000097072 001__ 97072
000097072 005__ 20210902121908.0
000097072 0247_ $$2doi$$a10.3390/math8111875
000097072 0248_ $$2sideral$$a120457
000097072 037__ $$aART-2020-120457
000097072 041__ $$aeng
000097072 100__ $$0(orcid)0000-0001-6727-563X$$aUrdeitx, P.$$uUniversidad de Zaragoza
000097072 245__ $$aA computational model for cardiomyocytes mechano-electric stimulation to enhance cardiac tissue regeneration
000097072 260__ $$c2020
000097072 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097072 5203_ $$aElectrical and mechanical stimulations play a key role in cell biological processes, being essential in processes such as cardiac cell maturation, proliferation, migration, alignment, attachment, and organization of the contractile machinery. However, the mechanisms that trigger these processes are still elusive. The coupling of mechanical and electrical stimuli makes it difficult to abstract conclusions. In this sense, computational models can establish parametric assays with a low economic and time cost to determine the optimal conditions of in-vitro experiments. Here, a computational model has been developed, using the finite element method, to study cardiac cell maturation, proliferation, migration, alignment, and organization in 3D matrices, under mechano-electric stimulation. Different types of electric fields (continuous, pulsating, and alternating) in an intensity range of 50–350 Vm−1, and extracellular matrix with stiffnesses in the range of 10–40 kPa, are studied. In these experiments, the group’s morphology and cell orientation are compared to define the best conditions for cell culture. The obtained results are qualitatively consistent with the bibliography. The electric field orientates the cells and stimulates the formation of elongated groups. Group lengthening is observed when applying higher electric fields in lower stiffness extracellular matrix. Groups with higher aspect ratios can be obtained by electrical stimulation, with better results for alternating electric fields.
000097072 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-106099RB-C44
000097072 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000097072 590__ $$a2.258$$b2020
000097072 591__ $$aMATHEMATICS$$b24 / 330 = 0.073$$c2020$$dQ1$$eT1
000097072 592__ $$a0.495$$b2020
000097072 593__ $$aMathematics (miscellaneous)$$c2020$$dQ2
000097072 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000097072 700__ $$0(orcid)0000-0003-0088-7222$$aDoweidar, M.H.$$uUniversidad de Zaragoza
000097072 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000097072 773__ $$g8, 11 (2020), 1875 [23 pp.]$$pMathematics (Basel)$$tMATHEMATICS$$x2227-7390
000097072 8564_ $$s8840424$$uhttps://zaguan.unizar.es/record/97072/files/texto_completo.pdf$$yVersión publicada
000097072 8564_ $$s507099$$uhttps://zaguan.unizar.es/record/97072/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000097072 909CO $$ooai:zaguan.unizar.es:97072$$particulos$$pdriver
000097072 951__ $$a2021-09-02-10:40:44
000097072 980__ $$aARTICLE