC, 2007). In these studies, climate indices are commonly used to provide 

a convenient summary of the changing state of the climate. In climate change studies, 

indices of extreme events can describe different aspects of these events (e.g., 

frequency, intensity and persistence).  
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In this work, a set of 21 indices were used to examine spatial and temporal variability 

of temperature extremes. In this work, all the indices were calculated on an annual 

basis for each independent time series during the 47-year period (1960-2006). Table 

3.2 provides a detailed description of these indices grouped into three main categories. 

In this work, it is beneficial to apply various climate indices to obtain a broad and more 

reliable picture of temperature behavior in the study area. It is believed that inclusion of 

different definitions of temperature extremes can make the assessment more 

representative and objective, particularly for capturing micro-climatic characteristics. 

Also, comparing the results on trends from different climate indices is important to 

explore whether the observed trends are internally consistent over the region. 

Furthermore, the information derived from different indices could be valuable for 

climate change impact studies. Indeed, the influence of anthropogenic climate 

variability on changes in a single extreme index (e.g., warm nights) cannot be clearly 

distinguished in space. This is simply because any given characteristic of an extreme 

event still has a probability to be influenced by natural variability. Moreover, inclusion 

of only one feature could be spatially biased or might have a limited effect on both 

natural and human environments. For example, summer days (SU25) may not be 

viewed as extremes over lowlands with gentle topography. For these reasons, using 

various characteristics of extreme events (e.g., frequency, intensity and persistence) 

could improve the understanding of their changing likelihood under global warming. 

The different aspects and properties of extreme temperature on the one hand, and the 

various applications of these characteristics for climate impact and assessment studies 

on the other hand, can be brought together best if the various aspects of extremes are 

considered. 
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Table 3.2:  List of all temperature indices and their definitions. 

  Index Definition                                                               Unit 
C

ol
d 

ex
tr

em
es

 

Cold days (TX10p) 
Percentages of days with maximum temperatures lower than the 10th 
percentile. days 

Cold nights ( TN10p) 
Percentages of days with minimum temperatures lower 
than the 10th percentile. days 

Frost days (FD0) Number of days with minimum temperature < 0 oC per year. days 

Ice days (ID0) Number of days with maximum temperature < 0 oC per year. days 

Coldest night (CN) Lowest daily minimum temperature. o C 

Very cold nights (TN1p  ) Number of days with minimum temperature <1st percentile per year. days 

Annual high minimum  (TNx)  Maximum value of monthly minimum temperature. o C 

Annual low minimum (TNn) Minimum value of monthly minimum temperature. o C 

W
ar

m
 e

xt
re

m
es

 

Warm days (TX90p) 
Percentages of days with maximum temperatures higher than the 90th 
percentile. days 

Warm nights (TN90p) 
Percentages of days with minimum temperatures higher than the 90th 
percentile. days 

Summer days (SU25) Number of days with maximum temperature >25 oC per year. days 

Warmest day (WD) Highest daily maximum temperature. o C 

Very warm days (TX99p) Number of days with maximum temperature >99th percentile per year. days 

Tropical nights (TR20) Number of days with minimum temperature >20 oC per year. days 

Annual high maximum  (TXx) Maximum value of monthly maximum temperature. o C 

Annual low maximum  (TXn) Minimum value of monthly maximum temperature. o C 

V
ar

ia
bi

lit
y 

ex
tr

em
es

 

Temperature sums  (Tsums ) Sum of Tmax days >17o C – days Tmax < 17 oC o C 

Intra-annual extreme temperature range (Intr) Difference between the highest Tmax and the lowest Tmin in the year. o C 

Diurnal temperature range (DTR) Monthly mean difference between Tmax and Tmin. o C 

Standard deviation of Tmean (Stdev) Standard deviation of daily mean temperature from the Tmean normal. o C 
Growing Season Length (GSL) Annual count of days between the first span of at least 6 days with Tmean 

>5 oC.  and first span after 1st july of 6 days with Tmean < 5 oC. 

days 
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As indicated in Table 3.2, the indices were defined in different ways, varying from a 

certain fixed threshold (e.g., summer days [SU25] and tropical nights [TR20]) to a 

percentile-based threshold (e.g., very cold nights [TN1p], warm days [TX90p], and cold 

days [TX10p]). In general, the percentile-based indicators are defined as days passing 

the warmest/coldest deciles at one tail of the observed probability distribution of 

maximum and minimum temperatures. In this work, the percentiles were computed at 

each site for the entire period from 1st January 1960 to 31st December 2006 to 

account for both cold and warm temperatures. This is a commonly used method to 

determine extreme values in climatology (Salinger and Griffiths, 2001; Alexander et al., 

2006; Trenberth et al., 2007; IPCC, 2007). Recently, a growing number of studies have 

dealt with changes in temperature extremes using indices representing count of days 

crossing climatolological percentile thresholds (e.g., Prieto et al., 2004, Brunet et al., 

2007b, Rodriguez-Puebla et al., 2010). For example, Prieto et al. (2004) assessed 

changes in cold days over peninsular Spain in the period from 1955 to 1998 using a 

threshold of the 5th percentile of Tmin distribution during the cold half of the year 

(NDJFM). Similarly, Brunet et al. (2007b) studied changes in cold nights (Tmin<10th 

percentile) and warm days (Tmax>90th percentile) across the Spanish territory from 

1850 to 2005. These definitions are objective, site-independent, and facilitate direct 

comparisons between regions of different climates (Choi et al., 2009). The study area 

is a typical case, whereby complex terrain and diverse climates are evident. As 

illustrated in Figure 3.3, an exploratory screening of the 90th percentile of maximum 

temperature calculated from 1st January 1960 to 31st December 2006 revealed 

considerable differences. Overall, the values varied from 20ºC at Port del Compte 

[Lleida, 1800 m a.s.l] to 34.8ºC at Salto de Zorita [Guadalajara, 642 m a.s.l].  



3. METHODOLOGICAL FRAMEWORK 
 

103 
 

 

Figure 3.3: Spatial distribution of the 90th percentile magnitude calculated for the 

annual maximum temperature from 189 observatories covering the period 1970-2006. 

 

On the other hand, the arbitrary-based definitions of temperature extremes identified 

data outlying pre-fixed thresholds. For instance, frost days (FD0) were defined as days 

with daily minimum temperature below 0ºC. Previous works also adopted these 

arbitrary thresholds (e.g., Klein Tank and Konnen, 2003). Calculation of temperature 

indices in that way is straightforward and more appropriate for climate impact 

assessments, particularly at fine spatial scales. Also, these definitions can be more 

valuable when the defined thresholds have physical, hydrological or biological 

meaning (Politano, 2008). Lastly, some other indices were employed to analyze the 

relationship between maximum and minimum temperature. This group of indices 

includes intra-annual extreme temperature range (Intr), diurnal temperature range 

(DTR), and standard deviation of the daily mean (Stdev). For example, Stdev index is 
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used as a measure of the departure from the mean condition. Under the global 

warming, Stdev values are expected to be higher during warm years. Therefore, it can 

be a good indicator of temperature interannual variability. 

In practice, all the selected indices are relevant to the Spanish context. They 

encompass the most important aspects of temperature extremes, including: intensity, 

frequency, and variability. In addition, they summarize characteristics of both moderate 

weather events (e.g., SU25, TX90p, and TN10p) and extremely severe events (e.g., 

TX99p and TN1p). These indicators have been previously validated by the World 

Meteorological Organization (WMO, 2009), the European Climate Assessment (ECA) 

(http://eca.knmi.nl/), and the European project of Statistical and Regional dynamical 

Downscaling of Extremes (STARDEX EU) for extreme temperature research 

(http://www.cru.uea.ac.uk/projects/stardex/).  

3.3.2. Trends calculation: methodological considerations.  

Previous studies dealing with changes in climate extremes have investigated the 

possible sources of uncertainty in trend assessment (Caussinus and Mestre, 2004; 

Moberg and Jones, 2005; Zhang et al., 2005). According to these studies, trend 

assessment of extreme events can have a level of uncertainty arising from many 

sources such as serial correlation, cross-correlation, data inhomogenities, and the 

period of investigation. For instance, Zhang et al. (2005) assessed the influence of 

inhomogenities in the time series on calculation of the percentile-based indices. Also, 

Moberg and Jones (2005) underlined the way in which overestimated exceedance 

rates at the boundaries of the selected base period can affect trend assessment. A 

closely related problem that has also been extensively discussed in many 

climatological (e.g., Aguilar et al., 2005; Zhang et al. 2005; Vincent et al. 2005; Aguilar 
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et al. 2009; Vincent et al., 2011) and hydrological (e.g., Yue et al., 2002; Burn and 

Cunderlik, 2004; Yue and Wang, 2004) studies is the presence of serial correlation 

and spatial correlation in the time series. Following these studies, it is essential to look 

at such confounding effects to assure the reliability of the trend results obtained in this 

work. In this section, the possible influence of serial correlation and spatial 

autocorrelation on trend assessment is addressed. 

 

      3.3.2.1. Serial correlation 

Typical time series data are usually statistically dependent due to existence of non-

random components, such as persistence, cycles or trends (WMO, 1966). Among 

them, serial correlation often occurs in climatic time series, whereby warm (cold) years 

are more likely to be followed by warm (cold) years. The Mann-Kendall statistic is not 

robust against serial correlation in that a positive serial correlation in a time series can 

incorrectly increase the probability of rejecting the null hypothesis (H0) of no trend (Yue 

et al., 2002; Yue and Wang, 2002). According to Cox and Stuart (1955), positive serial 

correlation between the observations would increase the chance of significant answer 

(i.e., presence of trend), even in the absence of a trend. Thus, it is necessary to 

ensure the randomness of the extreme temperature series before testing for the 

significance of trends. In literature, this effect can be eliminated from the time series 

before applying trend tests, or by modifying the original trend test to account for this 

effect (Hamed, 2008). Previous researchers have used the autocorrelation function 

(ACF) to eliminate the effects of serial correlation prior to trend assessment. Box and 

Jenkins (p.33, 1970) suggested use of the ACF when the number of values (n) is close 

to 50 and the number of lags is at most n/4. In this work, all serial correlation 

coefficients of the time series were calculated for lags from 0 to 14. This was 
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principally done to increase the ability of the test to define serial correlation at different 

lag times. When the lag-1 correlation coefficient was significant at the 95% level 

(p<0.05), the presence of serial correlation was verified and removed from the 

detrended series prior to perform the trend analysis following a Trend Free Pre-

Whitening (TFPW) procedure. This method has been suggested by Yue et al. (2002), 

as a modification of the standard pre-whitening method developed by Von Storch and 

Navarra (1995). The TFPW procedure is outlined below:  

1. The first step assessed the statistical significance of the trend using the Mann-

Kendall non-parametric test and estimated the trend component (β) by a linear 

least squares method, as:  

                                      ta βχ +=                                                (3.1) 

where a is a constant, β is the slope and t is time. 

2. The second step eliminated the monotonic trend (β) from the observed data 

series, yielding a de-trended series, as: 

                                                  iS ii β−=Y                                          (3.2) 

where Yi is the value of the de-trended series at time  i  and Si is the observed 

value at time i . 

3. The third step calculated the lag-1 serial correlation coefficient (µ1) for the de-

trended series and assessed its statistical confidence (ρ<0.05). If µ1 was 

statistically insignificant, the Mann-Kendall results derived from (Eq. 3.1) was 

applied directly to the original time series. Otherwise, the pre-whitening 

procedure was accomplished by removing the lag-1 autoregressive process 

(AR [1]) from the de-trended time series, as follows: 

                                         1-i1
" YµYY −= ii                              (3.3) 
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where 
"Yi  is the pre-whitened series at time i. Herein, the AR (1) process was 

favored over the moving average (MA) process because the linear trend 

component is the commonly assumed model for temperature time series. 

4. The fourth step added back the component of the trend (β) to the pre-whitened 

series 
"Yi to obtain a serially independent time series.  

5. Finally, the statistical significance of the trend was assessed for the serially 

independent series by means of the Mann-Kendall statistic at the 95% 

significance level. 

 

The aforementioned approach has been frequently used to remove serial correlation 

from time series in hydrology (e.g., Yue et al., 2002; Burn and Cunderlik, 2004) and 

climatology (e.g., Zhang et al., 2000).  

 

    3.3.2.2. Cross-correlation 

It is generally recognized that cross-correlation in climatological dataset can likely 

influence the accuracy of trends assessment (Lettenmaier at al., 1994). The cross-

correlation can increase the probability of detecting a trend in the time series while 

there is no trend. Basically, closer observatories are more likely to show similar trends. 

This likely reduces the number of independent time series and, in turn, the effective 

number of freedom degrees for trend tests (Douglas et al., 2000). Further discussion of 

possible impacts of cross-correlation on trend assessment can be found in Lettenmaier 

at al. (1994), Douglas et al. (2000), Adamowski and Bougadis (2003) and Kurbis et al. 

(2008).  
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In literature, numerous bootstrap resampling schemes have been developed to 

account for spatial correlation in climatological datasets (e.g., Lettenmaier at al., 1994; 

Douglas et al., 2000; Adamowski and Bougadis, 2003; Kurbis et al., 2008). The 

rationale behind this procedure was to determine whether local changes or trends 

observed at individual observatories are related to the global (field) trend obtained for 

the whole region. In this context, it is well-known that temperature shows high spatial 

dependency in comparison with other climate variables (e.g., precipitation). Therefore, 

in order to assess the impact of cross-correlation, it is important to remove the 

temporal structure from the original dataset so that all the series become non-

stationary. One possible way is to resample the original data at random. This 

procedure will preserve the correlation and dependence structure of the original data 

because the same year will be sampled from the original time series in each run. In 

this work, a bootstrap resampling procedure was applied to evaluate the significance 

of trends at both the global and local level. Simply, the estimated global significance 

derived from n samples for a particular index was compared with the observed local 

significance computed for the individual observatories (n=128). The bootstrap 

resampling procedure is summarized in the following steps: 

1. A set of 1000 Monte Carlo simulations with a length of 47-year was generated 

for each time series at random from the observed data (1960-2006). Following 

Kundzewick and Robson (2000), the simulated time series were extracted 

from the original dataset by replacement with equal probability. According to 

this step, each particular index had two sets (original with 128 time series, and 

simulated with 128*1000 time series). 
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2. The statistical significance of each time series in the original and the simulated 

datasets was assessed using the Mann-Kendall statistic. The percentage of 

the trends that are significant at each α % level was defined. Then, the global 

(field) significance level was computed as the arithmetic mean of the local 

significance levels at the individual observatories for each index. 

 
3. The probability of obtaining a trend in the resampled series was compared with 

the original data for each index. Given that the bootstrap samples had no 

restricted assumptions in terms of statistical distribution, the Cumulative 

Distribution Function (CDF) was selected to compare between the observed 

and the simulated datasets at specific levels of statistical significance. In this 

sense, the non-exceedance probability (P) was calculated using the Weibull 

distribution, as: 

                                                1+
=
B
rP

                                       (3.4) 

where r is the rank of the data and B is number of the simulated series (1000 

in this work).  

 

Douglas et al. (2000) applied a similar approach to define the global significance for 

low flow rates of streams in the USA. 

 

      3.3.2.3. Trend calculation 

To account for amount and sign of changes in the derived temperature indices, linear 

trend was computed using the ordinary least squares (OLS) method. The significance 

of the trend was assessed using the Mann-Kendall’s tau test at the 95% significance 
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level (p value<0.05). The Mann-Kendall statistic is a rank-based nonparametric test, 

which is advantageous compared to parametric tests such as the Pearson’s correlation 

coefficient. This is mainly because it is robust to outliers and does not assume an 

underlying probability distribution of the data series (Moberg et al., 2006). For this 

reason, this statistic has widely been used in climatological and hydrological 

applications (e.g., Zhang et al., 2005; Choi et al., 2009).  

Let 1x , 2x , 3x , 4x , ….. nx  represent n data points where jx represents the data point x  

at time j. The Mann-Kendall statistic (S) can be computed according to Kendall (1975), 

as follows: 
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= +=
                                                                (3.5) 

where jx and ix are the sequential data values and n is the length of the data series, 

and  

                                       =1 if ij xx − > 0                                                                          (3.6) 

)( ij xxsign −
  =0 if ij xx − = 0                                                                          (3.7)  

                                      =-1if ij xx − < 0                                                                          (3.8) 

A positive value of S is an indicator of an increasing trend, and a negative value 

indicates a decreasing trend. 

 

Herein, it is worthwhile to indicate that, for each particular extreme index, the trend 

assessment was conducted for each individual observatory in the period 1960-2006. In 

addition, the trend was also calculated for the regional series which were obtained for 

the whole region for each particular index. The rationale behind this procedure was to 
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test whether detected trend in temperature extremes at each station occurred due to 

local conditions or revealed a large-scale spatial coherence. In this regard, the regional 

series were created on the basis of a weighted average of all values in the 

temperature observatories across the study area. The weight was a function of the 

surface (area) represented by each observatory following the Thiessen polygon 

method (Jones and Hulme, 1996).  

 

3.4. Spatial regionalization of extreme events. 

Due to the complex topography, latitude and land–sea interactions, climate of the 

study domain may experience more or less complicated mesoscale patterns of 

temperature. The possible impacts of climate change in the region can therefore 

largely depend on the local and regional conditions. In this context, capturing spatial 

variability of temperature over the study domain sounds important. Nonetheless, this 

has often been a challengeable task due to the low density of observatories, which 

fails to represent the complex orography of the domain. Recently, the availability of 

high spatial and temporal resolution of temperature data in the newly compiled daily 

dataset in the region can strongly enhance a detailed assessment of spatial modes of 

temperature in the domain.  

In this work, the preference was given to spatially regionalize extreme events rather 

than mean conditions. Indeed, climate change detection is more often associated with 

the analysis of changes in extreme events than with changes in the mean (Katz and 

Brown, 1992). Indeed, while the warming of the mean may be gradual, the effects of 

extreme weather events, as induced by climate change, are severe and immediate 

(Richardson et al., 2009). Moreover, the sensitivity of both natural systems and human 
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welfare to temperature is maximized during extreme heat events. Also, the impacts of 

extreme events on mortality, human health and even biological adaptation 

mechanisms will largely be more severe under the extreme temperature values. For 

instance, Diaz et al. (2006) found that rates of mortality can dramatically increase 

when daily maximum temperature exceeds the 95th percentile of the local distribution 

of maximum temperature.  

In northeastern Spain, understanding the spatial variability of temperature extreme 

events is critical for many reasons. First, spatial regionalization of temperature 

extremes can be an effective tool not only to obtain a detailed knowledge on spatial 

variability of extremes at local and regional scales, but also to identify driving forces 

and mechanisms that may influence these spatial variations. Second, this spatial 

regionalization can be of particular interest for numerous fields, such as agriculture, 

human health, urban development and planning, and water resources management. 

Third, obtaining meaningful spatial patterns of extreme events in the region could 

facilitate the development of appropriate adaptation strategies to cope with issues 

arising from climate change. The outcome of any adaption policy is inherently 

maximized when considered at local and regional scales. 

Interestingly, while a growing number of studies have dealt with changes in 

temperature extremes over Iberia using indices representing count of days crossing 

climatolological percentile thresholds (e.g., Prieto et al., 2004; Brunet et al., 2007b; 

Rodriguez-Puebla et al., 2010), majority of these studies have been confined to use a 

moderate threshold value of 90 or 95 percentiles of daily temperature distribution to 

define an extreme warm event and, on the other hand, the 5 or 10 percentiles of daily 

minimum temperature to define cold events (e.g., Prieto et al., 2004; Brunet et al., 



3. METHODOLOGICAL FRAMEWORK 
 

113 
 

2007b). During the last two decades, a lot of record-breaking temperatures have been 

observed in the study domain (e.g., summers of 1998, 2003 and 2010 and winters of 

2010 and 2012). In winter 1956, the study domain also recorded an exceptional cold 

spell, in which minimum temperature reached -32ºC at some mountainous sites in the 

Pyrenees (Estany Gento, Lerida). Although these record-breaking temperatures can 

be seen as one of the most arising effects of the global warming, they have received 

little consideration in literature with the exception of only very few works (e.g., Garcia-

Herrera et al., 2005; Medina-Ramon et al., 2006; Brown et al., 2008), compared with 

other measures of moderate extremes which are not as far into the tails of the daily 

temperature distributions. Among these few studies, Brown et al. (2008) defined the 

anomalous warm (cold) days using the 98.5 (1.5) percentiles as thresholds. Also, 

Medina-Ramon et al. (2006) studied the risk of death for days with temperature above 

the 99th percentile.  

Taken together, it is believed that assessing spatial structure of anomalous extreme 

events in such a complex region is as much important as exploring spatial structure of 

moderate extreme events. This can mainly be due to specific reasons. First, these 

anomalous events are very exceptional from the statistical point of view as they are 

located at the utmost tails of temperature distributions, which could give a good 

indication of the impact of global warming on temperature change and variability in the 

region in terms of both changes in the mean and standard deviation. Second, as 

reported by many previous studies (e.g., Przybylak, 2000; Barriopedro et al., 2011), 

attribution of changes in extreme events can vary considerably according to the time 

scale in question. In other words, important information regarding the characteristics of 

extreme events can be dismissed when anomalies are calculated at longer timescales 
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(e.g., monthly or seasonal). For example, there is some doubt whether or not 

characteristics of the warmest/coldest day of a month will be captured when computing 

monthly or seasonal anomalies. In this regard, the most extreme days reveal more 

analogous events regardless of the scale under consideration. Third, although these 

events are considered “short-term” extremes since they represent events that only 

occur very few times per year; they are characterized by outstanding magnitudes with 

large spatial extent (e.g., the 2003 summer over the Western Europe, 2010 summer 

over the Eastern Europe and the 2012 winter over Central and Eastern Europe). 

Lastly, attribution of changes in these extremely severe events is largely viewed as 

driven by larger, longer lasting and more dynamically complex physical processes. 

While, many regional studies suggest that changes in temperature extremes can 

largely be explained by large-scale processes (e.g., Hurrell, 1995; Slonosky et al., 

2001; Sáenz et al., 2001; Brunet et al., 2007b; Rodriguez-Puebla et al. 2010), 

unfortunately, this dependency has poorly been investigated and still under debate for 

the anomalous extreme events. Majority of studied linked moderate extreme events to 

atmospheric circulation. For example, Rodriguez-Puebla et al. (2010) examined the 

association between warm days (TX90p) and cold nights (TN10p) and large scale 

fields, including SLP and 500hPa. One possible reason for this deficit is that assessing 

significance of changes in such anomalous events can be statistically hampered by 

insufficient sample size for the intended analyses given that very low (high) daily 

temperatures do not necessarily occur every year at each location. In general, 

assessing spatial variability of these anomalous events is a key to understanding the 

physical processes favoring for their occurrence.  
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3.4.1. Spatial regionalization of moderate extreme events 

In this research, the spatial regionalization of moderate extreme events was restricted 

to summer (JJA) season. Summer was chosen because this is the season which 

exhibited the strongest signal of temperature variations in the study domain (El 

Kenawy et al., 2012). Moreover, the environmental, economical and societal impacts 

of these events on physical (e.g., agriculture, ecology, forest fire, and hydrology) and 

human environments (e.g., mortality, and energy demand) are more pronounced 

during the summer periods. A representative example over the study area is the 

unrelenting 2003 summer heat wave, in which some sites at the Pyrenees reached 

their maximum value on record exceeding the 35°C threshold.  

In this work, multivariate statistical techniques (i.e., principal component analysis 

[PCA] and cluster analysis [CA]) were used to divide the study region into subregions 

as homogenous as possible. Herein, the aim beyond this classification was to identify 

synoptic conditions associated with extreme events in the defined sub-regions. This 

involves the connection with large-scale atmospheric circulation patterns at the mean 

sea level (MSL). These multivariate techniques have increasingly gained acceptance 

to identify homogenous regions in many fields, such as hydrology (e.g., Love et al., 

2004), geology (e.g., Reimann et al., 2002), forestry (e.g., Schulte and Mrosek, 2006), 

soil sciences (e.g., Young and Hammer, 2000), and ecology (e.g., Camiz and Pillar, 

2007). In atmospheric research, these techniques have also been carried out at 

different spatial and temporal scales ranging from regionalization of a specific climate 

variable such as precipitation (e.g., Wolting et al., 2000), temperature (e.g., Coronato 

and Bisigato, 1998), and evapotranspiration (e.g., Mohan and Arumugam, 1996) to 

synoptic classification, including air masses (e.g., Bejaran and Camilloni, 2003) and 
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large-scale atmospheric circulation and weather types (e.g., Romero et al., 1999; 

Esteban et al., 2006). In Iberia, these techniques have also been a common tool to 

obtain homogenous climate regions, with the aim of understanding spatial variability of 

climate and its physical causes (e.g., Martin-Vide and Gomez, 1999; Muñoz-Diaz and 

Rodrigo, 2004; Vicente-Serrano, 2006; Serra et al., 2010). For instance, Martin-Vide 

and Gomez (1999) classified Spain into distinct regions based on the length of dry 

spells over the period 1951-1990. Similarly, Muñoz-Diaz and Rodrigo (2004) divided 

Spain into relatively homogenous pluviometric regions using seasonal time series 

covering the period from 1912 to 2000. More recently, Vicente-Serrano (2006) 

obtained a regionalization of drought in the Iberian Peninsula employing a monthly 

precipitation dataset.  

To obtain a reasonable classification (regionalization) of summer temperature 

extremes, a set of selected 14 indices which likely represent most of the variability of 

these extremes was considered. In particular, these indices potentially included many 

aspects of changing climate conditions including frequency, intensity and persistence. 

Those indices were retrieved from the daily dataset corresponding to summers over 

the period from 1960 to 2006. A list of the indices and their description is given in 

Table 3.3. Summer season is defined as June to August. Much of the warm extremes 

typically occur during these June–August peak season months, for which the amount 

and distribution of temperature generally determine the overall severity during this 

season. An exploratory analysis of the local distribution of daily maximum and 

minimum temperatures suggested that little number of warm extremes (e.g., warm 

days) may remain for the late spring (May) or early autumn (September). Thus, 

evaluating the behavior of warm extremes only for June–August was employed to 
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assess extreme temperature variations. For instance, the number of summer days 

(SU25) was defined as the total number of days per summer with maximum 

temperature over 25°C. Warm days (TX90p) index was defined based on days in 

which maximum temperature exceeding the climatological 90th percentile of the local 

daily temperature distribution during summers from 1960 to 2006. In order to measure 

the severity of heat stress during summer season, the maximum duration of 

consecutive warm days was considered using a centered moving window of 

consecutive (n) days exceeding the 90th percentile of daily maximum distribution. 

These criteria were applied in various studies (e.g., Jones et al., 1999; IPCC, 2007; 

Fang et al., 2008). Assessing the behavior of consecutive and long lasting warm days 

can provide invaluable information in impact assessment studies, particularly those 

related to hydrological and environmental modeling. 

3.4.1.1. Statistical analysis: 
 In this section, a detailed description of a two-step statistical procedure to obtain 

homogenous regions of summer extreme temperature is provided. First, for each 

observatory, the magnitude of the trend was obtained from the slope of the linear 

regression of the 47-yrs (1960-2006) time series by means of the OLS method. This 

was applied for each particular index. Then, the climatic information as summarized by 

the trends of the different temperature indices was reduced using factor analysis. The 

second step examined the spatial regionalization by application of the cluster analysis 

to the scores of the retained factors gained in the first step. This two-step procedure 

has previously been recommended by several climate regionalization studies (e.g., 

Baeryswil and Rebetez, 1997; Romero et al., 1999; Papadimas et al., 2011). As has 

been proposed by these studies, it was necessary to apply factor analysis prior to 

cluster analysis to minimize autocovariance in the dataset.   
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Table 3.3:  List of the indices of summer temperature extremes and their definitions. 
 
Index     Description                                         Symbol Unit 
Max_monthly_min  Maximum value of monthly minimum temperature in summer.  TNx   ⁰ C 

Max_monthly_max  Maximum value of monthly maximum temperature in summer.  TXx   ⁰ C 

Min_monthly_min  Minimum value of monthly minimum temperature in summer.  TNn   ⁰ C 

Min_monthly_max  Minimum value of monthly maximum temperature in summer.  TXn   ⁰ C 

Diurnal temperature range  Monthly mean difference between Tmax and Tmin.  DTR  ⁰ C 

Intra‐annual extreme range  Difference between maximum Tmax and minimum Tmin in summer.  INTR  ⁰ C 

Temperature sums   Sum of Tmax days >17º c – days Tmax < 17 oC in summer. Tsums ⁰ C

Warmest day  Highest daily maximum temperature.  WD  ⁰ C 
Spell  Maximum length of consecutive days with daily maximum temperature higher 

than the 90th percentile  Spell  days 

Summer days  Number of days with maximum temperature >25 ⁰C during summer.  SU25   days 
Warm days 

Percentages of days with maximum temperatures higher than the 90th percentile.  TX90p  days 
Warm nights 

Percentages of days with minimum temperatures higher than the 90th percentile.  TN90p   days 
Max_ summer  Highest daily maximum temperature in  summer months  Max_Summer  ⁰ C 
Min_summer 

Lowest daily maximum temperature in  summer months  Min_Summer  ⁰ C 
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3.4.1.1.1. Principal Component Analysis (PCA) 

The PCA is a statistical method commonly used in climate research to analyze large 

multivariate datasets and derive the main spatial patterns of climate variables. It is 

necessarily to remove redundancy in the original data matrix. This redundancy was 

assessed by the Kaiser-Meyer-Olkin (KMO) test of sampling adequacy. This statistic is 

often used to test whether there is statistical dependence among a set of variables.  In 

order to reduce the multidimensionality associated with the large number of input 

variables (i.e., 14 variables by 128 cases), a PCA (S-mode) was applied for the 

magnitude of trends (ºC decade-1) calculated for the defined extreme indices. 

Following this mode, the input data had a structure of n variables (columns) by n 

observatories (rows). Herein, the raw data were standardized by their mean and 

standard deviation in order to facilitate comparison between input variables of different 

scale units (e.g., days and ºC). Also, recalling that temperature parameters are 

standardized and normally distributed, as being tested in this dataset; a data matrix 

based on the inter-station correlation was obtained to characterize the levels of the 

relationships among the input variables. The correlation matrix was favored compared 

with the covariance matrix because it gives equal weights to all years involved in the 

analysis. This seems important in this research because the covariance matrix was 

expected to give more weighting to the warmer years (events) during recent decades.  

Selection of appropriate number of PCs that can adequately represent most 

information of the original dataset is an important decision in PCA. According to the 

Kaiser criterion, only PCs with eigenvalues greater or equal to 1.0 were extracted. In 

addition, the results of the Velicer´ minimum average partial test (MAP) and the Scree 

plot were considered. The Scree plot represents the difference between the natural 
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logarithms of successive eigenvalues versus component number. The Velicer test is 

an exploratory factor analysis test, which is based on the matrix of partial correlations. 

This test has proven superior to different techniques to define the best number of 

factors (Zwick and Velicer, 1986; Wood et al. 1996). The retained PCs were then 

rotated by means of the varimax orthogonal technique. This procedure facilitates 

spatial reasoning of the PCs that later became important to objectively cluster the 

variables. Then, the observatories were assigned to factors based on their maximum 

factor loadings. 

Herein, it was important to indicate that the PCA results were validated to ensure the 

stability of the obtained factors and their scores. More specifically, it was necessary to 

ensure that the obtained results were not variable dependent given that this work is 

based on employing a set of indices (variables) for regionalization. For this reason, a 

sensitivity analysis of the input dataset was performed to see whether the obtained 

factors and their explained variance will change when one or more indices (variables) 

are removed.  

3.4.1.1.2. Cluster analysis  

Cluster analysis is a multivariate technique commonly used to classify observations 

into groups according to similarity in their quantitative characteristics (DeGaetano, 

2001). The outcome of clustering analysis is heavily dependent on the pre-processing 

procedures, such as selection of a “best” clustering algorithm, similarity function, 

number of clusters, and weights of input variables. A comprehensive review of the 

cluster analysis algorithms is given in Gong and Richman (1995).  
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In this work, in order to detect the best spatial classification of summer temperature 

extremes, the standardized PC scores were used as a basis for the cluster analysis 

procedure. There have been numerous studies comparing the performance of 

hierarchical and non-hierarchical algorithms of clustering (e.g., Kalkstein et al., 1987). 

Since the accuracy of non-hierarchal methods (e.g., k-means) is very sensitive to the 

selection of the centroids points and also the order in which data are processed; the 

preference was given to the hierarchical techniques. These methods are particularly 

preferred when a priori knowledge of data structure is inadequate. In this sense, the 

hierarchical Ward´s method was chosen. In terms of the statistical accuracy, the Ward 

algorithm has been found superior to other methods in various climatic applications 

(e.g., Romero et al., 1999; DeGaetano, 2001). This algorithm is an ANOVA-type 

approach which explicitly minimizes the within-group similarity and maximizes the 

between-group similarity (Bonell and Summer, 1992).  

Another important decision in the clustering procedure was to define the “accurate” 

number of clusters to be retained. Overall, a greater number of clusters are not 

desirable for practical uses and may introduce noisy patterns that could not be justified 

in terms of the climatological reasoning. In the same sense, an inadequate number of 

clusters may cause missing of valuable information. For this reason, a consideration of 

only spatially prolonged patterns that could have the most significant environmental, 

economic and social impacts is more preferred. Other factors than these spatially 

large-scale patterns are likely to reveal very local modes of extreme events. In 

literature, there seems no uniform criterion to decide on the number of clusters. 

Milligan and Cooper (1985), for example, introduced 30 different statistics to define a 

relatively appropriate number of clusters. To ensure the reliability of the defined 
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number of clusters, multiple statistics are desirable to check for agreement between 

results. In this work, two different statistics were used: the agglomeration coefficient of 

squared Euclidean distance and the Wilk´ Lambda test. The agglomeration coefficient 

reveals change in squared Euclidean distance between the two most dissimilar 

observatories in combined clusters at each stage. A large increase in agglomeration 

coefficient shows the optimal number of clusters as it indicates that inhomogeneous 

clusters are being merged. On the other hand, the Wilk´ Lambda is a multivariate 

statistic of variance, defined as the ratio of the within group variance to the total 

variance (Everitt and Dunn, 1991). Lower values of this statistic assume that the 

source of total variation in the dataset is due to the between-groups variance. It can 

therefore be employed as an indicative statistic to test the best cluster solution. 

3.4.1.1.3. Clustering validation  

It is known that most clustering algorithms do not provide estimates of clusters 

significance. This is typically the case for the hierarchical methods, in which clustering 

algorithms may incorrectly aggregate some observations into misclassified clusters. 

For example, the Ward algorithm allows crisp clustering in which each observation is 

assigned to a unique partition (cluster) and cannot be reassigned to alternative cluster 

whenever more appropriate (Gong and Richman, 1995). Given that the selected 

clustering procedure was unsupervised as the number of clusters was defined 

objectively, it was important to verify its goodness of fit. The “optimum” cluster is 

generally defined by two principal characteristics: isolation and compactness. Isolation 

indicates the degree to which the clusters are significantly different from each other. 

Compactness, on the other hand, shows the degree to which observations in a 

particular cluster are coherent. In this thesis, the Silhouette width index, mainly based 
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on proximity matrix, was chosen to evaluate the homogeneity of the final clusters. This 

index (Rousseeuw, 1987) is defined as: 

},max{ ii

ii
i ba

abS −
=

            
                                                                              (3.9) 

where ai is the intracluster distance (average distance of the observatory ( ) to all 

observatories in the same cluster), while bi refers to the intercluster distance (the 

average distance of the same observatory to observatories in another cluster). The 

Silhouette average width was simply calculated by averaging the coefficients of 

observatories belonging to each independent clustering. This index is favorable 

compared with other clustering validity measures (e.g., Dunn index and Davies-

Bouldin index) for two reasons. First, it does not only indicate validity of the entire 

clustering, but it also provides a measure of the extent to which each individual 

observatory closely matches its cluster. Second, this statistic is robust to outliers, noisy 

observatories and number of clusters (Rousseeuw, 1987). According to this measure, 

it is possible to re-assign an observatory to an alternative cluster to satisfy the 

homogeneity conditions. Overall, values of the Silhouette width are limited to the 

interval [-1, 1]. Values close to 1 correspond to clusters that are compact and well 

separated from other clusters. When the intercluster distance of an observatory is 

equal or less than the intracluster distance, a decision was objectively made to 

reassign this observatory to another cluster with the lowest intercluster distance. the 

silhouette coefficient was then re-calculated iteratively until all observatories had a 

positive silhouette coefficient (i.e., bi > ai).  

 

In addition to the silhouette coefficient, the quality of the obtained clusters was also 

assessed by means of the one-way analysis of variance (ANOVA) described by von 
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Storch and Zwiers (1999). This analysis compares the statistical difference between 

the obtained clusters before and after validation. Since the main target of the clustering 

algorithm is to obtain the most significant ANOVA by dividing the dataset into discrete 

groups (Trigo et al., 1999), a comparison between the F ratios of the ANOVA for the 

dataset before and after validation can be used as a measure of validation. Higher 

value of the F ratios is desirable as it indicates an increase (decrease) in the between-

groups (within-groups) variations.  

 

3.4.1.2. Trend calculation 

For the established final clusters, a regional series was calculated for each cluster 

based on averaging values of the observatories belonging to this cluster for each 

particular index. This procedure is twofold. First, it helped comparing trends in 

temperature extremes from both spatial and temporal perspectives. Second, it allowed 

spatial patterns to be linked with underlying mechanisms, such as atmospheric 

circulation. To provide a more proper definition of the regional series, a weighted 

average of all observatories belonging to each cluster was computed. Herein, the 

weight was based on the Silhouette coefficient of each observatory, giving larger 

weights to observatories that were close in their similarity. Simply, high value of the 

Silhouette coefficient for a particular observatory indicates that it can better reflect the 

overall characteristics of its cluster (sub-region) than those observatories located at 

cluster boundaries, with coefficients rather close to 0. Linear trends in the defined 

indices time series were analyzed for each particular cluster (sub-region) by means of 

the ordinary least squares method (OLS) and the statistical significance was assessed 

using the Mann-Kendall statistic at the 95% level of significance.  
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3.4.2. Spatial regionalization of anomalously severe extreme events  

In this section, the methodology to capture the dominant spatial modes of very 

extreme temperatures events across the region is detailed. This research used a 

statistical criterion focusing only on changes in very rare and exceptional events 

defined by days exceeding a given percentile of the historical records. First, very cold 

nights (VCN) and very warm days (VWD) were defined. In this research, the 1 and 

99% intervals were used as threshold values to determine the VCN and VWD, 

respectively. For each observatory, these percentiles were calculated based on the 

local distribution of daily temperature time series in the period from 1960 to 2006. The 

VCN were selected from the days fell below the 1st percentile of the distribution of 

daily minimum temperature calculated for the winter season, whereas the VWD were 

defined as days exceeding the 99th percentile of daily maximum temperature 

distribution during the warm season. This means that, on average, about 1.23 (1.2) 

days per year would be considered as anomalously warm (cold). The definition of 

these extreme conditions using the percentiles is more advantageous relative to 

arbitrary-based definitions. This definition facilitates direct comparison between these 

extremes in regions with different climates. Due to the complex topography and 

geography of the study area, temperature varies irregularly over short distances 

suggesting sharp spatial gradients. Accordingly, there is no absolute single 

temperature value that can be considered as very extreme over the full domain. Figure 

3.3 shows the frequency distribution of maximum (minimum) temperatures during 

summer (winter) at three different observatories across the region. The 99th percentile 

calculated for the warm season was over 39ºC in Zaragoza airport (the Ebro valley), 

which dropped sharply to 26.1ºC at Port del Compte (Lleida, 1800 m a.s.l). 

Correspondingly, the definition of VCN ranged between -6.6ºC at Port del Compte 
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(Lleida) and 1ºC at Bilbao airport close to the Cantarbrian Sea. These examples give 

strong evidence on high spatial contrasts across the region.  

 

Figure 3.4: Frequency distributions of (a) summertime (MJJA) maximum temperature 

and (b) wintertime (NDJF) minimum temperature (lower panels) for various daily 

temperature series.  All calculations were made for the period from 1960 to 2006.  

 

After defining these anomalous days, daily anomalies were defined as departures of 

daily values at each observatory from long-term monthly means (1960-2006). The 

anomalies were calculated on a monthly basis so that these anomalies were the result 

of removing the mean seasonal cycle. Only those days that were recorded as very 

extreme in at least 10 observatories were considered in the PC analysis. This 

procedure simply aimed to account for those spatially prolonged events that could 

likely have broad and significant impacts on both natural and human environments. 
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Other small-scale spatial patterns often reveal very local extreme events, which are 

physically difficult to interpret, particularly in such a topographically complicated region. 

Finally, the S-mode of PCA was applied to temperature anomalies corresponding to 

VWD during the summer season (MJJA) and VCN during the winter season (NDJF). 

The spatial structure of the leading modes was provided by the scores of the leading 

PC factors.   

 

3.5.  Attribution of driving forces and mechanisms 

After detecting the spatial and temporal changes in temperature means and extremes 

over the study area, this thesis paid particular attention to attribute these changes by 

explaining the possible forces and mechanisms beyond them. It is assumed that the 

regional variability of temperature in such a region of complex topography and climate 

can be linked to both large-scale forces (e.g., atmospheric circulation, land-sea 

interaction) and local and regional forces (e.g., soil moisture, precipitation variability). 

Numerous works concluded that the distinctive spatial and temporal variability of 

climate in the peninsula has often been described as being driven by the atmospheric 

circulation (Sáenz et al., 2001a, b; Brunet et al., 2007b; Rodriguez-Puebla et al. 2010). 

For example, Sáenz et al. (2001b) explored relationships between winter temperature 

variability in the northern Iberian Peninsula and the general atmospheric circulation. In 

this research, the observed changes in temperature were evidently linked to their 

possible influencing factors. This helped to understand the importance of different 

factors influencing observed changes and also project the extent of temperature 

changes to be expected in the region should any of these factors vary in the future. 

Attribution of changes in temperature is important for studies of climate change, 

hydrological modeling and simulation, and agriculture. 



3. METHODOLOGICAL FRAMEWORK 
 

128 
 

3.5.1. Driving forces of variability of seasonal temperature means 

The atmospheric processes governing climate changes can be distinguished in two 

main groups: thermodynamical and dynamical processes (Emori and Brown, 2005). 

The dynamic processes indicate changes in the atmospheric circulation patterns, 

which refer to a large and persistent pattern of pressure anomalies that determine the 

main flow of air masses affecting the climate of broad geographical regions (Hurrell, 

1995). On the other hand, the thermodynamic processes are mainly related to changes 

in the land-atmosphere coupling, such as soil moisture, cloudiness and moisture 

content of the air.  

3.5.1.1. Teleconnections 

It is assumed that large-scale circulation pattern likely govern changes in the mean 

temperature. This is simply because these circulation patterns are favoring for 

atmospheric flows from one direction for consecutive days, which can be responsible 

for changes in the mean temperature. To account for the possible causes of seasonal 

temperature variability, the influence of a range of teleconnection indices was 

examined in this thesis. These patterns included the North Atlantic Oscillation (NAO), 

the East Atlantic (EA), the East Atlantic/ Western Russian (EAWR), and the 

Scandinavian (SCA) patterns. In addition, other oscillations dominating over the 

Mediterranean basin were also are represented, including the Western Mediterranean 

Oscillation (WeMO) and the Mediterranean Oscillation (MO). Previous works 

suggested these indices as main drivers of the climate variability in the Iberian 

Peninsula (e.g., Hurrell, 1996; Sáenz et al., 2001a, b; Slonosky et al., 2001; Martin-

Vide and López-Bustins, 2006; Philipp et al., 2007; Vicente-Serrano et al., 2009) and 

the Mediterranean (e.g., Maheras and Kutiel, 1999). Overall, the selected 
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teleconnections summarize a wide variety of flows that affect climate variability in the 

Iberian Peninsula.  

The NAO is a north hemispheric mode calculated as the difference between the high 

surface pressure in the Azores and the sub-polar low pressure near Iceland. It has a 

north-south dipole, with one center over Iceland and the other with opposite sign over 

the mid-latitudinal Atlantic (Hurrell, 1995). Similarly, the EAWR pattern has two main 

action centers: the first is located in the Caspian Sea and the latter is found over the 

Western Europe. The EA teleconnection index resembles the NAO in terms of its 

geographical domain. Nonetheless, it has a more southward shift toward low latitudes 

(Canary Islands: 25ºN, 25ºW). It has also a well-defined north monopole, south of 

Iceland and west of the United Kingdom near 52.5ºN, 22.5ºW (Barnston and Livezey, 

1987; Murphy and Washington, 2001). The SCA is a dipole with a main center over 

Scandinavia and minor centers across Western Europe. The data related to the NAO, 

EAWR, EA, and SCA atmospheric circulation indices were supplied by Climate 

Prediction Center, NOAA/NCEP, USA 

(http://www.cpc.noaa.gov/data/teledoc/telecontents/shtml) from 1960 to 2006.   

 

The MO index has been provided by Palutikof (2003) as the difference in the SLP 

anomalies between Gibraltar (Spain) and Lod (Israel), while the WeMO has been 

recently developed by Martin-Vide and López -Bustins (2006) as a dipole between San 

Fernando, Spain (36º 17’N, 06º 07’W ) and Padua, Italy (45º 24’N, 11º 47’E). The 

monthly MO index was obtained from the Climate Research Unit, East Angelia 

University, UK (http://www.cru.uea.ac.uk/_andrewh/moi.html), whereas the WeMO 
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data were compiled by the Climatology Group, University of Barcelona 

(http://www.ub.es/gc/English/wemo.htm).  

The Pearson correlation coefficient was used to quantify the relationships between the 

large-scale atmospheric circulation and seasonal and annual temperature time series. 

Nonetheless, prior to running the correlation analysis, the monthly series were 

detrended (by removing the linear trend) and standardized (by their mean and 

standard deviation). Detrending the series was important to remove the possible 

influence of the trends and interannual variability of the series on the strength of the 

correlation. In the same context, the anomalous temperature series were also 

standardized to assure consistency given that the time series of the anomalous 

circulation modes are already standardized.  

A more detailed analysis was then undertaken to explore the association between the 

dominant circulation modes responsible for temperature variations, as reveled by the 

correlation results, and their corresponding anomalous sea level pressure. The 

rationale was to support the interpretation of mechanisms that govern the linkage 

between temperature variations and atmospheric circulation. For this purpose, daily 

dataset of surface level pressure (SLP) provided by the NCEP/NCAR reanalysis 

datasets was considered for the period from 1960 to 2006 on a regular grid of 2.5º х 

2.5º resolution (http://www.esrl.noaa.gov/psd/) (Kalnay et al., 1996). The data were 

retrieved for the spatial domain between the ranges of 20ºW-35ºE and 20-60ºN. This 

window coupled different oceanic-land influences (e.g., the Atlantic, Mediterranean, 

European and the Sahara configurations) that may possess a joint effect on 

temperature variations in the study area. In addition, this large window relatively limits 
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the possible impact of local factors (e.g., topography and land use), which may 

interrupt the SLP configurations when small spatial window is used.  

3.5.1.2. Land-atmosphere coupling forces  

Numerical studies provide more evidence that the earth’s climate is the result of a 

dynamic equilibrium in which the atmosphere, the ocean and land surfaces interact 

interchangeably together (Douville, 2003). In this context, while the large-scale 

atmospheric modes can exert a strong control on temperature variations, temperature 

variations can also be driven by other processes. While configurations of atmospheric 

flow can adequately explain temperature variability in the region in all seasons, they 

cannot adequately describe temperature variations, particularly during summer 

season. For instance, the thermally forced circulation plays a key role during summer 

periods, coupled with other heat sources such as heat radiation, maximum insolation, 

clear skies and light wind.  

The enhanced land-atmosphere coupling processes can be related to changes in 

surface net radiation (Wild et al., 2005), stability and blockings (Beniston et al., 1994), 

cloudiness (Vautard et al., 2009) and soil moisture (Fischer et al., 2007). Nonetheless, 

the impacts of these processes are difficult to isolate since they are coupled with each 

other. For example, incoming solar radiation is often affected by changes in 

cloudiness. Also, the increased clouds could cause positive soil moisture feedbacks as 

a consequence of the more solar radiation reaching the surface (Ek and Holtslag, 

2003). 
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In order to assess the impact of land-atmosphere coupling, the dependency between 

temperature variability in the region in the one hand and cloud cover and soil moisture 

characteristics on the other hand was assessed.  

Among land-atmosphere coupling forces, cloudiness is a key factor that influences the 

Earth’s radiation budget. The strong role of the seasonal cycle of insolation suggests 

that climate system is very sensitive to changes in cloudiness, particularly during 

summer. Cloudiness directly affects the global climate system by transferring energy in 

the atmosphere. The decrease in cloudiness often affects energy and heat transfer 

throughout insolation, suggesting above-normal temperature during the daytime. 

Conversely, cloudy days are mostly linked to decrease in sunshine and in turn less 

evaporation and more cooling. Dai et al. (1997) explained the association between 

surface air temperature and cloudiness in the context of radiation fluxes. 

 

The climate of the study area is also more likely to be influenced by changes in soil 

moisture. This is mainly because the domain is located in the mid-latitudes between 

dry and wet conditions. Simply, low soil moisture at the surface level can often cause a 

decrease in latent cooling and thus above-normal temperature. Previous studies linked 

changes in soil moisture with climate variations (e.g., Koster et al., 2004; Seneviratne 

et al., 2006; Fischer et al., 2007). A recent study by Seneviratne et al. (2006) 

confirmed that much of variation in summer temperature in the transitional zones over 

Europe is attributed to land-atmosphere, including depletion in soil moisture. 

 

The daily data of cloud cover fraction (%) and volumetric soil moisture between 0-10 

cm below ground level (%) were derived from the daily NCEP/NCAR reanalysis data 
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provided by the NOAA/OAR/ESRL PSD (http://www.nws.noaa.gov) for the period from 

1960 to 2006. The data were only extracted for the grids that cover the study domain. 

For both cloud cover and soil moisture fields, daily data from six grids, covering the 

domain at a resolution of 2º latitude by 1.87º longitude, were used to obtain a 

regionally averaged time series for the whole domain. The standardized anomalies of 

cloud cover and soil moisture were calculated with respect to the base period 1960-

2006. It is noteworthy indicating that the anomalies were calculated for each month 

independently. This was principally made to remove the effect of the annual cycle. 

Then the monthly anomalies were aggregated for each season. Pearson correlation 

coefficient was computed between the standardized anomalies of maximum, minimum 

and mean temperatures in the one hand and the standardized anomalies of soil 

moisture and cloud cover on the other hand. The correlation was calculated for each 

season independently and the significance of the correlation was assessed at the 95% 

level (p<0.05). 

 

3.5.2. Driving forces of extreme events variability 

 3.5.2.1. Driving forces of moderate extreme events variability 

To explore the extent to which atmospheric circulation determines spatial patterns of 

summer temperature extremes, the EA, SCA, and EAWR circulation patterns were 

considered. Those patterns were significantly linked to the homogenous regions of 

temperature extremes, as previously defined (refer to section 3.4). For each 

established sub-region, the Pearson correlation coefficient (r) was simply computed 

between the regional series obtained for each index of summer extremes and the time 

series of the atmospheric circulation at the 95% confidence level (p value < 0.05). 
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However, it is noteworthy indicating that the time series of extreme events were 

detrended prior to computing correlation in order to remove the possible influence of 

the time series interannual variability and limit the effect of monotonic trend on the 

strength and significance of correlation. Also, the time series were standardized for the 

base period 1960-12006 to have zero mean and unit variance. This was principally 

performed before calculating the correlation to confirm that all the time series were 

equally weighted. 

For those leading circulation modes which showed significant influence on variations of 

summer temperature extremes, the canonical correlation was performed to assess the 

relationship between SLP anomalies (independent variable) covering much of Europe, 

the Atlantic and North Africa and summertime temperature (dependent variable) in the 

study domain. This spatial domain is large enough to encompass all regions that 

include forcings and circulations which directly affect temperature climate over the 

study domain.  

 

Canonical correlation is a multivariate statistical technique commonly used to calculate 

linear combinations between two datasets (i.e., predictors and predictands). This 

technique is advantageous compared with other multivariate statistics (e.g., 

multivariate regression) in that it can provide station scale information on the 

correlation between the dependent and independent variables. Recently, this analysis 

has increasingly been employed to explore interrelations between climate datasets 

(e.g., Bartzokas et al., 1994; Xoplaki et al., 2003b; Lolis et al., 2004). For instance, 

Xoplaki et al. (2003a) used this technique to explore links between the Mediterranean 

summer temperature and associated physical process (e.g., SST, 300hPa and 700-
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1000hPa thickness). A more comprehensive review of the canonical correlation and its 

theory can be found in Dillon and Goldstein (1984) and Lolis et al. (2004).  

 

Prior to application of the canonical correlation, factor analysis was first applied on 

both fields (i.e. summer temperature and SLP data) corresponding to the 

positive/negative phase of the significant modes (e.g., NAO+, SCA-). This procedure 

aimed to reduce the dimensionality of the original datasets. Then, only those PCs that 

explain more than 5% of the total variance were retained and the time series scores 

corresponding to these retained components were used as input variables in the 

canonical correlation.  

 

Simply, the canonical correlation aims to calculate linear combinations between two 

datasets: predictors (x) and predictands (y). These combinations are calculated 

iteratively to maximize the relationship between the x and y datasets. Each dataset 

has a group of variables (i.e., X1, X2, X3, Xn for X dataset and y1, y2, y3, yn for y). The 

linear combination between x and y is then defined, as: 

 

nn xaxaxaxaW ++++= ......3322111                                                                       (3.10) 

mm ybybybybV ++++= ......3322111                                                                       (3.11) 

where a1, a2, a3,…an are the canonical coefficients for the first variate (W1) 

corresponding to the predictor (x) dataset. On the other hand, b1, b2, b3,…bm are the 

canonical coefficients for the first variate (V1) corresponding to the predictand dataset 

(y).  Then, the canonical correlation is computed between the two canonical variates 

W1 and V1, as; 
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),( 111 WVcorrelC =                                                                                              (3.12) 

Then a new set of variates are computed and the canonical correlation is calculated in 

the same way as: 

),( 222 WVcorrelC = , ),( 333 WVcorrelC = ,……, ),( qqq WVcorrelC =                  (3.13)         

where ),min( mnq =                                                                                               (3.14) 

 

The loadings corresponding to each canonical variate are also provided by the 

canonical correlation output. In this analysis, the predictors and the predictands are 

usually arbitrary, particularly when there is no priori information about the direction of 

the dependency between the two input datasets. In this study, temperature anomalies 

were used as predictands, while large-scale circulation (e.g., SLP anomaly) was used 

as predictors. More specifically, the canonical correlation required two datasets: (i) 

local predictand (i.e., scores of retained factors for summer mean temperature during 

summers of specific circulation mode [e.g., positive/negative EA]), and (ii) large-scale 

predictors (i.e., scores of the retained factors for SLP corresponding to the circulation 

mode). Following the results of the Chi-square and Wilk´ Lambda statistics of variance, 

only significant canonical pairs (variates) at the p-value<0.05 were retained and 

explained. For each particular circulation mode, the statistically significant canonical 

function that explained the largest proportion of summertime temperature variance was 

retrieved and mapped.   

 

3.5.2.2. Driving forces of anomalously severe extreme events variability 

The influence of SLP on temperature extremes may be interrupted by local conditions 

(e.g., vegetation canopy, land use changes and topography), it is therefore important 
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to consider not only the patterns of level pressure at surface, but also the influence of 

atmospheric circulation patterns at various pressure heights (e.g., 200hPa and 

500hPa). In mid latitudes, changes in climate at the regional scale can largely be 

understood by studying configurations in large-scale atmospheric circulation at 

different heights (Hurrell, 1995). In order to identify the most favorable synoptic 

conditions to the occurrence of very extreme events (i.e., VWD and VCN), changes in 

three synoptic fields corresponding to these days were chosen. These circulation 

patterns represent the mean sea level (MSL) pressure at surface, besides the low 

(500hPa) and mid (200hPa) troposphere fields. These height levels were proven to be 

among the best predictors of climate variability in the Iberian Peninsula (Rodriguez-

Puebla et al., 2001a; Brunet et al., 2007b; Vicente-Serrano et al., 2011b), the 

Mediterranean (Xoplaki et al., 2003a) and Europe (Pozo-Vazquez et al. 2001; 

Slonosky and Yiou 2002). These physical processes emphasize not only the land-sea 

interactions at the ground level (i.e., MSL), but they also summarize the overlying air 

connections (i.e., height field). While the influence of MSL might be minimized in areas 

of complex topography as has been reported in previous works (e.g., Simmonds and 

Murray, 1999), pressure at high levels of the troposphere does not exhibit diurnal 

variation and accordingly shows more robustness to local effects (Beniston et al., 

1994). Thereby, configurations of pressure at the troposphere levels can be viewed as 

a good indicator of air advection. Moreover, using geopotential data at different heights 

(approximately 1500-5000 m) can largely identify whether anomalous temperature 

variations at the ground are forced by different modes of pressure at mid and shallow 

troposphere. 
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The data utilized to explore co-variability between temperature anomalies during the 

extreme heat days and their corresponding SLP and height fields were the daily 

anomalies for the winter/summer months of (i) SLP, 200hPa and 500hPa obtained 

from the large-scale National Centers for Environmental Prediction-National Center for 

Atmospheric Research (NCEP/NCAR) reanalysis on a regular grid of 2.5º х 2.5º 

resolutions (http://www.esrl.noaa.gov/psd/) (Kalnay et al., 1996) and (ii) anomalies of 

temperature during VWD/VCN corresponding to 128 observatories covering the study 

domain from 1960 to 2006. The daily anomalies were obtained using the long-term 

monthly means calculated over the period from 1960 to 2006. The data for the 

geopotential fields were obtained for a large window (25ºW-35ºE and 30ºN-65ºN), 

encompassing vast areas of Central and Western Europe along with part of northern 

and eastern portions of the Atlantic Ocean. This spatial extent is large enough to 

capture the co-variability between local temperature and their large-scale driving 

forces.  

 

In this work, climate composites for the different atmospheric levels were first plotted, 

allowing detecting circulation patterns that represent these high-order extreme events. 

Second, the daily anomalies of SLP and the upper air 200hPa and 500hPa 

geopotential heights corresponding to VWD and VCN were separately subjected to 

PCA. The rationale behind this procedure was to determine the most important spatial 

modes of these circulations so that they can be linked to the prominent modes of 

extreme events by means of the canonical correlation analysis. To meet this goal, the 

PCA of S-mode was applied separately for daily anomalies of (i) summer anomalous 

warm temperature, (ii) winter anomalous cold temperature. Also, to reduce dimensions 

of the data of geopotential fields, the daily anomalies of (i) SLP, (ii) 200hPa, and (iii) 
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500hPa fields corresponding to these extreme days were considered in a PCA 

analysis. For each independent dataset, only those PCs that explained more than 5% 

of the total variance were retained and the time series scores corresponding to these 

retained components were used as input variables in the canonical correlation. 

Following the results of the Chi-square and Wilk´ Lambda statistics, only significant 

canonical variates were maintained to explain the dependency between anomalous 

temperature in the region (dependent variable) and geopotential height fields 

(independent variable).  At this stage, the co-variability was calculated between each 

pair of datasets (i.e., VWD-SLP, VWD-200hPa, VWD-500hPa, VCN-SLP, VCN-

200hPa and VCN-500hPa). 

 

3.5. Future changes of temperature during the 21st century 

Understanding the impacts of future climate change on northeast Spain, a region 

characterized by complex climatological and topographical features, is important for 

different environmental, hydrological, agricultural and socioeconomic applications. 

Recently, RCMs have been important tools in assessing the effect of climate change, 

as induced by the increase of GHG (Wetterhall et al., 2007). These models are a 

simplified representation of complex and non-linear climate system and its physical 

processes. These models have progressively been developed in the recent decades 

enforced by the rapid increase in computational capacity. RCMs are favored compared 

with GCMs to adequately capture the characteristics of regional climate variability as 

their computational grid are relatively fine (≈ 25 km), which makes them an adequate 

choice to reasonably capture the sub-regional scale climate features that may affect 

temperature variations, such as topography, leeside effects and land use/cover 

changes. This sounds advantageous over the study domain due to its topographic 
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complexity, which exerts a strong control on temperature variations. The complex 

topography of the study domain enhances the importance of small-scale processes in 

model simulations, suggesting that RCMs are always more appropriate to describe 

climate at the regional scale. Regional climate is largely influenced by complex 

topographical variations, land-sea contrasts, and marked gradients of vegetation and 

land cover, which are difficult to capture by the coarse resolution of GCMs (on average 

50 km).  According to the IPCC (2007), reliable RCMs projections are now available for 

many regions worldwide, with a remarkable advance in model resolution and the 

simulation of important physical processes for regional climate. A number of 

researches have used predictable climate scenarios to assess future changes in 

temperature (e.g., Kjellström, 2004; Moberg and Jones, 2004; Deque et al., 2005; 

Errasti et al., 2011; Brands et al., 2011a).  

3.6.1. Description of observational and modeled datasets 

In order to assess the potential effects of future climatic conditions, this work used 

projected daily maximum and minimum temperature data derived from regional 

downscaled climate model simulations available as part of the ENSEMBLE European 

project. Further information on the ENSEMBLE models and their simulations can be 

found in (http://ensemblesrt3.dmi.dk/, Hewitt and Griggs, 2004). The ENSEMBLE 

simulations are among the most updated ensembles of climate change projections 

over Europe. For this reason, they have been investigated quite thoroughly in 

numerous climate simulation studies across different regions of the European 

continent (e.g., Hewitt and Griggs, 2004; Brands et al., 2011a). Under the ENSEMBLE, 

the gridding space of the daily dataset has, on average, a 0.25º × 0.25° 

latitude/longitude resolution (approximately 25 km spatial interval).  
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In this work, maximum and minimum temperature data for an ensemble of 9 

comprehensive RCMs driven by 5 different GCMs were used to assess future climate 

change projections under the IPCC SRES (Special Report on Emissions Scenarios) 

A1B emission scenario, which corresponds to a medium level of CO2 emissions to the 

atmosphere. Under this scenario, the concentration of CO2 is expected to reach 720 

ppm by the end of this century (Nakicenovic et al., 2000). These models were chosen 

based on the availability of simulations under the A1B scenario until the end of the 

21th century. They have extensively been employed for climate simulation studies 

(e.g., Beniston, and Goyette, 2007; Boé and Terray, 2008; Kostopoulou et al., 2009). 

Table 3.4 gives a summary of the models used in this work and their experiments. As 

presented, the computational domain varies from 256 (ICTP simulation) to 274 grid 

points (KNMI, MPI, METO, SMHIR simulations), with different horizontal resolution 

ranges. Comparing the results from different models can represent not only a range of 

possible different outcomes, but it can also offer an estimate of the degree of 

uncertainty associated with future climatic predictions (Giorgi and Mearns, 1999). 

Indeed, inclusion of different climate models to assess future changes can give an idea 

on inter-model differences, which can be due to different sources of uncertainty such 

as parameterization schemes and model components (e.g., atmosphere, ocean, and 

land-surface interactions) (Meehl and Tebaldi., 2004; Haylock et al., 2006).  

In this work, three 30-years set of simulations: control period (1971-2000) and two 

common future scenario periods (2021–2050 and 2071-2100) were undertaken for the 

study area.  
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 Table 3.4: Summary of RCMs simulations used in the study with their corresponding 

resolutions. 

 

Acronym Institute Driving data RCM Resolution 
(Lat. by Lon.) 

Number 
of grid 
boxes 
 

CNRM Météo France (France) ARPEGE ARPEGE 0.15º by 0.35º 270 
DMI-APREGE Danish Meteorological Institute (Denmark) ARPEGE HIRHAM 0.17º by 0.32º 273 

DMI-ECHAMS Danish Meteorological Institute (Denmark) ECHAM5 HIRHAM 0.17º by 0.32º 273 

DMI-BCM Danish Meteorological Institute (Denmark) BCM HIRHAM 0.17º by 0.32º 273 

ICTP The Abdus Salam Intl. Centre for Theoretical Physics 
(Italy) 

ECHAM5 RegCM 0.18º by 0.30º 253 

KNMI Koninklijk Nederlands Meteorologisch Instituut, 
(Netherlands) 

ECHAM5 RACMO 0.17º by 0.32º 270 

METO Norwegian Meteorological Institute (Norway) HadCM3Q16 HIRHAM 0.17º by 0.32º 270 
MPI Max-Planck-Institut für Meteorologie (Germany) ECHAM5 REMO 0.17º by 0.32º 270 
SMHI Swedish Meteorological and Hydrological Institute 

(Sweden) 
BCM RCAO 0.17º by 0.32º 270 
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The selection of the (1971-2000) control period is mainly motivated by the fact that this 

sub-period (1971-2000) was characterized by a warming episode. Numerous studies 

(e.g., Labajo et al., 1998; Morales et al., 2005) noted a rapid warming in regional 

temperature over the Iberian Peninsula temperature, mainly from 1972 onwards. At the 

global scale, numerous studies also confirmed this positive temperature anomaly 

during the last decades of the 20th century (e.g., Easterling et al., 1997; Jones et al., 

1999; IPCC, 2007). Therefore, it is of interest to assess the shifts in the current climate 

warmer conditions under a future climate change scenario.  

In order to improve model skill for prediction it is essential to have a reliable set of 

observations. In this work, daily maximum and minimum temperature data from 189 

long-term, complete and homogenous time series spanning the period from 1971 to 

2000 were used to validate the simulations for the control period. Figure 3.2 depicts 

the spatial distribution of temperature observatories. As illustrated, the weather 

stations are relatively evenly distributed across the domain; providing an adequate 

sampling of the large spatial heterogeneity of geography and climate. This is important 

to guarantee a more accurate projection of temperature future signals at this fine 

spatial scale.  

3.6.2. Model Validation 

Prior to assessing the climate change simulations under the A1B emission scenario, it 

was important to provide an evaluation of the models performance. For this reason, 

the model simulations were evaluated against the observational temperature data for 

the control period (1971-2000). To accomplish this task, the observational data were 

first gridded using the Inverse Distance Weighting (IDW) interpolation algorithm. 
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Herein, this method worked by taking the nearest 25 stations to the centre of the grid 

of interest. In order to facilitate direct comparison between the modeled and 

interpolated datasets, the gridded observational data were delivered on different 

spatial resolutions so that they exactly overlap the modeled grids for each particular 

simulation. The rationale behind this procedure was to match the spatial resolution of 

the modeled data, as presented in Table 3.4, and accordingly maintain consistency 

between simulated datasets and their corresponding observed grids. Over the study 

domain, the real-world boundary conditions, e.g., elevation and land cover, vary 

markedly over short distances. Accordingly, it seems important to maintain both the 

model and observational grid-points physically-consistent.  

In order to evaluate the performance of the models, the uncertainty in the regional 

climate models projections was assessed by means of the cross-validation statistics. A 

large number of climate modeling simulations have been assessed in this manner 

(e.g., López-Moreno et al., 2008b; Vicente-Serrano et al., 2011b). To determine how 

well the models simulated the main characteristics of the observed temperature (e.g., 

the mean, standard deviation, skewness, symmetry), the performance of the models 

was tested by comparing their simulated (predicted) values against observed data. 

Recalling that future climate projections are manifested as changes in either the mean 

of the climate and/or changes in its shape (i.e., variance), the possible shifts in the 

probability of temperature on the tails of the distribution must be considered when 

validating the models. The validation statistics used in this work included: the Mean 

Bias Error (MBE), the Yule–Kendall (YK) skewness measure (Ferro et al., 2005), the 

Inter-annual variability error (IVE) and the Willmott’s D index of agreement (Willmott, 
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1982). The evaluation was carried out independently for each model and for each 

particular season. The validation estimators are given, as follows:                                                            
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where N is the sample size, O is the observed value, P is the predicted value, i is the 

counter for individual observed and predicted values, iP′=  OPP i −=′ and  pci 

represents the ith percentile. 

Combining the results of those statistical measures is recommended because it 

provides reliable assessment of the models uncertainty. The YK is a measure of 

asymmetry between the present-day and simulated data, suggesting a “perfect” 

symmetry of data statistical distribution when values are close to 0. On the other hand, 

the MBE is commonly used to measure the ability of the model to capture the bias 

against the observational data, through calculating the difference between the 

observed and predicted value of temperature. The IVE is a measure of the difference 

between the variance and the bias, reflecting not only changes in the mean between 
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the observed and simulated values, but also changes in the standard deviation of the 

series. The Willmott’s D coefficient varies from 0 for no skill to 1 for a “perfect” forecast 

of the observed temperature. Conventionally, the modeled and historic data may 

coincide in terms of changes in the mean (as revealed by the MBE and Willmott’s D), 

whereas they show large differences in terms of deviations from the mean (as 

suggested by the IVE and YK). Therefore, combining the skill of different statistical 

estimators is more beneficial in this research.  

While the previous accuracy statistics focused on the statistical properties of the time 

series (e.g., the mean, variance and skewness), it was also important to verify that the 

models are skillful in reproducing the spatial patterns of the observed temperature. 

This sounds important given that the models can probably show good agreement 

between the magnitudes of change in the mean of temperature series while they 

introduce different regional features. As reported by many previous works (e.g., Kirono 

and Kent, 2011), it is important to assess the performance of the models by assessing 

their ability to capture not only the temporal evolution of temperature but also its spatial 

pattern. For this purpose, the S-mode of the Principal Component Analysis (PCA) was 

applied to both the observed and simulated seasonal time series for each ensemble 

member and for each season independently. A similar approach was recently used by 

Hertig et al. (2010). In short, those ensembles with high loadings, which showed 

consistent sign with those of the observed loadings in terms of the sign onto the 

leading vector, were retained. This approach provides a rigorous assessment of 

whether the model represents the spatial pattern of interannual variations.  

To address the uncertainty of the use of different models under the A1B emission 

scenario, this work preferred to calibrate climate model outputs using an inter-model 
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average of the ensembles with the “best” performance, as suggested by the validation 

outputs. Considering the central estimate of various models, which may differ in their 

fundamental assumptions, can provide valuable information for climate impact 

assessments and adaption strategies. In addition, the use of multiple climate 

realizations for simulating temperature change and variability makes the prediction 

more robust as it gives more accurate quantification of various sources of uncertainty 

in model performance. Numerous works gave reasonable seasonal forecasts of 

climate through the use of multiple RCMs (see e.g., Landman et al., 2001). In this 

work, the decision was made to select the models with the “best” performance defined 

on the basis of their overall skill with respect to all the statistics used for the validation 

purpose.  

3.6.3.  Statistical analysis 

3.6.3.1. Future changes in the mean and standard deviation 

In order to look at changes in the mean state of climate and their corresponding inter-

annual variations, changes in the mean and standard deviation were calculated over 

the periods of consideration: 1971-2000, 2021-2050 and 2071-2100. For each 

particular season, the anomalies were calculated relative to the base period (1971-

2000).  

3.6.3.2.  Future changes in the time-varying percentiles  

While the early detection of anthropogenic change in mean temperature is of great 

interest, the impacts of future change on society are more likely to be connected to 

extreme climatic events. It is therefore important to identify the changes in climatic 

extremes that are expected under climate change conditions, and to determine 

whether such changes may already be consistent with simulated changes in the mean 
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conditions. In this work, projected changes in the time-varying percentiles of maximum 

and minimum temperatures were assessed for each season. This allowed for exploring 

the manner in which the distributions of daily maximum and minimum temperature may 

change over time. Detecting of such changes can also provide valuable information for 

various climate impact studies (Meehl et al., 2000). Similar to other global (e.g., 

Caesar and Alexander, 2006) and regional (e.g., Beniston and Stephenson, 2004; 

Robeson, 2004) studies, the ith percentile magnitude was calculated on a seasonal 

basis for each ensemble member, where i stands for the 10th, 25th, 75th and 90th 

percentiles. Lower percentiles (i.e., 10th and 25th) were used as indicators of changes 

in the cold tail of temperature distributions, whereas the upper percentiles (i.e., 75th 

and 90th) gave an indication on changes in the warm tail.  

For both the mean and time-varying percentiles time series, trends were examined in 

order to define the magnitude (expressed in °C decade-1) and direction of ongoing 

temperature change. Linear trends were computed using the ordinary least square 

(OLS) method and the significance of the trend was assessed using the Kendall’s tau 

test. The statistical significance was assessed at the 95% confidence level (p-

value<0.05).  

In order to explore to what extent the variation and trends in the time-varying 

percentiles are linked to changes in the mean temperature, the mean and the 

percentiles seasonal time series were uncentered for each grid following the approach 

detailed by Beniston and Stephenson (2004) and Ferro et al. (2005). Simply, the aim 

was to decrease the scale (spread) of the data and subsequently their interannual 

variations by subtracting out their median (i.e., the 50th percentile). Given that the 

magnitudes of the median and the mean are very close when the data have a 
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symmetric (Gaussian) distribution, which is the common case for temperature data, it 

can be expected that the interannual variation of the percentiles can be linked to 

changes in the mean when the time series are uncentered. Finally, to account for the 

strength of relationship between changes in the mean temperature and its 

corresponding time-varying percentiles, the Pearson correlation coefficient (r) was 

simply computed between the uncentered time-varying percentiles time series and the 

uncentered mean time series for each independent season. The statistical significance 

of this relationship was assessed at the 95% level of confidence (p<0.05). 

3.6.3.3. Future changes in extreme events  

Recently, a lot of record-breaking temperatures have been observed in Iberia during 

the most recent years (e.g., 1995, 1998, 2003, 2005, 2010 and 2012). One clear 

example over northeast Iberia is the unrelenting summer 2003 heat wave (+2.7 

standard deviation relative to the 1960-2006). The observed strong warming in both 

summer and winter mean temperatures in the study domain from 1960 to 2006 (El 

Kenawy et al., 2012) and the sensitivity of the region to more severe heat stress, as a 

consequence of varied climatology and geography, provide motivation for exploring the 

manner in which extreme temperature will respond to elevated greenhouse gas 

emissions in future. Manny studies found that warmer summers and winters are 

expected to be common in the next decades (e.g., Schär et al., 2004; Beniston et al. 

2007). To address this question, transient experiments from the 9 high-resolution 

RCMs were evaluated under the intermediate-emission A1B scenario (IPCC, 2007). 

The horizontal resolution of this ensemble of models enables to resolve mesoscale 

processes (forces) related to complex terrain and land use/cover features affecting 

variability of very extreme events over the study domain. Herein, the models with the 
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“best” performance in term of their ability to reproduce the observed temperature 

characteristics (i.e., bias and variation) were chosen. Then, the VCN and VWD were 

analyzed on a grid-point basis. The 1st (99th) percentile of daily minimum (maximum) 

temperatures were calculated at each grid point for each of the best models for two 

future time slices: 2021-2050 and 2071-2100. The frequency of VWD (VCN) was 

defined as the total number of these extreme events per each summer (winter). 
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4. RESULTS 

This chapter presents the key results of the detectable spatial and temporal 

patterns of temperature changes during the 20th century. It also provides results 

related to the driving atmospheric mechanisms behind these changes. Finally, it 

outlines the main findings related to future changes of temperature means and 

extremes under the A1B emission scenario during the 21st century. 

4.1. Observed changes in the seasonal and annual means 

4.1.1. Temperature long-term changes (1920-2006) 

Figure 4.1 shows the temporal evolution of temperature anomalies of the regional 

series over the period from 1920 to 2006. This assessment employed a subset of 

19 observatories covering the complete period. As depicted, maximum 

temperature showed a positive anomaly during the 1940s, 1980s, 1990s and 

2000s. This warming was much more pronounced during the 1940s followed by 

the 1990s and the 2000s. This behavior was broadly consistent at both the 

annual and seasonal timescales. However, a visual inspection of temperature 

anomalies suggests a sudden and strong increase in the maximum, minimum 

and mean temperatures during the last three decades. The warmest years from 

1920 to 2006 were obviously restricted to the past two decades. Over this period, 

the 1990, 1994, 1998, 2003, and 2006 were identified as anomalously warm 

years. For instance, the anomaly of summer maximum temperature during 1990, 

2003, and 2006 was 1.2, 3.7 and 1.4ºC, respectively. In the same way, the 

coldest maximum temperature on record were found during the period from 1950 

to the mid of the 1970s. For example, the anomaly of the annual maximum 

temperature in 1972 was -1.6ºC.  
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Figure 4.1 also informs that the annual minimum temperature exhibited a cooling 

period that prevailed until the late of the 1940s, inversed then by a slight increase 

during the early years of the 1950s. The 1980s showed a remarkable return to 

the warming which dominated over the most recent decades. Correspondingly, a 

clear warming period took place fot most seasons during the mid of the 1940s 

and the 1950s, followed by a long lasting decrease until the mid of the 1970s. 

Two clear examples are the years 1956 and 1972 in which the annual minimum 

temperature showed a negative anomaly, reaching -1 and -0.50ºC during 1956 

and 1972, respectively.  

While the coldest minimum temperature on record were mainly experienced 

during the earlier decades (e.g., 1920s, 1930s and 1960s), the last decades of 

the 20th century exhibited an exceptionally positive anomaly. This probably 

implies that the uptrend observed in minimum temperature over the long-term 

period (1920-2006) is largely attributable to the rapid warming during the last few 

decades. In contrast to winter and autumn, the annual behavior of minimum 

temperature anomalies was broadly consistent with the behavior of anomalies 

during summer and spring.  

Contrarily, the temporal evolution of the annual DTR anomalies was more 

consistent with anomalies during winter and autumn rather than in summer and 

spring. In earlier decades (prior to 1950), DTR demonstrated a positive anomaly 

due to the higher increase in maximum temperature than in minimum 

temperature. This feature was reversed in the last five decades of the century.   
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Table 4.1 summarizes the linear trends of the temperature regional series at 

seasonal and annual timescales. The significance was assessed at the 95% 

significance level (p<0.05). Overall, the results demonstrate that there was a 

statistically significant uptrend in the maximum, minimum, and mean 

temperatures at both the annual and seasonal scales. However, this observed 

warming was not uniform over time. In particular, maximum temperature showed 

stronger warming during summer and spring than in winter and autumn. Also, the 

warming in minimum temperature during the cold half of the year (i.e., winter and 

spring) was slightly higher with respect to the warm half of the year. The only 

exception was found during summer as maximum temperature experienced more 

rapid warming (0.2ºC decade-1), relative to all other seasons (0.02 ± 0.08ºC 

decade-1). This upward trend can be translated into an increase in summer 

temperature varying from roughly 1.7ºC (maximum temperature) to 2.1ºC 

(minimum temperature) over the 87-yrs. By contrast, the trend for autumn and 

winter was generally lower than summer and spring though being statistically 

significant at the 95% level.  

 

The maximum and minimum temperature signals were apparently revealed in the 

temporal evolution of the diurnal temperature range (DTR), which reached the 

significance threshold only in autumn and winter, suggesting a decreasing trend. 

During spring, DTR showed no trend as minimum and maximum temperatures 

increased at a similar rate of change (0.08ºC decade-1).  
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Table 4.1: Seasonal and annual trends in temperature regional series for the 
period 1920-2006 (ºC decade -1). 
 

  Annual Winter Spring Summer Autumn 

Maximum 0.08 0.04 0.08 0.20 0.02 

Minimum 0.14 0.11 0.08 0.24 0.14 

Mean 0.11 0.07 0.08 0.22 0.08 

DTR -0.06 -0.07 0.00 -0.04 -0.12

 

4.1.2. Temperature seasonal and annual trends (1960-2006) 

In order to assess how temperature changes vary across the study domain, a 

detailed regional assessment of temperature variability was conducted from 1960 

to 2006, based on a dense network of observatories from 128 observatories. 

4.1.2.1. Maximum temperature 

Table 4.2 summarizes the seasonal and annual trends of maximum temperature 

over the period 1960-2006. In general, there was a general warming trend across 

the study domain in most seasons. As indicated in Table 4.2, majority of 

observatories (87.5, 83.6, 86, and 92.2%) showed warming trend in annual, 

summer, winter, and spring temperatures, respectively. The only exception can 

be seen in autumn since only 29.7% of observatories showed a positive trend, 

while almost 43% of the observatories exhibited a negative tendency at the 95% 

level.  

 

Spatially, there were considerable variations in terms of the magnitudes of the 

trends suggesting that this warming had a spatial component. As depicted in 

Figure 4.2, the warming was higher in the regions close to the Mediterranean 
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Sea and the Cantabrian Sea, and to less extent in mainland observatories, 

particularly during summer, winter, and spring. However, this general picture 

suggested some seasonal differences. For instance, the Mediterranean coast 

showed less warming during winter and spring with respect to the Cantabrian 

observatories, whereas it exhibited more robust warming during summer, 

particularly in Catalonia. Another interesting aspect was the dominance of a 

statistically insignificant pattern of trends in the Ebro basin during autumn. Also, a 

tendency toward faster warming at high elevation was evident relative to low 

elevation. This gradient was more pronounced during summer periods as the 

Pyrenees and the Iberian system experienced more warming compared with 

closing lowlands. It was also noted that the strong warming in southern portions 

of the study domain was markedly confined to summer and spring. Another 

important feature was that the spatial distribution of the trends at the annual scale 

seemed to be spatially more consistent with the distribution of trends in summer 

and spring than in winter and autumn.  

 

Table 4.2: Number of observatories with statistically significant trend (p<0.05) for 
temperature variables, classified as: + statistically significant positive; - 
statistically significant negative; N statistically insignificant. The trends were 
calculated for the period 1960-2006. Total number of observatories is 128. 

Variable  Winter  Spring  Summer  Autumn  Annual 

N      +
     
‐  N   +  ‐ N + ‐ N + ‐ N   +  ‐ 

Maximum  16  110 2  10  118 0  21 107 0  70 38 20 3  124  1 
Minimum  41  79  8  23  104 1  11 116 1  41 81 6  18  108  2 
Mean  20  107 1  9  119 0  9  119 0  59 61 8  11  117  0 

DTR  43  64  21  49  66  13 53 38  37 37 16 75 48  48  32 
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Figure 4.2: Seasonal and annual trends in maximum temperature over the 

period 1960-2006. The degree of change is expressed in ºC decade-1.  

 

4.1.2.2.  Minimum temperature 

Figure 4.3 shows the spatial distribution of seasonal and annual trends in 

minimum temperature over the 1960-2006 interval. Similar to maximum 

temperature, the trend was globally positive throughout the study area. Also, the 

strongest warming occurred during summer and spring, whereas autumn 

exhibited weak warming. The degree of warming varied considerably throughout 

the study domain though being very similar to those of maximum temperature. In 

particular, the strongest increase in minimum temperature was noted at coastal 

stations, with more observatories with statistically significant trend close to the 
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Cantabrian Sea, particularly during wintertime. The continental observatories 

exhibited the lowest temperature rise, suggesting strong spatial gradient from the 

coast to mainland. Also, of interest, the annual, winter, and summer temperatures 

indicated a south-north gradient with less warming in southern sites. 

 

Figure 4.3: Same as Figure 4.2, but for minimum temperature. 
 

4.1.2.3. Mean temperature 

Table 4.2 summarizes the mean temperature trends according to their statistical 

significance. The strongest change occurred during summer and spring, whereas 

the lowest change took place in autumn. In particular, more observatories did 

show insignificant trend during autumn (46.1%), whereas most observatories 
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exhibited statistically significant trends during summer, spring (93%) and winter 

(84.5%). 

 

 Figure 4.4: Same as Figure 4.2, but for mean temperature. 
 

Figure 4.4 depicts the spatial distribution of trends in mean temperature from 

1960 to 2006. The spatial patterns of mean temperature seemed to be consistent 

with those observed for maximum and minimum temperatures, with strong signal 

in coastal areas than in continental observatories. However, this warming was 

less pronounced along the Mediterranean (Cantabrian) coast during winter and 

spring (summer). In contrast to other seasons, more insignificant trends tended to 

be located in mainland observatories during autumn.  
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4.1.2.4. Diurnal temperature range (DTR) 

Figure 4.5 illustrates the spatial distribution of trends of seasonal and annual 

DTR, while Table 4.2 summarizes these trends. Table 4.2 suggests three 

seasons with positive trend (summer, winter, and spring); meanwhile autumn was 

the only season with a decreasing trend in much of the study area. Conversely, 

during winter and spring, more observatories showed a statistically significant 

positive trend. This can probably imply that DTR had a seasonal cycle, with 

higher range during cold seasons (i.e., winter and spring) and lower values in 

warm seasons (i.e., summer and autumn). Spatially, it seems that DTR did not 

exhibit a particular structure. Nonetheless, it showed more uptrend over 

continental observatories during winter and spring. By contrast, majority of inland 

observatories experienced negative tendencies in autumn and summer, although 

many of them were statistically insignificant during summer (p<0.05). Overall, 

there was some evidence on a divergent behavior of DTR (i.e., positive and 

negative), when compared with the evolution of maximum, minimum and mean 

temperatures.   

 

Temporarily, a comparison of the 1960–2006 trends, as summarized in Table 

4.3, with the changes over the longer period 1920–2006 (Table 4.1) illustrates 

that the observed warming in the 1960-2006 interval may indeed belong to a 

longer trend (1920-2006). However, a quick comparison between trends in the 

seasonal and annual temperatures during the periods 1920-1959 and 1960-2006, 

as revealed in Tables 5.3 and 5.4 clearly shows that the warming during recent 

decades was mainly responsible for much of the upward trend found through the 



4. RESULTS 
 

163 
 

entire period 1920-2006. Most seasonal and annual trends during the period from 

1920 to 1959 were found statistically insignificant (p<0.05). The only exception 

corresponded to summer season in which temperature experienced upward trend 

though being weaker than trends recorded in recent decades. For example, the 

warming rate of the annual mean temperature from 1960 to 2006 was 

approximately twice as high in the period from 1920 to 1959. Interestingly, spring 

mean temperature showed an outstanding warming rate in recent decades 

(0.66ºC decade-1). Similarly, summer experienced a trend during the period 

1960-2006 approximately twice as high in the period 1920-2006. 

 

Table 4.3: Seasonal and annual trends in temperature regional series for the 
period 1960-2006 (ºC decade-1). The regional series were aggregated based on 
data from 128 observatories 
 

  Annual Winter Spring Summer Autumn

Maximum 0.25 0.18 0.32 0.43       0.07 

Minimum 0.21 0.10 0.19 0.39 0.19

Mean 0.33 0.14 0.66 0.41 0.13 

DTR 0.13 0.08 0.51 0.04 -0.12 

Bold numbers are significant at the 0.05 level following the Rho Spearman test. 

Table 4.4: Seasonal and annual trends in temperature regional series for the 
period 1920-1959 (ºC decade-1). The regional series was calculated based on 
data from 19 observatories 
 

  Annual Winter Spring Summer Autumn

Maximum 0.12 -0.11 0.28 0.22 0.11 

Minimum 0.17 0.02 0.18 0.30 0.19 

Mean 0.15 -0.05 0.24 0.26 0.15 

DTR -0.05 -0.13 0.12 -0.08 -0.07 

 Bold numbers are significant at the 0.05 level following the Rho Spearman test. 
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 Figure 4.5: Same as Figure 4.2, but for DTR. 
 

Spatially, a quick comparison between Figures 4.2, 4.3 and 4.4 clearly shows 

that warming in maximum, minimum, and mean temperatures was dominated 

across much of northeastern Spain. Accordingly, it can be inferred that the 

cooling periods of the year got shorter relative to the warmer periods. Recalling 

that the observatories used in this study are located within both urban and non-

urban localities and also given that the series have been previously homogenized 

to limit effects of non-climate factors (e.g., urbanization), the observed upward 
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trends in most of observatories reveal that this increase had a climatological 

meaning. It can therefore be due to natural climate variability and/or global 

warming induced mainly by GHG. Nonetheless, the strength of this warming was 

inconsistent across the study domain and among seasons. The strongest signals 

were found during spring and summer, whereas this increase was less marked in 

autumn.  

4.2. Observed changes in temperature extreme events 

In this section, the results on the analysis of trends in daily maximum and 

minimum temperature, as derived from a suite of extreme temperature indices 

described in Table 3.2, are presented. The spatial and temporal variability of 

these indices are also outlined. 

4.2.1. Randomness testing 

Presence of serial correlation in time series can affect the ability of the Mann-

Kendall’s test to correctly assess the significance of trends. In this study, the 

serial correlation coefficients were computed for lags up to 14. In general, the 

ACF results confirm that a majority of the time series of extreme events did not 

show significant serial correlation at the lag-1. A large proportion of the time 

series was serially independent and did not exhibit short-term persistence. This 

suggests considerable year-to-year variability in the time series of the 

investigated indices. Figure 4.6 illustrates an example of the cold days (TX10p) 

time series at the observatory of Barcelona Airport. As presented, the lag-1 serial 

correlation coefficient was insignificant at p<0.05. This suggests that the series 

was free from serial correlation. In a few cases, however, the time series showed 

significant serial correlation. In such cases, the prewhitening procedure was used 
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to limit the effect of serial correlation before applying the trend test. One obvious 

example corresponding to the warmest days (WD) time series at Amurrio 

observatory (Alava) is given in Figure 4.7. As depicted, the time series presented 

a significant lag-1 serial correlation coefficient (Figure 4.7.A), as more than 5% of 

the sample autocorrelations exceeded the upper confidence limit. To eliminate 

the serial correlation, the pre-whitening procedure was applied and the Mann-

Kendall test was then undertaken for the pre-whitened series. Figure 4.7.B shows 

the lag-1 correlation after removing the effect of the serial correlation.  

 

Figure 4.6: Autocorrelation function for the cold days (TX10p) time series at the 

observatory of “airport of Barcelona” obtained by taking 14-year differences (solid 

line refers to the upper and lower limit of the 95 % significance level given by ± 

1.96 (
n

1 ) where n = 47 for the period 1960-2006. 

 



4. RESULTS 
 

167 
 

In the same context, to account for the possible impact of cross-correlation on 

trend assessment, the cumulative probability distribution functions (cdf) of both 

the Monte Carlo simulations and the observed series are plotted in Figure 4.8.  

 

Figure 4.7: Same as Figure 4.6, but for the warmest day (WD) time series at the 

observatory of Amurrio [Alava province].  

 

In this figure the simulated series were compared with the observed series at 

different statistical significance levels. Overall, the results indicate that the 

influence of regional cross-correlation on trend assessment had negligible 

impact. A comparison of the field significance of the observed and resampled 

data confirms that the empirical probability distribution of the observed data was 



4. RESULTS 
 

168 
 

smaller than that of the simulated data at a p-value of 0.025, and larger at a p-

value of 0.975.  

 

Figure 4.8: The empirical cumulative distribution function (cdf) of the significance 

levels of the trends for the resampled and observed data for a selected number 

of indices. Bar lines in the upper panel show percentage of the observed series 

(■) and the resampled series (□) with statistically significant trend at p<0.05. 
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This simply implies that the observed data were statistically significant at p-value 

<0.05. In addition, the total number of series with significant trends at the 95% 

confidence level was generally larger than those obtained from the 1000 Monte 

Carlo runs. This suggests that the observed trends in the extreme temperature 

time series were greater than the number of the trends that were expected to 

occur by chance. The pattern of the obtained trends at the individual 

observatories was thus independent from climate noise and did reflect a global 

trend. Accordingly, it can be concluded that the local trends obtained from the 

original dataset were field significant.  

 

Taking the cross-correlation and the serial correlation results together, it can be 

implied that the trend results are robust and could not be substantially biased by 

either the serial correlation or the cross-correlation.  

 

4.2.2. Spatial and temporal variability of temperature extremes 

This section gives an overview of the trend results for each investigated extreme 

index. Table 4.5 summarizes the results from the application of the Mann-Kendall 

test. Figures 5.9, 5.10, and 5.11 show the spatial patterns of the trend for each 

index in terms of the direction (sign) of change and its statistical significance. 

 

4.2.2.1. Changes in warm extremes 

Table 4.5 summarizes the results of the Mann-Kendall test for warm temperature 

indices. As indicated, there was a general upward tendency in majority of warm 

extremes for both frequency and intensity indices. On average, this increasing 

was more evident for indices of warm nights (TN90p) [96.1% of observatories], 
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warm days (TX90p) [93.8%], and the annual high of maximum temperature 

[91.4%]. However, warm extremes related to night-time showed more significant 

trends compared with day-time indices. For example, tropical nights (TR20) and 

warm nights (TN90p) showed upward trend in 47.7 and 73.4% of observatories 

respectively. In contrast, warmest day (WD), very warm days (TX99p), and 

summer days (SU25) reached the significance level only in 28.9, 39.8, and 

43.8% of observatories, respectively. Given that the warm events mainly occur 

during summer (JJA), this finding demonstrates that the cold tail of temperature 

distribution increased more rapidly than the warm tail during summer periods. 

Table 4.5 also indicates that more observatories (46.1%) showed statistically 

significant trends in the annual high maximum temperature (TXx), relative to the 

annual low maximum temperature (TXn) (32%). This implies more increase in 

maximum temperature in summer than in winter over the period from 1960 to 

2006.   

 

Table 4.6 shows the associations in the trend directions for each pair of warm 

temperature extremes. As presented, most of frequency indices showed a 

relatively high agreement between the signs of the trends. For instance, warm 

days (TX90p) exhibited the same direction of trends of summer days (SU25), 

very warm days (TX99p) and tropical nights (TR20) in 76.6, 74.2 and 61.7% of 

observatories, respectively. The same behavior was confirmed between 

temperature intensity indices (e.g., TXx and WD). These strong associations 

favor for the occurrence of similar spatial patterns.  
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Table 4.5: Results of trend analysis for cold, warm and variability extremes 
(significance was assessed at the 95% level). Abbreviations of the indices 
correspond to those listed in Table 3.2). 
Category  Index  Positive     Negative  

    Sig.  Non‐Sig.  Total (%)     Sig.  Non‐Sig.  Total (%) 

Cold extremes TX10p 0.8  13.3  14.1    19.5 66.4  85.9 

  TN10p 3.1  22.7  25.8    25.8 48.4  74.2 

  FD0 1.6  24.2  25.8    27.3 46.9  74.2 

  ID0 0.0  14.8  14.8    16.4 68.8  85.2 

  CN 18.8 42.2  61.0    2.3  36.7  39.0 

  TN1p 0.8  34.3  35.1    17.2 47.7  64.9 

  TNx 69.5 24.2  93.7    0.8  5.5  6.3 

  TNn 19.5 44.5  64.0    4.7  31.3  36.0 

Warm extremes TX90p 56.3 37.5  93.8    0.0  6.2  6.2 

  TN90p 73.4 22.7  96.1    1.6  2.3  3.9 

  SU25 43.8 42.2  86.0    0.0  14.0  14.0 

  WD 28.9 50  78.9    1.6  19.5  21.1 

  TX99p 39.8 42.2  82.0    1.6  16.4  18.0 

  TR20 47.7 38.3  86.0    1.6  12.5  14.1 

  TXx 46.1 45.3  91.4    0.0  8.6  8.6 

  TXn 32.0 56.3  88.3    0.8  10.9  11.7 

Variability extremes Tsums 46.9 46.9  93.8    0.0  6.2  6.2 

  Intr 12.5 43  55.5    3.1  41.4  44.5 

  DTR 12.5 36.7  49.2    15.6 35.2  50.8 

  Stdev 15.6 57.1  72.7    0.0  27.3  27.3 

   GSL 14.8 52.3  67.1     1.6  31.3  32.9 
 

Figure 4.9 shows the spatial patterns of trends of warm extremes. As illustrated, 

while the majority of observatories in the study domain showed upward tendency, 

considerable regional differences were revealed. The coastal areas along the 

Cantabrian Sea and the Mediterranean Sea mainly exhibited the largest 

warming, whereas much of the continental areas showed insignificant trends. 

This spatial structure of the trends was evident for indices related not only to day-

time warm extremes (e.g., TX90p, WD, SU25, and TX99p), but also to night-time 

warm extremes (e.g., TN90p and TR20). Nevertheless, a pattern of positive 
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trends in night-time extremes was also found over the Ebro valley, which was not 

shown for day-time extremes.  

Table 4.6: Cross-tabulation of the sign of the trends (statistically positive, 
statistically negative, and statistically insignificant) for each pair of warm and 
variability extreme indices 

Index TX90p TN90p SU25 WD TX99p TR20 TXx TXn Tsums Intra Stdev GSL DTR 

TX90p  65.6 76.6 63.3 74.2 61.7 77.3 54.7 71.9 50 46.9 49.2 40.6 

TN90p   53.1 41.4 52.3 66.4 53.9 37.5 59.4 29.7 29.7 32.0 26.6 

SU25    66.4 69.5 52.3 74.2 59.4 71.9 54.7 59.4 60.2 47.7 

WD     85.9 55.5 73.4 57.0 59.4 75.8 68.0 65.6 53.1 

TX99p      51.6 78.1 55.5 65.6 66.4 61.7 59.4 49.2 

TR20       62.5 49.2 53.9 47.7 47.7 51.6 46.9 

TXx        57.0 68.0 57.0 60.2 57.8 46.1 

TXn         53.1 56.3 53.9 71.1 57.0 

Tsums          53.9 56.3 53.9 44.5 

Intra           75 72.7 62.5 

Stdev            71.9 61.7 
GSL             60.2 
DTR                           

 

Figure 4.10 reveals the temporal evolution of warm nights (TN90p) at three 

different observatories. As illustrated, there was a very strong upward trend at 

Bilbao Airport along the Cantabrian Sea (7.3 days decade-1) and Blanes 

observatory on the Mediterranean Sea (6.57 days decade-1). In contrast, the 

mainland observatory of Zaragoza Airport experienced less warming (3.29 days 

decade-1). This gives indications on considerable spatial differences in the 

behavior of warm extremes, with strong continental-coastal gradient.   

 

Figure 4.11 illustrates the regional series of each warm extreme index. In 

agreement with the upward tendency exhibited for most of the indices at the 

station-based level, an increasing trend in the regional series of warm days 

(TX90p), warm nights (TN90p), very warm days (TX99p), and tropical nights 

(TR20) were also expected. 
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Figure 4.9: Spatial distribution of the trends in warm extreme indices over the 

period 1960-2006. 
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Figure 4.10: Temporal evolution and trends in warm nights (TN90p) time series 

at three different observatories: (a) Blanes (Mediterranean station), (b) airport of 

Bilbao (Cantabrian station), and (c) airport of Zaragoza (mainland station). The 

solid line represents the linear regression. The thin black line represents a 7-year 

running mean.  

 

As illustrated, the regional trends suggested positive trend in all indices for 1960-

2006. The strongest trends were mainly accompanied to warm nights (TN90p) 

and warm days (TX90p). The regional trends indicate that warm days (TX90p) 

and warm nights (TN90p) significantly increased by 0.74 (2.7 days decade-1) and 

0.91% (3.3 days decade-1), respectively. In contrast, tropical nights (TR20) and 
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summer days (SU25) showed less warming, with a rate of 0.61 and 2.2 days 

decade-1, respectively. As illustrated in Figure 4.11, most of the warming trends in 

TX90p, TN90p, TX99p, and TR20 occurred during the last two decades; with 

unusual peak in 2003. A gradual increasing trend was also observed for other 

indices from 1960 to 2006 (e.g., TXx and TXn).   

 

4.2.2.2. Changes in cold extremes 

Table 4.5 also shows the trend results of the cold temperature indices. In 

general, it is evident that majority of indices corresponding to frequency of cold 

extremes showed negative trends, though being statistically insignificant in most 

observatories. For instance, 85.9, 85.2 and 74.2 % of observatories exhibited a 

declining tendency in cold days (TX10p), ice days (ID0), cold nights (TN10P), 

and frost days (FD0), respectively. By contrast, the indices corresponding to the 

intensity of cold extremes, including coldest night (CN) and the annual low 

minimum temperature (TNn), showed statistically significant trends in fewer 

number of observatories (61 and 64 % of observatories, respectively).  

 

Among all indices, the annual high minimum temperature (TNx) was the only 

index that indicated a significant trend (p<0.05) across much of the study domain 

(69.5% of observatories). This implies that the trends in the probability 

distribution of the cold tail of temperature were more linked to the trends in the 

intensity of temperature than to the frequency of cold events. As indicated in 

Table 4.5, the number of observatories that experienced downward tendency in 

the day-time cold indices (e.g., TX10p and ID0) was generally larger than those 

of night-time indices (e.g., TN10p, FD0, and CN). Nonetheless, the night-time 
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indices reached the statistical significance level (p<0.05) in more observatories 

compared with day-time indices. 

 
Figure 4.11: Temporal evolution and trends in the regional series of warm 
extreme indices over the period 1960-2006. Bold numbers refer to significant 
trends (p<0.05). Black line represents a 7-year running mean.  
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For instance, cold nights (TN10p) and frost days (FD0) were statistically 

significant in 25.8 and 27.3% of observatories respectively, meanwhile cold days 

(TX10p) and ice days (ID0) reached the confidence level only in 19.5 and 16.4% 

of observatories, respectively. This finding indicates more warming in the cold tail 

of winter temperature than the warm tail over the period from 1960 to 2006.   

 

Table 4.7 presents the association in the sign (direction) of the trend for each pair 

of cold temperature indices. As shown, there was a high level of consistency in 

the temporal evolution of the frequency indices, as revealed by coincidences in 

the sign of the trends. For instance, 84.4% of observatories showed the same 

sign (direction) of changes in cold nights (TN10p) and frost days (FD0). Similarly, 

there was a high level of agreement (82.8% of observatories) between the 

direction of trends in very cold nights (TN1p), and both cold nights (TN10p) and 

cold days (TX10p). This suggests strong consistency between indicators of the 

frequency of cold temperature. This high consistency also implies that variability 

in the frequency of cold extremes had a “global” character over the region, with 

few spatial differences. This can probably suggest that variations in the frequency 

of cold extremes are more attributable to large-scale physical processes more 

than local conditions (e.g., topography). As indicated in Table 4.7, the annual low 

minimum temperature (TNn) showed higher agreement with frequency indices, 

compared with the annual high minimum temperature (TNx). This confirms the 

previous finding on the rapid increase (warming) in the cold tail of temperature 

distribution during the cold season.  
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Table 4.7: Cross-tabulation of the sign of the trends (statistically positive, 
statistically negative, and statistically insignificant) for each pair of cold and 
variability extreme indices 

Index TX10P TN10P FD0 ID0 CN TN1P TNX TNn Tsums Intra Stdev GSL DTR 

TX10P  63.3 64.8 74.2 63.3 71.1 24.2 60.2 43.0 65.6 65.5 68.0 57.0 

TN10P   84.4 64.8 64.1 82.8 25.0 64.1 35.9 62.5 59.4 64.8 66.4 

FD0    67.2 63.3 82.8 23.4 63.3 35.9 58.6 60.2 62.5 64.8 

ID0     66.4 73.4 26.6 64.8 43.8 71.1 68.8 71.9 60.2 

CN      73.4 41.4 82.8 55.5 66.4 68.8 78.1 60.2 

TN1P       25.0 69.5 43.0 68.0 69.5 73.4 70.3 

TNX        37.5 53.1 31.3 35.9 33.6 31.3 

TNn         49.2 62.5 64.8 78.1 54.7 

Tsums          53.9 56.3 53.9 44.5 

Intra           75.0 72.7 62.5 

Stdev            71.9 61.7 

GSL             60.2 

DTR                           
 

Figure 4.12 depicts the spatial distribution of the trends in cold extreme indices. 

In general, there were no marked spatial patterns across the study domain as 

trends were not evident in specific regions. However, there was a slight tendency 

to locate more negative trends in inland observatories for cold days (TX10p), 

frost days (FD0) and very cold nights (TN1p). By contrast, coldest night (CN) and 

the annual low minimum (TNn) revealed a spatial structure, whereby coastal 

observatories eastward showed rapid warming. In the same sense, the annual 

high minimum (TNx) showed a broad and spatially consistent pattern of positive 

trends, although this warming was markedly less evident in the southern and 

south-central portions of the study area.  

 

Figure 4.13 illustrates the temporal evolution and trends in the regional series of 

cold temperature indices. Over the period from 1960 to 2006, the regionally 

weighted occurrence of cold days (TX10p), cold nights (TN10p), very cold nights 
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(TN1p), frost days (FD0) and ice days (ID0) decreased by 1.2, 0.8, 0.11, 1.35 

and 0.19 days decade−1, respectively. Among cold extremes, the annual high 

minimum temperature (TNx) exceptionally showed a statistically significant 

uptrend (0.3ºC decade−1). Overall, the low temporal variability of most of the cold 

indices at the regional scale agreed well with those observed at the individual 

sites.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Same as Figure 4.9, but for cold extreme indices. 
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A visual inspection of the temporal evolution of cold temperature indices clearly 

reveals a multidecadal character (Figure 4.13).  

 

    Figure 4.13: Same as Figure 4.11, but for cold extreme indices. 
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Temporarily, the inter-decadal variability of the cold indices is more apparent 

compared with the long-term changes. This can be expected given that cold 

extremes are mostly retained to winter (DJF), a season in which climate is largely 

driven by large-scale atmospheric flows. These flows vary considerably from year 

to year. As shown in Figure 4.14, a decadal comparison of the frequency of cold 

extremes over the period from 1960 to 2006 indicates that there were more 

colder events during the 1960s and 1970s (e.g., TX10p and ID0). However, they 

had markedly been less frequent during the last two decades. This high decadal 

variability could decrease the ability of the trend test to detect a long-term 

statistically significant linear trend over the whole period. 

 

 

Figure 4.14: Decadal variation of a set of selected cold temperature frequency 

indices, averaged for the whole study domain. The annual number of events was 

standardized by their mean and standard deviation to account for the varying 

scale units of the indices (i.e., ºC and days).  
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4.2.2.3. Changes in variability extremes 

A summary of the Mann-Kendall results regarding trends in variability indices is 

also given in Table 4.5. In general, no trends were evident in most of temperature 

variability indices (p<0.05). Nevertheless, most of the observatories exhibited a 

clear upward tendency in indices of temperature sums (Tsums) (93.8%), the 

standard deviation of mean temperature (Stdev) (72.7%), and the growing 

season length (GSL) (67.1%). On the other hand, the tendency in the diurnal 

temperature range (DTR) was mixed between positive (49.2%) and negative 

(50.8%). Among all indices, temperature sums (Tsums) was the only indicator 

which showed a statistically significant trend (p<0.05) in almost half of the 

observatories (46.9%). Tables 5.6 and 5.7 summarize the association in trend 

significance between variability indices on the one hand and warm and cold 

extremes on the other. A comparison between Tables 5.6 and 5.7 suggests that 

variability indices showed higher degree of agreement with cold extremes than 

with warm extremes. For instance, the signs of the trends in the interannual 

extreme temperature range (INTR) matched those of ice days (ID0), very cold 

nights (TN1p), coldest night (CN), cold days (TX10p) and cold nights (TN10p) in 

71.1, 68, 66.4, 65.5 and 62.5% of observatories, respectively. Contrarily, it 

coincided with the trends of warm nights (TN90p), tropical nights (TR20) and 

warm days (TX90p) only in 29.7, 47.7 and 50% of observatories, respectively. 

These results suggest that the behavior of variability indices in the study area is 

associated more with changes in the low tail of temperature distribution than in 

the warm tail. As expected, temperature sums (Tsums) exhibited similar temporal 

patterns to warm extremes including: warm days (TX90p) and summer days 
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(SU25) (71.9%), the annual high maximum temperature (TXx) (68%), and very 

warm days (TX99p) (65.6%).  

 

Figure 4.15 illustrates the spatial distribution of variability indices. Overall, the 

indices were spatially independent, suggesting a very low spatial consistency 

across the study area. However, some local differences can also be highlighted. 

For instance, most of the significant upward trends in the growing season length 

(GSL) tended to be located in the northeastern portions (Catalonia) and at the 

highly elevated areas (e.g., the Pyrenees). Also, mainland observatories showed 

more significant trends in the diurnal temperature range (DTR) compared with 

coastal regions.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 

      Figure 4.15: Same as Figure 4.9, but for variability indices. 
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Figure 4.16 shows the temporal evolution and trends in the regional series of 

variability indices. All indices had no trends at the regional scale (p<0.05). For 

instance, the regional series of the diurnal temperature range (DTR) experienced 

a very weak warming (0.02ºC decade-1). Also, the length of the growing season 

(GSL) showed insignificant increase by 0.33 days decade-1 from 1960 to 2006. 

The only exception corresponded to temperature sums (Tsums), which indicated 

a clear statistically significant upward trend (118.8ºC decade−1). In general, the 

overall insignificant trend observed for most of the regional series came in 

agreement with the results obtained for the individual observatories.  

 

     Figure 4.16: Same as Figure 4.11, but for variability indices. 
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4.3. Spatial regionalization of extreme events. 

4.3.1. Regionalization of moderate extreme events. 

In this section, the results on the statistical procedure used for classifying daily 

summer temperature extremes in the study domain into homogenous regions are 

presented. The evaluation of this scheme is also outlined. 

4.3.1.1. PCA results 

Kaiser statistic supports the use of PCA to reduce data dimensionality when the 

KMO value is greater than 0.5 (Norusis, 1988). In this work, the overall KMO 

statistic among the input variables reached 0.81, with a very high significance 

level (99 %). This strongly suggested a high level of dependence among the 

input variables (indices). For this reason, it was necessary to use the PCA to 

reduce dimensions of the input data. Following the PCA results, the Scree plot 

showed that the magnitude of the eigenvalues dropped sharply after the third 

principal component (Figure 4.17). In the same sense, the statistical results of the 

Velicer test indicate a possible cutoff point at 3 factors that represents the lowest 

squared and 4th power partial correlations. Accordingly, three significant principal 

components were retained. Those three PCs explained together 84.32 % of the 

total explained variance (EV) in the original data. Due to the small-explained 

variance (15.68 %) of the high-order modes and their small differences, they 

were not considered in this study. This amount of variance can be originated to 

local factors that are not physically meaningful and thereby they are difficult to 

interpret.  

The loadings of the PC1 (29.46 % of the EV) revealed aspects on the spatial 

variability of the night-time summer temperature (e.g., Min_summer, TNn, 
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TN90p, and TNx). On the other hand, the PC2 (27.43 % of the EV) incorporated 

those variables that were mostly correlated with the day-time summer 

temperature (e.g., Max_summer, TXx, TX90p, SU25 and WD). The first 

component was therefore seen as a measure of “minimum” summer temperature 

extremes; meanwhile the second component was interpreted as a measure of 

“maximum” summer temperature extremes. The PC3 (27.34 % of the EV) did not 

distinctly explain specific pattern since it combined effects of both maximum and 

minimum temperature (e.g., DTR and Tsums). 

 

Figure 4.17: Results of diagnostic statistics for determination of the optimum 

number of PCs. including Scree plot (left), and Velicer minimum average partial 

test (right). 

 

4.3.1.2. Clustering results: 

In order to group objectively those observatories presenting a similar temporal 

evolution of summertime extremes, the dominant distribution patterns were 
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identified by applying the cluster analysis to the retained factor scores. As 

illustrated in Figure 4.18, the results of both the agglomeration coefficient and the 

Wilks´ Lambda statistic were grouped together, suggesting 4 solutions as the 

optimum number of clusters. Thus, the final decision was made to partition the 

clusters at 4 groups. Using more than 4 clusters may not be useful because no 

meaningful spatial patterns can be explored. In other words, clusters beyond 

these leading four sub-regions were expected to reflect small-scale patterns, 

which are often attributable to local factors that are difficult to interpret. In 

topographically complicated areas, differences in land surface characteristics 

such as vegetation canopy and surface albedo can induce local changes in 

surface heat exchanges with the atmosphere and in turn cause local 

disturbances in the dominant patterns of extreme events. Overall, the resulting 

number of clusters represented the range of climatological conditions, which can 

conventionally be accepted over the region. In other words, the spatial modes 

suggested by the cluster analysis are thought of as representing the main modes 

of the regional climate regimes according to the previous knowledge (i.e., 

continental, Mediterranean, oceanic and mountainous). Therefore, the four sub-

regions that exhibited similar characteristics of summer temperature extremes 

were identified. Hereafter, those sub-regions are referred to as: CL1, CL2, CL3 

and CL4.  

In order to evaluate homogeneity of the established clusters, the Silhouette 

coefficient was applied. The results showed that the clustering partitions were not 

completely homogenous. According to this coefficient, almost 16 (12.5%) 
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observatories were assigned to “inappropriate” clusters. Figure 4.19 compares 

the Silhouette width for the defined clusters before and after validation.  

 

Figure 4.18: Plots of the agglomeration coefficient of squared Euclidean distance 

(left), and the Wilk´s Lambda statistic (right) as diagnostic tests to define the 

number of clusters. 

 
As illustrated, some observatories belonging to CL2, CL3 and CL4 had negative 

Silhouette values, which indicate that the intracluster distance was higher than 

intercluster distance. Figure 4.19 also indicates how the Silhouette width 

coefficient improved after validating the clustering, specifically for CL1 and CL4. 

All coefficient values became positive and higher than those before validation. In 

particular, the average of the coefficient increased from 0.54 (0.23) to 0.62 (0.39) 

for CL1 (CL4). This can be seen as an indicator of higher between-group 

variation and lower within-group variation. In other words, the observatories 

belonging to each cluster were well-separated from other clusters and 

correspondingly compacted better within their clusters. This finding was also 

confirmed by ANOVA results for the four clusters (groups). The results indicated 
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that F values increased after validation. For instance, for CL2, the F ratio 

increased from 45.16 to 49.46 as variations between groups increased from 

66.31 to 69.18, while the within-group variations decreased from 60.69 to 57.82. 

 

Figure 4.19: Silhouette width for the defined clusters before and after clustering 
validation.  

 

Figure 4.20 shows the spatial distribution of the observatories corresponding to 

the delineated clusters. As noted, the number of stations varied considerably 

among clusters. CL2 represented the densest cluster (45.3% of observatories) 

with broad spatial distribution, followed by CL1 (25%), CL3 (21.1%), and CL4 

(8.6%). This suggests remarkable geographic and climatic contrasts between the 

defined sub-regions. The delineated sub-regions had a geographical feature, with 

relatively clear physiographic boundaries. Presumably, the defined clusters 

showed marked distinction between inland and coastland regions as well as 

lowlands and highly elevated areas. In few cases, there is a low consistency 
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among nearby observatories. This can probably be due to the joint effect of local 

topography and synoptic conditions.  

 

Figure 4.20: Spatial distribution of the observatories delineated to the four 

homogenous sub-regions following the cluster validation results. 

 

As illustrated in Figure 4.21, it can be clearly seen that elevation and distance to 

the sea significantly contributed to the spatial variability of summer temperature 

extremes in the study domain. Spatial variations of summertime extremes 

matched well with changes in elevation. This was particularly the case for 

observatories belonging to CL3 and CL4 whose mean elevation was 773.1 and 

1101.4 m, respectively. On the other hand, CL1 suggested a joint effect of 

topography and land-water interaction. In addition to their proximity to the sea 
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with average distance of approximately 14.8 km, the CL1 observatories generally 

located at lowlands with mean elevation of 174.9 m.  

 

Figure 4.21: Boxplots showing intracluster differences as a function of altitude 

(left panel) and distance to surrounding water bodies (right panel). The median, 

10th, 25th, 75th and the 90th percentiles as vertical boxes are plotted with errors 

bar.  

 

With respect to continentality effects, both CL3 and CL4 exhibited clear 

continental influences (average distance to the sea equals 143.3 and 122.6 km, 

respectively), compared with the less continental CL1. This finding can be clearly 

seen in Figure 4.21, where the orientation of the clusters was likely controlled by 

continentality and orography. For instance, CL1 was generally meridian along the 

Mediterranean coast, whereas CL4 had an east-west orientation along the 

Pyrenees Mountains. 
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Spatially, CL1 was mainly situated along the coastline of the Mediterranean Sea 

capturing possible maritime influences of the Mediterranean, whereas CL2 was 

located close to the Atlantic Ocean and penetrated eastward through the Ebro 

valley in central portions. This sub-region mostly included leeward sites of the 

main mountain regimes (i.e., the Pyrenees system in the north and the 

Cantabrian system in the west). On the other hand, CL3 corresponded to stations 

located mainly in the moderately elevated areas southward and westward, 

corresponding to the foothills of the Iberian mountains. This partition (group) of 

observatories was characterized by a relatively low maximum and minimum 

temperature, as a consequence of the local orographic effects. A cluster 

encompassing the Pyrenees Mountains, together with some scattered high 

elevation sites in the Iberian system, was also distinctly identified in CL4.  

4.3.1.3. Temporal evolution of summertime extreme indices  

Table 4.8 summarizes the linear trends in the regionally weighted time series of 

summertime temperature extremes for the established four sub-regions over the 

period from 1960 to 2006. In general, the overall tendency in temperature 

extremes was clearly toward warming for all sub-regions. However, this warming 

had a spatial component. Figure 4.22 illustrates the temporal evolution of a set of 

the regionally weighted time series of temperature extremes, selected as 

indicative examples. As presented, the strongest signals were found in the most 

elevated areas (CL4) and in the Mediterranean (CL1) for both day-time and night-

time temperature indices. From 1960 to 2006, warmest day (WD), for instance, 

significantly increased at a rate of 0.71ºC and 0.44ºC decade-1 for CL1 and CL4, 

respectively. The percentage of warm nights (TN90p) per summer also showed 



4. RESULTS 
 

193 
 

uptrend, with an increase of 3.88 and 2.86% per decade for CL1 and CL4, 

respectively. This suggests that orography and the Mediterranean maritime 

influences play a key role in the temporal evolution of summer extremes in NE 

Spain.  

Table 4.8: Trends of extreme temperature indices for the defined four sub-
regions, suggested by the cluster analysis results. Only bold numbers are 
statistically significant at the 95% level following the Mann-Kendall results).                                  
Index CL1 CL2 CL3 CL4 Unit per decade 

Max_summer 0.56 0.24 0.47 0.71 ⁰C 
TXn 0.55 0.34 0.66 0.85 ⁰C 
TXx 0.62 0.18 0.34 0.59 ⁰C 
SU25 2.77 1.06 2.42 3.63 days 
TX90P 4.11 0.89 1.75 2.61 days 
WD 0.71 0.09 0.34 0.44 ⁰C 

Min_summer 0.44 0.46 0.11 0.60 ⁰C 
TN90P 3.88 2.83 0.40 2.86 days 
TNn 0.44 0.48 0.16 0.64 ⁰C 
TNx 0.52 0.48 0.09 0.60 ⁰C 

Spell 1.29 0.24 0.41 0.54 days 
Tsums 51.65 24.76 53.11 125.02 ⁰C 
DTR 0.12 -0.22 0.36 0.11 ⁰C 

INTR 0.45 -0.29 0.35 -0.11 ⁰C 
 

On the other hand, CL2 (mainly located in the Ebro valley and along the 

Cantabrian sea) showed statistically significant warming trend only for night-time 

extremes (e.g., TNn, TN10p and TNx), whilst trends in day-time extremes were 

generally weaker and insignificant at the 95% level. Contrarily, day-time extremes 

exhibited a remarkable significant trend in CL3 (denoted to moderately elevated 

areas), whereas night-time extremes had no trend in this sub-region.  

More importantly, the results confirm that high mountain areas (CL4) responded 

more rapidly to the global warming relative to mainland (CL2) and moderately 
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elevated areas (CL3). This can be clearly seen in the trends of the indices of 

Max_summer (0.71ºC decade-1), TXn (0.85ºC decade-1), TXx (0.59ºC decade-1), 

SU25 (3.63 decade-1), Min_summer (0.60ºC decade-1), TNn (0.64ºC decade-1) 

and TNx (0.60ºC decade-1). and Tsums (125.02ºC decade-1). These results can 

be of particular importance in the context of the possible impacts of the global 

climatic change on behavior of temperature extremes in areas of complex 

topography.  

A comparison between the scores of the observatories belonging to each cluster, 

as previously been derived from PCA, is provided in Figure. 5.23. The loading 

factors corresponding to the three defined PC3 after varimax rotation coincided 

with the final clustering membership after validation. Both distributions had a 

spatial structure. As illustrated, CL1 (the Mediterranean) was bidirectional along 

PC1 confirming large temporal variability of day-time extremes. Contrarily, it had 

only positive loadings along the PC2 axis, suggesting less variability of night-time 

extremes. This probably suggests rapid increase in mean maximum temperature 

and the corresponding daytime extreme events near to the Mediterranean coast. 

This feature came in direct contrast with CL2 observatories (mainland low areas), 

which mostly showed opposite (negative) scores on the daytime extremes factor 

(PC2). This simply suggests rapid (weak) warming in daytime (nighttime) 

extremes in the Mediterranean (mainland) observatories and vice versa. This 

result coincided well with the results obtained for the mean thermal conditions in 

the region, which suggested a continental-coastal gradient. In the same manner, 

the scores in highly elevated areas (CL4; mean altitude=1101.4 m) were not 

consistent with those of lowlands (CL2; mean altitude=174.9 m). As illustrated, 
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CL4 (CL2) observatories had positive (negative) scores along the PC3 (PC1) and 

vice versa.  

 

Figure 4.22: Temporal evolution of a set of temperature indices time series from 

1960 to 2006. Max_summer (TX90p) represents an example of intensity 

(frequency) index of day-time temperature, while Min_summer (TN90p) 

represents an example of intensity (frequency) index of night-time temperature. 

INTR and DTR represent indices of temperature variability. Dashed line refers to 

a 9-year low Gaussian filter.  
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This also suggests a relatively contrasted behavior of extreme events between 

high and low elevated areas. Given that the linear trends along the CL2 and CL4 

were generally positive, this contrast can mainly be seen in the amount 

(magnitude) change rather than the direction (sign). Taken together, it can be 

clearly implied that the defined sub-regions have climatic and topographic 

meanings. 

 

Figure 4.23: Scatter plots of the scores of the observatories delineated to the 

four sub-regions distributed along PC1, PC2 and PC3 axes. A, B, C, D 

corresponds to CL1, CL2, CL3 and CL4, respectively. 
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4.3.2. Regionalization of anomalously severe extreme events. 

A PCA was carried out to the anomalies of very warm days (VWD: total days 

292) and very cold nights (VCN: total nights 192) recorded in the period 1960-

2006 in order to explore the main spatial modes of their variability across the 

study domain. For each observatory, the VWD (VCN) was defined as days above 

(below) the 99th (1st) percentiles of daily maximum (minimum) temperature 

distribution calculated for summer (winter) season. Figure 4.24 (upper panel) 

shows the leading four modes of wintertime VCN variability. These modes 

explained together 68.6% of the VCN variance. The first and second modes 

explained majority of variance with 30.2 and 24.7%, respectively. Only those 

factors that explained more than 5% of the total variance were mapped.   

The spatial modes corresponding to these factors were physically meaningful 

and thereby they can be interpreted. Figure 4.24 (lower panel) presents the 

spatial distribution of the retained factors for VWD. The results also suggest four 

leading rotated PCs that explain together 79.9% of the total variance, with 39.4 

and 26.7% for the first and second modes, respectively.  

 

A quick comparison between the spatial modes of VCN and VWD reveals some 

interesting findings. First, the effects of small-scale features on the occurrence of 

the anomalous heat days were more highlighted during winter season 

(unexplained variance equaled 31.4%) than in summer (unexplained variance 

equaled 20.1%). This can be seen in the context that minimum temperature is 

more likely to be influenced by very local conditions (e.g., local topography and 

land use), relative to maximum temperature. These local features can further 
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influence the advection or/and vertical motions of atmospheric flows that explain 

the occurrence of VCN. These conditions can significantly affect low temperature 

distribution through sensible and latent heat fluxes near to the surface. 

 

 

Figure 4.24: Spatial patterns of the scores of the leading principal components 

for VCN (upper) and VWD (lower). The legend indicates the regression 

coefficients of the temperatures onto the different PCs.  

 

Another important finding is that the sub-regional spatial patterns of VCN were 

largely controlled by topography. Contrarily, land-sea interactions exerted strong 

influence on the spatial structure of VWD, with more severe extreme events in 

continental areas (Figure 4.24). One clear example is the first mode of VCN 

which revealed more cold extreme events over elevated areas northwest, 

whereas lower standardized temperature in the second mode is mainly assigned 

to elevated areas in the north (Pyrenees) and the south (the Iberian system), 

compared with lowlands. On the other hand, the first and second modes of VWD 

suggest stronger influence of continentality against the Atlantic (PC1) and the 
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Mediterranean (PC2) configurations. For PC3 and PC4, the combined effect of 

elevation and land-sea interactions can be seen.  

 

4.4.  Attribution of driving forces and mechanisms 

Spatial and temporal variability of temperature are often described as driven by the 

joint effect of both the large-scale atmospheric circulation and small-scale physical 

processes (e.g., convective processes, soil moisture, topography, land use).  

 

4.4.1. Driving forces of variability of seasonal temperature means 

         4.4.1.1. Teleconnections 

To assess the possible influence of large-scale dynamics on temperature 

variations in the study domain, correlation between standardized anomalies of 

temperature and a set of teleconnection indices was computed. These indices 

summarize atmospheric circulation modes in the northern hemisphere. The 

association was assessed at seasonal and annual timescales for the 1960-2006 

interval. Figure 4.25 summarizes correlation between the general atmospheric 

circulation patterns and seasonal and annual temperature time series. In general, 

the results suggested a predominant influence of the EA, SCA, and WeMO 

patterns on interannual variability of temperature. Other atmospheric circulation 

patterns (i.e., the NAO, EAWR, and MO) did not show significant correlation with 

temperature variations. Exclusively, the NAO correlated positively and 

significantly with maximum temperature during wintertime. In contrast to other 

thermal variables, the correlation between the atmospheric circulation modes and 

DTR appeared to be weak at both seasonal and annual timescales. DTR only 
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showed statistically significant correlation with the SCA pattern during winter, 

spring, and autumn.  

A visual inspection in Figure 4.25 clearly indicates a statistically significant 

positive correlation between the EA and temperature in all seasons. This 

relationship was found much stronger during winter, suggesting that the EA 

pattern was the dominant mode responsible for interannual variability of 

temperature during this season. The average Pearson correlation coefficient (r) 

between the EA high mode and winter maximum (minimum) temperatures was 

0.51(0.57). The only exception corresponded to maximum temperature during 

summer, which showed insignificant correlation with the positive EA mode in 

majority of observatories.  As illustrated in Figure 4.25, apart from winter, most 

correlations with the SCA and the WeMO patterns were found negative and 

statistically significant (p<0.05). Exceptionally, the association of minimum 

temperature with the WeMO and SCA patterns did not reach the statistical 

significance level during winter and autumn. It seems that the influence of these 

modes on temperature variations was only significant during spring and summer.  

 

Figure 4.25 also informs that the circulation modes interacted differently with 

temperature in the study domain as the correlations for majority of modes were 

mixed between positive and negative. This probably informs that there were 

spatial differences in the response of seasonal temperature to these modes of 

atmospheric circulation. For this reason, the spatial structure of the relationship 

between seasonal temperature and atmospheric patterns was assessed.  
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Figure 4.25: Scatter plots of the Pearson correlation coefficients (r) calculated 

between the detrended anomalies of seasonal and annual maximum, minimum, 

and mean temperatures and DTR and the main large-scale atmospheric 

circulation. Dotted lines show the upper and lower limits of the 95% significance 

level. The median, 10th, 25th, 75th and the 90th percentiles as vertical boxes are 

plotted with errors bar.  
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However, given that most thermal variables (i.e., maximum, minimum and mean) 

showed more or less similar connections with atmospheric modes in terms of the 

correlation sign (direction), as revealed in Figure 4.25, the intention was only 

confined to explore the dependency between the leading atmospheric circulation 

modes in the region and mean temperature. The spatial structure of the 

relationship between seasonal mean temperature and atmospheric patterns is 

presented in Figures from 5.26 to 5.29.    

 

Figure 4.26 depicts the spatial patterns summarizing the response of winter 

mean temperature to atmospheric circulation. As illustrated, the connection 

between the EA pattern and mean temperature showed a broad and consistent 

spatial pattern, suggesting a large-scale signature of this pattern over the study 

domain. Nonetheless, this relationship was apparently stronger close to the 

Cantabrian Sea and in the northeastern portions of the study domain. By 

contrast, the influence of the MO, NAO, and SCA patterns on wintertime 

temperature means reached the significance threshold only at highly elevated 

areas in the Pyrenees and west of the Iberian system. As depicted, the EAWR 

and WeMO influences on mean temperature were markedly weaker in complex 

terrain areas during winter months. Also, the dependency between mean 

temperature and the EAWR and WeMO modes showed a NW-SE gradient. This 

relationship was markedly weaker to the west, particularly along the Cantabrian 

coastland, and to the northeast (Catalonia). On the other hand, the NAO 

influence on mean temperature variability seemed to have a clear south-north 

gradient.  
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Figure 4.26: Spatial distribution of Pearson correlation coefficients between 
standardized anomalies of winter mean temperature and the general atmospheric 
circulation. In some cases, the scale of the maps was set to improve their 
readability. However, the scale of the Pearson coefficient remained constant for 
all maps. Correlation coefficients above 0.28 were statistically significant at the 
95% level.  
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Figure 4.27 indicates the spatial distribution of Pearson correlation coefficient 

between spring mean temperature and atmospheric patterns. The EA, SCA and 

WeMO modes were also the main drivers of mean temperature variability. 

Although the EA pattern had a broad spatial pattern across the study domain, the 

WeMO and SCA modes experienced a south-north gradient. In particular, the 

influence of these modes on springtime mean temperature was more pronounced 

northward. Also, areas close to the Mediterranean Sea indicated higher 

correlation with the SCA and MO, while they showed less and statistically 

insignificant correlation with the WeMO.   

 

As illustrated in Figure 4.28, the influence of the EA pattern on summer mean 

temperature was higher close to the Mediterranean Sea, particularly in Catalonia. 

Similarly, the Pearson correlation between summer mean temperature and the 

SCA mode was less evident close to the Cantabrian Sea, while it increased 

eastward and southward. The picture summarizing the role of the EAWR and MO 

modes only showed significant correlation in the Pyrenees and along western 

parts of the Iberian system. For the NAO, the spatial patterns were almost 

uniform with less spatial differences. Similar to spring, the WeMO experienced a 

south-north gradient, with more intense association in areas close to the 

Cantabrian Sea northwest. 

 

In comparison to other seasons, the spatial contrasts in the relationships 

between autumn mean temperature and the general circulation patterns were 

less apparent (Figure 4.29). Overall, the EAWR, MO, and NAO patterns showed 

a uniform pattern, with no marked differences.  
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 Figure 4.27: Same as Figure 4.26, but for spring. 
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Figure 4.28: Same as Figure 4.26, but for summer. 
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Conversely, the relationship between the EA pattern and mean temperature was 

higher close to the Mediterranean Sea and the Cantabrian Sea, whereas it 

became weaker in mainland areas.  

 

Figure 4.29: Same as Figure 4.26, but for autumn. 
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Interestingly, the connection of autumn mean temperature with the SCA showed 

a clear dependency with elevation. In particular, the correlation was stronger at 

highly elevated localities in the north (the Pyrenees) and to the south and the 

west (the Iberian system); meanwhile it was less apparent in coastal and inland 

areas of low elevation.  

 

To explain in detail the SLP configurations beyond the observed spatial structure 

of the dependency between temperature and teleconnection indices, features of 

anomalous seal level pressure (SLP) corresponding to the key atmospheric 

circulation (herein, the EA+, WeMO- and SCA-) were presented by means of the 

climate composite maps. These physical processes can be seen as a good 

indicator of air advection through land-sea interactions. The results on the 

configuration of mean SLP anomalies associated with each dominant pattern are 

presented in Figure 4.30. The major centers of atmospheric action and their 

seasonal variations in terms of both strength and position are also described. 

 

In winter, the interannual variability of temperature was mainly dependent on the 

positive EA. As illustrated in Figure 4.30, the positive EA is primarily linked to a 

north (low)-south (high) dipole of pressure anomalies, with a vast anticyclonic 

center over North Africa and the Mediterranean and a negative anomaly across 

northwestern Europe and west of the British Isles. This configuration would tend 

to bring anomalous S and SW warm air to the Iberian Peninsula, causing higher 

temperatures. As the study area is located downstream from the Atlantic Ocean, 

the Atlantic air advections bring relatively warmer air over the study domain.  
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Figure 4.30: (a) Average sea level pressure (SLP) anomalies (hPa) over the 
period 1960-2006 corresponding to the most significant atmospheric patterns. 
The anomalies were derived from the daily NCEP/NCAR reanalysis data 
provided by the NOAA/OAR/ESRL PSD (http://www.nws.noaa.gov) for the base 
period 1960-2006.  



4. RESULTS 
 

210 
 

While the positive phase of the NAO significantly correlated with maximum 

temperature during winter, it merely correlated with mean temperature in terrain 

complex areas in the north and the west (see Figure 4.26). Overall, as depicted 

in Figure 4.30, the positive phase of the NAO is largely associated with an 

increase in zonal circulation over Western Europe. This feature was clearly 

evident where the isobars had zonal direction.  

Figure 4.30 also indicates that the positive EA during springtime has two main 

anomaly centers, located over the Sahara and NW Europe. Pressure anomalies 

during this mode reveal that the study area is particularly influenced by dry and 

warm air flows originating from the positive pressure anomaly over North Africa 

and moving toward the Iberian Peninsula. On the other hand, the anomalous 

pressure associated with the negative SCA during spring is mainly characterized 

by the zonal circulation, where the Atlantic blocks move eastward to cover broad 

areas of the Iberian Peninsula and Western Europe. This configuration often 

corresponds to very weak Icelandic lows, enhancing the advection of the 

westerlies from the Atlantic Ocean. The westerly and southwesterly flows affect 

much of the western areas of the study domain, explaining the stronger 

correlation found in these areas. In the years of negative WeMO, a distinct dipole 

in SLP anomaly is observable, with an anticyclonic anomaly placed over northern 

Europe and a negative anomaly located throughout North Africa and the Azores. 

Throughout this configuration, the Azores High moves northward covering broad 

areas of the British Isles and northwestern Europe. In short, spring is mainly 

characterized by the northerly displacement of the subtropical high corresponding 

to the positive EA. This positive anomaly is located over vast areas of the 
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western Mediterranean basin and North Africa, bringing southerly and 

southeasterly warm winds over the Iberian Peninsula. These easterly and 

southerly anomalous flows are associated with higher temperature, mostly 

highlighted along the Mediterranean coast and the Pyrenees. Owing to the 

orographic barriers, the influence of these atmospheric flows is less apparent 

over inland areas. On the other hand, the main feature associated with the 

negative modes of SCA and WeMO is the presence of the European/Atlantic 

blockings over large area of central and Western Europe, favoring for above-

normal temperature. 

In summer, the interannual variability of temperature was largely linked to the 

negative modes of the SCA and WeMO, and the positive mode of the EA. As 

depicted in Figure 4.30, summers of low SCA are characterized by a dominance 

of a high SLP anomaly over the Iberian Peninsula, central Europe, and North 

Africa. At the same time, two dipoles of negative anomaly appear on Scandinavia 

and western of the British Isles. This configuration reinforces the easterly 

advection of warm air flow from the Mediterranean Sea. This water body acts as 

a source of humidity for warm air masses originating over the Sahara, suggesting 

warmer conditions. In the study domain, these easterly and southerly flows cause 

above-normal temperature; the most affected regions being the eastern and 

southern portions. On the other hand, the WeMO negative mode is associated 

with a high pressure anomaly over the northeastern Atlantic. In accordance, an 

opposite dipole prevails in North Africa. This configuration increases the 

advection of the Westerlies, transferring warm oceanic air over the study domain. 

However, due to orographic effects, the influence of these warm flows is 
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constrained to the northwestern parts of the region, with less effect in central 

areas. Also, this study suggested that summer mean temperature correlated 

positively with the EA mode, although this dependency was markedly weaker and 

less significant, as compared to the negative phases of the SCA and WeMO. 

Figure 4.30 also illustrates SLP configurations corresponding to summers of 

positive EA values. As illustrated, the positive mode of the EA during summer is 

well linked to two main centers of action. The first is the high pressure anomaly 

over the Mediterranean basin and North Africa. The latter is the low pressure 

anomaly over Western Europe and the northern Atlantic. The subtropical high 

migrates northward to be located over North Africa and the Mediterranean Sea. 

Also, the low Icelandic is placed eastward to be located over the British Isles and 

parts of Scandinavia. This configuration supports strong southerly and 

southwesterly advections, which transport tropical moisture from the 

Mediterranean toward the study domain, particularly southern and eastern areas.  

During autumn, the EA positive mode is characterized by a clear pole with low 

anomalous pressure located in the northwestern Europe and another dipole of 

opposite sign placed over the Mediterranean Sea and the Sahara. In particular, 

the high SLP migrates northward to be located over North Africa and the 

Mediterranean Sea, whereas the low Icelandic is placed eastward to be 

positioned over the British Isles and parts of Scandinavia (approximately between 

55º and 65ºN). As a result, southerly and southwesterly flows affect the study 

domain. A similar mechanism is associated with the negative SCA configuration. 

However, throughout the negative WeMO mode, a branch of the Azores High 

extends northward to be placed over the Iberian Peninsula and vast areas of the 
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Western Europe, which acts as a block for the passage of the Icelandic cyclones 

eastward. The SLP anomalies corresponding to the negative WeMO imply 

northerly flows, enforcing the advection of cold air from northern Europe to the 

region of interest. This configuration can likely be responsible for the observed 

temperature downtrend, particularly in northern portions.  

In summary, it seems that temperature variations over the study domain are 

mainly linked to the position of the centers of SLP positive (negative) anomaly 

over the mid Atlantic and the western Mediterranean. This position varies 

significantly from one season to another and among the leading atmospheric 

circulations, as a consequence of the displacement of the Azores High and the 

Icelandic lows. 

4.4.1.2. Land-atmosphere coupling forces  

Land-atmosphere coupling forces (e.g., soil moisture and cloudiness) can exert a 

strong control on temperature variations over the study domain. In some seasons 

(e.g., summer), temperature variations cannot only be driven by atmospheric 

circulation, particularly at the regional scale. Other forces such as changes in 

land surface, including soil moisture, can explain much of this variability.  

 

4.4.1.2.1. Soil moisture 

The relationship between changes in soil moisture and temperature variability in 

the study domain was explored through correlation analysis. The results are 

summarized in Table 4.9. As presented, there were clear seasonal differences in 

the response of temperature to soil moisture feedback. Notably, the influence of 

soil moisture on temperature variations appeared to be stronger during spring 
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and summer, the seasons which also exhibited the highest warming rates in the 

region from 1960 to 2006. Contrarily, the strength of this relationship degraded 

markedly during winter and autumn. During spring, the Pearson correlation 

coefficient varied from -0.38 (minimum temperature) to -0.7 (maximum 

temperature), while it lied between -0.53 (minimum temperature) and -0.57 

(maximum temperature). Most of these coefficients were found statistically 

significant at p<0.01.  

Table 4.9: Pearson correlation coefficients of seasonal maximum, minimum and 
mean temperatures with cloud cover and soil moisture over the study domain. 
Bold numbers indicate statistically significant correlation at p<0.05. The 
correlation was calculated between regional time series calculated for the whole 
area for each parameter. 

Season Variable Soil moisture Cloud cover 
Winter maximum -0.13 0.09 

minimum 0.27 0.60 
mean 0.09 0.40 

Spring maximum -0.7 -0.60 
minimum -0.38 -0.28 
mean -0.62 -0.48 

Summer maximum -0.57 -0.60 
minimum -0.53 -0.40 
mean -0.66 -0.50 

Autumn maximum -0.27 -0.21 
minimum -0.02 0.10 

  mean -0.17 -0.08 
 

As shown in Table 4.9, the strongest correlation between temperature variation 

and soil moisture was found during spring (r = -0.7 with maximum temperature). 

This association is illustrated in Figure 4.31, which notably indicates that years of 

anomalous warmer temperature during spring were generally characterized by a 

significant deficit in soil moisture. This can be clearly seen in two periods: from 

mid of the 1960s to 1980 and during the last two decades.  
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For summertime, the results also suggest that standardized anomalies in soil 

moisture were negatively correlated with anomalous temperature (p < 0.01). 

Nevertheless, this correlation was stronger for maximum and mean temperatures 

(-0.57) than for minimum temperature (-0.53). Table 4.9 also informs that the 

connection between temperature and soil moisture was stronger during daytime 

relative to nighttime. The only exception was found during winter as minimum 

temperature correlated better with soil moisture (0.27) than maximum 

temperature (-0.13). During wintertime, this feedback was found positive with 

minimum temperature, which came in contrast with other seasons.  

 

 

Figure 4.31: The negative feedback between soil moisture and maximum 

temperature during spring season from 1960 to 2006. 
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4.4.1.2.2. Cloudiness 

Cloudiness is another key factor influencing the Earth’s radiation budget. The 

strong role of the seasonal cycle of insolation suggests that climate system is 

likely sensitive to changes in cloudiness, particularly during summer. The 

dependency between cloud cover and temperature variations was investigated at 

a seasonal scale for maximum, minimum and mean temperatures in the region. A 

summary of the results is also given in Table 4.9. As presented, it seems that 

cloudiness had a significant influence on temperature variations during winter, 

spring and summer. Temperature only showed weaker dependency with 

cloudiness during autumn season, with correlation coefficients ranging from -0.08 

to -0.21. The results suggest positive (negative) feedback during winter (spring 

and summer). As indicated, it seems that cloudiness is a key driver of 

temperature variability during summer. The feedback was found negative for 

maximum (-0.6), minimum (-0.43) and mean (-0.54) temperatures. This 

relationship was statistically significant at high level of probability (99%), which 

suggests strong causal links between the amount of cloudiness and summer 

temperature over the study domain. Similarly, a strong positive feedback 

between cloudiness and minimum temperature was found during winter, with r = 

0.6. The well-fitted temporal evolution of both winter minimum temperature and 

cloudiness, as revealed from Figure 4.32, clearly implies that a considerable 

portion of temperature variations during wintertime can be explained by 

cloudiness feedback. 

 

Taken together, two main findings can be inferred in this context. First, for both 

cloud cover and soil moisture, the results suggest stronger influence on 
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temperature variations during spring and summer than in winter and autumn. 

These feedbacks were generally negative assuming that an increase (decrease) 

in temperature anomalies often corresponds to a negative (positive) anomaly of 

soil moisture and cloud cover. Winter was the only season in which both 

cloudiness and soil moisture experienced positive feedback with temperature. 

Second, the influence of the examined land surface-atmosphere forces had a 

diurnal cycle, with more influence during daytime than nighttime. These diurnal 

differences were more apparent during spring with regard to other seasons. 

 

 

Figure 4.32: The positive feedback between cloud cover and wintertime 

minimum temperature in the study domain from 1960 to 2006. Standardized 

anomalies of both fields are provided from 1960 to 2006. 

 

 



4. RESULTS 
 

218 
 

4.4.2. Influence of large-scale atmospheric circulation on temperature 

extremes  

4.4.2.1. Influence on moderate extreme events 

In this section, the influence of the atmospheric circulation patterns on 

temperature extremes was assessed based on the spatial regionalization of 

summertime extreme events defined in section 5.3.1 and plotted in Figure 4.20 

(CL1 to CL4). Figure 4.33 depicts Pearson correlation values between the 

general atmospheric circulation and the regional time series of extreme 

temperature indices in the period 1960-2006. This association was calculated for 

the regionally weighted time series computed for the delineated four clusters.  

Similar to mean temperature conditions, the connection between the circulation 

patterns and temperature extremes was found statistically significant (p<0.05) 

only for the EA+, SCA- and WeMO- patterns. Among them, the WeMO 

represents an east-west dipole; meanwhile the EA and SCA are north-south 

dipoles. On the other hand, the NAO was found a weak predictor of temperature 

extremes during summer season. Similarly, the role of the MO pattern was 

irrelevant in the region.  

For the established homogenous sub-regions, it seems that the SCA pattern is a 

key controller of temperature extremes, with correlation coefficients ranging 

between -0.20 and -0.64. However, it can be noted that the influence of the SCA 

on day-time extremes (e.g., max_summer, WD and TX90p) was much stronger 

than its influence on night-time extremes (e.g., min_summer, TXn, TNn and 

TN90p). In particular, correlation coefficients with day-time extremes were in the 
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range of -0.41 and -0.54, whereas they varied from -0.29 to -0.49 for night-time 

extremes. 

 

Figure 4.33: Pearson correlation coefficients (r) between detrended time series 
of summer extremes and the main modes of atmospheric circulation over the 
period 1960-2006. Dotted lines show the upper and lower limits of the 95% level 
of significance. 
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A quick view of the association between the SCA circulation pattern and 

temperature extremes at sub-regional scale reveals some significant spatial 

differences (Figure 4.33). The influence of the negative SCA on most of summer 

temperature extremes was generally less marked in the Mediterranean region 

(CL1) and, in contrast, much stronger in the highly elevated regions (CL3 and 

CL4). A clear example corresponding to DTR showed a significant correlation 

with the negative SCA in all the defined sub-regions, but with higher values in 

CL3 (r = -0.60) and CL4 (r = -0.56), compared with CL1 (r = -0.43) and CL2 (r = -

0.38). This spatial pattern likely resembles that of the Spell index, which exhibited 

the strongest relationship with the SCA negative phase in CL4 (r = -0.64) and 

CL3 (r = -0.56), relative to CL1(r = -0.41) and CL2(r = -0.52). It can thus be 

inferred that the influence of SCA on extreme temperature in the region is clearly 

elevation dependent, with more (less) influence at high (low) elevation sites.  

The correlation of summer temperature extremes with the positive EA was 

generally positive although it did not necessarily reach the statistical significance 

threshold, as being the case with the WD, INTR, SU25 and Spell indices. In 

contrast to the SCA pattern, the strongest association between the EA positive 

phase and temperature extremes was markedly apparent along the 

Mediterranean coast (CL1) for the majority of the indices. Contrarily, this 

influence declined in mainland and over complex terrain sub-regions. Similar to 

the SCA pattern, the WeMO correlated better with maximum temperature indices 

than with minimum temperature indices. Spatially, it can be noted that the 

impacts of the WeMO pattern on temperature extremes were more pronounced 

in continental and low elevated areas than in coastal and highly elevated regions. 
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In summary, among all circulation patterns, the most significant during summer 

season were the EA+, WeMO- and SCA-. Figure 4.34 indicates the temporal 

evolution of the atmospheric circulation patterns from 1960 to 2006. As depicted, 

a significant positive trend was exclusively exhibited for the EA index, meanwhile 

a statistically downward trend with remarkable decadal variability was found for 

the EAWR, MOI and SCA patterns. In particular, the EA experienced a negative 

phase until the end of the 1970s, followed by a noticeable rise since the mid of 

the 1990s. By contrast, a decline in the MOI, WeMO and SCA patterns was 

observed since 1980. This figure also indicates that the NAO showed a negative 

trend from the mid of the 1980s, which comes in direct contrast with the strong 

signal of temperature during this period.  

4.4.2.1.1. SLP configurations 

In order to better understand the mechanisms of atmospheric flows and land-sea 

interactions during summer season, the SLP configurations corresponding to the 

significant circulation patterns in the region (i.e., EA+, WeMO- and SCA-) were 

summarized by means of the composite climate analysis and the canonical 

correlation functions. For each dominant circulation mode, the composite maps 

were plotted based on SLP anomalies corresponding to summers of positive or 

negative values from 1960 to 2006, depending on the phase under investigation 

(i.e., positive or negative). This dependency is depicted in Figures from 5.35 to 

5.37. SLP canonical variates are plotted in left panels, whereas their 

corresponding temperature variates are illustrated in right panels. The sign of 

canonical correlation coefficients for the SLP and temperature anomaly indicates 

the direction of the co-variability (i.e., correlated (+) or anticorrelated (-)). 
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Figure 4.35 (panel A) shows the averaged anomalies of SLP over western and 

southwestern Europe during summers with positive EA values. As illustrated, the 

positive mode of the EA pattern is mainly associated with a strong dipole over the 

North Atlantic (approximately 50ºN, 30ºW) and dominance of anticyclones over 

the Mediterranean and central and Eastern Europe. This situation also 

corresponds to an increase in the anticyclonic activity over the Iberian Peninsula, 

while the Azores High extends northward. 

 

Figure 4.34: Temporal evolution of the large-scale atmospheric circulation 

patterns during summers of the period 1960-2006. Bold lines refer to a low-pass 

Gaussian filter of 9 years. 
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Under this SLP configuration, the advection of the westerly and southwesterly 

winds over the Iberian Peninsula is enhanced, while the easterly flows transport 

moisture from the Mediterranean along a SE-NW gradient. Correspondingly, 

there is a weak moisture transport from the north Atlantic during this 

configuration, which induces a decrease in precipitation over the study domain. 

The anomalous low precipitation demonstrates positive feedback with soil 

moisture anomalies, which in turn has a positive feedback with temperature 

anomaly. The impacts of the westerly, southwesterly and easterly flows on the 

study domain are largely constrained by local terrain. For example, the central 

portions (e.g., the Ebro valley) are weakly affected by these flows as a 

consequence of the surrounded orographic lifting (i.e. the Iberian and Cantabrian 

systems). Contrarily, the EA exerts more important influence along the 

Mediterranean coast, particularly with the increase in the warm and moist flows 

from the Mediterranean and the mid of the Atlantic. Owing to the weak contrast 

between SLP over the Mediterranean Sea and closing land areas during the 

positive EA as revealed by SLP isopleths, the influences of these inflows can not 

extend to mainland, particularly with prevalence of high pressure anomalies in 

most of the peninsula as a consequence of local heating effects (see Figure 4.35, 

panel A). In short, the EA positive phase exerted a remarkable influence on the 

increase in frequency and intensity of summer temperature extremes along the 

Mediterranean coast and high elevation sites.  

 

Figure 4.35 (panels B and C) illustrates respectively the first and second 

canonical functions that explain the large proportion of variability in both SLP and 

temperature during the positive EA mode. 
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Figure 4.35: (A) Composite of sea level pressure (SLP) anomalies (hPa) 
corresponding to summers with positive EA values from 1960 to 2006. SLP 
anomalies at each grid were computed using the monthly mean and standard 
deviation for the long-term period (1960–2006). (B) The first leading canonical 
function of SLP and temperature anomalies co-variability during summers of the 
positive EA mode, (C) the same as (B) but for the second leading function. 
Isopleths show the Pearson correlation coefficient. Coefficients above 0.23 are 
statistically significant at the 95% level. 
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As shown, the canonical correlation coefficients of the first and second functions 

were 0.78 and 0.60, respectively. Spatially, it was found that temperature over 

central and western areas of the study domain are mainly controlled by SLP 

anomaly over the Mediterranean region, particularly the western basin (r = -0.7), 

whereas it is anticorrelated with SLP anomalies over the northern Atlantic. The 

second function suggests that temperature variations over the eastern portions of 

the study area were significantly influenced by SLP anomaly over central Europe 

and northern Africa, while they correlated negatively with SLP over the eastern 

Atlantic (panel C). Taken together, it can be noted that above-normal 

temperatures during summers of the positive EA values are mainly associated 

with a positive SLP anomaly over the Mediterranean, central Europe and North 

Africa on the one hand and a negative SLP anomaly placed over the east Atlantic 

on the other hand. 

 

Figure 4.36 (panel A) illustrates the composite of SLP anomaly during summers 

of negative SCA values from 1960 to 2006. As depicted, the negative phase of 

the SCA pattern produced similar configuration to the positive EA, with clear high 

pressure anomaly over central Europe. This high pressure anomaly extends 

westward to cover the Iberian Peninsula and southward to include parts of the 

Mediterranean region and North Africa. 

 

On the other hand, a low pressure system predominates over the north Atlantic 

and vast areas of northern Europe and Scandinavia. This atmospheric circulation 

indicates that the advection of northern flows over the peninsula is largely 

restricted during the negative mode of SCA, as a consequence of dominance of 
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anticyclonic conditions over the European mainland, giving rise to increased 

above-normal temperature. This situation comes clearly in contrast with SLP 

features during summers of positive SCA values, where the anticyclonic 

anomalies predominate over the Scandinavian region favoring for the advection 

of northern cold-air flows toward the Iberian Peninsula. 

 

Figure 4.36: Same as Figure 4.35, but for summers with negative SCA values. 
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Figure 4.36 (panels B and C) suggests two main functions that explained the co-

variability between SLP anomaly and temperature during summers of the 

negative SCA. The first canonical function had a canonical correlation coefficient 

of 0.74. On the other hand, the second function showed captured 17.3% of 

temperature variance, with a canonical correlation coefficient of the order of 0.72. 

A quick comparison between panels B and C suggests that higher temperature 

along the northeastern parts of the study domain were mainly controlled by the 

high pressure anomaly over northern Africa (r between -0.2 and -0.8) and central 

Europe (r = -0.3). Similarly, the anomalous high temperatures over western areas 

were significantly connected to the SLP positive anomaly located over the 

Mediterranean region and central and southern Europe. These spatial patterns 

clearly match those patterns observed during the positive phase of the EA mode.  

 

Spatial variations of SLP anomalies corresponding to summers of negative 

WeMO values are illustrated in Figure 4.37 (panel A). As shown, the atmospheric 

circulation corresponding to the negative mode of the WeMO pattern is mainly 

associated with a remarkable increase in the zonal circulation activity. Obviously, 

summers with negative WeMO values are characterized by a strong positive SLP 

anomaly over the whole Europe with a maximum over the Northwestern Europe 

and in particular the British Isles (up to +1.0 hPa). In contrast, SLP shows a slight 

negative pressure anomaly over western parts of Iberia. This is mainly 

associated with the northward shift of the Azores high. In contrast to the 

meridional flows which are clearly constrained during the negative WeMO as a 

consequence of the European blockings, zonal flows from the Mediterranean Sea 
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are promoted causing above-normal temperature over eastern proportions of the 

study area.   

 

Figure 4.37: Same as Figure 4.35, but for summers with negative WeMO values. 
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Figure 4.37 (panels B and C) depicts the main spatial patterns of SLP-

temperature co-variability during the negative WeMO mode. The results suggest 

two main functions, with canonical correlation of 0.79 and 0.77 for the first and 

second functions, respectively. The spatial association between temperature 

variations and centers of action of SLP anomaly resembles well those detected 

for both the positive EA and the negative SCA patterns.  

4.4.2.2. Influence on the anomalously severe extreme events  

In this section, a comparison between the circulation patterns corresponding to 

very warm days (VWD) and very cold nights (VCN) from 1960 and 2006 is 

provided. These events represent the most anomalously extreme records as they 

were defined as daily Tmax >99th for VWD, and daily Tmin <1st percentile of 

local temperature distribution for VCN. Prior to making this comparison, it was 

important to compare between circulation patterns during these severe heat 

events and those corresponding to the normal thermal conditions. This 

comparison highlights the differences between normal and less frequent events. 

It also indicates how circulation patterns may behave differently under these 

contrasted conditions. Simply, days of normal summer (winter) conditions were 

calculated as days of maximum (minimum) temperature higher than the 25 

percentile and lower than the 75 percentile relative to each station’s own summer 

(winter) climatological temperature ranges. Then, the daily anomalies of SLP, 

200hPa and 500hPa corresponding to these extreme heat days were averaged 

and plotted.  

Figure 4.38 (panel A) depicts anomaly of SLP and geopotential fields 

corresponding to the mean conditions of climate during summers of the period 
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1960-2006. As depicted, it can be noted that a positive surface and geopotential 

anomaly stretches over the Iberian Peninsula : >0.2hPa for the SLP, >0.8gpm for 

the 200hPa and >4gpm for the 500hPa level during normal conditions. 

Interestingly, a similar pattern was also visible at all levels from the surface to the 

mid troposphere although this pattern was less accentuated and smaller in 

magnitude at surface compared with the warm anomaly composites at upper 

levels (i.e., 200hPa and 500hPa). Apparently, a lack of significant pressure 

gradient was evident during these normal summer days, which implies a broad 

high prevailing over Iberia.  

 

Figure 4.38 (panel B) reveals the SLP and 200hPa and 500hPa geopotential 

height anomaly associated with VWD from 1960 to 2006. Relative to summer 

normal conditions, there was a higher surface anomaly with a main center over 

the mainland Europe (between 3 and 4.2 hPa). Also, when considering other 

geopotential height (e.g., 200hPa or 500hPa) a similar but stronger low and mid-

troposphere geopotential anomaly is observed, with different values (>12 gpm for 

200hPa and >60 gpm for 500hPa). Spatially, the center of action was shifted 

northeast to be located over the Bay of Biscay and mainland France.  

 

A quick comparison between panels A and B in Figure 4.38 suggests that 

weather patterns during the most extreme warm events showed differences from 

the norm conditions. The common conditions show a slight positive pressure 

anomaly over Iberia and the mid of the Atlantic ocean (west to the peninsula). 

Conversely, the days of extremely high temperature exhibited a very strong and 

persistent high blocking which moves northward further to be placed over central 
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Europe. This enhances the presence of a ridge or anticyclone over central 

Europe. 

 

Figure 4.38: Composite anomalies of SLP (hPa), 200hPa and 500hPa 

geopotential height fields (gpm) during summertime (MJJA) (panel A) against the 

mean state of summertime temperature (panel B) during VWD. All calculations 

were based on the period from 1960 to 2006. Due to lack of significant gradient 

during normal conditions, panel A has its own scale to highlight the spatial modes 

corresponding to this circulation and also to facilitate comparison of spatial 

differences between normal and VWD conditions. 
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Accordingly, it can be noted that the European blockings and Atlantic ridges are 

the main drivers of the occurrence of VWD. In the study domain, this 

configuration corresponds to a negative anomaly of SLP and geopotential fields 

east of the Atlantic Ocean. This situation enforces a strong inflow from the 

continental central Europe to southern and southwestern regions.  

 

Figure 4.39 represents anomaly of circulation conditions during VCN compared 

to wintertime ordinary variations. The average conditions during winter months 

(25th<daily Tmin<75th percentiles, relative to the long-term winter average) were 

characterized by a clear north-south dipole with the dominance of anticyclonic 

conditions over much area of Europe, including the Iberian Peninsula. This 

situation also corresponds to a northeastward displacement of the Atlantic 

subtropical high to be located west of the Iberian Peninsula. In contrast, a 

negative anomaly was mainly located over Northern Europe extending from the 

British Isles to Scandinavia. According to this configuration, there was a high 

frequency of westerly mild flows into Europe, favoring for less severely cold 

nights. On the other hand, the anomaly composite of days which witnessed 

severe low temperatures reveals a similar spatial distribution as in the normal 

conditions (right panel), though reversed. The negative surface and geopotential 

anomaly was represented as a long belt extending diagonally from the 

southwestern to the central part of Europe. However, it was maximized over the 

western basin of the Mediterranean (>4 hPa for SLP, >16 gpm for 200hPa and 

>75 gpm for 500hPa).  
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 Figure 4.39: Same as Figure 4.38, but for VCN.  
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Correspondingly, the positive anomaly showed a strong gradient over the 

Northern Atlantic and Europe (Figure 4.39, panel B). This configuration was also 

visible at the surface level and low and mid troposphere, enforcing the meridional 

circulation over the study domain with strong advection of northerly and 

northeasterly cooler air flows.  

 

To explore air advections controlling very heat temperature variations in the 

region, the connection between the spatial variability of VWD/VCN and the main 

centers of large-scale atmospheric circulation patterns was analyzed by means of 

the canonical correlation. For each canonical pair (variate), the results are 

presented in two maps: one for the dependent variable (i.e., anomaly of 

atmospheric fields) and the latter for independent variables (i.e., temperature 

anomaly during these VWD/VCN). This pair of maps provides an explanation of 

the physical reasoning of VWD/VCN canonical variate by identifying the main 

centers of action of circulation patterns that significantly correlate with the spatial 

modes of VCN/VWD over the study domain. 

 

4.4.2.2.1. Mean Sea Level (MSL) 

Figure 4.40 depicts three surface synoptic patterns that explained regional 

variability of VWD over northeast Spain. The first leading function (canonical r = 

0.7) revealed strong and statistically significant positive correlation between 

anomalously higher temperature over the western areas of the study domain and 

SLP regime over the Iberian Peninsula near to the Cantabrian Sea. The second 

and third functions suggested that the behavior of VWD temperature along the 

coastal regions was mainly driven by SLP anomaly over the mid latitudes of the 
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Atlantic Ocean and the Western Mediterranean. As illustrated, it can be seen that 

positive temperature anomalies along the Cantabrian Sea were well correlated 

with pressure anomaly west of the Mediterranean basin (the second function), 

while the intensity and frequency of VWD in the Mediterranean observatories 

were strongly driven by the positive SLP anomalies over North Africa and Central 

and Northern Europe (the third function).  

 

An interesting note is that the influence of increasing convection as a 

consequence of local heating effects, as revealed in the first function, was 

broadly consistent across the entire domain. This pattern was monopole with 

positive correlation with temperature anomalies in all sites although the highest 

significance occurred close to the Cantabrian system in the west and the lowest 

were found near to the Mediterranean Sea. On the other hand, the second and 

third functions suggested more spatial contrasts, indicating that more frequent 

VWD on the Cantabrian Sea always correspond to relatively fewer number of 

VWD on the Mediterranean Sea and vice versa.  

 

 Figure 4.41 represents three main synoptic conditions that explained sub-

regional variability of VCN at sea level. All these patterns imply that the anomaly 

pattern over the North Atlantic region was the main controller of the occurrence of 

VCN over northeast Spain. The first function (canonical r = 0.65) indicated a 

generally negative correlation between SLP north of the British Isles and 

magnitude of temperature during VCN over the study area. In particular, high 

(low) pressure anomaly north of Ireland implies more (less) severe cold nights in 

the whole domain, with few spatial differences (Figure 4.41, panel A). 
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Importantly, the regional response of VCN to SLP anomaly over the Atlantic 

waters was largely dependent on the location of the Atlantic SLP center action. 

The first function revealed the strong influence of the Arctic flows when the highs 

are located over the British Isles.  

 

Figure 4.40: Pearson correlation coefficient between anomalies of SLP (left) and 

temperature anomalies (right) during the VWD across the study domain 

(coefficients above 0.15 are statistically significant at the 95% confidence level).  
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 Figure 4.41: Same as Figure 4.40, but for VCN. 

 

The second function suggested less (more) intense VCN over the elevated areas 

to the west and the Pyrenean mountains northward (r > 0.4) when high (low) 

anomaly was placed near to the Iberian Peninsula. The third function suggested 

the possible influence of the Azores high that can extend further to the Eastern 

Mediterranean during winter months. The displacement of the Azores assumes 

that temperature intensity in the whole domain, apart from Catalonia in northeast, 
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was negatively influenced demonstrating warmer conditions and less frequent 

VCN.  

4.4.2.2.2. 200hPa Level  

Figure 4.42 suggests three canonical functions, with correlation coefficients 

varying from 0.14 to 0.64. The first function demonstrated that the positive 

200hPa anomaly over the Iberian Peninsula was highly correlated with VWD 

temperature in northeast Spain. High anomaly at this geopotential induces 

stability at this upper level causing above-normal temperature and in turn clear 

skies. This synoptic pattern fitted well with the first function detected at the 

surface level (Figure 4.40). The very high correlation (highest values above - 0.9) 

ensured that, during summer months, very high temperature over the western 

parts of the study area significantly relate to high geopotential anomaly over the 

Cantabrian Sea. For temperature variate, the highest values of correlation 

coefficient (larger than 0.8) occurred over the western portions. Contrarily, low 

pressure anomalies over the peninsula imply less frequent and intense warm 

days in the western part of the study domain. The second function indicated that 

the most extreme warm days along the Mediterranean were mainly connected to 

the pressure anomaly over the British Isles (r > 0.6, p<0.05) and the Western 

Mediterranean (r > 0.4, p<0.05) although the direction was reversed. In particular, 

high anomaly over the western Mediterranean basin was positively correlated 

with more intense over the Mediterranean observatories in the region. Also, a 

negative (positive) anomaly across northern Europe and the British isles 

assumed more (less) intensity of VWD close to the Mediterranean coast. These 

anomalies bring warm and moist air from the high anomaly over the eastern 
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Mediterranean and North Africa to the peninsula, causing above-normal 

temperature in coastal observatories. This dependency is reversed in mainland 

areas (i.e., the Ebro valley) as the correlation became negative, but statistically 

insignificant. The third function characterized the possible influences of the warm 

masses from the Sahara and North Africa. The intensive warm days over the 

study domain were associated, to large extent, with the strong advection of warm 

and very dry air originating over North Africa. The correlation coefficients on 

temperature variate suggested a markedly SE-NW gradient, with more (less) 

intense warm days in south and east (north and west).  

 

Figure 4.43 illustrates the main leading 200hPa synoptic patterns that explain 

VCN spatial variations during the winter season. Overall, the first function 

(canonical r = 0.73) indicated that VCN minimum temperature anomaly in vast 

areas of the study domain was positively correlated with 200hPa anomaly over 

the peninsula. Low anomaly assumes more frequent and intense cold nights. 

This situation also highlights the strong influence of the Icelandic High as they 

cause anomalous advection of cold winds from the anticyclones near to the 

British Islands and Scandinavia to the deep cyclones over the Iberian Peninsula. 

As shown in Figure 4.43, while the first and second canonical functions highlight 

the possible influence of meridional circulation as the cooler air flows moved from 

the north (Islands High) to southern Europe and the Mediterranean, the third 

function mainly featured the influence of the zonal circulation. The anomalous 

high (low) over the north Atlantic around (55ºN, 25ºW) and the anomalous low 

(high) in the Central Europe suggested more influence of the zonal circulation 

with western and northwestern (eastern and northeastern) advections over 
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southern and southwestern Europe. The enhanced (weaker) westerlies cause 

less (more) frequent VCN in northeast Spain. 

 

Figure 4.42: Pearson correlation coefficient between anomalies of 200hPa 

geopotential height field (left) and temperature anomalies (right) during the VWD 

across the study domain (coefficients above 0.15 are statistically significant at the 

95% confidence level).  
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  Figure 4.43:  same as Figure 4.42, but for VCN. 

 

4.4.2.2.3. 500hPa Level  

Figure 4.44 reveals three statistically significant canonical functions (at 95% 

confidence level). The canonical correlation coefficients ranged from 0.31 to 0.72. 

Similar to SLP and 200hPa patterns, the first function (r = 0.77) indicates a 

statistically significant positive correlation between 500hPa geopotential anomaly 

north to the peninsula and high temperature anomalies across the whole domain. 

This suggested that VWD were almost entirely controlled by the activity of 
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anticyclones formed over the Peninsula in general and the Cantabrian Sea in 

particular. Also, the severity of warm temperature extremes increased westward 

over the study domain. The intensity of temperature on this function was 

suggested to be enhanced by the Azores anticyclones, which induce a strong 

heat and humid advection from the Atlantic. The second function (r = 0.45) 

highlighted the influence of high anomaly of 500hPa over the western 

Mediterranean and North Africa on intense temperature in the Mediterranean 

portions of the study domain. The correlation coefficient reached its highest 

values (r = - 0.6) in the central Ebro valley. Contrarily, the 500hPa positive 

anomaly in the western Mediterranean was anticorrelated with intensity of VWD 

close to the Cantabrian Sea. 

 

In accordance of the first function explaining 200hPa-VCN co-variability, the first 

function, as illustrated in Figure 4.45, indicates that a deep depression placed 

over the Iberian Peninsula is favoring for more intense cold nights as it 

encourages strong advection of northerly cooler flows from the north (Figure 

4.45). The results also suggested a statistically significant positive relationship 

between 500hPa anomaly over the Atlantic Ocean west to the Iberian Peninsula 

and cold extreme days in the western windward areas of the study domain. 

Figure 4.45 obviously reveals that cooler air masses over the study domain were 

strongly linked to low anomaly over the mid latitudes of the Atlantic Ocean, 

suggesting advections from cooler continental areas in Central Europe. 

Conversely, this function also implies that zonal advection from the Atlantic was 

dominated by high humidity advection enhanced by strong anomaly of the 

westerlies, which was favoring for less intense cold nights.  
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Figure 4.44: Pearson correlation coefficient between anomalies of 500hPa 

geopotential height field (left) and temperature anomalies (right) during the VWD 

across the study domain (coefficients above 0.15 are statistically significant at the 

95% confidence level).  

 

On the other hand, the third function indicated a negative correlation between 

anomalies of 500hPa over North Africa and intensity of VCN in the Mediterranean 
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areas. Under this configuration, the lower tropospheric flows over the western 

Mediterranean and North Africa, in addition to the warm sea water, enhance the 

cyclones formation. This situation strengthens the cooler air flows from the north 

and northeast.  

 

Figure 4.45: Same as Figure 4.44, but for VCN. 
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A quick inspection of the main functions explaining the connections between 

500hPa field and VCN/VWD suggests that the degree of co-variability between 

500hPa field and anomalous temperatures was more apparent during VCN when 

compared with VWD. The canonical correlation coefficients corresponding to 

500hPa-VCN functions were generally higher than those of 500hPa-VWD 

functions. This suggests a higher co-variability between 500hPa over Western 

Europe and the Mediterranean and anomalous temperature in the study region 

during winter months than in summer months. This can be seen in the context 

that temperature variability during wintertime largely depends on air advections at 

the lower tropospheric layer (e.g., 500hPa level). 

 

4.5. Future changes of temperature during the 21st century 

4.5.1. Model Validation results 

Various statistical measures were calculated on a seasonal basis to assess the 

model performance, through comparing the modeled and observed temperature 

in the period from 1971 to 2000.  Boxplots summarizing the validation results 

using the MBE, YK, IVE and Willmott’s D statistics are illustrated in Figures 5.46 

and 5.47 for maximum and minimum temperatures, respectively.  

As illustrated in Figure 4.46 (panel A), the averaged temperature biases in the 

CNRM, DMI-APR, METO and MPI simulations for maximum temperature were 

small, generally less than 1°C, for winter (CNRM=0.2ºC, DMI-APR=-0.4ºC, 

METO=0.3ºC and MPI=-0.3ºC), spring (CNRM=0.1ºC, DMI-APR=-0.3ºC, 

METO=-0.5ºC and MPI=-0.9ºC) and autumn (CNRM=-0.6ºC, DMI-APR=0ºC, 

METO=0.6ºC and MPI=-0.4ºC). As opposed to the winter, spring, and autumn 
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seasons, the difference between the observed and modeled data was much 

higher during summer. The CNRM, DMI-APR, METO, and MPI ensembles 

showed larger bias, with values of 0.9, 1.7, 3.6 and -1.1ºC, respectively.  

Moving to the IVE coefficients (Figure 4.46, panel B), the same finding was also 

confirmed as the CNRM, DMI-APR, METO showed the best performance, with 

near-to-zero values. More specifically, the CNRM, DMI-APR, METO and MPI 

simulations gave the best validation results in winter (CNRM=0.1ºC, DMI-APR=-

0.15ºC, METO=0.1ºC and MPI=-0.14ºC), spring (CNRM=0.13ºC, DMI-APR=-

0.16ºC, METO=0.16ºC and MPI=-0.2ºC), summer (CNRM=0.03ºC, DMI-

APR=0ºC, METO=-0.07ºC and MPI=0.11ºC) and autumn (CNRM=0.14ºC, DMI-

APR=0.11ºC, METO=0.07ºC and MPI=-0.13ºC).  

Figure 4.46 (panel C) also suggests smaller YK coefficients for the CNRM 

(METO) simulation in all seasons, with values of -0.04ºC (0ºC) in winter, -0.01ºC 

(0.09ºC) in spring and 0.09ºC (0.03ºC) in summer. Nonetheless, as illustrated in 

Figure 4.46 (panel C), the YK results indicated that the DMI-APR failed to capture 

the general symmetry of seasonal maximum temperature, given an opposite (i.e. 

negative) asymmetry sign to other simulations. This change in the YK from close-

to-zero to negative values implies that this ensemble failed to reproduce the 

maximum temperature distribution, which is more likely to be asymmetric with a 

tendency to increase extreme cold events. This was mainly evident for all 

seasons, apart from summer, suggesting less skill of this ensemble in 

reproducing the asymmetry of maximum temperature.  
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Figure 4.46: Cross-validation results for maximum temperature based on 

comparing the modelled and observed data for the control period (1971- 2000) 

for 9 different RCMs simulations. The red line represents the mean and the black 

line indicates the median. 
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The Willmott’s D statistic also gave reasonable results for the CNRM and METO 

simulations. For the CNRM (MPI) simulations, the Willmott’s D magnitude varied 

from 0.38 (0.36) during winter to 0.61 (0.60) during autumn.  

Combining the results from the different statistics, it can be noted that the CNRM, 

MPI and METO models gave the most satisfactory results. Interestingly, while 

these RCMs are driven by different GCMs (i.e., APREGE for CNRM, ECHAM5 

for MPI and HadCM3Q16 for METO), they still show similar spatial patterns of 

temperature changes during the run period (1971-2000), as revealed by the 

exploratory PCA factors. Accordingly, the CNRM, MPI and METO simulations 

can be used with a degree of confidence to provide reliable estimates of changes 

in seasonal maximum temperature over the study domain under the A1B climate 

change emission scenario during the 21st century. 

A summary of the validation results for the seasonal minimum temperature is 

presented in Figure 4.47. The results suggested three ensembles that gave the 

best performance for all seasons: ICTP, KNMI and METO. Those models 

simulated well the daily records of minimum temperature with no significant 

biases. For the ICTP, KNMI and METO simulations, the findings identified an 

average MBE of 0.76, 1 and 0.7ºC in winter, -0.54, 0.48, and -0.05ºC in spring 

and -0.3, 0.7 and 1.2ºC in autumn, respectively. In summer, the CNRM and MPI 

models showed reasonable results in conjunction with the KNMI model. During 

this season, the averaged biases for the KNMI, MPI and CNRM ensembles were 

0.05, 1 and 1.1ºC, respectively. The same finding was confirmed by the IVE 

coefficient, which showed magnitudes roughly close to the ideal zero value for 

the ICTP, KNMI and METO simulations (Figure 4.47, panels B and C). Those 
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ensembles were also reasonably good at reproducing the observed symmetry of 

seasonal minimum temperature series, as revealed by the YK statistic.  

 

  Figure 4.47: Same as Figure 4.46, but for minimum temperature. 

 



4. RESULTS 
 

250 
 

Through the PCA, the ICTP, KNMI and METO ensembles also simulated well the 

spatial patterns of seasonal trends, implying that they can provide a reasonable 

skill in analyzing changes and variability of the simulated data in the future.  

Overall, according to the validation results for simulated minimum temperature 

data, the ICTP, KNMI and METO ensembles correctly reproduced the main 

characteristics of the observed climate (e.g., the mean, variance, skewness and 

symmetry). Accordingly, the models with the best agreement with the observed 

station data were selected. Herein, the decision was made to select the ICTP, 

KNMI and METO, as being the models with the overall best performance, to 

simulate future changes in minimum temperature. As presented in Table 3.4, this 

group of models is driven by three different GCMs (Arpège, ECHAM5 and 

HadCM3Q16). Herein, inclusion of more than a single model is advantageous to 

estimate a wider range of possible responses of the climatic system to elevated 

GHG emissions. 

In the attempt to assess changes in extreme events in the future, an additional 

pair of statistics was also used to assess the sensitivity of the models to capture 

the anomalous extremes events (i.e., VCN and VWD). In this context, the 

coefficient of variance (CV) and changes in the magnitude of the 1st (99th) 

percentiles for the modelled and observed data were computed for the 9 different 

models. This assessment was important to test the ability of the models to 

produce the values of the anomalous temperature as well as the variance of the 

series. It is noteworthy indicating that these measures were only calculated for 

summer (MJJA) and winter (NDJF) seasons. The results are presented in Figure 

4.48.  
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For summer (left panel), the results reveal a good performance of the MPI and 

KNMI models. The 99th percentile was well modeled by these ensembles 

although they were a bit underestimated by -1.19ºC and -1.16ºC, respectively. 

Similarly, the ratio of coefficient of variance (CV), calculated for the modelled and 

observed data gave good results for the MPI and KNMI simulations with values 

generally close to 1. 

 

Figure 4.48: Comparison between (upper) differences in the magnitude of the 

99th and 1st percentiles, and (lower) changes in the coefficient of variance. Red 

line shows the average, while the black line indicates the median. Left (right) 

panels belong to summer (winter). 

 

For winter (right panel), the models with the best performance in terms of the 

ratio of the coefficient of variance were the METO, ICTP and KNMI. These 

models were also able to capture the 1st percentile magnitude of wintertime 
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minimum temperature, with differences of 0.2, -0.7 and 0.1ºC, respectively. 

Interestingly, these biases were markedly smaller compared with differences in 

the magnitude of the 99th percentile for daily maximum temperature during 

summer season. Interestingly, this was also the case for extreme maximum 

temperatures in highly elevated areas with cooler temperatures. Following the 

validation results, two different RCMs were used to simulate VWD (MPI and 

KNMI), while three models were used to project changes in VCN (METO, ICTP 

and KNMI).  

 

4.5.2. Future changes in temperature means  

After having confidence in model performance for the control period (1971-2000), 

the projected future changes in the seasonal maximum and minimum 

temperatures for the time slices 2021-2050 and 2071–2100 were assessed, 

relative to the control period. Figure 4.49 shows the seasonal maximum and 

minimum temperature anomalies for the 20th and 21st century over the whole 

region. For each individual simulation, the anomalies were first computed relative 

to the 30-year observed (1971-2000) long-term mean for the region grid points. In 

order to detect temperature change signal for each season under the A1B 

emission scenario, an inter-model anomaly was then calculated as the average 

of the anomalies of the selected simulations.  

Figure 4.49 informs that both mean maximum and minimum temperatures 

exhibited positive anomaly with regard to the 1971-2000 period. This anomaly 

was much stronger during the last decades of the 21st century. However, this 

warming had some seasonal differences.  



4. RESULTS 
 

253 
 

 
Figure 4.49: The observed and simulated time series of areally averaged 

seasonal temperature from 1971 to 2100, presented as bars. A 7-yrs low pass 

filter is calculated and mapped as solid lines. The anomalies are calculated 

relative to the control period (1971-2000) for each season.   
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From 2021 to 2050, the predicted warming during the summer and winter 

periods, under the A1B emission scenario, were larger than the transition 

seasons (i.e., spring and autumn). The projected increases were in the order of 

2, 1.1, 0.9 and 0.6ºC for summer, winter, autumn and spring maximum 

temperatures, respectively. Similarly, minimum temperature became warmer, but 

at rates faster than those of maximum temperature. In particular, the average 

minimum temperatures were warmer than observations by approximately 0.5–

2.3°C, depending on the season. The highest increase occurred during summer 

(2.3ºC) and winter (2.1ºC), relative to autumn (1.1ºC) and spring (0.5ºC).  

Similarly, the projected changes of maximum and minimum temperatures over 

the period from 2071 to 2100 showed rapid shift toward more warming conditions 

relative to both the baseline (1971–2000) and near future (2021–2050) 

simulations. This trend was evident for all seasons, with rather similar rates of 

increase for maximum and minimum temperatures. As presented, there was a 

high likelihood of increase in maximum temperature by 5.1, 2.8, 2.6 and 2.1ºC 

during summer, autumn, spring and winter, compared with a simulated warming 

of about 5, 2.9, 2.2 and 3.9ºC for minimum temperature, respectively. 

The spatial structure associated with changes in the maximum and minimum 

temperature anomalies are given in Figure 4.50. These patterns are presented 

for the 2021-2050 and 2071-2100 time slices, based on computing an inter-

model average for the best-validated simulations for each season ( as defined 

previously in section 5.5.1). As depicted in Figure 4.50 (panel A), the main spatial 

pattern corresponding to maximum temperature was the high positive anomaly 

over the central Ebro valley, with higher increases in winter and summer. In the 
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Ebro valley, the projection for the A1B emission scenario over the 21st century 

was that maximum air temperature may increase in the range of 3-4ºC and 1-2ºC 

during summer and winter respectively compared to the present climate. From 

2021 to 2050, all solutions also produced a slight negative anomaly over parts of 

the Pyrenees, which had an opposite sign to the entire region in all seasons, with 

a maximum reduction in cold seasons (winter [2-3°C] and spring [1-2ºC]). These 

changes were less pronounced during warmer seasons (i.e., summer and 

autumn). However, a projected increase in the temperature maxima across the 

Pyrenees is expected by the end of the century, particularly during summer.  

In particular, the RCMs predicted an increase in the summer maximum 

temperature by 3.5ºC to 5ºC over the region by the end of the century. Another 

notable feature was that the warming pattern exhibited a meridional gradient with 

somewhat higher values in the south than in the north. In areas close to the 

Cantabrian Sea, maximum temperature was generally lower relative to the 

continental and southern portions by roughly 2ºC in winter and 3ºC in summer.  

Figure 4.50 (panel B) illustrates the spatial distribution of minimum temperature 

changes during the 21st century with regard to the present climate. As depicted, 

a positive anomaly prevailed during winter and summer from 2021 to 2050, 

particularly over continental grids. Correspondingly, a slight increase was 

experienced during spring and autumn. Similar to maximum temperature, the 

Pyrenees was expected to exhibit a slightly negative anomaly during spring and 

autumn. From 2071 to 2100, temperature anomalies showed a steady increase 

on an east-west gradient. While the Cantabrian system to the west and 

southwest exhibited the strongest positive anomaly (above 4.5 and 6ºC in winter 
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and summer, respectively), a relatively less warming occurred close to the 

Mediterranean and the Cantabrian Sea.  

 

Figure 4.50: Spatial distribution of seasonal maximum and minimum temperature 

anomalies (ºC) over the study domain. The anomaly was defined as departures 

from the observed long-term mean (1971-2000).  

 
Figure 4.51 reveals the Gaussian probability distributions of the winter and 

summer maximum temperatures calculated from the Pyrenean grid cells with 

altitude above 1000 m. The probability distribution had a near normal distribution 

during the period from 1971 to 2000, with a mean value of 6.8ºC for winter and 
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22.2ºC for summer. On the other hand, those of the future periods were quite 

diverse but generally very elongated, with significant shifts toward the positive 

tail. The only exception corresponds to the winter temperature from 2021 to 

2050, which exhibited a slight decrease in the mean by 0.3ºC relative to the 

observed climate.  

 

Figure 4.51: Gaussian distribution for (upper) wintertime and (lower) summertime 

maximum temperatures for the 1971-2000, 2021-2050 and 2071-2100 periods for 

the Pyrenees region. The inter-model average was calculated as an average of 

temperature from the grids with altitude above 1000 m in this region. Numbers 

between brackets indicate the mean value corresponding to each bell curve.   
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Conversely, there was a general consistency about high likelihood of increase in 

winter and summer maximum temperatures by the end of the century. This 

warming was more pronounced during summer with an increase rate of 4.7ºC, 

compared with the present climate. In summer, the temperature distribution was 

flatter, suggesting that temperature values are more disperse from the mean, a 

situation which favors for more warm events. This feature was enhanced by the 

increase in the standard deviation during summer, which came in contrast with 

maximum temperature during winter.   

 

4.5.3. Future changes in temperature standard deviation  

Figure 4.52 shows the spatial distribution of changes in the standard deviation of 

the seasonal mean maximum and minimum temperatures across the region over 

the 21st century. For each grid box, changes in the standard deviation were 

simply calculated as the difference between the standard deviation of the future 

simulations (2021-2050 and 2071-2100) and the reference period (1971–2000).  

 

A quick inspection of Figure 4.52 clearly reveals that, in accordance with changes 

in the mean, standard deviation presented an overall increase during the 21st 

century, except for the winter season. Also, this warming was much higher at the 

end of the century. The projected changes were larger in summer and spring 

than in the winter and autumn. The only exception corresponded to the autumn 

maximum temperature as the standard deviation during the first half (2021-2050) 

of the century was larger than that of the latter half (2071-2100). Averaged over 

the whole region, the models simulated an increase in the standard deviation of 

summer maximum temperatures from 2071 to 2100 by 0.5ºC (proportional to 
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9.8% of the mean increase). In spring, the rise in the standard deviation of the 

mean maximum temperature was nearly 0.36ºC (proportional to 13.9% of the 

mean increase). In contrast to other seasons, the standard deviation of 

wintertime minimum temperature clearly decreased, particularly from 2021 to 

2050, suggesting that temperature values were more likely to be located around 

the mean value. Accordingly, a prorogated distribution of wintertime minimum 

temperature is expected under the A1B emission scenario, suggesting more or 

less symmetrical (Gaussian) distribution of temperature, with a tendency to less 

extreme cold events.  

 

In summer, the highest increases in both the mean and the standard deviation, 

compared with other seasons, indicate a substantial shift with positively skewed 

and more widening and flattening temperature distributions in the future. This 

finding suggests more intense and frequent warm summer extremes over the 

region, especially during the late 21st century, which also accompanies to a 

projected increase in the inter-annual variability of summer maximum and 

minimum temperatures.  

 

Spatially, the projected increase in the standard deviation was fairly 

inhomogeneous over the entire domain, indicating some regional differences, 

which mostly come in agreement with those of the mean temperature changes. 

For maximum temperature, the largest standard deviation values tended to be 

located in mainland portions, particularly over the central Ebro valley during 

summer. On the other hand, the highest increase for minimum temperature 

variability was principally situated over mountains located to the west of the study 
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area, while the least were centered close to the Mediterranean and the 

Cantabrian coasts to the north and the east.  

 
Figure 4.52: Changes (2021–2050 minus 1971–2000 and 2071–2100 minus 

1971–2000) in standard deviation of seasonal surface air temperature (°C) based 

on the ensemble average calculated for each season.  
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4.5.4. Future changes in the time-varying percentiles  

In order to compare between changes in the statistical distribution of the warm 

and cold tails of temperature time series, this work obtained seasonal time series 

of the main time-varying percentiles (i.e., the 10th, 25th, 75th and 90th) for the 

control and future time slices. For each ensemble, these percentiles were 

calculated for each grid on a seasonal basis. Seasonal differences between the 

characteristics (i.e., mean, standard deviation and trends) of the simulated and 

observed percentiles time series are presented in this section and plotted in 

Figures from 5.53 to 5.56.  

 

4.5.4.1.  Winter season (DJF) 

Figure 4.53 (panel A) summarizes changes in the magnitude of the percentiles 

for the winter maximum and minimum temperatures during the 21st century, 

computed relative to the present climate. For maximum temperature, the 

magnitudes of all percentiles increased steadily with no significant differences 

among various percentiles. With respect to the observed percentiles, the 

warming rate was in the range of 1.1 to 1.3ºC for the period 2021-2050 and 2.4 to 

2.6ºC for the period 2071-2100. Also, there were no significant differences 

among the percentiles of the warm and cold tails of temperature distribution. For 

minimum temperature, on the other hand, Figure 4.53 (panel B) indicates that the 

percentiles of the simulated temperature showed rapid warming relative to those 

of maximum temperature. This can be expected given that the projections 

suggested more increase in the wintertime minimum temperature than in the 

maximum temperature in the course of the 21st century. The highest increase 

occurred for the lower percentiles as the magnitude of the 10th and 25th 
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increased by 2.7 and 2.6ºC, respectively, for the near-future (2021-2050) 

simulation, which were roughly doubled over the 2071-2100 period, with a 

warming of 4.8 and 4.7ºC, respectively.  

 

Figure 4.53: Boxplots representing changes in (a) the magnitude (ºC), (b) 

standard deviation (ºC) and (c) interannual variability (ºC decade-1) of the time-

varying percentiles time series during winter (DJF) season for the observed data 

from 1971 to 2000 (O), the 2021-2050 period (I) and the 2071-2100 period (II). In 

panels A and B, the results are given as (future-base), so that I indicates (2021-
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2050 simulation menus base climate) and II denotes (2071-2100 minus base 

climate). 

Figure 4.53 (panel B) also illustrates changes in the standard deviation of the 

time-varying percentiles time series over the 21st century. Similar to changes in 

the standard deviation of the mean temperature, the majority of the maximum 

(minimum) temperature percentiles showed an increase (decrease) in their 

standard deviations, compared with the present climate. 

 

For minimum temperature, the decreasing rate was in the range of -0.2 and -

0.3ºC for the period 2021-2050 and -0.1 and -0.2ºC from 2071 to 2100. The 

projected warming in the magnitude and standard deviation of maximum 

temperature time-varying percentiles could influence the frequency and intensity 

of daytime warm events, which are more likely to increase during the winter 

season.  

 

Figure 4.53 (panel C) suggests that most maximum temperature percentiles 

substantially showed less interannual variability compared with the recent past 

climate (1971-2000). This was clearly evident from 2021 to 2050, with generally 

insignificant trends (magnitudes roughly less than 0.3ºC decade-1, p<0.05). For 

the 2071-2100 period, although there was a remarkable increase in the 

magnitudes of the percentiles compared with the real-world climate, the trends 

were generally comparable with the observed trends, particularly for those of the 

warm tail percentiles (i.e., the 75th and 90th). In particular, the findings indicated 

that linear trends in the 75th and 90th percentiles were, on average, 0.51(0.51) 

and 0.64(0.58ºC decade-1) for the periods 1971-2000 (2071-2100). This will 
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undertake more warming during the 2071-2100 time slice compared with the 

control period. This change is not necessarily related with an increase in the 

year-to-year variability. The same finding can also be seen for the percentiles of 

minimum temperature (Figure 4.53, panel C), particularly for the period from 

2071 to 2100. This feature can also be better identified when comparing direction 

(sign) of the trends for the observed (1971-2000) and the simulated (2071-2100) 

climate. Results on the cross-tabulation analysis employed to explore pairwise 

relationships between the categorical trends in the minimum temperature 10th 

percentile during the winter season for the period 1971-2000 against the 

simulation (2071-2100) are reported in Table 4.10.  

Table 4.10: Results of the cross-tabulation analysis applied to trends in the 10th 
percentile time series for wintertime minima from 2071 to 2100 against the 
observed trends. The statistical significance was assessed at the 95% level using 
the Mann-Kendall’s Tau test. The numbers indicate the percentage of grids in the 
ensemble that projected the same sign of changes as the observed temperature.  
 

+ N+ N- - 
+ 2.6 11.9 1.5 0.0 

N+ 2.2 73.7 8.1 0.0 
N- 0.0 0.0 0.0 0.0 
- 0.0 0.0 0.0 0.0 

 
As presented, the grids were classified into four main categories, following the 

results of the trend analysis: statistically significant positive [+, p<0.05], 

statistically significant negative [-, p<0.05], statistically insignificant positive [N+, 

p>0.05] and statistically insignificant negative [N-, p>0.05]). As presented, 

regardless of the rapid increase in their percentile magnitudes, 76.3% of the grids 

in the ensemble projected the same sign as observed. In most cases, this can be 

explained by the fact that the rapid increase in the magnitude of the percentiles at 
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the end of the century corresponded to a decrease in the standard deviation of 

wintertime temperature.  

 

4.5.4.2. Spring season (MAM) 

Results on changes in the time-varying percentiles during spring season (MAM) 

from 1971 to 2100 are summarized in Figure 4.54. A visual inspection reveals 

two main findings. First, the percentiles steadily showed an increase in their 

magnitude, indicating that the current warming will continue during the 21st 

century. In contrast to the winter season, rates of warming were similar for the 

two comparable periods: 2021-2050 and 2071-2100 for both maximum and 

minimum temperatures, with negligible differences. In particular, changes in 

maximum temperature percentiles varied from 0.66 to 3.5ºC during the course of 

the 21st century, which corresponded to an upward of 1.1 to 3.4ºC for minimum 

temperature percentiles. One interesting note is that the warming rates of the 

time-varying percentiles during spring were markedly much higher than those of 

the mean. A representative example is the 75th and 90th percentiles from 2021 

to 2050 which moved towards more extremes, with increases of 1.8 and 1.9ºC, 

respectively, while mean maximum temperature roughly warmed by 0.6ºC, 

relative to the observed climate. This finding, together with the strong increase of 

the standard deviation during spring, implies that high-intensity temperature will 

get warmer at rates exceeding that of the mean. Second, there were remarkable 

differences between the interannual variability of the percentiles during the 

observed and the simulated climate.  
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While the percentiles of spring season showed strong warming trend from 1971 

to 2000, they exhibited less variability during the 21st century, especially for the 

cold percentiles. Interestingly, the upper percentiles (75th and 90th) of maximum 

temperature exhibited a downward tendency from 2021 to 2050, at linear rates of 

-0.23 and -0.32ºC decade-1, respectively. Accordingly, it can again be noted that, 

in the future, the increase in the magnitude of temperature percentile does not 

necessarily correspond to more interannual variations.     

 

      Figure 4.54: Same as Figure 4.53, but for spring. 
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  4.5.4.3. Summer season (JJA) 

Changes in the magnitude, standard deviation and interannual variability of the 

time-varying percentiles during summer season are given in Figure 4.55. Similar 

to the wintertime, the magnitude of the percentiles exhibited a “systematic” future 

increase for both maximum and minimum temperatures. Also, changes in the 

percentiles corresponding to minimum temperature were faster than those of 

maximum temperature. With regard to the current climate, the magnitudes of the 

10th, 25th, 75th and 90th percentiles increased by 1.4, 1.3, 1.8 and 1.8ºC for 

maximum temperature from 2021 to 2050, while their changes had the order of 

2.4, 2, 2.3 and 2.5ºC for minimum temperature, respectively. This picture was 

markedly reversed at the latter half of the 21st century, as the percentiles of 

maximum temperature increased faster than those of minimum temperature.  

 

In contrast to wintertime temperature, Figure 4.55 (panel A) informs that changes 

in the upper percentiles exceeding those of the lower percentiles. One clear 

example is the change in the 90th percentile from 2071 to 2100, which 

corresponded to a rise of 5.9 and 5.3ºC for maximum and minimum 

temperatures, respectively, compared with 4.3 and 4.8ºC for the 10th percentile. 

Similarly, the time-varying percentiles of summer experienced a clear increase in 

their standard deviation, relative to the control period, which also came in 

contrast to the winter season. This has been the case for both maximum and 

minimum temperatures although the increasing rates were much stronger for the 

cold tail 10th and 25th percentiles.  
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Figure 4.55: Same as Figure 4.53, but for summer. 
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For the period 2071-2100, the results suggested a rapid increase in the standard 

deviation of the 10th (0.7ºC) and 25th (0.6ºC) percentiles. In response to the 

projected increase in the magnitude and standard deviation of the time-varying 

percentiles, the summer season was expected to exhibit a remarkable increase 

in the temperature interannual variability over the 21st century. This feature was 

clearly observed at the late of the century, particularly for the cold tail percentiles 

(i.e., the 10th and 25th). All the trends were positive and statistically significant 

(at the 99% level), with magnitudes of change in the range of 0.5-1.7ºC decade-1 

for the 10th percentile and 0.5-1.4ºC decade-1 for the 25th percentile. 

  

4.5.4.4. Autumn season (SON) 

Figure 4.56 depicts changes in the magnitude, standard deviation and trends of 

the time-varying percentiles calculated for autumn maximum and minimum 

temperatures during the 20th and 21st century. In accordance with other 

seasons, the results also suggest increase in the magnitude of all percentiles 

during the 21st century, being more highlighted at the end of the century. Similar 

to spring season and also in contrast to summer and winter, there were no 

significant differences between changes in the upper and lower percentiles either 

for maximum or minimum temperature. On the other hand, while standard 

deviation of maximum temperature time-varying percentiles showed a markedly 

rapid warming with respect to the 1971-2000 period, there were no changes in 

the standard deviation of minimum temperature percentiles. The main modes of 

variability characterizing autumn time-varying percentiles were the markedly 

increase (decrease) in the interannual variations of upper (lower) percentiles of 

maximum (minimum) temperature. 
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Figure 4.56: Same as Figure 4.53, but for autumn. 
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4.5.5. Future changes in extreme events  

Figure 4.57 shows changes in the 99th percentile magnitude over the periods 

(2021-2050) and (2071-2100) as compared to the control period (1971-2000). 

Under the A1B emission scenario, all models agree that the 99th percentile 

magnitude will be reduced by an average of -1.6ºC and -1ºC following the KNMI 

and MPI simulations during the period 2021-2050 respectively. Nonetheless, 

Figure 4.57 also depicts clear spatial differences as grid points along the 

Mediterranean coast and across the Ebro valley exhibited positive differences in 

the 99th percentile values (nearly by 2-3ºC), suggesting warmer conditions than 

the observed climate. Interestingly, other regions demonstrated a decrease in the 

magnitude of the 99th percentile. Interestingly, this spatial structure was reflected 

by both the MPI and KNMI models. Although these extremely severe warm 

events are characterized by high natural variability, the similarity between the 

models in terms of the magnitude, sign and spatial variability of simulated 

changes confirms the skill of these models in responding a similar 

parameterization scheme.  

 

During the period 2071-2100, this magnitude will markedly be more intensified, 

with an average increase of 3 and 4.2ºC for the KNMI and MPI ensembles, 

respectively. These substantial projected increases in the 99th percentile 

temperature magnitudes strongly indicate that more heat stress could 

dramatically be intensified across the region during the last decades of this 

century, which could have considerable impacts on different disciplines in the 

study domain, such as hydrology, agriculture, water resources management, 

forestry, and human health in .  
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From the spatial perspective, the regional differences among the models from 

2071 to 2100 showed similar patterns. The distribution of the 99th percentile 

changes seemed to be elevation dependent, with rapid increase at lowest 

elevations (e.g., the Mediterranean coasts and the Ebro valley) and weak  

warming at high elevation sites to the west (i.e., the Cantabrian system) and 

southwest (i.e., the Iberian system).  

 

Figure 4.57: Change (prediction minus current climate) in the magnitude of the 

99th percentile daily maximum air temperature during summer. 

 

Figure 4.58 depicts changes in summer frequency of VWD during the periods 

2021-2050 and 2071-2100, as compared with the control integration. As 

illustrated in the upper panel, a generalized decreasing in the number of VWD is 
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detected for the near future (2021-2050). This cooling of VWD was more 

pronounced along the Cantabrian, the Mediterranean and at elevated sites in the 

west, whereas it was less evident in lowlands and inland. A similar pattern was 

also observable during the period 2071-2100 (lower panel), but with rapid 

increase in the frequency of VWD near the coast, while there was a relatively 

weaker warming in continental areas.  

 

Simulated changes in the magnitude of the 1st percentile of wintertime minimum 

temperature, calculated as difference between this magnitude for the 30 yr 

minimum temperatures in baseline (1971-2000) and future scenario periods 

(2021-2050) and (2071-2100) are presented in Figure 4.59. Analogous to the 

expected warmer climate in future, changes in the 1st percentile magnitude 

tended to increase gradually over the two time slices: 2021-2050 and 2071-2100 

under the A1B emission scenario. This result suggests that the VCN will become 

substantially less severe in future as the cold tail of daily minimum temperature 

shifts toward warmer conditions. However, this increase slightly occurred over 

2021-2050 with an average of 0.16, 0.29 and 0.43ºC for the ICTP, KNMI and 

METO ensembles, respectively. Contrarily, the projected warming of the 1st 

percentile will sharply be larger over the last three decades of the 21th century, 

with an average of 1.94, 2.4 and 3.3ºC for the ICTP, KNMI and METO 

ensembles, respectively. For the two time slices under investigation, spatial 

variations in the magnitude of the 1st percentile appeared robust and similar 

between models, with more warming in the west and close to the Cantabrian Sea 

and less increase and, even a decrease, in the eastern parts and over the 

northern Pyrenees.  
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Figure 4.58: Same as Figure 4.57, but for changes in the number of days per 

each summer in which the maximum temperature exceeded the 99th percentile 

of summertime daily distributions.  

 

Changes in the frequency of VCN are given in Figure 4.60. The observed 

changes fitted well with spatial changes in the magnitude of the 1st percentile. 

Given that the last period of this century will be warmer than the near future 

decades, a less frequent and intense VCN will be expected by the end of the 

century. The results suggest that the most elevated sites to the west will exhibit 

less severe cold conditions in the two simulated periods than eastern portions, 

particularly those close to the Mediterranean Sea. 
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Figure 4.59: Changes in the magnitude of the 1st percentile daily minimum 

air temperature during winter.  

 

Figure 4.60: Same as Figure 4.59, but for changes in the frequency of VCN 

during winter.  
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4.5.6. The dependency between changes in the mean temperature 

and changes in the corresponding time-varying percentiles 

Conventionally, changes in the warm and cold tails of temperature distribution 

are as interesting as changes in the mean, particularly for regional climate impact 

and assessment studies. It is therefore important to identify whether changes in 

the upper and lower percentiles of temperature distribution may already be 

detectable and consistent with changes in the mean conditions. In the following 

section, the results on this dependency for both the present and future climates 

are presented. As expected, higher correlation suggests a consistency among 

changes in the mean and the corresponding time-varying percentiles in the 

magnitude and/or the sign (direction) of changes. Conversely, lower correlation 

can be seen as an indicator of disagreement. 

Figure 4.61 presents correlation coefficients between changes in the mean 

maximum temperature and changes in the time-varying percentiles on a 

seasonal basis. Both fields (i.e., maximum temperature and percentiles values) 

were calculated at each grid box. The association was then assessed for both the 

observed (1971-2000) and the future simulations (2021-2050 and 2071-2100). As 

illustrated in Figure 4.61, the simulated changes in the warm tail (i.e., the 75th 

and 90th percentiles) of winter maximum temperature during the last decades of 

the 21st century remarkably correlated well with changes in the mean maximum 

temperature. The Pearson correlation coefficients were approximately close to 

0.8. Conversely, the relationship was generally weaker for the cold tail 

percentiles (i.e., 10th and 25th percentiles), with correlation magnitudes roughly 

below 0.3. a similar dependency was also evident during the period 2021-2050.  
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Figure 4.61: Pearson correlation coefficient (r) between changes in the 

seasonal mean maximum temperature time series and changes in the seasonal 

time-varying percentiles series calculated for maximum temperature during the 

control period and the 2021-2050 and 2071-2100 time slices. The calculation 

was computed for changes in each pixel in the study domain.  
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However, it differed for the observed data (1971-2000), as changes in the 

percentiles of the cold tail of maximum temperature distribution were generally 

higher than those of the upper tail percentiles. Recalling the strong positive 

anomaly of the projected wintertime maximum temperature during the 21st 

century, the10th and the 25th percentiles poorly followed changes in the mean 

temperature. This provides strong evidence that changes in winter maximum 

temperature in the future will not only be driven by changes in the mean 

temperature, but they will also be influenced by a shift in the entire temperature 

distribution. This finding must also be seen in the context that winter was the only 

season that experienced a decrease in the standard deviation during the 21st 

century.  

 

Moving to the summer season, the projected changes in the mean maximum 

temperature were more consistent with changes in the percentiles of the lower 

than the upper tail temperature distribution. This feature comes in direct contrast 

to winter season. As presented, the correlation coefficient reached 0.83 and 0.85 

for the 10th and 25th percentiles, which were reduced to 0.43 and 0.62 for the 

75th and 90th percentiles, respectively. The positive anomaly of standard 

deviation during summer season can possibly explain these findings, giving more 

influence to changes of the mean (standard deviation) on the cold (warm) tail of 

temperature distribution. For the upper percentiles, the strong positive anomaly of 

both the mean and standard deviation implies an overall decrease in the left hand 

side of the temperature distribution (cooler and milder low temperatures), while 

the right-hand side (high temperatures) skews positively.  
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Figure 4.61 also shows that, for spring and autumn, there was similar 

dependency between changes in the mean maximum temperature and changes 

in their corresponding percentiles, with weaker (stronger) influence on changes in 

the cold (warm) tails of temperature distributions. This feature was clearly 

reversed for the observed and the 2021-2050 simulated climates, particularly for 

spring. Exceptionally, changes in the autumn mean maximum temperature were 

not consistent with change in their corresponding time-varying percentiles over 

the control period. This association was generally weak (r lower than 0.2) and 

even negative for the upper tail percentiles. This indicates that some changes in 

the warm tail of maximum temperature distribution might exceed the raise of the 

mean values during autumn.  

 

Figure 4.62 summarizes the dependency between changes in the mean 

minimum temperature and their corresponding time-varying percentiles from 

1971 to 2100. The results give a strong indication on the increase in the 

variability of warm tails of minimum temperature during winters and summers at 

the last decades of the 21st century. As presented, it seems that changes in the 

90th percentile time series of winter and summer minimum temperatures 

correlated well with changes in the mean, with Pearson correlation coefficients of 

0.82 and 0.76, respectively. The strength of this relationship became weaker for 

the cold tail percentiles, particularly during summer. The correlation between 

changes in the summer minimum temperature and the corresponding 10th (25th) 

percentiles was only 0.52 (0.46). This indicates that, for minimum temperature, 

there was a rapid increase in the high-intensity and warm temperature extremes 

relative to cooler temperature events.  
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   Figure 4.62:  Same as Figure 4.61, but for mean minimum temperature.  
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For winter, Figure 4.62 suggests that the interannual variability of the 75th and 

90th time series of minimum temperature from 2021 to 2050 can be expected to 

decrease as the mean winter gets warmer. This clearly implies that an increase 

in wintertime minimum temperature corresponds to a decrease in the variability of 

the 75th and 90th time over the period 2021-2050.  

 

For summer season, a comparison of Figures 5.61 and 5.62 indicates that the 

10th and 25th percentile correlated weaker for minimum temperature than for 

maximum temperature, while the correlation of the 75th and 90th increased more 

with minimum temperature than with maximum temperature. This gives indication 

that extreme events corresponding to warmer minimum temperature would 

increase more rapid than those of maximum temperatures. Contrarily, changes in 

the 10th percentile of winter minimum temperature were more consistent with 

changes in the mean, while it poorly responded to changes in the mean for the 

10th percentile of maximum temperature. Moving to spring season, it can be 

seen that changes in upper tail of the minimum temperature distribution tended to 

be significantly driven by changes in the mean, with more shift toward warmer 

values by the end of the century. This feature remarkably agrees well with the 

pattern detected for the observed temperature.  

 

In contrast to other seasons, the warm percentiles of minimum temperature in 

autumn show a slight negative correlation with the mean trends over the study 

domain from 2021 to 2050. This association was statistically insignificant 

(p<0.05), with r values of -0.03 and -0.05 for the 75th and 90th percentiles, 

respectively. Also, it seems that the relationship between changes in autumn 
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minimum temperature and changes in the warm tail of daily minimum 

temperature was markedly much stronger than changes in the cold tail. In 

general, this relationship was found consistent over the 20th and 21st century.   

 

4.5.7. The dependency between changes in the mean temperature 

and the frequency of extreme events 

This research also looked at changes in the relationship between the mean 

(hereafter: M) temperature and standard deviation (hereafter: S) in the one hand 

and the frequency (hereafter: F) of extreme events on the other hand. This was 

mainly to explore whether changes in the frequency of anomalously severe heat 

events (i.e., VCN and VWD) over the study domain are more linked to changes in 

the occurrence of these days (as revealed by changes in the standard deviation) 

and/or to changes in the intensity (as revealed by changes in the mean) of 

temperature during these days.  

For each grid, the association between the frequency of these days (F+/F-) and 

changes in (i) the mean (M+/M-) (ii) standard deviation (S+/S-) and (iii) combined 

effects of changes in the mean and standard deviation (e.g., M+/S+, M+/S-, M-/S-

, M+/S-) were examined for each ensemble. For instance, this assessment helps 

exploring whether an increase in the mean (M+) and/or the standard deviation 

(S+) could induce an increase in the frequency (F+) of these extreme events. The 

results are summarized in Figure 4.63. The findings suggested that intense 

severe warm events during the period 2071-2100 can be explained by the 

combined effect of positive changes in both the standard deviation and the mean 

of summer maximum temperature.  
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Figure 4.63: Relationships between simulated changes in the frequency of 

extreme events (labeled as F+ for increase in the occurrence and F- for the 

decrease) and changes (i.e., increase [+] vs. a decrease [-]) in the mean (M) 

and/or the standard deviation (S).  
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The positive change in the mean (M+) was spatially consistent with the increase 

in the occurrence (frequency) of warm events (F+) in more than 80% of the grids 

across the study area. The same finding was observed for S+ with F+ and also 

for M+S+ with F+. However, this effect was markedly minimized during the 2021-

2050 period, with less frequent VWD, due to the weak change in the standard 

deviation of summer maximum temperature.  

The results also suggest that the decrease in the standard deviation had more 

influence on VWD when compared with the impact of the decrease in the mean. 

For VCN, on the other hand, this dependency was more stable with a steady 

decrease in the standard deviation in both time slices (2021-2050) and (2071-

2100) and an increase in the minimum mean temperature in spite of its slow 

rates in the first decades of the 21st century. Accordingly, it can be demonstrated 

that the shift toward higher minimum temperatures in the next decades cannot be 

the solely factor responsible for the observed decrease in the frequency of very 

cold nights across the study domain. 
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5. DISCUSSION 
 

5.1. Observed changes in seasonal temperature means 

5.1.1. Temperature long-term trends (1920-2006) 

The results concerning the observed trend in the mean temperature from 1920 to 2006 

reveal that the study domain exhibited an increase during the 20th century. This 

warming was much more pronounced during the last few decades, with the largest 

increase occurred during summer and spring periods. The observed trend in 

temperature from 1920 to 2006 has notably been consistent with earlier findings in the 

Iberian Peninsula (e.g., Quereda et al., 2000), the Mediterranean (e.g., Brunetti et al., 

2006) and Europe (e.g., Parry, 2000). For instance, according to the present work, the 

annual mean temperature increased at a rate of 0.96ºC from 1920 to 2006. In the 

Mediterranean region, Parry (2000), for example, reported that the annual mean 

temperature over Europe has risen at a rate of 0.80ºC over the 20th century. Similarly, 

Brunetti et al. (2006) recorded an increase of 1ºC in the Italian mean temperature 

during the last century. Over the Iberian Peninsula, Quereda et al. (2000) noted that 

the annual mean temperature in the Spanish Mediterranean region has increased at a 

rate of 0.71ºC in the last century. Similarly, over the period from 1920 to 2006, the 

study domain experienced an increasing trend of 0.7ºC in the mean maximum 

temperature, which has also been analogous to the finding of Karl et al. (1993) and 

Easterling et al. (1997) for the globe (0.82ºC/century). Nonetheless, although the 

annual minimum temperature showed stronger rise (1.22ºC) from 1920 to 2006, 

compared with both maximum and mean temperature, this trend is still lower than the 

global trend reported by Easterling et al. (1997) (1.79ºC/century). 
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This work also indicates that the temporal evolution of temperature over the study 

domain showed a remarkable interdecadal variability for all analyzed thermal variables 

(i.e., maximum, minimum and mean temperatures), with main departure toward 

cooling during the 1920s, 1930s and 1960s. Contrarily, temperature exhibited a 

general positive anomaly during the 1940s, 1970s, 1980s, 1990s and 2000s. This 

interdecadal variations of seasonal temperature generally fit well with other regional 

and global studies (e.g., Tett et al., 1999; Rodriguez-Puebla et al., 2001a). Notably, 

there has been a clear tendency toward warming at both the annual and seasonal 

timescales since the mid of the 1970s. This general behavior also agrees well with 

numerous previous regional (e.g., Labajo et al., 1998; Brunet et al., 2002; Esteban-

Parra et al., 2003; Morales et al., 2005; Brunet et al., 2007a) and global studies (e.g., 

Parker et al., 1994; Tett et al., 1999; Jones and Moberg, 2003; Luterbacher et al., 

2004). According to Brunet et al. (2002), a clear warming has been mainly registered 

over the peninsular Spain in two periods: during the 1940s and from the mid-1970s 

onwards. Other regional studies (e.g., Labajo et al., 1998; Morales et al., 2005) also 

reported a remarkable change in the behavior of the annual maximum, minimum, and 

mean temperatures after the year 1972. In accordance with the IPCC (2007), the 

unusual warmest years over the whole period (1920-2006) were restricted to the past 

two decades. Over this period, the study area also witnessed anomalous warming 

temperatures in 1990, 1997, 1998, 2003, and 2006.  

 

Herein, it is also worthwhile to indicate that the network covering the period 1920-2006 

was not dense enough, as being represented only by a sample of 19 observatories. 

Nonetheless, the final conclusion on the observed trends can still be seen with high 

level of confidence. The derived results seem to clearly delineate similar temporal 
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patterns to those observed for Iberia, Europe and the globe. In addition, given that the 

observatories employed in this study are not only located in rural sites and small 

towns, but also include urban cities, the “global” warming observed in much of the 

study domain implies that this trend is a consequence of natural variability reflecting 

global warming conditions. This sounds interesting since it confirms the assumption 

that the observed temperature variations in the region are only due to climatic 

processes rather than other non-climatic factors such as urbanization or 

industrialization. Also, given that the long-term changes of temperature are not well 

captured in many studies over Europe in general and in the Iberian Peninsula in 

particular due to lack of reliable data in the early decades of the past century, these 

results can considerably contribute to improving the current knowledge on long-term 

temperature variability and change within a larger spatial context, including the Iberian 

Peninsula, the Mediterranean and the Western Europe.  

 

5.1.2. Observed seasonal and annual temperature trends (1960-2006) 

5.1.2.1. Maximum temperature 

The linear trend analysis of maximum temperature suggests a warming trend in all 

seasons. The strongest signal occurred during summer and spring. The only exception 

is seen in autumn since 43% of observatories exhibited a negative tendency at the 

95% level. This finding is of special interest given that earlier studies (e.g., Houghton 

et al., 2001; Klein Tank et al. 2005; Martinez et al., 2010) also reported a downward 

trend in autumn temperature in Spain and wide regions across Europe, being the sole 

exception among all seasons. For example, Martinez et al. (2010) reported a 

generalized decreasing in autumn maximum temperature in Catalonia (NE Spain).  
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In general, there is a conclusive evidence on the increase in maximum temperature in 

NE Spain, which is comparable to previous works in the Iberian Peninsula (e.g., 

Quereda et al., 2000; Esteban-Parra et al., 2003; Morales et al., 2005; Miro et al., 

2006; Rodriguez-Puebla et al., 2010; Martinez et al. 2010), the Mediterranean (e.g., 

Maheras and Kutiel, 1999; Brunetti et al., 2000, 2006) and Europe (e.g., Jones et al., 

1999a). For instance, Martinez et al. (2010) indicated a general warming trend in the 

annual maximum temperature in Catalonia (NE Spain) with a value of 0.5ºC decade-1, 

the greatest increase occurred during summer and spring. 

Spatially, it is noted that the largest warming occurred in coastal areas along the 

Mediterranean and the Cantabrian Seas, whereas mainland observatories 

experienced less warming. However, this general picture still has some seasonal 

differences. An interesting aspect is the dominance of a statistically insignificant 

pattern of trends in the Ebro basin during autumn. A possible explanation of this 

pattern is probably linked to the location of this semi-closed basin between the 

Pyrenees northward, the Catalan system to the east and the Iberian system to the 

south and southwest. This feature is favorable for below-normal temperature as a 

consequence of the frequent occurrence of fog, particularly during wind-calm days 

corresponding to anticyclonic conditions.  

Also, during summer and spring seasons, there is a noticeable south-north gradient of 

warming, with the strongest warming in southern part of the study domain. This feature 

can largely be attributed to the strong advection of warm and dry air masses from the 

Sahara during these periods of the year. Another important spatial feature is that the 

spatial distribution of the trends in annual temperature seems to be spatially more 

consistent with the distribution of trends in summer and spring than in winter and 
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autumn. This result has recently been confirmed in other global (e.g., Jones and 

Moberg, 2003) and regional studies (e.g., Morales et al., 2005; Brunet et al., 2006; 

Abarca Rio and Mestre, 2006). For instance, in their study on the region of Castilla-

Leon (northern Spain), Morales et al. (2005) observed that maximum temperature 

showed more increase in summer and spring compared with winter and autumn, 

particularly since the 1970s.  

5.1.2.2. Minimum temperature 

Similar to maximum temperature, the strongest warming in minimum temperature 

occurred during summer and spring, whereas autumn exhibited little warming. This 

observable tendency toward warming is compatible with a number of works over the 

Iberian Peninsula such as Rodriguez-Puebla et al. (2010) who noted an upward trend 

of 0.20ºC decade-1 in the annual minimum temperature over the Iberian Peninsula. 

This amount of change closely matches the warming rate in the study area (0.21ºC 

decade-1).   

5.1.2.3. Mean temperature 

The trend analysis results inform that majority (93%) of observatories exhibited 

statistically significant trends during summer and spring (p<0.05). Contrarily, 46.1 

(15.6%) of observatories did show insignificant trend during autumn (winter). Similar 

temporal features have already been identified in previous works (e.g., Hulme and 

Sheard, 1999; Esteban-Parra et al., 2003; Pausas, 2004; Scherrer et al., 2006). For 

example, Hulme and Sheard (1999) found the highest (lowest) warming in the Iberian 

mean temperature during summer (winter). Similarly, Pausas (2004) reported a clear 

upward increase in the annual and summer mean temperature in the Mediterranean 

region of the Iberian Peninsula over the period 1950-2000. More recently, Capilla 
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(2008) observed an upward increase in the annual mean temperature in Valencia, 

largely occurred during spring and summer. Over a larger spatial extent, Scherrer et 

al. (2006) confirmed the same finding in Europe, indicating a remarkable warming 

trend in mean temperature anomaly between 1961 and 1990. The strongest signal 

occurred during summer, whereas there was no trend in autumn. Also, based on the 

gridded data of New et al. (2000), Jacobeit et al. (2003) found a distinct summer 

warming for the 1969-1998 period over the Mediterranean. 

 

The mean temperature trends in the study domain seem to have a spatial component, 

with clear coastal-continental contrasts. Nonetheless, this observational spatial 

structure comes in direct contrast to the simulated data as revealed by different 

regional climate models (RCMs). One representative example is López-Moreno et al. 

(2008b) who projected strongest warming in the inland observatories rather than in 

coastal localities. Based on the simulations of a set of global climate models (GCMs), 

the IPCC (2007) also documented less warming near the coasts compared to 

continental areas. These contradicting features sound interesting from the scientific 

point of view indicating that further contribution of these variations is still possible to 

explain forces beyond these differences.  

 

5.1.2.4. Diurnal temperature range (DTR) 

Assessment of seasonal changes in DTR over the study area suggests three seasons 

with positive trend: summer, winter, and spring. This can simply be explained by the 

rapid increase in maximum temperature than in minimum temperature. Contrarily, 

autumn was the only season with a decreasing trend in much of the region. This 

simply corresponded to a rapid increase in autumn minimum temperature (0.19ºC 
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decade-1) than in maximum temperature (0.07ºC decade-1). Studies on some regions 

in the Iberian Peninsula: including the central Ebro valley (Abaurrea et al., 2001), 

northeastern Spain (Brunet el al., 2001), mainland Spain (Folland et al., 2001), 

southern Spain (Morales et al., 2005), and the whole Spain (Brunet et al., 2005, 2006) 

have revealed positive DTR due to larger increase in maximum temperature than in 

minimum temperature. The same finding has also been confirmed elsewhere in the 

world: e.g. Italy (Brunetti et al., 2006) South Korea (Jung et al., 2002), India (Rupa 

Kumar et al., 1994), South Africa (Kruger and Shongwe, 2004), eastern Canada 

(Easterling et al., 1997) and the British Isles (Horton, 1995). For instance, Brunetti et 

al. (2006) noted a higher increase in the Italian maximum temperature than in 

minimum temperature throughout the last five decades of the 20th century. At the 

global scale, Vose et al. (2005) confirmed the same finding during the period 1979-

2004. Nonetheless, it is noteworthy indicating that the observed positive trend in DTR 

during winter and spring does not fit also well with other regional (e.g., Esteban-Parra 

et al., 1995, 2003; Staudt, 2004; Staudt et al., 2005) and global studies (e.g., Karl et 

al., 1993; Dai et al., 1997). According to the IPCC (2007), minimum temperatures 

increased at nearly twice the rate of maximum temperatures in the globe during the 

second half of the 20th century. One possible reason for these divergent trends is that 

the overall conclusions on DTR variability may differ considerably according to the 

period of study. For example, considering longer time interval (1920-2006) in this 

research did show consistent results with those given in Karl et al. (1993) and Dai et 

al. (1997). This is simply a consequence of the asystematic behavior of minimum and 

maximum temperatures. In the study domain, maximum temperature remained 

constant or has increased slightly in the pre-1970s, whereas it has abruptly exhibited 

warmer conditions than minimum temperature in the more recent decades, especially 
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since 1980. The evidence on a divergent behavior of DTR stresses the need of caution 

given that they may differ markedly according to the period of study under 

consideration. Also, this study indicates that the DTR results at the annual scale vary 

considerably from those obtained at the seasonal scale. It is therefore believed that 

further research is still demanded to explain in depth the interdependency between 

DTR and precipitation or cloudiness variability at different temporal scales. This 

investigation can give insights into the dependency between precipitation at a 

seasonal scale, as a main driver of DTR evolution, and DTR variability. This 

relationship has already been discussed in detail in previous works (e.g., Jones, 1991; 

Lough, 1997; Power et al., 1998).  

The results of this thesis confirm that the observable warming during the 20st century 

is mainly attributed to the rapid increase during the last three decades. The warming 

for the 1920-1959 period was less extreme than that in 1960-2006. For example, the 

warming rate of the annual mean temperature from 1960 to 2006 was doubled relative 

to the period 1920-1959. Over the Iberian Peninsula, this finding has been compatible 

with Brunet et al. (2005) who noted that the Spanish mean temperature from 1973 

onwards has increased five times larger than the period from 1850 to 1973. 

Interestingly, spring mean temperature revealed a strong upward trend from 1960 to 

2006 (0.66ºC decade-1). Abaurrea et al. (2001) also observed a very strong warming in 

springtime temperature in the central Ebro valley from 1975 to 1997 (1.43ºC decade-1). 

Over Europe, Xoplaki et al. (2005) also recorded the strongest signal in spring 

temperature during the last half millennium in the period from 1975 to 2004. This very 

strong signal implies critical implications on hydrology and water resources 

management in the region, as a consequence of the early snow cover melting, 
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particularly at the headwaters of the main hydrological divisions in the study area 

(López-Moreno and Garcia-Ruiz, 2004). According to Batalla et al., (2004), the rivers 

originating in the Pyrenees contribute to nearly 72% of the Ebro discharge, which is 

the largest in the peninsula (Figure 5.1). The Pyrenean Rivers have their maximum 

flow during spring because their flow regime is related more to snow melting rather 

than to rainfall. Therefore, their streamflow is very sensitive to the timing of snow 

melting which can be largely influenced by spring warming, particularly at the onset of 

the season. 

 

Figure 5.1: The main watersheds of the Ebro River. The percentages indicate the 

relative contribution of each watershed to the total basin runoff. (After Battalla et al., 

2004) 

 

Spatially, a quick comparison between Figures 5.3, 5.4 and 5.5 clearly shows that the 

warming in maximum, minimum, and mean temperatures is dominated across much of 
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northeastern Spain. This uptrend is more pronounced in coastal areas. The observed 

upward trend in most of observatories reveals that this increase has a climatological 

meaning. The detected changes can thus be attributed to either natural variability of 

climate or global warming or both of them.  

5.2.  Observed changes in temperature extremes  

In this research, several methodological procedures have been considered in order to 

limit the possible effects of serial correlation and cross-correlation, which could add 

considerable uncertainty to trend assessment of extreme events. The results indicate 

that temperature series are likely free from serial correlation. This can be expected 

given that temperature often shows low persistence at the annual time scale with 

respect to monthly or seasonal time scales. In the same context, temperature extreme 

indices were proved as unbiased by the influence of cross correlation. Thus, the 

obtained results on trends in temperature extremes can be considered with a level of 

confidence. In this section, observed changes in warm, cold and variability extreme 

indices are discussed. 

 

5.2.1. Changes in warm extremes 

The results indicate an overall upward tendency in the frequency and intensity of warm 

extremes across much of the study area. This upward trend is generally compatible 

with previous findings (e.g., Frich et al., 2002; Klein Tank and Können; 2003; 

Alexander et al., 2006; IPCC, 2007). According to Alexander et al. (2006), there have 

been considerable changes in warm temperature extremes in the globe. For example, 

more than 70 % of the land-area observatories showed statistically significant uptrend 

in warm nights over the period 1951-2003. For the Mediterranean region numerous 
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studies also assessed the impact of climate change on temperature extremes (e.g., 

Klein Tank and Können, 2003; Kostopoulou and Jones; 2005; Diffenbaugh et al., 2005; 

Hertig et al., 2010). Among them, Klein Tank and Können (2003) found a significant 

positive trend in the warm tails of the European daily temperature over the second half 

of the 20th century. The same finding has recently been confirmed by Kostopoulou 

and Jones (2005) for the eastern Mediterranean and by Politano (2008) and Hertig et 

al. (2010) for the Western Mediterranean. For the Iberian Peninsula there has been 

few limited number of studies that examined the behavior of warm extremes (e.g., 

Burgueño et al., 2002; Miro et al., 2006; Brunet et al., 2007b; Della-Marta et al., 

2007a,b). Among them, Brunet et al. (2007b) gave evidence on larger changes in high 

temperature extremes in Spain from 1955 to 2006. Similarly, Della-Marta et al. (2007b) 

pointed out that temperature of the Western Europe, including Iberia, has become 

more extreme, with the increase being more confined to summer. At the regional 

scale, Miro et al. (2006) reported a significant increase in the frequency of warm and 

extreme temperature days in Valencia from 1958 to 2003. 

 

The increase in the frequency and severity of warm temperature extremes can mainly 

be linked to the rapid warming in maximum temperature compared with minimum 

temperature. In their study covering the whole Spain, Brunet et al. (2007b) found 

higher rates of change in maximum temperature rather than in minimum temperature 

over the period 1850-2005 (0.11º versus 0.08ºC decade-1). In the study domain, this 

finding has been confirmed, suggesting that the most remarkable warming in mean 

temperature from 1960 to 2006 occurred during spring (0.66ºC decade-1) and summer 

(0.41ºC decade-1). Warm extremes are more likely to occur during these periods of the 

year. 
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Spatially, the trends in warm extremes were more pronounced in the coastal areas 

along the Mediterranean Sea and the Cantabrian Sea, whereas less warming was 

evident in mainland areas. The roughly contrasting coastal-continental pattern of warm 

extremes can be due to the prolonged strength of sea surface temperature (SST). 

Recently, many studies reported strong relationship between temperature extremes 

and SST. For example, Vincent et al. (2011) found strong influence of SST on 

variability of warm extremes in the countries of the Western Indian Ocean, with 

correlation coefficient ranging between 0.6 and 0.87. Black and Sutton (2006) also 

linked the 2003 European heat wave with variations in SST anomalies of both the 

Mediterranean Sea and the Indian Ocean. However, this warming can also be 

attributed to the strong influence of the general large-scale atmospheric circulation.  

Rodriguez-Puebla et al. (2010) attributed much of the warming in warm days (WD) 

across the Iberian Peninsula to changes in the Scandinavian pattern and the 500 hPa 

geopotential height field over the North Atlantic. Similarly, Politano (2008) linked the 

1998 unprecedented warm winter in the Mediterranean region with the anomalous 

geopotential height at 500hPa and 200hPa levels. Fischer et al. (2007) also suggested 

the anticyclonic activity as a key driver of warm events in Europe. Cassou and Philips 

(2005) found strong association between the 1994 warm summer over France and the 

Atlantic blockings.  

Altogether, these results strongly suggest the possible linkage between warm 

extremes during summertime over the domain and large-scale atmospheric circulation 

and geopotential heights. Given the notable increase in the frequency and severity of 

warm temperature events, which could have significant implications for hydrology, 
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ecology and agriculture, assessing this kind of research could provide a concrete base 

to better understanding of the spatial and temporal variability of warm extremes at this 

sub-regional scale. In the same context, the results of this work show more warming in 

warm extremes close to the coasts. Thus, it is also important to assess the impact of 

closing water bodies on warm extremes by means of simulations from different 

atmosphere-ocean climate models.  

5.2.2. Changes in cold extremes  

The Mann-Kendall results confirm that most of the cold temperature extremes related 

to the frequency and intensity showed a decreasing but statistically insignificant trend 

(p<0.05). The only exception corresponds to the annual high minimum temperature 

(TNx), which showed upward trend of 0.3ºC decade-1 in the whole domain. This 

uptrend can be linked to the increase in the mean minimum temperature during the 

summer season, which has been confirmed in other regional (e.g., Zhang et al., 2005) 

and global studies (e.g., Frich et al., 2002). In the study domain maximum temperature 

has increased faster than minimum temperature over the whole period 1960-2006, 

which suggests lower variance in the cold tail of temperature distribution. A number of 

studies worldwide confirmed this little change in cold extremes. For example, New et 

al. (2006) pointed out that indices related to the minimum temperature for southern 

Africa showed less warming compared with those of maximum temperature. In central 

and south Asia, Klein Tank et al. (2006) reported that most cold temperature indices 

exhibited significant warming in the period from 1961 to 2000. Also, Moberg et al. 

(2006) gave consistent conclusions in their study of trends in daily temperature 

extremes in Europe. In Iberia, Brunet et al. (2007b) reported a decrease in cold 

temperature extremes across much of Spain during the last few decades. In this 
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context, it is worthwhile to indicate that the occurrence of cold temperature extremes 

showed a clear decadal variation in the study area. Cold events were more frequent 

during the 1960s and 1970s. This situation has been reversed from the late 1970s 

onwards, due to the rapid warming in minimum temperature in the last two decades. 

This observation agrees well with the results of Bermejo and Ancell (2009), who 

reported a significant increase in minimum temperature across Spain after 1980. 

Accordingly, it is important to seek out the driving forces that can describe the 

interdecadal variability of cold extremes. Physical factors such as atmospheric 

circulation and sea surface temperature could be among other forces. 

 

5.2.3. Changes in variability extremes 

Similar to cold extremes, trends in variability extremes were less prevalent since 

insignificant trends were noted for majority of indices, with the exception of 

temperature sums (Tsums). For instance, the growing season length (GSL) 

significantly increased in only 14.8% of observatories. This finding is in line with 

Alexander et al. (2006) who indicated that around 16.8% of land observatories 

worldwide have experienced significant positive trends in the growing season length 

(GSL). In the study area, the less temporal variability of most of the indices can largely 

be explained by the inconsistence changes in maximum and minimum temperature 

during the past few decades. The evolution of the diurnal temperature range (DTR) is 

a clear example that summarizes the asymmetric evolution of both maximum and 

minimum temperature. As noted by many studies (e.g., Dai et al., 1997; Easterling et 

al., 2000), the globe has experienced a general negative trend in diurnal temperature 

range (DTR) that is largely a consequence of the rapid increase in minimum 

temperatures rather than maximum temperatures. In this work, the trends in DTR were 
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mixed between positive (49.2%) and negative (50.8%), being statistically insignificant 

in 71.9% of all observatories. This behavior is mostly due to the rapid warming of 

maximum temperature in recent decades, which is inconsistent with changes in 

minimum temperature over the same period. An inspection of DTR variability from 

1960 to 2006 clearly revealed that DTR decreased during the 1960s, which was then 

reversed from the 1970s, suggesting less marked changes over the whole period 

(1960-2006).  

 

The evolution of the intra-annual extreme temperature range (Intr) index can also be 

explained by the asymmetric evolution of very warm days (TX99p) and very cold days 

(TN1p) indices. Although these two indices summarize the evolution of the most 

extreme events in terms of their frequency, they can, to some extent, provide a good 

indication on the variability in Intra-annual extreme temperature range (Intr). The 

relationship between trends in both TX99p and TN1p is given in Figure 5.2, which are 

not linearly well-fitted (r = 0.01). This weak dependence between the two indices can 

be seen in the context that the frequency of very warm days (TX99P) showed a strong 

uptrend; more highlighted during the last few decades (refer to Figure 5.11). In 

contrast, the decrease in the frequency of very cold nights (TN1p) did not occur at the 

same rate (see Figure 5.13).  

 

Overall, a comparison of the trends in warm and cold temperature extremes indicates 

that the impact of climate change on temperature is mainly accompanied by higher 

shift in the warm tail rather than in the cold tail. Trends in warm extremes are of 

greater magnitudes than cold extremes. These findings are compatible with previous 

works (e.g., Klein Tank and Können 2003; Kostopoulou and Jones 2005; Alexander et 
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al., 2006; Moberg et al., 2006). In the study domain the major changes in temperature 

extremes are focused on frequency and intensity of warm extremes. This finding fits 

well with the results of Klein Tank and Können (2003) for Europe, Politano (2008) for 

the Mediterranean, Beniston (2009) for Switzerland and Brunet et al. (2007b) for the 

peninsular Spain. The results demonstrate that changes in cold extremes were largely 

related to changes in the magnitude (e.g., CN, TNx, and TNn) rather than changes in 

the frequency of cold events (e.g., TX10p, TN10p, ID0, and FD0). By contrast, 

changes in warm extremes were due to the combined change of frequency and 

magnitude. Taken together, it can be inferred that the study area seems to be more 

sensitive to global warming during the warmer periods of the year, while it shows less 

sensitivity to this warming during the cold periods. 

 

Figure 5.2: Scatter plot of the relationship between the observed trends in TX99p and 

TN1p. 
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5.3.  Spatial regionalization of temperature extreme events 

In this thesis, an attempt was made to divide the study domain into sub-regions as 

homogenous as possible based on characteristics of summer extreme events (e.g., 

frequency, intensity and persistence). The motivation for this classification was the 

high spatial variability of climate in the region due to its complex topography. The 

summer season was selected for this regionalization because the present study 

reported that the mean summer surface air temperature in northeastern Spain has 

increased by about 1.9ºC since 1960, with a warming rate of about 0.41°C decade-1, 

which represents the strongest signal among all seasons. This can be clearly seen, at 

a broader scale, in the numerous summers with the anomalously record-breaking 

warm events in the recent decades over the Mediterranean and Europe (e.g., 1998, 

2003, 2005 and 2010). These unusual events caused various drastic impacts on both 

the physical (e.g., agriculture, ecology, forest fire, and hydrology) and human 

environments (e.g., mortality and energy demand).  

 

In this research, the multivariate statistics, including the principal component analysis 

(PCA) and cluster analysis (CA), were employed to divide the study domain into 

relatively homogenous climate regions. This kind or regionalization helps assessing 

the driving forces beyond the detectable spatial modes. Although the procedure 

followed to obtain homogenous regions can be seen as arbitrary and user defined 

given that the selection of clustering algorithm and the number of clusters was 

subjectively defined, the obtained results can be seen as satisfactory for many 

reasons. First, this study followed the standard procedure applied by many previous 

studies (e.g., Baeryswil and Rebetez, 1997; Romero et al., 1999; Papadimas et al., 

2011) to obtain climatic homogenous regions. In particular, the climatic data were first 
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summarized by means of factor analysis to reduce data dimensions. Second, the 

scores of the retained factors were examined by cluster analysis to delineate the final 

homogenous regions. Also, given that the clustering procedure is unsupervised as the 

number of clusters is defined objectively, it was important to verify its goodness of fit. 

For this reason, the obtained classification was validated by means of the Silhouette 

width index to ensure its stability and goodness. Through this two-step statistical 

procedure, this work intended to use multiple statistics (i) to define the number of 

retained factors, (ii) to select the appropriate clustering algorithm, (iii) to detect the 

number of retained clusters, and (iv) to validate the clustering outputs. Combining the 

results from different statistics is advantageous to check for consistency between 

various statistics and in turn ensure the reliability of the findings.  

 

According to this scheme, four sub-regions were indentified: the Mediterranean region, 

the Cantabrian region and the inland region, the moderately elevated areas, and the 

highly elevated areas. These sub-regions have clear climatic and geographical 

meanings, with relatively clear physiographic boundaries. According to previous 

knowledge, these defined sub-regions match well with the dominant climate regimes 

over the study domain. Given that the regionalization of extremes is challengeable due 

to very rarity of these events, relative to regionalization of the mean values, the 

obtained sub-regions are reasonably found homogenous and well separated. 

Interestingly, although the network density in high-elevation sites is generally irregular 

compared with other data-rich regions (only 14.4 % of the observatories are located 

above 1000 m), the clustering procedure, as being distinctly identified in CL4, skillfully 

captured the variability of temperature extremes at these highly elevated and scattered 

localities. This can probably be explained by the free-air advection at the mountains 
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summits and along the free-drainage slopes. Pepin and Lundquist (2008) confirmed 

this finding for elevated sites with annual 0º isotherm across the globe, suggesting that 

inter-site variance of temperature at those sites is expected to be lower than moderate 

and low elevation sites, as a consequence of the weak influence of local factors near 

surface such as land use changes. 

 
A detailed assessment of the linear trends in extreme temperature indices in the 

established sub-regions indicates some important findings. Overall, there is a general 

tendency toward warming in temperature extremes for all sub-regions. However, this 

warming has a spatial component. For summer cold and warm temperature indices, 

the strongest signals were found in the most elevated areas (CL4) and along the 

Mediterranean (CL1). This probably suggests that orography and distance to the 

Mediterranean Sea play a key role in the temporal evolution of summer extremes in 

NE Spain. Accordingly, it can be assumed that changes in the summer extreme 

temperature are relatively complex and thus behave disproportionately over space as 

the climate warms. In this small area of complex orography, this finding implies that 

changes in these extremes are governed by different physical and dynamical 

considerations within the climate system. 

 

The temporal evolution of summer temperature extremes close to the Mediterranean 

Sea (CL1) coincides with the observed changes found across many Mediterranean 

areas (e.g., Frich et al., 2002; Klein Tank and Können, 2003; Kostopoulou and Jones, 

2005; Brunet et al., 2005; Hertig et al., 2010). For example, Klein Tank and Können 

(2003) found upward trend in warm temperature extremes over the Mediterranean 

region from 1976 to 1999. Also, Kostopoulou and Jones (2005) found that summer 
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was the season of the most significant increase in maximum temperature extremes in 

the eastern Mediterranean. For the western Mediterranean, Hertig et al. (2010) 

recently observed a strong warming trend in summer maximum temperature, more 

intense over the Iberian Peninsula. Brunet et al. (2006) also reported rapid increases 

in warm days over Spain since 1973, more apparent close to the coasts. The same 

finding has also been previously confirmed by Brunet et al. (2007b) who assessed 

variability of extreme temperatures in Spain, providing evidence on larger changes in 

warm temperature extremes during the 20th century, as compared with cool extremes. 

Given that the Mediterranean is a close basin, temperature variability at coastal sites 

seems to be closely linked to Sea Surface Temperature (SST) variations. Santoleri et 

al. (1994) found an increase of 1.5ºC in mean SST across the western Mediterranean, 

mostly faster during summer and winter compared with spring and autumn. Xoplaki et 

al. (2003a) also noted a significant warming trend of the Mediterranean Sea Surface 

Temperature (SST) west of 20°E over the period 1950-1999, while the eastern 

Mediterranean basin experienced cooling. More recently, Salat and Pascual (2007) 

showed a similar upwarding trend in SST along the Catalan coast (NW the 

Mediterranean).  

 

The results also confirm that high mountain areas are more vulnerable to the global 

warming, compared with lowlands. These mountain environments are more likely to be 

affected by climate change and therefore they can be an early indicator of climate 

variability and change for the nearby low elevated areas. Accordingly, these results 

can be of particular importance in the context of the possible impacts of the global 

climatic change on behavior of temperature extremes in areas of complex topography. 

At the global scale, few studies also have been undertaken to assess elevation 
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dependency on climate change signals in areas of large temperature gradient. Among 

these few studies are Giorgi et al. (1997) and Beniston et al. (1997) for the Alps, Fyfe 

and Flato (1999) for the Rocky, Chen et al. (2003) for the Tibetan Plateau, Coronato 

and Bisigato (1998) for the Andes and López-Moreno et al. (2011) for the 

Mediterranean mountains. In previous works over the region, it has been unclear 

whether the mountainous areas are undergoing a global warming, particularly with low 

density of temperature observatories in much of these areas. In the study domain, the 

rapid warming at high elevations appears to be of great importance for ecological and 

hydrological systems and climate impact assessment. Rapid changes could lead to 

significant changes in their natural vegetation and thus impacts on ecosystems and 

biodiversity. Species at high altitudes are therefore expected to undergo rapid change 

due to greater magnitudes of warming. 

 

5.4. Driving forces of observed changes and variability 

5.4.1. Influences on seasonal mean temperature  

5.4.1.1. Influence of teleconnections 

The Pearson correlation coefficient was used to assess the strength and direction of 

association between the general atmospheric circulation patterns and temperature 

series over the period 1960-2006. This correlation provided valuable information on 

the strength of the phase of each particular teleconnection pattern. In general, the 

results suggest a predominant influence of the EA+, SCA-, and WeMO- patterns on 

interannual variability of temperature in the region. Other atmospheric circulation 

patterns (i.e., NAO, EAWR, and MO) are proven to be weaker predictors of seasonal 

temperature variations in the study domain. The correlation coefficient did not reach 

the statistical significance threshold for majority of observatories in most of the 
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seasons. The relationship between the NAO and temperature in the study area only 

applies for winter season. Recent work has indicated that the EA is a leading climate 

mode in Western Europe and the North Atlantic sector (e.g., Woollings et al., 2010; 

Moore et al., 2011), In the Iberian Peninsula, numerous studies also reported strong 

linkage between the positive EA and temperature variations. For instance, Sáenz et al. 

(2001a) noted that winter temperature variations in the northern Iberian Peninsula are 

mainly associated with the EA index. In the same way, Maheras and Kutiel (1999) 

attributed much of temperature variability in the Mediterranean region to the EA 

positive mode. Also, at a hemispheric scale, Hurrell (1996) reported that the NAO is 

responsible for a considerable amount of variability in land winter temperature north of 

20ºN, with strong statistical significance (p < 0.01). In the Iberian Peninsula, numerous 

studies have also linked the increase in winter temperature to the positive mode of the 

NAO (e.g., Hurrell, 1995; Marshall et al., 2001). However, other works also suggest 

low and insignificant correlation between the NAO and temperature (e.g., Sáenz et al., 

2001b; Slonosky et al., 2001). 

 

Interestingly, the results also indicate that the leading circulation modes interacted 

differently with temperature in the region, with both negative and positive correlations. 

This strongly implies that the impacts of these circulation patterns on temperature are 

spatially dependent. For this reason, the composite climate maps of anomalous sea 

level pressure (SLP) corresponding to the key atmospheric circulation modes were 

built, providing information on the land-sea interactions in the study domain.  

 



5. DISCUSSION 
 

309 
 

A detailed inspection of the configurations of SLP anomalies associated with each 

dominant circulation pattern reveals that the observed warming in mean temperature 

at the seasonal timescale can be linked to two main atmospheric configurations: the 

first is the increase in the zonal circulation compared with the meridional circulation. 

The second factor is the dominance of the Atlantic anticyclones over Western Europe.  

The zonal circulation enhancement implies an increase in the easterly and westerly air 

flows relative to northern and southern flows. In the study domain, this situation is 

clearly evident during winter, particularly in the last decades. In winter, there is a 

strong pressure gradient with the Azores High and the Icelandic Low being well 

developed resulting in enhanced zonal winds. Figure 5.3 compares the average of 

SLP anomaly during winter for the 1960-1979 and 1980-2006 periods over much area 

of Europe and North Africa. This comparison can likely give an indication on recent 

changes in the zonal circulation over Europe during the last three decades. As 

illustrated, SLP over northern Europe tends to be anomalously low in the recent 

decades compared with earlier decades, implying that blocking may be weakened over 

these areas. This feature induces an increase in the westerlies reinforcement over 

Europe, which leads to warm winters in central and southern Europe. As shown in 

Figure 5.3, the increase in zonal circulation in recent decades often corresponds to an 

increase in anticyclones frequency. This feature leads to a reduction in cloud cover, 

and in turn an increase in warm air advection as a result of the increase in the 

incoming solar radiation during daytime hours (Esteban-Parra et al., 2003). These 

findings come in agreement with other earlier studies. For example, Slonosky et al. 

(2001) attributed much of the variability in the European wintertime temperature to 

changes in the zonal circulation. In the same context, Quadrelli et al. (2001) reported a 
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significant increase in the Atlantic blockings that affect the Western and southern 

Europe during winter months.  

 

Figure 5.3 Differences in winter SLP anomalies between the two periods: 1960-1979 

and 1980-2006, as indicator of changes in the zonal circulation. The anomaly was 

calculated from the NCEP/NCAR daily data for each grid using the reference period 

1960-2006. Panel (c) has a binary value indicating the direction (i.e. positive/negative) 

of the difference in the anomaly between the two periods for each grid. 

 

Given that the study domain is located in a transitional zone between the Atlantic and 

the Mediterranean configurations, the dominating atmospheric systems are the 

subtropical Azores High, the polar Icelandic Low and the continental surface highs 

(winter) and lows (summer). Accordingly, the Atlantic and Mediterranean air 

advections bring relatively warmer air over the study domain. More specifically, the 

composite SLP anomaly corresponding to the positive phase of the NAO is largely 

associated with an increase in zonal circulation over Western Europe. This 
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configuration corresponds to higher-than-normal western flows, which are 

accompanied with amplification of the warm Atlantic air advection to the study domain. 

This configuration can be responsible for the warming observed along the Cantabrian 

Sea and highly elevated sites in the Iberian system. This influence gets weaker in 

inland areas. Herein, it is however worthwhile to indicate that the dependency between 

the NAO and winter temperature variability is very sensitive to locations of the SLP 

anomalies centers. This is particularly because Southern Europe and the 

Mediterranean region are characterized by weaker SLP gradient in relations to 

northern and central Europe. As a consequence, a different behavior of southern 

Europe temperature from one year to another can be expected. In their study on the 

whole Mediterranean, Maheras and Kutiel (1999) pointed out that the high (low) 

temperature anomalies over the western Mediterranean is markedly related to the 

location of a low (high) pressure in the Atlantic ocean along the western Iberian 

Peninsula. This can be clearly seen during autumn season as there is a small pressure 

gradient over the Iberian Peninsula, which does not permit strong advection of 

atmospheric flows. This feature may explain the weak warming observed in this 

season, particularly in southern and central areas, compared with other seasons. 

During summer, the WeMO negative mode is also associated with the increase in 

zonal circulation, mainly originating from the positive pressure anomaly over the North 

Atlantic. This configuration increases the advection of the Westerlies, transferring 

warm oceanic air over the Cantabrian region, with less effect in central areas. 

The second key factor responsible for the warming in mean temperature in the study 

area is the dominance of the Atlantic anticyclones over Western Europe, particularly 

during the negative modes of the SCA and WeMO and the positive mode of the EA. 
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The persistence of the anticyclonic configurations is markedly apparent during the last 

three decades. This can clearly be seen in Figure 5.4, which mapped averaged SLP 

data derived from the grids covering the study domain from 1960 to 2006. As 

indicated, there is a clear tendency toward increasing in the SLP means over the study 

domain. This is more pronounced during the last two decades. The only exception is 

the statistically insignificant trend (p<0.05) in the surface pressure during autumn. 

There is a tendency toward a decrease in the last three decades, with clear 

interannual behavior. These weak anticyclones can explain the weak warming and 

even the decrease found in some areas over the region during autumn. Blackburn and 

Hoskins (2001) found the same association during the positive SCA in summer, 

indicating that Western Europe is mainly associated with predominance (weakness) of 

the cyclonic (anticyclones) conditions. This behavior enhances the advection of the 

surface westerlies from the Atlantic toward southern Europe and the Mediterranean. 

The westerlies cause the transport of mild airflow that could weaken heat severity. 

Nonetheless, it is noteworthy indicating that the center action of the positive anomaly 

of anticyclones varies among seasons, between northwestern Europe and central 

Europe. This situation plays a key role in the above-normal temperature during spring 

and summer as these anticyclones act as blocks to the passage of the Icelandic 

cyclones and Atlantic fronts which are favoring for the northerly cooler flows. Previous 

works attributed the cooling of summer temperature in the first years of the 1980s to 

the weak of Atlantic anticyclonic, which favored strong and more frequent northerly 

cold flows over central and southern Europe (e.g., Metaxas et al. 1991; Reddaway and 

Bigg 1996; Kutiel and Maheras 1998). This situation has been reversed in the recent 

decades as summer corresponded to a well developed and stable Azores High 

predominating over large areas of the Mediterranean and continental Europe.  
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Figure 5.4: (A) Seasonal and annual temporal variations of mean SLP (hPa) over the 

study domain and, (B) differences in SLP in the two sub-periods 1960-1980 and 1981-

2006, as indicator of blocking behavior. All calculations were made based on the 

averaged values of the 2.5º by 2.5º grid resolution covering he study domain. In right 

panels, changes in the mean values are represented by the vertical lines. 
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In addition, the persistence of anticyclones enhances the advection of air flows from 

one direction for consecutive days, which can be responsible for above normal 

temperature. For example, the EA+ configuration during winter and summer is mainly 

associated with predominance of anticyclonic conditions over the Mediterranean and 

North Africa, which would tend to bring anomalous S and SW warm air to the Iberian 

Peninsula, causing higher temperatures over the region. This configuration has been 

noted in earlier works (e.g., Sumner et al., 2001; Muñoz-Diaz and Rodrigo, 2004). 

Similarly, the SCA- during summer is characterized by prevalence of anticyclonic 

conditions at the surface level over Iberia, Central Europe, and North Africa. This 

configuration reinforces easterly and southerly flows from the Mediterranean, causing 

above-normal temperature over the study region. 

5.4.1.2. Influence of land-atmosphere coupling  

While numerous studies explained interannual variability of temperature as driven by 

large-scale atmospheric circulation (e.g., Sáenz et al., 2001a, b; Brunet et al., 2007b; 

Rodriguez-Puebla et al. 2010), the impact of these circulations is season dependent, 

with the stronger (weaker) effect during winter (summer). In particular, summer is 

generally characterized by a quasi-stationary circulation anomaly. Therefore, in 

response to the localized diabatic heating at the surface level, distinctive cyclonic 

(anticyclonic) circulation predominates in the lower (upper) layers of the troposphere 

during summertime (Chen, 2001). This thermally forced circulation is also coupled with 

other heat sources during this season, including heat radiation, maximum insolation, 

clear skies and light wind. Warmer temperature during summer can therefore be 

partially driven by this large stability and strong persistence in atmospheric circulation. 
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Over Iberia, this configuration can act as blockings to the passage of the Icelandic 

cyclones and Atlantic fronts, which bring cold air from Scandinavia and Eurasia. Trigo 

et al. (1999) defined a major cyclonic center over Iberia during summer season (36º-

42ºN, 10ºW-0º). It is mainly originated from the thermal effect of warm land, besides 

the influence of land-sea interaction. Thomas et al. (2010) indicated that the 

dominance of cyclonic conditions during summer is more highlighted in the mainland 

peninsula and over mountainous regions, leading to more stability. 

While the large-scale atmospheric modes can largely be responsible for temperature 

variations in some seasons (e.g., winter), land-atmosphere coupling processes (e.g., 

cloudiness and soil moisture) can explain large proportion of temperature variability in 

the summer periods. Based on simulated data from four different RCMs, Seneviratne 

et al. (2006), for example, noted that the projected changes in the interannual 

variability of climate in Europe would largely be driven by land-surface-atmosphere 

coupling. Among the land surface-atmosphere forces, cloudiness and soil moisture 

might be considered the two most important parts with significant feedbacks with 

temperature. Both are key drivers of mass and energy transfer in the globe. 

 

Previous studies linked changes in land surface, including soil moisture, with climate 

variations (e.g., Huang et al. 1996; Douville 2003; Koster and Suarez 2003; Koster et 

al., 2004, Seneviratne et al. 2006; Fischer et al., 2007). Soil moisture plays a critical 

role in influencing surface energy and water balance components mainly through its 

effects on evapotranspiration or latent heat flux. Given that the study area is located in 

the mid-latitudes between dry and wet conditions; its climate is more likely to be 

influenced by changes in soil moisture. In this semi-arid region, soil moisture is a 
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limiting factor for evapotranspiration and thus exerts strong impact on the land energy 

balance. In this context, an attempt was made to quantify the relationship between the 

variability of surface temperature and soil moisture availability. It was revealed that 

changes in soil-atmosphere interactions can partially contribute to the observed trends 

in temperature evolution, particularly during spring and summer. This feedback was 

found negative and statistically significant at the 99% level as low soil moisture at the 

surface level during summer and spring seasons always causes a decrease in latent 

cooling and in turn above-normal temperature. A recent study by Zhang and Dong 

(2010) found that soil moisture feedbacks accounted for 5-20% of temperature 

variability in the transitional zones of eastern Asia. Similarly, Seneviratne et al. (2006) 

attributed much of variation (60%) in summer temperature variability in the transitional 

zones over Europe to soil moisture feedbacks. In summer and spring, soil moisture 

deficit can damp evapotranspiration and consequently more energy is partitioned into 

sensible heat, enhancing surface air temperature. Moreover, soil moisture can also 

modify surface air temperature through altering other components of surface energy 

balance (e.g., surface albedo, atmospheric water, clouds, and thermal properties of 

soil). Recalling that surface evapotranspiration is likely to inhibit the rising of daytime 

temperature through evaporative cooling, it can be expected that the dependency of 

soil moisture will be stronger during daytime (i.e., maximum temperature), while it 

decreases with nighttime temperature. This finding agrees well with previous works, 

which found strong feedback between soil depletion and maximum temperature than 

with minimum temperature (e.g., Dai et al., 1999; Durre et al., 2000; Diffenbaugh et al., 

2005; Alfaro et al., 2006; Fischer et al., 2007; Zhang et al., 2009; Zhang and Dong, 

2010; Lorenz et al., 2010). 
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Spatially, soil moisture feedback is likely to be greater on dry slopes, where soil 

moisture is determined by recent precipitation and time since snowmelt, and least near 

streams, where soil moisture persists at higher levels. In the study domain, a strong 

coupling of soil moisture with precipitation is expected during summertime. This is 

particularly because the study domain is located in a transition zone between dry and 

wet climates. Also, there is a high spatial and temporal variability of precipitation in the 

region. The influence of reduced soil moisture on summer temperature variations is 

also expected to be more highlighted along the coastal and mountainous regions 

compared with lowlands. This is basically because these regions often receive higher 

amounts of precipitation compared with areas of low altitude. Thus, the persistence of 

negative soil moisture anomalies is expected to be higher when there is a decrease in 

the amount of precipitation. This feature may partially explain the higher temperature 

warming observed in coastal areas and at highly elevated sites with respect to 

continental and lowlands. For example, Vautard et al (2007) indicated that a shortage 

in winter precipitation over the Mediterranean region often causes above-normal 

temperature in the following summer season. Fink et al. (2004) also demonstrated that 

the 2003 anomalous warm summer in Central and Western Europe was accompanied 

by a remarkable deficit in precipitation during the preceded winter. Recently, 

Seneviratne et al. (2006) showed observational evidence on strong impact of deficit in 

soil moisture on warm extremes in southeastern Europe. 

 

Another important factor affecting temperature variations is cloudiness through 

radiation feedbacks. Cloudiness directly affects the global climate system by 

transferring energy in the atmosphere. The decrease in cloudiness often affects 

energy and heat transfer throughout insolation, suggesting above-normal temperature 
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during the daytime. Conversely, cloudy days are mostly linked to decrease in sunshine 

and in turn more evaporation and cooling. However, this study strongly suggests that 

the relationship between cloudiness and temperature is highly dependent on season, 

with positive (negative) feedbacks during winter (spring and summer). In contrast to 

summer, increasing cloudiness causes warmer temperature during winter. Dai et al. 

(1997) explained the association between surface air temperature and cloudiness in 

the context of radiation fluxes. In short, the cloudiness effect has a negative feedback 

during summertime as, under decreasing cloudiness, the incoming shortwave radiation 

is lower than the outgoing longwave radiation. This feature would be reversed in 

cloudy days. In winter, this association shows highly significant inverse relationship, 

indicating warmer minimum temperature during cloudy weather. In their study on the 

USA, Plantico et al. (1990) indicated that assessing interrelationships between trends 

or anomalies of temperature and cloud cover could significantly contribute to the 

understanding of climate change processes. They found a correlation coefficient in the 

order of -0.44 and -0.13 between cloud cover and maximum and minimum 

temperature, respectively, during summer (JJA) season. Herein, it is also worthwhile to 

indicate that this correlation is expected to be higher during years of positive 

anomalies of sea surface temperature (SST) as warmer surface water leads to less 

cloud amount. 

 

5.4.2. Influence of large-scale circulation on extreme events 

5.4.2.1. Influence on summer temperature extremes 

Pearson correlation values between the general atmospheric circulation and the 

regional time series of extreme temperature during summers (JJA) of the period 1960-
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2006 were computed for the established sub-regions following principal component ad 

cluster analyses. In general, this relationship was found statistically significant (p<0.05) 

for the EA+, SCA- and WeMO- patterns. Though the relationship between the NAO 

and winter temperature over large portions of the Mediterranean and Europe is 

confirmed (Hurrell, et al., 2003), the NAO seems to be a weak predictor for 

temperature extremes during summer season. This finding also agrees well with Trigo 

and Palutikof (2001) who found that the NAO poorly explained variability in 

atmospheric circulation during summer months, as compared with other seasons. In 

their study on the entire Europe, Beranova and Huth (2008) found the strongest 

connections between the EA mode and temperature in southern France and NE Spain.  

 

The obtained results suggest that the behavior of temperature extremes during 

summer is mainly driven by atmospheric circulation during the positive EA, and the 

negative modes of the SCA and WeMO. This clearly implies that the dependency 

between temperature extremes and teleconnection indices resembles what was 

previously obtained for the mean temperature conditions. Similarly, the impacts of 

these configurations seem to have a spatial structure, with clear regional contrasts 

among the defined sub-regions. Accordingly, the co-variability between SLP as 

independent variable and summertime (JJA) temperature as dependent variable was 

explored for the period from 1960 to 2006. This co-variability was explored for the 

leading circulation modes by means of the composite climate analysis and the 

canonical correlation.  

 

In summary, it can be concluded that the variability of summer temperature extremes 

in NE Spain is particularly related to the circulation modes that produce high pressure 
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anomalies over much of Europe and the Mediterranean Sea. A series of studies found 

a statistically positive trend in SLP over the whole Mediterranean and most of the 

continental Europe during warm summers of recent decades (e.g., Reddaway and 

Bigg, 1996; Xoplaki, 2002). For example, Xoplaki (2002) noted an upward trend in both 

surface pressure and different geopotential heights over the eastern Atlantic and most 

of continental Europe west of 30ºE. However, the canonical functions obtained in this 

work suggest that the spatial variability of temperature anomalies over northeastern 

Spain varies considerably according to SLP anomaly variations, which markedly differs 

its position, strength and influence domain from one prominent mode to another  

 

5.4.2.2. Influence on the anomalously severe temperature extremes 

With a focus on anomalous and very extreme temperature events, the PCA results 

denote that that changes in these events do not scale proportionately over the study 

domain. Changes are not found uniformly in all areas of the domain. The large-scale 

atmospheric circulation at SLP, 200hPa and 500hPa levels was proven to be able to 

explain spatial variability in very extreme temperature events (i.e., VCN and VWD). 

The results derived from both the composite maps and the canonical correlation 

analysis pointed out that the patterns of the 200hPa and 500hPa anomaly fields 

resemble that of the SLP modes. The spatial patterns of SLP and upper air (i.e., 

200hPa and 500hPa) anomalies remain more or less consistent during both VCN and 

VWD. This more or less similarity implies that cyclones/anticyclones are developed 

simultaneously at these different levels. This indicates a stationary vertical structure of 

pressure, suggesting that extreme temperature variability at the seasonal scale (i.e., 

winter vs. summer) is forced by similar modes of pressure at mid and shallow 
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troposphere; a result that has been confirmed in earlier works over Western and 

southwestern Europe (Ulbrich et al., 1999).  

The results also indicate that changes in VCN can be attributed to two main synoptic 

conditions. First, they are related to low surface and geopotential anomalies at the 

200hPa and 500hPa geopotential heights over the Peninsula, which encourage strong 

advection of cold polar air masses originating from the anticyclones over Scandinavia. 

This finding has been reported in recent works (e.g., Klein Tank and Können, 2003; 

Prieto et al., 2004). For example, Klein Tank and Können (2003) attributed much of 

variation in cold extremes over the Western Europe and the Mediterranean winters to 

cold airflows from the snow-covered European continent and the northern Atlantic 

Ocean. Similarly, Prieto et al. (2004) identified the Arctic synoptic pattern as 

responsible for much of variability in cold days over the Iberian Peninsula. According to 

this explanation, the decrease in the frequency and intensity of these cold events can 

mainly be linked to a decrease (increase) in the meridional (zonal) circulation over the 

Western Europe in recent years. Werner et al. (2000) reported an increase in the 

mean residence time of zonal circulation during wintertime in the North 

Atlantic/European sector since the 1970s. This also agrees well with the previous 

finding which indicates that warmer winters in northeast Spain are mainly linked to the 

increase in zonal circulation, as revealed by more warm advections from west and 

southwest. This situation corresponds to weaker flows from cooler continental areas in 

north Europe as a consequence of the increase in the frequency of the Atlantic 

blockings. The second dominant pattern corresponding to the occurrence of VCN is 

linked to the presence of deep anticyclones over the study area for several days, 

which help local factors (e.g., fog) to generate VCN. Prieto et al. (2004) demonstrated 
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that this situation is responsible for the occurrence of cooler temperatures in the 

Iberian Peninsula when there is a general absence of any significant pressure 

gradient. The persistence of this circulation for uninterrupted days can likely enhance 

the occurrence of VCN conditions.  

 

The findings on VWD assume that the warmest days during summer corresponded to 

strong anomalies at different levels (i.e., SLP, 200hPa and 500hPa) over Central 

Europe, while a negative anomaly is located over the Atlantic Ocean near to the 

Iberian Peninsula. Numerous studies reported a significant increase in pressure at 

MSL and different geopotential levels (e.g., 200hPa, 500hPa, 850hPa and 1000hPa) 

over the Mediterranean and Western Europe during summers of recent decades (e.g., 

Maheras et al., 1998, 1999; Wanner et al., 1997; Schonwiese et al., 1998; Xoplaki, 

2002). For instance, Maheras et al. (1998) indicated a statistically significant increase 

for the 500 hPa level over the western Mediterranean. This finding has also been 

confirmed by Wanner et al. (1997), but for a broad geographical domain including the 

eastern Atlantic sector and much of the continental Europe. More recently, Xoplaki 

(2002) found statistically significant uptrend in both the 500hPa and 1000hPa 

geopotential heights from the tropics to the midlatitudes during summer months, the 

European regions west of 30ºE being the areas with the most significant trend. This 

configuration enhances advance of warm-dry air flows from the enhanced ridges from 

overheated European plains to the west and southwest. This situation comes in 

agreement with previous regional (e.g., Trigo and DaCamara, 2000; Lorenzo et al., 

2008) and continental studies (e.g., Post et al., 2002). For example, Lorenzo et al. 

(2008) showed that the northeastern flows showed their high frequency over northern 

Spain during warmer summers, while southwestern advections had their least 
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frequency. In addition, a minimized influence of the westerly air flows during the most 

extreme warm events is evident, suggesting more influence of the Mediterranean Sea 

flows (i.e., easterly and northeasterly) compared with the Cantarbrian Sea flows (i.e. 

westerly and northwesterly). Over the peninsula, Trigo and DaCamara (2000) found 

the least frequency of the W and NW weather types during the May-August period of 

each year.  

 

A comparison between canonical functions to assess co-variability between 

anomalous VCN/VWD temperature and geopotential fields indicates that no single 

function can solely explain this interrelationship. This suggests a high degree of 

variability among these fields and temperature over the region. Overall, the canonical 

correlation functions during VWD suggest that the severity and frequency of VWD can 

be understood as a function of the changing relationship between the centers of 

anomaly on the Mediterranean and the Atlantic. In general, VWD seems to be highly 

correlated with surface and geopotential anomaly in adjacent seas (i.e., the mid 

Atlantic and the Mediterranean). On the other hand, VCN showed low correlations with 

surface temperature in adjacent waters. This may imply that changes in sea surface 

temperature (SST) can possibly act as a key driver for the extremely severe warm 

days. Colman (1997) and Colman and Davey (1999) discussed the association 

between the European summer temperature and SST anomalies in the North Atlantic 

during the preceding winter. Black and Sutton (2006) also highlighted the role of the 

SST anomalies in the Mediterranean on the European heat wave of 2003. 

 

However, the results also suggest that the spatial variability of VWD and VCN cannot 

be explained solely by changes in atmospheric circulation. Other mechanisms should 
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be considered to explain the occurrence of these events. According to Ogi et al. 

(2005), surface-atmosphere feedback mechanisms such as soil moisture, long periods 

of clear-sky conditions, subsidence, the Northern Hemisphere annular mode, 

northward extension of the Hadley cell, and an upper-troposphere double jet can 

significantly contribute to more frequent VWD (Black et al., 2004; Trigo et al., 2005). 

For example, soil moisture can strongly enhance convection, favoring for a higher 

increase in the frequency of these days in regions characterized by dry soils. Similarly, 

the anomalous warm days can be linked with lack of water availability (e.g., 

precipitation) and changes in cloud cover anomalies. Likewise, the synoptic conditions 

corresponding to VCN are still far from completely determining their mechanisms given 

that other local processes (e.g., snow pack, surface albedo) can have potential impact. 

 

5.5. Future changes of temperature during the 21st century 

Understanding the impacts of future climate change on northeast Spain, a region 

characterized by complex climatological and topographical features, is important for 

different environmental, hydrological, agricultural and socioeconomic applications. In 

order to obtain confidence in a future climate projection, it was necessary to evaluate 

the ability of different RCMs to adequately capture the characteristics of the observed 

regional climate. Using projections from different models rather than just relying on a 

single outcome is preferred because it allows deepening current knowledge of the 

uncertainties associated to the climatic change in the region. An ensemble of different 

simulations makes the projected changes representative of average or conservative 

conditions in the region. To meet this end, multiple simulations from 9 RCMs were 

assessed for their ability not only to reproduce the main statistical characteristics (i.e. 

the mean, skewness, symmetry and interannual variations) of time series, but also to 
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simulate spatial structure of the observed trends. The performance of the models was 

assessed against a gridded observational daily dataset obtained using a dense 

observational network during the reference period (1971–2000). This dataset is 

complete (i.e. no missing values); homogenous and dense, which is advantageous for 

validating simulated data. In this regard, numerous accuracy estimators were 

calculated on a seasonal basis to assess the performance of the models, including: the 

Mean Bias Error (MBE), the Yule–Kendall (YK) skewness and the ratio of coefficient of 

variance (CV). A quick comparison between the simulations which most accurately 

reproduce observed climate suggests that they tend to underestimate maximum 

temperature, while they overestimate minimum temperature over large parts of the 

region. This finding agrees well with other previous studies (e.g., Giorgi et al., 2004; 

Gonzalez-Aparicio and Hidalgo, 2011). This feature was more pronounced during 

winter and autumn relative to summer and spring. This can probably be explained by 

the inadequate representation of some components of the land-surface schemes, such 

as precipitation, soil moisture, surface fluxes and convective parameters. Moberg and 

Jones (2004) attributed much of the warm bias in mean temperature over southern 

Europe to poor simulation of soil moisture. Also, the absolute values of the bias were 

found higher for minimum temperature than for maximum temperature. Modelling 

minimum temperature can be constrained by very local conditions near land surface, 

such as local topography, vegetation cover and wind speed, which are quite 

complicated and difficult to resolve by the current RCMs spatial resolution (≈ 25 km). 

Numerous works informed that there is a general tendency of RCMs to overestimate 

precipitation during rainy seasons (particularly winter), which can in turn induce cold 

bias of maximum temperature. Many authors (e.g., Giorgi and Marinucci, 1996) 

attributed much of bias in climate models during summertime to lack of adequate 
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treatment of cumulus convection, a predictable process which plays a key role in 

temperature variations during this season. Another interesting note is that, apart from 

winter minimum temperature, majority of the models exhibited positive YK and IVE 

values for either daily maximum or minimum temperatures. A possible explanation for 

this feature is that the interannual variability of temperature decreases as the spatial 

scale of the study domain gets smaller (Giorgi and Bi, 2005). Recalling that the study 

area is quite small (≈160,000 km2), temperature is not expected to vary greatly over 

space. Nonetheless, the complex topography of the study domain and its geographical 

location introduce changes over short distances. This is particularly clear with 

minimum temperature, which shows high gradient over short distances during cold 

seasons (i.e., winter and spring), particularly in areas of complex topography which are 

more prone to thermal invasions.  

This study provides strong evidence that the current substantial warming over the 

study domain will continue during the 21st century. Model output indicates that mean 

temperature might increase for most of the study domain, with values ranging from 

2.4ºC (spring) to 5.1ºC (summer). The strongest warming anomalies are expected to 

occur in winter and summer, with a more increase in the latter half of the 21st century. 

This seasonality of warming and their corresponding values are in the midrange of the 

predicted warming, as reported in previous works over the whole Mediterranean region 

(e.g., Giorgi and Bi, 2005; IPCC, 2007). According to the IPCC (2007), the warming 

rate of the mean temperature at the end of the current century lies in the range of  

2.3ºC to 5.3ºC, under the A1B emission scenario. Similarly, over Europe, future 

changes in temperatures derived from five different GCMs under four global scenarios 

indicated that the annual temperature would rise in the range of 1ºC to 4ºC decade-1 
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(IPCC, 2007). This features also fit well with the observed changes in maximum and 

minimum temperatures over the study domain from 1960 to 2006. The only exception 

is that spring will warm at weaker rates compared with the observed warming.  

 

The projections also indicate that the projected minimum temperature will increase at 

larger rates than maximum temperature, suggesting a decrease in the diurnal 

temperature range in the future. This diurnal differential rate of warming is opposite to 

the observed changes in the region. However, this feature is generally in accordance 

with other global (Alexander et al. 2006) and regional (Esteban-Parra et al., 1995; 

Staudt et al., 2005) works.  

 

The findings of future changes in temperature characteristics for the study domain find 

coincident change patterns. The overall changes are coincident over all seasons, 

suggesting more increase in mainland areas, and particularly over the central Ebro 

valley for maximum temperature and the Iberian and Cantabrian systems for minimum 

temperature. Overall, this spatial structure of the projected changes suggests less 

warming in coastal grids. Interestingly, the RCMs showed a remarkable agreement in 

spatial distribution for all seasons, although the magnitudes varied distinctly. This good 

agreement between the projected changes was interesting because the inter-model 

averages were computed from RCMs forced by different GCMs. While this spatial 

component is clearly opposite to the observed changes from 1960 to 2006 in which the 

largest changes in temperature are generally confined to coastal areas, these regional 

differences agree well with some recent projections (e.g., Hanssen-Bauer et al., 2005; 

López-Moreno et al., 2008b; Jerez et al., 2012). For example, Jerez et al. (2012) 

projected more increase in summer and winter temperatures over mainland and 
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western areas of the Iberian Peninsula. Similarly, López-Moreno et al. (2008b) 

reported more increase in mean temperature over land grid points along the Pyrenees 

(NE Spain), relative to the coastal grids. At the national scale, Alcamo et al. (1996) 

projected an increase of 2-3ºC in temperature over Spain using simulations from the 

IMAGE model, the largest warming occurred in the Ebro watershed. Over Europe, 

Hanssen-Bauer et al. (2005) found that a common feature for projected temperature 

change in Scandinavia was the large increase in continental areas than in coastal 

areas. The contrasted spatial modes between observed and simulated climate may 

imply considerable changes in the strength of the physical processes responsible for 

this warming. While the SST is regarded as a key driver of climate change in the 

region during the second half of the 20th century, there will probably be an enhanced 

negative feedback of soil moisture and the associated albedo in the future. Changes in 

the patterns of this dependency need further and detailed assessment in the future.  

 

The results also demonstrated that the Pyrenees is more prone to negative anomaly 

(in the range of -0.5ºC to -3ºC) in maximum temperature during the mid 21st century 

(2021-2050). This result can be of particular importance from the hydrological point of 

view given that this mountainous region encompasses the headwaters of the main 

hydrological divisions in the study domain (López-Moreno and Garcia-Ruiz, 2004). 

One possible reason for this “unexpected” negative anomaly is that the simulated 

anomalies were computed based on an inter-model average of different simulations 

with diverse formulations. These models may vary in their response to climate change 

in very high-elevation regions. There are different formulations of the RCMs with varied 

representation of some components of the land-surface schemes such as 
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precipitation, soil moisture, snow-albedo feedbacks, surface fluxes and convective 

parameters. Another possible reason might be related to the uncertainty related to the 

use of the Inverse Distance Weighting (IDW) interpolation algorithm to obtain a gridded 

dataset based on the observational data (1971-2000). This Pyrenees has a relatively 

uneven network of observatories. Accordingly, the observed temperature might be 

overestimated as a consequence of the combined effect of topography gradient and 

the edge impact as access to data from the French Pyrenees was unavailable to limit 

this effect during interpolation. Overall, according to this finding, a late snow cover 

melting could be expected in the region in the next few decades, which could have 

potential implications in the area of water resources management. This picture has 

completely been reversed at the end of the 21st century, fitting the result of López-

Moreno et al. (2008b) that projected a 1.7–3.1°C rise in the wintertime temperature 

across the Pyrenees by the end of the current century under the A2 emission scenario 

using a set of RCMs developed under the PRUDENCE project. 

 

The results also indicate that changes in the mean temperature are accompanied by 

changes in the corresponding time-varying percentiles. This denotes that changes in 

temperature extremes are mainly due to the shift of the whole distribution rather than 

changes only in the mean. This also suggests that changes in extremes of daily 

temperatures in the study domain were due to changes in both the mean and the 

variance. The overall warming is more highlighted during summer, implying that there 

is consensus among models and the ensemble mean about high likelihood of increase 

in extreme warmer minimum and maximum temperature in the future. This range 

comes in agreement with Hertig et al. (2010) who projected an increase in the 
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magnitude of the upper percentiles of summer maximum temperature over the western 

Mediterranean during the 21st century.  

 

A comparison between the role of changes in the mean temperature on trends of the 

maximum and minimum temperature time-varying percentiles during the 21st century 

reveals that the projected increase in both the mean and magnitudes of the time-

varying percentiles generally corresponds to lower interannual variability in the future. 

The results gave little evidence on a statistically significant change in inter-annual 

temperature variations. The only exception was found during summer, which exhibited 

a future increase in the interannual variability of temperature. This implies a more 

likelihood to exhibit severe extreme warm events in the future. This finding was 

confirmed by Schär et al. (2004) for the whole Europe. 

This study highlights the finding that the large absolute change in the mean during the 

first and the late halves of the 21st century does not necessary correspond to an 

increase in the temperature variability in the future. Therefore, future temperature 

changes over the study domain cannot only be inferred from changes in the mean, 

especially with respect to temperature changes at the lower and upper ends of the 

maximum and minimum temperature distributions. These results imply that we cannot 

only rely on changes in the mean to infer changes in the corresponding time-varying 

percentiles. Hertig et al. (2010) confirmed the same finding for the whole 

Mediterranean region, indicating that changes in the 90th and 5th percentiles of 

summer maximum and winter minimum temperatures, respectively, do not follows the 

same rates of changes of the mean values.  
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Based on the performance of 9 RCMs over the study domain, future changes in VWD 

and VCN were also assessed for the 2021-2050 and 2071-2100 periods. It can be 

seen that changes in the VCN over the study area are more linked to changes in the 

intensity of temperature during these days than to changes in the VCN frequency. This 

can be seen when comparing rates of change in the 1st percentile with changes in the 

frequency of VCN. This comparison may suggest that changes in the mean of 

minimum temperature during winter season are significant, while changes in the 

standard deviation are less evident. This situation leads to few changes in the 

frequency of these events while there is a significant change in the magnitude of 

temperature recorded during these days. This finding has been confirmed by Prieto et 

al. (2004) for cold days across the Iberian Peninsula, suggesting no significant 

changes in the standard deviations of daily minimum temperature distribution. 

Similarly, the magnitude of the 99th percentile of summer maximum temperature 

increased at rates greater than those of the 1st percentile of winter minimum 

temperature during the second half of the 21th century. This indicates a rapid increase 

in the warm tail of daily temperature distribution than in the cold tail. This picture has 

been reversed in the earlier decades (2021-2050) as the 1st percentile of daily 

minimum temperature has risen at rates higher than the 99th percentile of daily 

maximum temperature, suggesting rapid warming of minimum temperature than 

maximum temperature in earlier decades of the 21st century. 

 

The results on changes in both the mean and the time-varying percentiles can be 

valuable to assess the potential impacts of climate change on hydrology, human 

activities, agriculture and economy and can also be useful to monitor these influences 

at the regional scale. Recalling that warm extreme events are mostly expected to 



5. DISCUSSION 
 

332 
 

occur during summer season (JJA), the enhanced summer temperature increase for 

the study domain, particularly, at the end of the current century, could have various 

hydrological and environmental consequences. These impacts could include, for 

example, the increase in drought severity, forest fires and energy consumption and the 

degradation of agricultural production. Moreover, it can lead to higher evaporation 

rates that transport larger amounts of water vapor into atmosphere, inducing 

accelerated changes in the hydrological cycle over the region. In addition, shallow 

snowpacks as caused by the projected warming can lead to drier soils, longer growing 

season, and higher moisture stress for plants. In other words, it can be expected that 

the growing season will begin earlier due to melting of snowpacks, while soil moisture 

will become depleted sooner as a consequence of the rapid snow melting. Also, this 

warming can significantly influence the timing of streamflow in the study domain, which 

may increase water demands and stress in the region. Following Rodriguez et al. 

(2005), an increase of 1ºC in the Spanish mean annual temperature in the future can 

be responsible for a reduction of nearly 5-14% in water yields, while a more intense 

increase of 4ºC could reduce water yields by 22%.  

 

The projected rapid warming at high elevation regions by the end of the century (e.g., 

the Pyrenees and the Iberian systems) could have a wide range of impacts with 

potentially severe consequences for the biodiversity in these vulnerable 

environments. For example, changes in the timing of snowmelt could affect plant 

phenology and induce early season temperature regimes (Inouye et al. 2002; Dunne et 

al. 2003). This warming may also alter conditions that determine the distribution of 

habitats and phenologies of the plants. Thuiller et al. (2005) indicated that a projected 

global warming of 3.6°C could induce a loss of more than 50% of plant species in the 
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Mediterranean mountain region. This loss is likely to be maximized over northern 

Spain, reaching 80% of species. In the same context, the model results projected a 

rapid increase in maximum temperature over the Ebro valley. This suggests that the 

Ebro valley may become warmer and drier in the future. This projected warming may 

intensify the hydrological cycle resulting in higher evaporation losses, higher irrigation 

water requirements, and an overall increase in water resource demand for domestic, 

agricultural, and industrial use. Such changes in hydrological system and water 

resources could have a direct effect on society, environment and economy. 

 

Taken together, the results of this work on the projected temperature future changes 

should be taken with much consideration by local decision makers, highlighting the 

need to adopt their future policy and development plans to meet future demands.  
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6. CONCLUSION  
 
The present thesis examined changes in the annual and seasonal distribution of daily 

maximum and minimum temperatures for northeastern Spain. A better understanding 

of the ongoing changes in the temperature means and extremes was the primary 

objective. Further aims involved the analysis of large-scale atmospheric circulation 

patterns at different geopotential levels as well as the Mean Sea Level (MSL) pressure 

based on climate composites analysis and canonical variates in order to quantify the 

driving forces beyond the observed variability. Finally, this work aimed to assess future 

climate projections of seasonal temperature and their spatial variations to improve the 

understanding and prediction of the long-term trends of temperature means and 

extremes simulations. To achieve all these goals, it was necessary to develop a 

homogenous dataset with high spatial and temporal resolution. The next few 

paragraphs answer the main research questions raised during this work.  

 

(1) To what extent the daily temperature dataset can be trustworthy to examine 

temperature changes in the study domain?  

 

In addition to data availability, the quality and homogeneity of temperature time series 

are prerequisites for detailed, reliable and trustworthy assessment and attribution of 

temperature changes. In this work a dense daily temperature database spanning the 

period between 1900 and 2006 has been developed for the study domain. The raw 

data provided by the Spanish Meteorological Agency (AMET) were subjected to a 

vigorous quality control procedure to eliminate any spurious values. Then, a 

reconstruction scheme was performed to fill in missing values by linear regression. 



6. CONCLUSION 
 

338 
 

Potential discontinuities in the time series, as caused by any of the non-climatic factors 

(e.g., changes in locations, instruments, observers, observing practices, and 

surrounding environments) were also evaluated. When a statistically significant 

breakpoint was identified, a correction model was applied to adjust the detected 

breaks. A monthly correction factor based on the combined results of all homogeneity 

tests was then computed and interpolated to daily data. This dataset comprises the 

most long, complete, reliable and spatially dense time series over northeastern Spain, 

encompassing its major climate regimes (i.e., Mediterranean, oceanic, continental and 

mountainous).  

 

(2) How are seasonal temperature variations distributed in space and time in the 

study domain?  

 

The evolution of seasonal and annual temperatures has been investigated over the 

period 1920-2006 and the sub-period 1960-2006. By means of the non-parametric 

Spearman Rho statistic, it was possible to assess presence of trends in the 

temperature series. Overall, there is strong evidence on an increasing trend in 

temperature at both seasonal and annual timescales. This finding implies that the 

regional trends of temperature on either yearly or seasonal scales are closely related 

to changes in the global climate system. The largest warming occurred during the last 

few decades, especially from the mid of the 1970s. This warming was faster during 

spring and summer than in winter and autumn. Spatially, the coastal areas warmed at 

higher rates than in the mainland areas, demonstrating that there is a distinct coastal-

continental gradient in temperature variations across the region. 
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(3) How did indices of extreme temperature change in space and time in the 

study domain?  

Using a 47-year daily dataset of maximum and minimum temperature from 128 

meteorological observatories, the spatial and temporal variability of temperature 

extremes were analyzed for the period 1960-2006. The trends were assessed by 

means of the Mann-Kendall statistic after the removal of the significant lag-1 serial 

correlation using a prewhitening procedure. The trend analysis of extreme events 

suggests that there has been an increase in both the frequency and intensity of warm 

extremes (e.g., TX90p, TN90p, TR20 and TXx) rather than in cold extremes (e.g., 

TN10P, FD0, ID0 and TNn). The indices with significant trends were less for cold 

events than for warm events, suggesting an obvious shift toward more warm extremes. 

This upward trend in warm extremes has been more pronounced in the last two 

decades, corresponding to the rapid warming in the mean maximum temperature. The 

variability of warm temperature extremes seems to have a spatial component. The 

presence of positive trends along the Mediterranean and the Cantabrian seas 

suggests possible effects of atmospheric circulation patterns and SST on extreme 

variations in the study domain.  

 

In this study, the full procedure used to classify daily temperature extremes during 

summer season (JJA) is also described. The main objective was to delineate spatially 

coherent regions employing 14 temperature-based extreme indicators derived from a 

47-year of daily information (1960-2006). Multivariate statistics (i.e., principal 

components analysis and cluster analysis) did an adequate job in providing a useful 

classification that gave insights into spatial variability of summer temperature 

extremes. Four sub-regions with climatic and geographic meanings were indentified: 
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the Mediterranean region, the Cantabrian region and the inland region, the moderately 

western and southern areas, and the highly elevated areas. The temporal evolution of 

summer temperature extremes for the established sub-regions was examined. While 

the spatial domain of this study is quite limited (≈160,000 km2), a high degree of inter-

regional variability in characteristics of temperature extremes (i.e., frequency, intensity 

and persistence) was evident. In general, a warming trend was exhibited for both 

maximum and minimum temperatures, being more pronounced at high elevation sites 

and along the Mediterranean coastland.  

 

(4) To what extent changes in temperature means and extreme events in the 

region can be explained as driven by the large-scale atmospheric circulation 

patterns?  

 

This study endeavors to make an advance in the understanding of the temperature 

variability and change by assessing the connection between the large-scale circulation 

and temperature anomalies at both seasonal and annual scales. The observed 

warming in maximum, minimum and mean temperatures can be linked to two main 

configurations: the first is the increase in the zonal circulation compared with the 

meridional circulation. This feature suggests an increase in the easterly and westerly 

air flows relative to the northern and southern flows. The second factor is the 

dominance of the Atlantic anticyclones over Western Europe, particularly during the 

negative modes of the SCA and WeMO. The correlation of the large-scale atmospheric 

circulation with temperature extremes also showed that temperature extremes in NE 

Spain are mainly explained by three configurations (SCA-, WeMO- and EA+). The 

negative mode of the SCA pattern proved to be capable of explaining most of 
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variability in summer temperature extremes at sub-regional scale, with more influence 

in the highly elevated areas. In contrast, the impact of the EA positive phase was more 

highlighted in the Mediterranean region compared with mainland portions. However, 

recalling that the influence of SLP on temperature extreme may be interrupted by 

certain local conditions (e.g., vegetation canopy, land use changes and topography), a 

detailed study on variability of VWD and VCN based on atmospheric circulation at 

various geopotential heights (i.e., surface sea, 500hPa and 200hPa) was provided. 

The VCN (VWD) was defined for each time series from the 1st (99th) percentiles of 

daily minimum (maximum) temperature distributions. This work identified the main 

synoptic patterns that contribute to the occurrence of these extremely severe events. 

Attribution of this dependency is still lacking and worth investigating over the Iberian 

Peninsula at both coarse and fine spatial scales. The links between centers of action 

of the large-scale circulation patterns over the Mediterranean and the Western Europe 

on one hand and regional variations of the anomalous events over the study domain 

on the other hand were explored by means of the composite maps and canonical 

correlation analysis. The composites of SLP, 200hPa and 500hPa fields during VWD 

suggested that these days are linked to the replacement of the strong ridges from the 

Iberian Peninsula toward central Europe. The most evident features associated with 

this situation are the quasi-stationary anticyclonic circulation anomaly over Central 

Europe. The strength of these anticyclones conditions over mainland Europe is much 

stronger, as compared to those placed over Iberia suggesting strong advection of the 

easterly and northeasterly warmer dry air to the study domain. On the other hand, the 

occurrence of VCN is mainly enhanced by the increase in the meridional circulation, 

which encourages strong advection of arctic flows to the depression centered over the 

western Mediterranean. In few instances, these cold events were connected to the 
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persistence of anticyclones over the peninsula for several days, particularly with the 

lack of any significant circulation gradient. 

 

(5) Will temperature means and extremes exhibit in the future more or less 

similar changes in terms of both the amount (magnitude) and sign (direction) of 

change to those of the present-time?  

 

It is widely known that changes in GHG concentrations will not only impact 

temperature means, but they will also influence the warm/cold tail of temperature 

distributions. Therefore, it was of particular importance to assess future changes in 

both temperature means and extremes over the region. In this work, nine RCM 

experiments available through the EU-ENSEMBLE project and forced by different 

GCMs simulation, were assessed for their ability not only to reproduce the main 

statistical characteristics (i.e., the mean, skewness, symmetry and interannual 

variations) of observed temperature, but also to simulate spatial structure of the 

observed trends.  

 

To estimate the amount of future changes most accurately, it was necessary to 

compare climate simulated data with observational data. The performance of the 

models was assessed against a gridded observational daily dataset obtained using a 

dense observational network during the control period (1971–2000). The validation 

statistical measures (e.g., MBE, YK, IVE and Willmott’s D of agreement statistics) were 

calculated on a seasonal basis to assess the models performance. These statistics 

gave insights on changes in the means, variance, symmetry and interannual variability 

of temperature series and accordingly they can be employed as guidance for selecting 
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models to be used in projecting temperature future changes. An inter-model 

comparison suggests that not all the models describe the present climate with similar 

accuracy. Based on the validation results, this work looked at the range of projections 

from different models rather than just relying on a single outcome, allowing deepening 

the knowledge of the uncertainties associated to the climatic change across the study 

domain. The models with the best agreement with the observed station data were 

selected with a level of confidence and used to provide guidance on the behavior of 

future seasonal temperature changes over the region.  

 

To account for changes in the mean and extremes of temperature distribution, this 

study compared present-day climate with future climate projections in terms of 

changes in the high-order statistics (i.e., the mean and standard deviation) as well as a 

set of time-varying percentiles (i.e., the 10th, 25th, 75th and 90th). Analysis of the 

simulated seasonal temperature datasets, driven by the A1B emission scenario, 

suggests that the projected regional warming in both the mean and extreme events is 

expected to continue during the 21st century. The projected changes in future climate, 

as simulated by RCMs, include a continuation of increases in maximum and minimum 

surface air temperatures, with the greatest increases occurring over mainland and at 

high altitudes. The results also suggest strong warming anomalies in winter and 

summer during the 21st century, with a more increase in the latter decades of the 

century. The projections also indicate that the magnitude of climate change signal will 

be greater for minimum temperature than for maximum temperature, suggesting a 

decrease in the diurnal temperature range in the future.  

 



6. CONCLUSION 
 

344 
 

Spatially, there is a general consensus among the models in the projected seasonal 

temperature changes of: (1) a positive anomaly of seasonal maximum and minimum 

temperatures over mainland areas, particularly in the central Ebro valley; (2) a slight 

positive temperature anomaly over the Pyrenees; and (3) a weaker positive 

temperature anomaly along the Cantabrian Sea relative to the Mediterranean and 

continental portions.  

 

This work also tested the ability of high-resolution simulations of the RCMs to project 

changes in VCN and VWD frequencies under the A1B emission scenario during the 

21th century. The results indicate a symmetric decrease in the frequency of VCD 

during the periods: 2021-2050 and 2071-2100. On the other hand, VWD will be more 

frequent during the late of the century (0.8 day decade-1) compared with 2021-2050 

(0.1 day decade-1). The results also imply that changes in the frequency of these very 

extreme heat events will be more linked to changes in both the mean and standard 

deviations of daily temperature distributions.  

 

(6) What is more important in the future: changes in the mean or the variability 

of temperature?  

 

The results indicate that changes in the mean temperature are often accompanied by 

changes in the corresponding time-varying percentiles, suggesting shifts in the whole 

bell curves (i.e., the warm and cold tails). This overall warming was more highlighted 

during summer, implying that there is consensus among models about high likelihood 

of increase in extreme warmer minimum and maximum temperature during summer in 

the future. The results of this study also indicate that the large absolute change in the 
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mean during the first and the late halves of the 21st century does not necessary 

correspond to an increase in the temperature variability. Therefore, future temperature 

changes over the study domain cannot only be inferred from changes in the mean, 

especially with respect to temperature changes at the lower and upper ends of the 

maximum and minimum temperature distributions. Changes in the variance of the 

temperature distribution could have larger impacts on extreme events like change in 

the mean. These seasonal differences also imply that we cannot only rely on changes 

in the mean to infer changes in the corresponding time-varying percentiles.  

  

(7) What are the potentials of the results obtained in this work?  

The results derived from this study can contribute to understanding the climate change 

signal associated with the seasonal temperature variability in northeast Spain. This 

work represents one of the first attempts to explore spatial and temporal 

characteristics of temperature variations at sub-regional scale in the Iberian Peninsula. 

Given the high spatial and temporal scales of the dataset used in this work, the 

present study can contribute to the limited number of studies focusing on temperature 

variability at the regional scale in Iberia. Moreover, this work provides an insight into 

the possible mechanisms and physical processes that may relate spatial and temporal 

variability of regional temperature with the large-scale atmospheric circulation patterns.  

 

Given that the study domain is characterized by complex topography and geography, 

which play a considerable role in determining the climate and weather at regional and 

local scales, the results on long-term variability of temperature in this Atlantic/ 

Mediterranean region can be placed in a larger climate context, providing insights into 

temperature variability in the Mediterranean and southwestern Europe. In addition, 
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information on the behavior of temperature on this fine scale can be essential for 

different impact assessment applications in the region. The results obtained in this 

work could therefore be meaningful for various applications related to hydrological 

modeling, agroclimatology, water resources management and drought monitoring.  

 

Northeastern Spain has several characteristics that make it interesting for the study of 

temperature trends. These features include the altitude, latitudinal location, complex 

topography, and the high spatial and temporal variability of climate. Accordingly, there 

are great disparities in the variability of temperature at various spatial and temporal 

scales. Owing to its diversity, the study domain provides an interesting test ground to 

assess the ability of different RCMs to reproduce temperature future projections. 

Unfortunately, in contrast to the global scale, there is generally less confidence in 

estimates of how the climate will change to global warming at regional scale. Only few 

projections have been studied in the region due to lack of high quality data on a daily 

basis. The projected change in temperature, as simulated by RCMs forced by different 

GCM experiments, was within the range of changes simulated by other works in the 

Mediterranean and Western Europe. The results of this work can thus represent an 

important milestone step in the prediction of future temperature, as caused by the 

global warming, under different climate scenarios in the Iberian Peninsula. Therefore, 

the results intend to complement the series of studies on climate future changes in 

Iberia by evaluating projected changes in temperature means and extremes over the 

study domain during the 21st century. The results on future simulations can also 

contribute to enhancement of climate change adaptation and disaster management as 

the observed changes could have considerable implications in various areas, such as 

hydrology, ecology, mortality rates and energy demand and consumption. For 
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instance, the enhanced summer temperature increase for the study domain, 

particularly at the end of the current century, could have various hydrological and 

environmental consequences. These impacts could include, among others, the 

increase in drought severity, forest fires and energy consumption and the degradation 

of agricultural production. Moreover, it can lead to higher evaporation rates that 

transport larger amounts of water vapor into atmosphere, inducing accelerated 

changes in the hydrological cycle over the region. Accordingly, there is a need to 

understand the hydrological processes possibly altered by climate change, such as 

evaporation, surface runoff, drought conditions and water availability. 

To conclude, this study can be advantageous compared with earlier studies examining 

temperature changes and variability in the study domain in several ways. First, it 

depends on a dataset of long, complete, reliable and spatially well-covered time series, 

which encompasses the main climate regimes in northeastern Spain (i.e. oceanic, 

Mediterranean, and continental). Previous studies were only restricted to very smaller 

number of observatories, where reliable data were available. Second, this study can 

provide a more comprehensive view of long-term variability on seasonal and annual 

timescales in a way that can significantly contribute to more accurate and robust 

climate projections. Third, the high spatial and temporal resolution of this dataset 

suggest that the projected future changes must be taken with much consideration by 

local decision makers, highlighting the need to adopt their future policy and 

development plans on a more local scale to meet future demands.   
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7. CONCLUSIONES  
 

En esta tesis doctoral se han analizado los cambios en la distribución anual y 

estacional de las temperaturas máximas y mínimas diarias en el noreste de España. 

Uno de los principales objetivos fue obtener una mejor comprensión de los cambios 

en los valores medios y en los extremos térmicos. Otros objetivos incluyeron el 

análisis de la influencia de los patrones generales de circulación atmosférica a 

diferentes niveles de geopotencial, así como a nivel del mar (SLP); todo ello basado 

en clasificaciones y variables canónicas para cuantificar los factores atmosféricos que 

controlan la variabilidad de la temperatura. Finalmente, este trabajo también ha tenido 

como objetivo evaluar las proyecciones futuras de la temperatura estacional y sus 

variaciones espaciales, con el fin de mejorar la comprensión y la predicción de las 

tendencias a largo plazo, tanto en los valores medios como en los extremos. 

 

(1) ¿En qué medida la base de datos generada a escala diaria resulta adecuada 

para identificar los cambios térmicos en el área de estudio? 

Además de la disponibilidad de datos, la calidad y homogeneidad de las series de 

temperatura son un requisito esencial para llevar a cabo una evaluación detallada y  

fiable sobre los cambios de temperatura en la región. En este trabajo se ha 

desarrollado una base de datos diaria de temperatura con una elevada densidad 

espacial. Los datos brutos proporcionados por la Agencia Estatal de Meteorología 

(AEMET) fueron sometidos a un cuidadoso procedimiento de control de calidad para 

eliminar los valores falsos de las series. A continuación, se llevó a cabo un proceso de 

reconstrucción para unir diferentes observatorios y rellenar determinados valores. Se 

evaluaron potenciales discontinuidades en las series temporales no causadas por 



7. CONCLUSIONES 
 

352 
 

factores climáticos (p. ej., cambios en la ubicación de la estación, instrumental, los 

observadores, prácticas de observación y entorno). Cuando se identificó un punto de 

ruptura estadísticamente significativo, se aplicó un modelo de corrección para ajustar 

los problemas detectados. Se obtuvo un factor de corrección mensual, basado en el 

resultado combinado de diferentes pruebas de homogeneidad, que se interpoló a los 

diferentes datos diarios. La base de datos desarrollada constituye la serie temporal a 

escala diaria más completa, fiable y densa espacialmente sobre el noreste de España. 

 

(2) ¿Cómo son las variaciones estacionales de temperatura en el área de 

estudio? 

La evolución de las temperaturas estacionales y anuales se ha caracterizado para los 

periodos 1920-2006 y 1960-2006. Las tendencias se evaluaron mediante un test 

estadístico no paramétrico. En general, se registra una clara tendencia hacia el 

aumento de la temperatura a ambas escalas: estacional y anual. Este resultado 

implica que las tendencias regionales identificadas en la región, tanto anual como 

estacionalmente, están muy relacionadas con los cambios observados en el sistema 

climático mundial. Las principales tasas de calentamiento se han registrado en las 

últimas décadas, especialmente desde mediados de la década de 1970. El 

calentamiento es más rápido en primavera y verano que en invierno y otoño. 

Espacialmente, las zonas costeras muestran mayores tasas de calentamiento que las 

zonas continentales. 

 

(3) ¿Cómo varían los índices de temperatura extrema en el espacio y el tiempo 

en el área de estudio? 
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Se analizó la variabilidad espacial y temporal de las temperaturas extremas durante el 

período 1960-2006 mediante datos diarios de temperatura máxima y mínima de 47 en 

128 observatorios meteorológicos. La tendencia se evaluó por medio del test de 

Mann-Kendall después de eliminar la correlación serial mediante un procedimiento de 

prewhitening. El análisis de tendencias de los eventos extremos indica un aumento en 

la frecuencia e intensidad de los extremos cálidos (TX90p, TN90p, TR20 y Txx) frente 

a la evolución de los extremos fríos (TN10P, FD0, ID0 y TNn). La frecuencia de 

tendencias significativas fue menor para los eventos fríos que para los cálidos, lo que 

sugiere un cambio hacia condiciones con extremos más cálidos. Esta tendencia al 

alza en los extremos cálidos ha sido más pronunciada en las dos últimas décadas, 

correspondiéndose con un rápido aumento en las temperaturas máximas. La 

variabilidad de la temperatura máxima extrema parece tener un componente espacial. 

Las mayores tendencias positivas registradas a lo largo de las costas mediterránea y 

cantábrica sugieren posibles efectos diferenciadores de los patrones de circulación 

atmosférica y de la temperatura del mar. 

 

Se ha descrito un completo procedimiento para clasificar los valores diarios extremos 

de temperatura durante el verano. El principal objetivo consistió en delimitar 

espacialmente regiones coherentes a partir de 14 indicadores basados en las 

temperaturas máximas entre 1960 y 2006. Se utilizó estadística multivariante (análisis 

de componentes principales y análisis clúster) para llevar a cabo una clasificación 

espacial coherente con información sobre la variabilidad espacial de las temperaturas 

extremas de verano. El grado de bondad de la clasificación se evaluó por medio del 

índice de Silhouette. Se identificaron cuatro sub-regiones: i) la región del 

Mediterráneo, ii) la región cantábrica y zonas del interior, iii) las áreas más 
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occidentales y meridionales y iv) las zonas más elevadas. Se examinó la evolución 

temporal de las temperaturas extremas de verano para las diferentes regiones 

establecidas, destacando que, si bien el dominio espacial del estudio queda muy 

limitado espacialmente (≈ 160.000 km2), existe un elevado grado de variabilidad 

espacial en las características de las temperaturas extremas (frecuencia, intensidad y 

persistencia). En general, la tendencia hacia un mayor calentamiento se observó en 

los observatorios ubicados a mayor altitud y a lo largo del litoral mediterráneo. 

 

(4) ¿Hasta qué punto los cambios en los valores medios y en los eventos 

extremos pueden explicarse por patrones de circulación atmosférica a gran 

escala? 

En este trabajo también se ha analizado la conexión de la temperatura en la región 

con la variabilidad en la circulación atmosférica para el período 1960-2006. El 

incremento térmico observado en las temperaturas máximas, mínimas y medias 

puede estar relacionado con cambios en algunos patrones de circulación: i) en primer 

lugar, con el aumento de la circulación zonal con relación a la circulación meridional, 

lo que implica un aumento de los flujos del oeste respecto a los flujos del norte o del 

sur y ii) en segundo lugar, un mayor dominio de los anticiclones atlánticos en Europa 

Occidental, especialmente coincidiendo con los modos negativos de la SCA y WeMO. 

La correlación de la circulación atmosférica a gran escala con las temperaturas 

extremas también mostró que las temperaturas extremas en el NE de España se 

explican principalmente por las configuraciones de tres patrones generales de 

circulación (SCA, WeMO y EA). El modo negativo del patrón SCA explica la mayor 

parte de la variabilidad de las temperaturas extremas de verano a escala subregional, 

con una mayor influencia en los observatorios de mayor altitud. En contraste, el 
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impacto de la fase EA positiva resulta más destacado en la región del Mediterráneo en 

comparación con las zonas continentales. Sin embargo, y considerando que la 

influencia de las configuraciones de presión en superficie sobre las temperaturas 

extremas puede estar perturbado por ciertas condiciones locales (p. ej., la vegetación, 

cambios de uso del suelo y la topografía), también se ha realizado un estudio 

detallado sobre la variabilidad en los días más cálidos (VWD) y días más fríos (VCN) 

basado en la circulación atmosférica a diferentes niveles de geopotencial (superficie, 

500hPa y 200hPa). Los VCN (VWD) se definieron a partir de los percentiles 1(99) de 

la distribución de temperaturas mínimas (máximas) diarias. Se identificaron los 

principales patrones sinópticos que determinan la ocurrencia de este tipo de días. La 

relación entre los patrones de circulación a gran escala sobre el Mediterráneo y 

Europa occidental, por un lado, y las variaciones regionales de los extremos térmicos 

en el área de estudio, por otro, se analizó mediante mapas de compuestos y análisis 

de correlación canónica. Los compuestos correspondientes a los campos de presión a 

nivel del mar, 200hPa y 500hPa durante los VWD sugieren un desplazamiento de los 

sistemas de altas presiones desde la Península Ibérica hacia el centro de Europa. La 

característica más evidente asociada a esta situación es la existencia de una 

circulación anticiclónica cuasi-estacionaria sobre el centro de Europa. La intensidad 

de dichas condiciones anticiclónicas sobre Europa continental es mucho mayor, en 

comparación con las ubicadas sobre la Península Ibérica, lo que implica la presencia 

de advecciones fuertes de aire caliente y seco del este y nordeste al área de estudio. 

Por otro lado, la ocurrencia de VCN se ve reforzada por un aumento de la circulación 

meridional, que fomenta la advección fuerte de masas de aire ártico hacia condiciones 

de bajas presiones dominantes sobre el Mediterráneo occidental. En algunos casos, 

estos eventos fríos están conectados a la persistencia de anticiclones sobre la 
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península durante varios días, con una falta total de cualquier gradiente de circulación 

significativo. 

 

(5) ¿la magnitud y el signo de los cambios en los valores medios y los extremos 

de temperatura son equiparables a los cambios observados? 

Se asume que el incremento en las concentraciones de gases de efecto invernadero 

influirá no solamente en los valores medios, sino también afectará a los valores más 

extremos. Por lo tanto, resultaba de gran importancia evaluar los cambios esperados 

para el futuro en los valores medios y en los extremos de temperatura en la región. 

Para ello se utilizó un conjunto de simulaciones basadas en modelos regionales de 

cambio climático (RCMs), disponibles a partir del proyecto UE-ENSEMBLE. Se 

utilizaron nueve RCMs, enmarcados por diferentes modelos generales de circulación. 

Se evaluó la capacidad de los modelos para reproducir las características estadísticas 

de las series de temperatura observada (media, asimetría y variaciones interanuales), 

pero también para simular la estructura espacial de las tendencias. Para estimar con 

mayor precisión los cambios futuros, se llevó a cabo una comparación de los datos 

modelizados con los datos observados. La capacidad de cada modelo para reproducir 

los datos observados se llevó a cabo mediante una rejilla a escala diaria a partir de 

una densa red de observatorios para el período de referencia (1971-2000). Se 

calcularon diferentes test de validación estadística (MBE, YK, IVE y la D de Willmott) a 

escala estacional para evaluar la capacidad de los modelos. Estos estadísticos 

aportaron información sobre los cambios en los valores medios, varianza, simetría y 

variabilidad interanual de las series térmicas y se utilizaron como criterio para 

seleccionar los modelos utilizados para evaluar las proyecciones de temperatura para 

el futuro. La comparación entre modelos sugiere que no todos los modelos describen 
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el clima actual con una precisión similar. En base a los resultados de la validación, el 

análisis de las proyecciones futuras se centró en diferentes modelos en vez de 

depender de un solo modelo, lo que permite analizar las posibles incertidumbres 

asociadas al cambio climático en la región. Se seleccionaron aquellos modelos que 

muestran una mejor coincidencia con los datos observados, y dichos modelos se 

utilizaron para determinar el comportamiento futuro de la temperatura a escala 

estacional en la región. 

 

Para tener en cuenta los cambios en las medias y los valores extremos de la 

distribución de temperatura, se realizó una comparación entre el periodo de control y 

las condiciones futuras mediante los cambios en las estadísticas de orden superior 

(media y desviación estándar), además de en un conjunto de variables que informan 

sobre la frecuencia de la distribución (percentiles 10, 25, 75 y 90). El análisis de los 

datos de temperatura estacionales a partir del escenario de emisiones A1B sugiere 

que el calentamiento detectado a partir de los datos observados continuará durante el 

siglo XXI, tanto en el caso de los valores medios, como de los extremos térmicos. Los 

cambios proyectados para el clima futuro por los RCMs muestran la continuación del 

aumento de las temperaturas medias, máximas y mínimas, con un mayor incremento 

en las áreas continentales y en las zonas más elevadas. Los resultados también 

muestran un mayor calentamiento en invierno y verano, mucho más acusado durante 

la segunda mitad de siglo. Las proyecciones también indican que la magnitud de la 

señal de cambio climático es mayor para las temperaturas mínimas que para las 

máximas, lo que sugiere una disminución en el rango de temperatura diurna para el 

futuro. Espacialmente, hay una coincidencia general entre los modelos: i) la anomalía 

positiva en las temperaturas máximas y mínimas, especialmente en las zonas 
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centrales del valle del Ebro, ii) un menor incremento en los Pirineos, y iii) el menor 

aumento en la zona cantábrica con relación a la región mediterránea y continental. 

 

Este trabajo también muestra la capacidad de las simulaciones de alta resolución a 

partir de los modelos climáticos regionales para proyectar los cambios en las 

frecuencias de VCN y VWD en el escenario de emisiones A1B durante el siglo XXI. 

Los resultados indican una disminución simétrica en la frecuencia de VCN en los 

períodos: 2021-2050 y 2071-2100. Por otro lado, los VWD serán más frecuentes 

durante la segunda mitad del siglo (0.8ºC día/década) en comparación con el periodo 

2021-2050 (0.1ºC día/década). Los resultados implican que los cambios en la 

frecuencia de estos eventos muy extremos estarán vinculados a cambios tanto en la 

media como en la desviación estándar de las distribuciones de temperatura diaria. 

 

(6) ¿Qué son más importantes en el futuro: los cambios en la media o en la 

variabilidad de la temperatura? 

Los resultados indican que los cambios en la temperatura media se ven acompañados 

de cambios en los percentiles, lo que sugiere cambios en el conjunto de la distribución 

(es decir en las colas de valores máximos y mínimos). Este calentamiento es más 

destacado durante el verano, lo que implica que existe un consenso entre los modelos 

sobre la alta probabilidad de aumento de los valores máximos y mínimos extremos 

durante los veranos en el futuro. Los resultados de este estudio indican también que 

el cambio absoluto en la temperatura media durante la primera y segunda mitades del 

siglo XXI no se corresponde necesariamente con un aumento en la variabilidad de la 

temperatura. Por lo tanto, los cambios futuros de temperatura en el área de estudio no 

sólo se deducen de los cambios en los valores medios, especialmente con relación a 
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los cambios térmicos correspondientes a los extremos inferior y superior de las 

distribuciones de temperatura máxima y mínima. Los cambios en la varianza de la 

distribución de temperatura podrían tener notables impactos en la frecuencia de los 

eventos extremos.  

  

(7) ¿Cuál es el potencial de los resultados obtenidos en este trabajo? 

Este estudio de doctorado puede contribuir a la comprensión de los procesos de 

cambio climático relacionados con la variabilidad estacional de la temperatura en el 

noreste de España. Este trabajo constituye uno de los primeros intentos de analizar 

las características espaciales y temporales de las variaciones de temperatura a escala 

subregional en la Península Ibérica. Teniendo en cuenta la escala espacial y temporal 

de los datos utilizados en este trabajo, este estudio contribuye al escaso número de 

estudios centrados en la variabilidad de la temperatura a escala regional en la 

Península Ibérica. Por otra parte, este trabajo aporta ideas sobre los posibles 

mecanismos y procesos físicos relacionados con la variabilidad espacial y temporal de 

la temperatura regional, incluyendo patrones de circulación atmosférica a gran escala. 

 

Teniendo en cuenta que el área de estudio se caracteriza por una compleja topografía 

y geografía, que juegan un papel importante en las características climáticas a escala 

regional y local, los resultados a largo plazo sobre la variabilidad de la temperatura en 

esta región deben ser ubicados en un contexto climático más amplio, proporcionando 

información sobre la variabilidad de las temperaturas en el Mediterráneo y el suroeste 

de Europa.  
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La zona de estudio presenta varias características que la hacen interesante para el 

estudio de las tendencias térmicas. Estas características incluyen la altitud, la 

localización latitudinal, una topografía compleja, y la alta variabilidad espacial y 

temporal del clima. En consecuencia, existen grandes diferencias en la variabilidad de 

la temperatura a diferentes escalas espaciales y temporales. Debido a su diversidad, 

el área de estudio resulta idónea para evaluar la capacidad de los diferentes modelos 

climáticos regionales para reproducir las proyecciones de temperatura en el futuro. 

Frente a las constatadas evidencias globales, en general, existe una menor confianza 

en las estimaciones de cambio a escala regional. De hecho a escala regional se han 

llevado a cabo pocas estimaciones debido a la falta de datos de alta calidad a escala 

diaria. En el área de estudio, los cambios proyectados en la temperatura están dentro 

del rango de los cambios simulados por otros trabajos en el Mediterráneo y Europa 

occidental. Por lo tanto, los resultados de este trabajo representan un paso más en el 

conocimiento de las predicciones de temperatura en el futuro en la Península Ibérica. 

Los resultados complementan los estudios existentes sobre los cambios futuros en la 

Península Ibérica, incluyendo la evaluación de las proyecciones en los valores medios 

y extremos de temperatura durante el siglo XXI. Además, los resultados de las 

simulaciones para el futuro pueden contribuir a la mejora de la adaptación al cambio 

climático y a una mejor gestión de los eventos extremos, debido a que los cambios 

observados tendrán implicaciones importantes en la hidrología, ecología, la salud, y 

en la demanda y consumo de energía. Por ejemplo, el aumento de las temperaturas 

en verano proyectadas para finales de siglo, podría tener notables consecuencias 

hidrológicas y ambientales. Los impactos incluirían, entre otros, el aumento de los 

incendios forestales, una mayor severidad de las sequías, el incremento del consumo 

de energía, y menores producciones agrícolas. Por otra parte, el incremento puede 
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dar lugar a mayores índices de evaporación, con un incremento del transporte de 

agua a la atmósfera, induciendo cambios acelerados en el ciclo hidrológico sobre la 

región. En consecuencia, existe una amplia necesidad de comprender los procesos 

hidrológicos que pueden quedar alterados por el proceso de calentamiento, tales 

como la evaporación, la escorrentía superficial, la sequía y la disponibilidad de agua 

en su conjunto. 

 

Para concluir, este estudio aporta novedades con relación a estudios anteriores que 

han examinado los cambios de temperatura y su variabilidad en la zona de estudio. 

En primer lugar, el estudio se ha basado en una base de datos larga, completa, de 

fiabilidad y con una elevada densidad espacial, que engloba los principales regímenes 

climáticos en el noreste de España (es decir, oceánico, mediterráneo y continental). 

Los estudios anteriores habían contemplado habitualmente un pequeño número de 

observatorios. En segundo lugar, este estudio puede proporcionar una visión más 

completa de la variabilidad a largo plazo a escalas temporales estacional y anual, 

contribuyendo a aportar proyecciones climáticas más precisas y robustas. En tercer 

lugar, la alta resolución espacial y temporal de los datos sugieren que los cambios 

proyectados en el futuro se deben tomar muy en consideración por parte de los 

gestores locales, poniendo de relieve la necesidad de adoptar política de adaptación 

en un futuro. 
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8. OUTLOOK 
 

In this chapter, a further discussion of the limitations of this study and also areas of 

required future research is provided. 

 

This PhD thesis contributes to an enhanced understanding of the regional climate 

variability for northeast Spain by addressing changes in seasonal and annual 

temperatures based a currently new compiled daily dataset. This dataset represents 

the more reliable, complete and homogenous instrumental dataset available for the 

region. A methodological improvement of the reconstruction and homogenization 

procedures is achieved through providing different measures to assess the role of 

homogenization on spatial and temporal consistency of daily temperature time series.  

These measures prove that available information from this dataset is particularly useful 

for different applications in the region. Over the last few years, further research has 

been conducted on testing different reconstruction and homogeneity techniques. 

Nonetheless, almost all of them have not provided any measure of dataset validation.  

 

This work also makes advance in investigating the dynamical forcing behind 

temperature variations over the past centuries. As emphasized throughout this thesis 

there are many important aspects of recent present climate variability which need to be 

addressed further in future research. Due to the limitation of time, these important 

issues have not been addressed in this thesis. In the following paragraphs a few of 

them are listed and briefly discussed.  
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- The present work indicates that changes in the anomalous SLP can contribute 

to better understanding of interannual temperature variations in northeastern 

Spain. Features of anomalous seal level pressure (SLP) gave a reasonable 

physical explanation of the spatial differences in the role of the different 

atmospheric patterns on temperature in the study area. These physical 

processes can be a good indicator of air advection through land-sea 

interactions. Nonetheless, spatial patterns of temperature cannot be fully 

explained by changes in mean SLP, given that the study area is located in a 

region more vulnerable to climate change. In addition, differences in land 

surface characteristics such as vegetation canopy, surface albedo and 

orography can further influence the advection or/and vertical motions of 

atmospheric flows. This can lead to changes in surface heat exchanges with 

the atmosphere and in turn local disturbances in the dominant synoptic flows 

responsible for the interannual variability of temperature. Therefore, an 

assessment of the possible connection between temperature variations and the 

large-scale atmospheric circulation at different geopotential height levels as well 

as sea surface temperature (SST) fields is suggested to support the physical 

mechanisms noted at the ground level. The role of SST and its interaction with 

the land and atmosphere can significantly contribute to understanding 

temperature variations in the region. This is not surprising considering the fact 

that ocean and land masses are strongly coupled by fluxes of energy and 

mass. Surrounding water bodies could act as a regulator of thermal and flows 

interactions between land and closing waters. In addition, changes in the 

oceanic moisture fluxes can also drive changes in climate variability. This 

sounds important given that much of the strongest signals in temperature 
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across the region were found near the coast. Thus, further investigations are 

clearly needed to clarify reasons responsible for these spatial differences. A 

spatial and temporal classification of the main spatial modes of these circulation 

fields can give more insights into spatial and temporal signatures of 

temperature in the region. Variations in SST can be analyzed based on in situ 

measurements as well as, for the most recent years, satellite observations. 

 

- This thesis suggests a feedback between temperature variations and soil 

moisture. This relationship showed large interseasonal changes, with more 

dependency during summer and spring seasons. However, a major challenge 

in exploring this dependency is the lack of dense records of these fields to 

explore differences in the regional response. In a complex region such as NE 

Spain, a resolution of approximately 2º latitude by 2º latitude of gridded data is 

still coarse to capture changes in soil moisture over space. The amount of soil 

deficit is expected to vary spatially over short distances, particularly with the 

high spatial variability of precipitation. Soil moisture near to the ground level is 

largely sensitive to vegetation canopy, topography and land use patterns. In 

addition, the regions experiences larger changes among wet and dry extremes. 

Taken together, in order to assess how soil moisture behaves in a seasonal 

timeframe for the study domain, a finer gridded dataset enhanced by intensive 

real world data resampled from a network with a reasonable spatial coverage of 

settings can markedly improve knowledge of this dependency and assess its 

spatial differences. In the same context, the connection between temperature 

and soil moisture across the region highlights the question whether there is a 

feedback between changes in precipitation and temperature variability. This 
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sounds critical in the study domain as precipitation is characterized by very high 

spatial and temporal variability in this topographically and climatologically 

complex region. With the new available daily temperature dataset, which 

spatially and temporarily overlaps with the already available dense precipitation 

network for the region (Vicente-Serrano et al., 2010), further work is still 

demanded to improve further the understanding of the way in which 

temperature variability is driven by precipitation variations. Although it is hard to 

directly attribute the observed trend in temperature to the evolution of 

precipitation in such area of complex topography as it is difficult to distinguish 

between the predictor and predictand variable in this association, it is still 

important to search for possible underlying relationship between temperature 

and precipitation variability. This dependency is still lacking and needs further 

investigation at a more regional and local scale. In the regard, the possible 

impact of droughts and wetnesses episodes can also be investigated. The 

Standardized Precipitation Index (SPI) and the recently developed 

Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente Serrano et 

al., 2011c) can be employed to explore dependency between temperature 

variations and precipitation deficit at multiple time scales.  

 

- As shown in this thesis, the East Atlantic (EA) atmospheric circulation is a very 

promising and valuable predictor of present climatic conditions in the study 

domain. However, little is known about the relationship between peaks of this 

mode and temperature variability in the region. The suggested role of the EA on 

temperature variability needs to be more explored as the underlying dynamics 

of this mode are not well covered in the region. In this regard, one promising 
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approach is to use the spectral analysis to quantify the extent to which daily 

temperature in the region is linked to daily variability of the EA values. 

Moreover, recalling the varied spatial response to this circulation pattern, this 

assessment could assess the impacts of changes in the action centers of this 

pattern at the daily scale on changes in the temperature stress across the 

region. A deeper insight of this configuration could be gained, for example, by 

investigating distinct extreme values and explaining their dynamical patterns. 

This analysis can also extend further to assess the influence of the combination 

of different dominant circulation modes (e.g., the NAO and EA) on temperature. 

In the dynamic climate system, there is often an interchangeable effect of 

circulation modes on temperature. Thus, such combination can provide a more 

reliable explanation of temperature variability in the region rather than relying 

on a single circulation mode. 

 

- As shown in this thesis, the positive anomaly of maximum, minimum and mean 

temperatures in the region was considerably related to the rapid increase in the 

European anticyclones and the Atlantic blockings over the study domain in 

recent decades. Therefore, more research in this direction is needed. In 

particular, this feature motivates a future work to objectively classify weather 

types in the region. A daily catalogue of different weather types such as cyclone 

(C), anticyclone (A), and zonal and meridional weather types is needed for the 

region. This classification can help exploring possible influences of the main 

weather types on temperature variations in the region as it summarizes a wide 

variability of flows that can affect the region. Weather type variations are a 

major part explaining changes in the relationship between the large-scale 
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atmospheric circulation and climate in transitional regions in the mid latitudes. 

In a future research, the temporal variability of the large-scale atmospheric 

circulation patterns can be linked to temporal evolution of weather types 

frequencies. 

 

- Assessment of temperature future changes in the region reveals that there are 

large differences in the ability of different RCMs to capture seasonal variations 

in the study domain. Determining sources of these variations is out of the scope 

of this thesis although it sounds important in climate studies. Therefore, future 

research should therefore try to distinguish the various sources of these biases.  

This can probably include sources of dynamic origin (e.g., changes in soil 

moisture and land cover) or those originating from climatic source (e.g., 

changes in climatic boundary). Also, developing new methods and approaches 

to account for the bias in the RCMs is mainly related to understand different 

sources of these errors.   

 

- Apart from summer, all future simulations projected a decrease in the 

interannual variability of temperature means. In other words, the substantial 

projected increase in the mean temperature in the future does not correspond 

to an increase in temperature interannual variability across the region. This 

suggests assessing day to day future variability in the region relative to the 

present climate conditions. This kind of assessment would therefore not only be 

interesting, but it will allow defining changes in the central tendency of 

temperature series compared with standard deviation. Day to day variability can 

have further implications in various hydrological and biological applications as 
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there is, for example, daily biological temperature threshold beyond it the 

productivity of plants and forests may be influenced.   

 
- This thesis gave much attention to assess future changes in temperature 

means and extremes across NE Spain. Nonetheless, the exact processes that 

explain these projected changes remain an open question. For this reason, it is 

still important to assess circulation and weather-type changes under enhanced 

GHG emission scenarios in the future. Also, future projections of SST should be 

taken into account in future research questions.  

 

- The central Ebro valley is projected to exhibit a strong warming anomaly for the 

next few decades, which could significantly alter the hydrological cycle in this 

watershed. Therefore, it is of particular interest to look at the major 

environmental, ecological and hydrological threats that may correspond to such 

changes. This can possibly include frequency of floods and drought events, and 

acceleration of erosion and desertification.  

 
 

- This thesis has exclusively focused on present and future climate variability 

across the northeastern portions of the Iberian Peninsula. However, this 

assessment should be performed in other regions of the peninsula, making the 

best use of the available dense network of temperature observatories for each 

region. This will give insights on the regional contrasts across the peninsula, 

which can exert different social, ecological and economical impacts from local 

to regional scale.  
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APPENDIX A 

List of the observatories of the final dataset with their main characteristics. 

WMO‐
Station 
code 

Observatory   Province Latitude 
(North) 

Longitude Altitude 
(meter 
a.s.l) 

Starting date 
(MM/DD/YYYY) 

End date 
(MM/DD/YYYY)

1060 
AMURRIO 
'INSTITUTO'  ALAVA  43.05  3.01W  219  1/1/1955 12/31/2006 

9091O 

VITORIA 
'AEROPUERTO DE 
FORON ‐DA'  ALAVA  42.88  2.72W  508  1/1/1913 12/31/2006 

0069  PANTA DE FOIX  BARCELONA  41.26  1.65E  104  1/1/1912 12/31/2006 

0181 
SANT SADURNI 
D'ANOIA  BARCELONA  41.44  1.8E  125  1/1/1941 12/31/2006 

0158O  MONTSERRAT  BARCELONA  41.59  1.84E  730  1/1/1968 12/31/2006 
0111  CABRIANES  BARCELONA  41.8  1.9E  246  1/1/1929 12/31/2006 

0072A 
BEGUES   SAN 
EUDALD  BARCELONA  41.34  1.93E  360  1/1/1950 12/31/2006 

0076 

 AEROPORT DE 
BARCELONA   EL 
PRAT  BARCELONA  41.3  2.08E  6  1/1/1938 12/31/2006 

0229I 
SABADELL   
AERODROMO  BARCELONA  41.53  2.1E  130  1/1/1900 12/31/2006 

0120  MOIA  BARCELONA  41.82  2.1E  800  1/1/1916 12/31/2006 

0200E 
BARCELONA   
FABRA  BARCELONA  41.42  2.12E  420  1/1/1926 12/31/2006 

0200R 
BARCELONA   CAN 
BRUIXA  BARCELONA  41.38  2.13E  58  1/1/1969 12/31/2006 

0222 
CALDES DE 
MONTBUI  BARCELONA  41.61  2.17E  180  1/1/1933 12/31/2006 

0203 
ELS HOSTALETS DE 
BALENYA  BARCELONA  41.85  2.26E  570  1/1/1930 12/31/2006 

0208  GRANOLLERS  BARCELONA  41.61  2.29E  154  1/1/1950 12/31/2006 
0213  CARDEDEU  BARCELONA  41.64  2.36E  195  1/1/1920 12/31/2006 

0211 
LLINARS DEL 
VALLES  BARCELONA  41.63  2.4E  193  1/1/1943 12/31/2006 

0356 
VILANOVA SAU   EL 
TORTADES  BARCELONA  41.9  2.44E  850  1/1/1965 12/31/2006 

0263  SANT CELONI  BARCELONA  41.69  2.5E  155  1/1/1940 12/31/2006 
2290  CASTROGERIZ  BURGOS  42.29  4.14W  808  1/1/1959 12/31/2006 

2121 

GUMIEL DEL 
MERCADO 'LA 
VENTO‐ SILLA'  BURGOS  41.72  3.82W  800  1/1/1949 12/31/2006 

2331 
BURGOS 
'VILLAFRIA'  BURGOS  42.36  3.63W  890  1/1/1943 12/31/2006 

9046 
ESPINOSA DE LOS 
MONTEROS'IB'  BURGOS  43.08  3.56W  762  1/1/1929 12/31/2006 

9044  MIÐON  BURGOS  42.95  3.5W  595  1/1/1959 12/31/2006
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2114 

HONTORIA DE 
VALDEARADOS 
'QUIN‐TANILLA DE 
RECUERDA'  BURGOS  41.76  3.5W  870  1/1/1967 12/31/2006 

2304 
SANTO DOMINGO 
DE SILOS  BURGOS  41.96  3.42W  1003  1/1/1956 12/31/2006 

9037  OÐA‐IBERDUERO  BURGOS  42.73  3.41W  598  1/1/1942 12/31/2006 
2113  ARAUZO DE MIEL  BURGOS  41.86  3.39W  1010  1/1/1964 12/31/2006 

2319 
PANTANO DE 
ARLANZON  BURGOS  42.28  3.34W  1140  1/1/1932 12/31/2006 

9105  PRADOLUENGO  BURGOS  42.33  3.2W  960  1/1/1961 12/31/2006 

2079 
HONTORIA DEL 
PINAR  BURGOS  41.85  3.16W  1041  1/1/1967 12/31/2006 

9069  MIRANDA DE EBRO  BURGOS  42.68  2.96W  520  1/1/1929 12/31/2006 

9008 
ARROYO DE 
VALDEARROYO  CANTABRIA  42.97  4.06W  845  1/1/1966 12/31/2006 

1144 
MOLLEDO DE 
PORTOLIN  CANTABRIA  43.15  4.04W  242  1/1/1961 12/31/2006 

1131I 
TORRELAVEGA 
'SNIACE'  CANTABRIA  43.36  4.04W  70  1/1/1967 12/31/2006 

1109 
PARAYAS 
'AEROPUERTO'  CANTABRIA  43.43  3.82W  6  1/1/1924 12/31/2006 

1124  VILLACARRIEDO  CANTABRIA  43.23  3.8W  212  1/1/1948 12/31/2006
1111  SANTANDER   CMT  CANTABRIA  43.49  3.8W  52  1/1/1957 12/31/2006 
8438  SEGORBE  CASTELLON  39.85  0.49W  364  1/1/1942 12/31/2006 
8448A  VALL D'UIXË  CASTELLON  39.82  0.21W  79  1/1/1961 12/31/2006 
8455  BETX═  CASTELLON  39.93  0.2W  102  1/1/1957 12/31/2006 
9563  CASTELLFORT  CASTELLON  40.5  0.18W  1181  1/1/1943 12/31/2006 

8492 
ATZENETA DEL 
MAESTRAT  CASTELLON  40.22  0.17W  400  1/1/1943 12/31/2006 

9562  MORELLA  CASTELLON  40.62  0.1W  990  1/1/1920 12/31/2006 
8494O  VILLAFAMES H S  CASTELLON  40.12  0.06W  295  1/1/1937 12/31/2006 

8518 
VINARÊS 'VIVEROS 
ALCANAR'  CASTELLON  40.54  0.44E  100  1/1/1957 12/31/2006 

9585 
LA MOLINA   
OBSERVATORI  GIRONA  42.33  1.94E  1704  1/1/1929 12/31/2006

0317  NURIA  GIRONA  42.39  2.16E  1967  1/1/1906 12/31/2006 
0323  RIPOLL   PROGRES  GIRONA  42.2  2.19E  680  1/1/1900 12/31/2006 
0354B  VILADRAU   AGUES  GIRONA  41.84  2.42E  865  1/1/1964 12/31/2006 

0367 

AEROPORT DE 
GIRONA   COSTA 
BRAVA  GIRONA  41.9  2.76E  127  1/1/1935 12/31/2006 

0281  BLANES  GIRONA  41.67  2.79E  18  1/1/1911 12/31/2006 

0281A 
BLANES   
MARIMURTRA  GIRONA  41.68  2.8E  60  1/1/1947 12/31/2006 

0423  PERELADA  GIRONA  42.31  3.01E  20  1/1/1927 12/31/2006 

0292A 
BEGUR   LOS 
ALGARROBOS  GIRONA  41.93  3.19E  185  1/1/1900 12/31/2006 
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3103  PANTANO EL VADO  GUADALAJARA  41  3.3W  980  1/1/1942 12/31/2006
3086  SALTO DE ZORITA  GUADALAJARA  40.34  2.88W  642  1/1/1950 12/31/2006 

3082 
SALTO DE 
BOLARQUE  GUADALAJARA  40.36  2.83W  620  1/1/1931 12/31/2006 

3131  VALDELCUBO  GUADALAJARA  41.23  2.68W  1011  1/1/1964 12/31/2006 

3130 
SIGUENZA 'EL 
BOSQUE'  GUADALAJARA  41.07  2.64W  950  1/1/1933 12/31/2006 

3013 
MOLINA DE 
ARAGON  GUADALAJARA  40.85  1.89W  1063  1/1/1961 12/31/2006 

1049O  ELGUETA‐AIXOLA  GUIPUZCOA  43.16  2.51W  262  1/1/1967 12/31/2006 

1049 
BERGARA 
'ALBITXU'  GUIPUZCOA  43.13  2.43W  205  1/1/1945 12/31/2006 

1037  LEGAZPIA  GUIPUZCOA  43.06  2.33W  402  1/1/1958 12/31/2006 
1035U  AYA‐LAURGAIN  GUIPUZCOA  43.25  2.17W  320  1/1/1917 12/31/2006 

1024E 
SAN SEBASTIAN 
'IGUELDO'  GUIPUZCOA  43.31  2.04W  252  1/1/1916 12/31/2006 

1035 
LASARTE‐
MICHELIN  GUIPUZCOA  43.27  2.02W  85  1/1/1956 12/31/2006 

1024 
SAN SEBASTIAN 
'ATEGORRIETA'  GUIPUZCOA  43.32  1.95W  8  1/1/1963 12/31/2006 

1014 
FUENTERRABIA 
'AEROPUERTO'  GUIPUZCOA  43.36  1.79W  8  1/1/1955 12/31/2006 

9210E 
BAILO PUENTE LA 
REINA  HUESCA  42.56  0.8W  595  1/1/1967 12/31/2006 

9207  HECHO  HUESCA  42.74  0.75W  860  1/1/1931 12/31/2006 

9474 
LA PEÐA 
'EMBALSE'  HUESCA  42.39  0.74W  589  1/1/1914 12/31/2006 

9206E  BINACUA  HUESCA  42.55  0.7W  762  1/1/1969 12/31/2006 

9206 
SANTA CRUZ DE LA 
SEROS  HUESCA  42.52  0.68W  820  1/1/1969 12/31/2006 

9489 
LA SOTONERA 
'EMBALSE'  HUESCA  42.11  0.67W  413  1/1/1923 12/31/2006 

9208 
ARAGUES DEL 
PUERTO  HUESCA  42.71  0.67W  980  1/1/1968 12/31/2006 

9470I  BOTAYA  HUESCA  42.49  0.65W  940  1/1/1969 12/31/2006 
9205  AISA DE JACA  HUESCA  42.68  0.62W  1040  1/1/1968 12/31/2006 

9491 
ALMUDEVAR‐
GRANJA CHE  HUESCA  42.03  0.59W  390  1/1/1929 12/31/2006 

9470E  BERNUES  HUESCA  42.48  0.58W  920  1/1/1950 12/31/2006 
9202  JACA  HUESCA  42.57  0.55W  800  1/1/1929 12/31/2006 

9198 
CANFRANC LOS 
ARA/ONES  HUESCA  42.75  0.52W  1160  1/1/1910 12/31/2006 

9900  NUENO  HUESCA  42.27  0.44W  726  1/1/1900 12/31/2006 

9898 
HUESCA 
MONFLORITE  HUESCA  42.08  0.33W  541  1/1/1943 12/31/2006 

9461  YEBRA DE BASA  HUESCA  42.49  0.28W  910  1/1/1900 12/31/2006 

9907I 
GRAÐEN MONTE 
SODETO  HUESCA  41.89  0.25W  365  1/1/1960 12/31/2006 
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9910 
PALLARUELO DE 
MONEGROS  HUESCA  41.71  0.21W  356  1/1/1900 12/31/2006 

9885  PANZANO  HUESCA  42.21  0.17W  650  1/1/1969 12/31/2006 
9814  TORLA  HUESCA  42.63  0.11W  1053  1/1/1963 12/31/2006 

9893E 
LASTANOSA‐
LASESA  HUESCA  41.86  0.07W  410  1/1/1968 12/31/2006 

9866 
BARBASTRO 
'COMARCAL'  HUESCA  42.04  0.13E  338  1/1/1953 12/31/2006 

9832A  NAVAL 'D.G.A.'  HUESCA  42.19  0.15E  590  1/1/1950 12/31/2006 
9828U  CAMPORROTUNO  HUESCA  42.34  0.16E  560  1/1/1930 12/31/2006 

9829 
MEDIANO 
'EMBALSE'  HUESCA  42.32  0.2E  504  1/1/1931 12/31/2006 

9918 

TAMARITE DE 
LITERA 'LA 
MELUSA'  HUESCA  41.78  0.37E  218  1/1/1935 12/31/2006 

9914E 
TAMARITE DE 
LITERA  HUESCA  41.86  0.39E  318  1/1/1958 12/31/2006 

9853  SERRADUY 'DGA'  HUESCA  42.32  0.57E  775  1/1/1965 12/31/2006 

9761 
SANTA ANA 
'EMBALSE'  HUESCA  41.88  0.58E  390  1/1/1955 12/31/2006 

9118 
SANTO DOMINGO 
DE LA CALZADA  LA RIOJA  42.44  2.92W  638  1/1/1950 12/31/2006 

9131I 
MANSILLA 
EMBALSE  LA RIOJA  42.17  2.89W  900  1/1/1967 12/31/2006 

9136 
ANGUIANO 
VALVANERA  LA RIOJA  42.23  2.87W  1020  1/1/1949 12/31/2006 

9121  HARO  LA RIOJA  42.58  2.85W  479  1/1/1936 12/31/2006 
9145  CENICERO BODEGA  LA RIOJA  42.48  2.65W  437  1/1/1966 12/31/2006 

9145A 
CENICERO 
INDUSTRIAL  LA RIOJA  42.48  2.64W  430  1/1/1949 12/31/2006 

9170 
LOGROÐO‐
AGONCILLO  LA RIOJA  42.45  2.33W  352  1/1/1948 12/31/2006 

9769I 
LLEIDA   
TORRERIBERA  LLEIDA  41.61  0.7E  217  1/1/1930 12/31/2006 

9714I 
LA SENTIU DE SIO   
SIFO DE SIO  LLEIDA  41.8  0.83E  240  1/1/1950 12/31/2006 

9729 
MOLLERUSSA   IES 
AGRARIA L'URGELL  LLEIDA  41.62  0.86E  268  1/1/1961 12/31/2006 

9729A  MOLLERUSSA   C U  LLEIDA  41.63  0.89E  250  1/1/1967 12/31/2006 

9772E 
LA POBLA DE 
CERVOLES  LLEIDA  41.37  0.91E  663  1/1/1969 12/31/2006 

9652E 

ALOS DE 
BALAGUER   
FORESTAL  LLEIDA  41.95  0.95E  860  1/1/1936 12/31/2006 

9772  VILOSELL  LLEIDA  41.38  0.95E  665  1/1/1968 12/31/2006 

9660 
SANT MAURICI   
LLAC  LLEIDA  42.58  1E  1920  1/1/1953 12/31/2006 

9650  ARTESA DE SEGRE  LLEIDA  41.9  1.05E  320  1/1/1968 12/31/2006 
9686  GERRI DE LA SAL  LLEIDA  42.33  1.07E  595  1/1/1900 12/31/2006 
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9713  AGRAMUNT  LLEIDA  41.79  1.1E  349  1/1/1966 12/31/2006
9657  ESTERRI D'ANEU  LLEIDA  42.62  1.13E  940  1/1/1900 12/31/2006 

9680 
SORT   
PIRAGUISME  LLEIDA  42.41  1.13E  680  1/1/1929 12/31/2006 

9649  PONTS  LLEIDA  41.93  1.2E  360  1/1/1963 12/31/2006 
9619  LA SEU D'URGELL  LLEIDA  42.36  1.46E  692  1/1/1930 12/31/2006 
0127O  PORT DEL COMTE  LLEIDA  42.17  1.56E  1800  1/1/1909 12/31/2006 
9269  ALSASUA  NAVARRA  42.89  2.18W  525  1/1/1921 12/31/2006 
9174  SARTAGUDA  NAVARRA  42.37  2.05W  310  1/1/1920 12/31/2006 
9182U  LERIN  NAVARRA  42.48  1.97W  435  1/1/1950 12/31/2006 
9279  ALLOZ 'EMBALSE'  NAVARRA  42.7  1.95W  475  1/1/1965 12/31/2006 
9276  PUENTE LA REINA  NAVARRA  42.67  1.82W  346  1/1/1928 12/31/2006 
1021  ARTICUTZA  NAVARRA  43.21  1.8W  305  1/1/1938 12/31/2006 
9281  FALCES  NAVARRA  42.39  1.79W  292  1/1/1920 12/31/2006 
9283  CADREITA  NAVARRA  42.21  1.71W  268  1/1/1920 12/31/2006 
9301  MONTEAGUDO  NAVARRA  41.96  1.69W  410  1/1/1929 12/31/2006 
1006  SANTESTEBAN  NAVARRA  43.13  1.66W  131  1/1/1920 12/31/2006 
9252  OLITE  NAVARRA  42.49  1.65W  395  1/1/1938 12/31/2006
9255  CAPARROSO  NAVARRA  42.34  1.65W  304  1/1/1953 12/31/2006 

9262 
PAMPLONA 
OBSERVATORIO  NAVARRA  42.82  1.64W  442  1/1/1900 12/31/2006 

9257E  EUGUI ESTERIBAR  NAVARRA  42.96  1.52W  615  1/1/1968 12/31/2006 
9258  ZUBIRI  NAVARRA  42.93  1.5W  536  1/1/1966 12/31/2006 

9246 
CARCASTILLO LA 
OLIVA  NAVARRA  42.37  1.47W  340  1/1/1920 12/31/2006 

9305  BUÐUEL  NAVARRA  41.98  1.45W  242  1/1/1964 12/31/2006 
9232  ARTIEDA  NAVARRA  42.72  1.32W  450  1/1/1954 12/31/2006 
9224  JAVIER CASTILLO  NAVARRA  42.6  1.22W  455  1/1/1929 12/31/2006 
9223  YESA 'EMBALSE'  NAVARRA  42.62  1.19W  515  1/1/1940 12/31/2006 

2363 
PANTANO DE 
COMPUERTO  PALENCIA  42.86  4.83W  1140  1/1/1958 12/31/2006

2362 
PANTANO DE 
CAMPORREDONDO  PALENCIA  42.9  4.74W  1253  1/1/1932 12/31/2006 

2370  SALDAÐA  PALENCIA  42.52  4.74W  912  1/1/1944 12/31/2006 
2370A  SALDAÐA 'I.L.'  PALENCIA  42.52  4.74W  912  1/1/1958 12/31/2006 

2374A 
CARRION DE LOS 
CONDES 'C.D.'  PALENCIA  42.34  4.6W  839  1/1/1931 12/31/2006 

2401B 
PALENCIA ESCL 
CAP AGRARIA  PALENCIA  42.01  4.56W  760  1/1/1961 12/31/2006 

2232 
PANTANO DE 
REQUEJADA  PALENCIA  42.91  4.53W  1024  1/1/1961 12/31/2006 

2236 
PANTANO DE 
CERVERA  PALENCIA  42.87  4.53W  1000  1/1/1967 12/31/2006 

2234 
CERVERA DE 
PISUERGA  PALENCIA  42.86  4.5W  1013  1/1/1932 12/31/2006 
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2403 
VENTA DE BAÐOS 
'AZUCARERA'  PALENCIA  41.92  4.5W  720  1/1/1934 12/31/2006 

2386 
MONZON DE 
CAMPOS  PALENCIA  42.12  4.49W  754  1/1/1948 12/31/2006 

2278  OSORNO  PALENCIA  42.41  4.36W  809  1/1/1900 12/31/2006 
2257  ALAR DEL REY  PALENCIA  42.66  4.31W  851  1/1/1932 12/31/2006 

2243 
PANTANO DE 
AGUILAR  PALENCIA  42.79  4.28W  903  1/1/1959 12/31/2006 

2095 
SAN ESTEBAN DE 
GORMAZ  SORIA  41.57  3.2W  860  1/1/1932 12/31/2006 

2085 
EL BURGO DE 
OSMA  SORIA  41.59  3.07W  895  1/1/1932 12/31/2006 

2081 
SAN LEONARDO DE 
YAGUE  SORIA  41.83  3.07W  1033  1/1/1935 12/31/2006 

2010  ABEJAR  SORIA  41.81  2.79W  1130  1/1/1900 12/31/2006 

2017I 

BARRIOMARTIN 
'MOLINO 
PIQUERAS'  SORIA  42  2.49W  1260  1/1/1968 12/31/2006 

2030 
SORIA 
'OBSERVATORIO'  SORIA  41.77  2.47W  1082  1/1/1943 12/31/2006 

9981A 
TORTOSA   OBSER. 
DEL EBRO  TARRAGONA  40.82  0.49E  48  1/1/1910 12/31/2006 

9951  FLIX   SEO  TARRAGONA  41.23  0.53E  56  1/1/1941 12/31/2006 
0001  EL PERELLO  TARRAGONA  40.87  0.72E  142  1/1/1969 12/31/2006 
9971  TIVISSA  TARRAGONA  41.04  0.73E  310  1/1/1912 12/31/2006 
9961  CABACES  TARRAGONA  41.25  0.73E  357  1/1/1967 12/31/2006 

0002I 
VANDELLOS   
CENTRAL NUCLEAR  TARRAGONA  40.96  0.87E  34  1/1/1968 12/31/2006 

0019 
VIMBODI   
RIUDEBELLA  TARRAGONA  41.37  1.04E  590  1/1/1931 12/31/2006 

0016B 
REUS   CENTRE 
LECTURA  TARRAGONA  41.15  1.11E  138  1/1/1934 12/31/2006 

0017 
VILASECA DE 
SOLCINA  TARRAGONA  41.11  1.15E  53  1/1/1931 12/31/2006 

0016A  REUS   AEROPORT  TARRAGONA  41.15  1.16E  73  1/1/1961 12/31/2006 
0022  MONTBLANC  TARRAGONA  41.38  1.17E  340  1/1/1968 12/31/2006 
9999  ODON  TERUEL  40.88  1.57W  1110  1/1/1944 12/31/2006 
9998  TORNOS  TERUEL  40.96  1.44W  1018  1/1/1969 12/31/2006 
9372  CELLA  TERUEL  40.46  1.29W  1023  1/1/1959 12/31/2006 

9547 
LA PUEBLA DE 
HIJAR  TERUEL  41.22  0.44W  245  1/1/1900 12/31/2006 

9567 
GALLIPUEN 
'EMBALSE'  TERUEL  40.88  0.41W  680  1/1/1920 12/31/2006 

1083  ARCENTALES  VIZCAYA  43.24  3.22W  220  1/1/1967 12/31/2006 

1059 
PUNTA GALEA   
GOLF  VIZCAYA  43.38  3.02W  90  1/1/1946 12/31/2006 

1082 
BILBAO 
'AEROPUERTO'  VIZCAYA  43.3  2.91W  39  1/1/1947 12/31/2006 
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1075E  ARANZAZU  VIZCAYA  43.15  2.79W  98  1/1/1967 12/31/2006

9366 
LA TRANQUERA 
'EMBALSE'  ZARAGOZA  41.26  1.79W  660  1/1/1926 12/31/2006 

9311C 
BORJA 
'AYUNTAMIENTO'  ZARAGOZA  41.83  1.53W  440  1/1/1968 12/31/2006 

9390 
DAROCA 
OBSERVATORIO  ZARAGOZA  41.12  1.41W  779  1/1/1919 12/31/2006 

9428E 
CALATORAO 
COOPERATIVA  ZARAGOZA  41.51  1.32W  360  1/1/1940 12/31/2006 

9331F  EL BAYO  ZARAGOZA  42.19  1.26W  360  1/1/1965 12/31/2006 

9433U 
ALAGON 
AZUCARERA  ZARAGOZA  41.77  1.12W  235  1/1/1928 12/31/2006 

9220  SIGUES  ZARAGOZA  42.63  1.02W  495  1/1/1900 12/31/2006 

9219I 
SALVATIERRA DE 
ESCA  ZARAGOZA  42.67  1.02W  580  1/1/1969 12/31/2006 

9434 
ZARAGOZA 
AEROPUERTO  ZARAGOZA  41.66  1.01W  247  1/1/1900 12/31/2006 

9322  BIEL  ZARAGOZA  42.39  0.94W  760  1/1/1966 12/31/2006 

9515 
MONEVA‐
EMBALSE  ZARAGOZA  41.18  0.83W  650  1/1/1938 12/31/2006 

9499 
ZARAGOZA AULA 
DEI  ZARAGOZA  41.73  0.81W  225  1/1/1950 12/31/2006 

9481  MARRACOS  ZARAGOZA  42.09  0.77W  400  1/1/1961 12/31/2006 
9495  ZUERA EL VEDADO  ZARAGOZA  41.88  0.65W  298  1/1/1965 12/31/2006 
9509  OSERA DE EBRO  ZARAGOZA  41.54  0.58W  172  1/1/1969 12/31/2006 

9574 
CASPE‐
AYUNTAMIENTO  ZARAGOZA  41.24  0.04W  145  1/1/1954 12/31/2006 
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