000097034 001__ 97034
000097034 005__ 20211117102004.0
000097034 0247_ $$2doi$$a10.1112/jlms.12411
000097034 0248_ $$2sideral$$a120845
000097034 037__ $$aART-2020-120845
000097034 041__ $$aeng
000097034 100__ $$0(orcid)0000-0003-1256-3671$$aAlonso Gutiérrez, David$$uUniversidad de Zaragoza
000097034 245__ $$aOn affine invariant and local Loomis–Whitney type inequalities
000097034 260__ $$c2020
000097034 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097034 5203_ $$aWe prove various extensions of the Loomis–Whitney inequality and its dual, where the subspaces on which the projections (or sections) are considered are either spanned by vectors $w_i$ of a not necessarily orthonormal basis of $\mathbb{R^n}$ , or their orthogonal complements. In order to prove such inequalities, we estimate the constant in the Brascamp–Lieb inequality in terms of the vectors $w_i$ . Restricted and functional versions of the inequality will also be considered.
000097034 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E64$$9info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77710-P
000097034 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000097034 590__ $$a1.137$$b2020
000097034 591__ $$aMATHEMATICS$$b126 / 330 = 0.382$$c2020$$dQ2$$eT2
000097034 592__ $$a1.441$$b2020
000097034 593__ $$aMathematics (miscellaneous)$$c2020$$dQ1
000097034 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000097034 700__ $$0(orcid)0000-0002-1344-1425$$aBernués, Julio$$uUniversidad de Zaragoza
000097034 700__ $$aBrazitikos, Silouanos
000097034 700__ $$aCarbery, Anthony
000097034 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000097034 773__ $$g103, 4 (2020), 1377-1401$$pJ. Lond. Math. Soc.$$tJOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES$$x0024-6107
000097034 8564_ $$s420117$$uhttps://zaguan.unizar.es/record/97034/files/texto_completo.pdf$$yPostprint
000097034 8564_ $$s244115$$uhttps://zaguan.unizar.es/record/97034/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000097034 909CO $$ooai:zaguan.unizar.es:97034$$particulos$$pdriver
000097034 951__ $$a2021-11-15-14:34:51
000097034 980__ $$aARTICLE