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ABSTRACT 

A percentage of hepatitis C virus (HCV)-infected patients fail direct acting antiviral (DAA)-based 

treatment regimens, often because of drug resistance-associated substitutions (RAS). The aim 

of this study was to characterize the resistance profile of a large cohort of patients failing DAA-

based treatments, and investigate the relationship between HCV subtype and failure, as an aid 

to optimizing management of these patients.  

A new, standardized HCV-RAS testing protocol based on deep sequencing was designed and 

applied to 220 previously subtyped samples from patients failing DAA treatment, collected in 

39 Spanish hospitals. The majority had received DAA-based interferon (IFN) α-free regimens; 

79% had failed sofosbuvir-containing therapy. Genomic regions encoding the nonstructural 

protein (NS) 3, NS5A, and NS5B (DAA target regions) were analyzed using subtype-specific 

primers. 

Viral subtype distribution was as follows: genotype (G) 1, 62.7%; G3a, 21.4%; G4d, 12.3%; G2, 

1.8%; and mixed infections 1.8%. Overall, 88.6% of patients carried at least 1 RAS, and 19% 

carried RAS at frequencies below 20% in the mutant spectrum. There were no differences in 

RAS selection between treatments with and without ribavirin. Regardless of the treatment 

received, each HCV subtype showed specific types of RAS. Of note, no RAS were detected in 

the target proteins of 18.6% of patients failing treatment, and 30.4% of patients had RAS in 

proteins that were not targets of the inhibitors they received.  

HCV patients failing DAA therapy showed a high diversity of RAS. Ribavirin use did not 

influence the type or number of RAS at failure. The subtype-specific pattern of RAS emergence 

underscores the importance of accurate HCV subtyping. The frequency of “extra-target” RAS 

suggests the need for RAS screening in all three DAA target regions.  
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HIGHLIGHTS  

• At failure to direct-acting antivirals (DAAs), most patients carry subtype-dependent 

resistance-associated substitutions (RAS).  

• Next-generation sequencing (NGS)-based RAS testing can provide useful data for 

managing HCV patients failing DAAs. 

• As RAS can appear in regions other than those targeted by the DAAs received, RAS 

screening should include all target regions (NS3, NS5A, and NS5B). 

 

Keywords: Antiviral treatment; NGS; Direct-acting antivirals; HCV; Failure; RAS    
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1. INTRODUCTION 

Hepatitis C virus (HCV) chronic infection is the leading cause of liver-related morbidity 

and mortality worldwide. In Spain, an estimated 0.5% of the population has active HCV 

infection (HCV RNA in plasma), and 1.1% has antibodies against HCV. The United Nations 

General Assembly has adopted a resolution to combat all 5 viral hepatitis, with particular focus 

on HBV and HCV (1;2). In keeping with this effort, the Spanish National Healthcare System 

approved the Strategic Plan for Tackling Hepatitis C (PEAHC, Plan Estratégico Nacional Contra 

la Hepatitis C) in March, 2015, “to improve the prevention, diagnosis, treatment, and follow-up 

of HCV-infected patients” (3). According to updated data from the Spanish Ministry of Health, 

around 130,000 chronic HCV patients have been treated with direct-acting antiviral (DAA)-

based regimens within the Plan. Among them, 95.5% have achieved virologic cure, whereas 

4.5% have failed DAA treatment and are under consideration for retreatment (4).  

Treatment failure has been associated with selection of resistance-associated 

substitutions (RAS) in the viral genome that confer decreased susceptibility to DAAs, generate 

cross-resistance with  other inhibitors of the same class, and render salvage treatments more 

expensive and difficult (5-12). Retreatment strategies are particularly hampered in cases of 

multidrug resistance, which challenges the possibility to switch DAA class. 

Following treatment failure, RAS in nonstructural protein (NS) 3 often become 

undetectable within months after stopping therapy, whereas NS5A RAS can persist for years 

(9). NS5A RAS have a negative impact on retreatment outcome in NS5A inhibitor-experienced 

patients (13;14) and other RAS emerging in the viral population can also have a deleterious 

effect. Hence, current guidelines state that resistance testing can be useful to guide 

retreatment in DAA failures according to the resistance profile observed  (7;15). RAS can be 

detected in clinical samples using population (Sanger) sequencing or deep sequencing with 

next-generation techniques.  
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In a recent study including 626 DAA-experienced European patients, the most 

important RAS associated with treatment failure were detected in the genotype (G) 1 

subtypes, G1a and G1b, and in G2, G3, and G4 (6). In another study, Di Maio et al. investigated 

200 non-responding patients with G1a, G1b, G1g, G2c, G3a, and G4 infection, and identified 

extra-target RAS in 9% of samples. A remarkable 57.1% of non-responders had a misclassified 

genotype (18). Although these studies provide valuable information, they were performed 

using Sanger sequencing, which has a relatively low sensitivity: RAS (observed as mixed peaks) 

must be present at frequencies of at least 15% to 20% in the viral population.  This may be a 

limitation for planning retreatment options, as it has been shown that even RAS present at 

frequencies of less than 15% can be selected and emerge as majority variants following 

treatment (19). 

Previous work has shown that a minimum coverage of 10,000 reads (sequences) per 

amplicon should be reached to identify minority mutants present as at least 1% of the viral 

population (16). Next-generation sequencing (NGS) has the capability to determine whether 

certain RAS are undetectable at this extremely low level, which would be important to confirm 

when deciding on retreatment regimens.  However, NGS-based real-life resistance profile data 

and exhaustive clinical descriptions of patients who fail treatment are largely lacking (17). 

Acquisition of data on RAS emerging in patients failing first-line therapy was 

considered an essential component of the PEAHC strategy to understand the virus-related 

variables associated with treatment failure and optimize HCV management in our setting.  

Hence, the aim of this study was to characterize the resistance profile of a large cohort of 

patients failing DAA-based treatments, and investigate the relationship between HCV subtype 

and failure. To this end, a specific analytical protocol using NGS technology was developed in 

our laboratory.   

2. MATERIAL and METHODS 

2.1 Patients 
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HCV-infected patients (N=220) who failed a DAA treatment from 39 Spanish hospitals 

adhering to the PEAHC (Figure S1) were included in the study. The mean sampling time from 

end of treatment (EOT) was 28 weeks (data available for 128 samples). Serum samples were 

coded, and all clinical and viral data were recorded in an anonymous database. As samples 

were analyzed for diagnostic purposes, further patient consent was not required, and a 

resistance profile report for each sample was sent to physicians. The cohort distribution 

according to HCV subtype and treatment received is reported in Table 1 and the patients’ 

clinical data in Table S1. 

2.2 Methods 

A high-resolution HCV subtyping method (20) was used on all samples to accurately 

identify HCV subtypes and mixed infections, so that subtype-specific primers could be selected 

to amplify the three DAA-targeted genomic regions of HCV (NS3, NS5A, and NS5B) (19). 

Amplified products were analyzed using the 454/GS-Junior platform (20) up to 

December 2016, when the platform was discontinued. The method was then adapted to the 

MiSeq system (Illumina). Comparison of the two platforms (21) has shown equivalent 

performance, with higher resolution power for MiSeq  (Table S2) (19). 

Raw data were analyzed using in-house R scripts, as previously described (19), and 

were compiled in the QSutils program (22). Briefly, in the first step, reads containing >5% of 

base pairs with Phred scores below Q30 were discarded. Next, demultiplexing was done to 

identify reads by specific primer, and clean reads were collapsed into haplotypes. Haplotypes 

were aligned with the reference sequence for each subtype, and those with more than 2 

indeterminations, 3 gaps, or 99 differences were excluded. Reads were translated into amino 

acids, and the intersection between forward and reverse haplotypes with abundances >0.2% 

was determined. From these alignments, all variants by site or haplotype present at ≥1% were 

analysed; additional details of the method are described elsewhere (21). Mean coverage 
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(number of reads sequenced per amplicon) was 31,868 reads for NS3, 36,400 for NS5A, and 

40,011 for NS5B. 

Because of the considerable intra-subtype diversity of HCV, 1181 sequences were 

retrieved from the Los Alamos databank to generate a consensus sequence (defined by the 

most frequent amino acid at each position) for G1a (553 sequences), G1b (427), G1l (3), G2a 

(7), G2b (79), G2c (8), G2i (4), G2j (8), G2k (4), G2q (2), G3a (49), G3b (4), G3k (2), G4a (18), G4d 

(5), G4f (6), and G5a (2).  

 For the present study, extra-target RAS were defined as well-recognized antiviral 

resistance mutations appearing in NS3, NS5A, or NS5B in patients who were receiving DAAs 

that targeted regions other than those in which the mutations were found (7-9;12;23).   

3. RESULTS 

3.1 Subtype distribution at treatment failure 

G1 was the most prevalent (138/220, 62.7%) genotype in the 220 patients, and 

included subtypes G1a (50/220, 22.7%) and G1b (87/220, 39.5%). These were followed in 

frequency by G3a in 47/220 (21.4%) and G4d in 27/220 (12.3%). The remaining 3.6% (n=8/220) 

belonged to G2j (n=2), G2c (n=1), and G2i (n=1). Four cases of mixed infections were detected 

(G1b+G1a; G4a+G1b; G4d+G1b; G4d+G3a) (Figure 1A). Almost half the samples (100/220) had 

been genotyped using commercial methods before starting treatment at the attending 

hospitals. In 7 cases, the genotype identified by these methods did not coincide with the 

genotype obtained using our more accurate high-resolution method (3 G3a were initially 

assigned to G1, 3 G3a to G4, and 1 G1a to G4). 

The HCV subtype distribution closely followed the subtype prevalence in chronically 

infected patients in the Spanish general population (24) except for G3a, which is found in 

8.87% of the population, but was detected in 21.4% of patients who failed treatment. The 

treatments received are described in Figure 1B and Table 1. 
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3.2 RAS frequency 

Ninety different RAS were identified, 33 mapping in NS3, 48 in NS5A, and 9 in NS5B, 

corresponding to 551 mutations (Figure 2). Most RAS (69.5%) were present at frequencies of 

90%-100%, whereas 5.8%, 5.6%, and 18.9% were found at 50%-90%, 20%-50%, and 1%-20%, 

respectively. At least 1 RAS was detected in 195 patients (88.6%). There were no known RAS in 

samples from 25 patients (11.4%). The average number of RAS per patient (considering all the 

genomic regions analyzed) was 2.1, 3.4, 1.2, and 2.6 for G1a, G1b, G3a, and G4d, respectively. 

There were no significant differences in the average number of RAS between patients treated 

with (n=115) or without (n=105) RBV-containing regimens (2.5 vs 2.1, p>0.317; Mann-Whitney 

test).  

3.3 RAS distribution between subtypes 

In general, each HCV subtype showed specific RAS types, regardless of the treatment 

received. The most prevalent RAS and affected proteins for the major subtypes were the 

following: Q30R in NS5A for G1a; L31M and Y93H in NS5A, and L159F and C316N in NS5B for 

G1b; Y93H in NS5A for G3a; and T58P in NS5B for G4d (Figure 2). Venn diagrams were 

constructed to determine which RAS were common to the different subtypes. Remarkably, the 

Q80K substitution in NS3, Y93H in NS5A, and L159F in NS5B (central area of Venn diagram) 

were the only RAS common to all subtypes (Figure 3). Of note, Q80K in NS3, found here in G1a, 

G1b, G3a, and G4d patients, has been previously described only in G1a/1b patients, and L159F 

has not been previously described in G4d (7-9;23). Some RAS were subtype-exclusive, while 

others appeared in more than 1 subtype (Figures 2 and 3).  

3.4 Prevalent RAS associated with the major treatments 

3.4.1 Ledipasvir [LDV] + Sofosbuvir [SOF] (n=88) 

The most prevalent RAS in the NS5A region were Q30R/K/H/E for G1a, L31M/I/V and 

Y93H for G1b, A30S/L/R/K for G3a (mutation not previously described in G3a) (12), and T58P 
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and L28V for G4d. These last 2 substitutions never appeared together, whereas in G1b, L31I/V 

was always found together with Y93H.  

In the NS5B region, L159F and C316N were seen mainly in G1b (Figure 4A) (minimum p 

value=0.001162). The rare S282T variant, which confers strong resistance to SOF in vitro, was 

detected in only 1 G1b-infected patient, in association with L159F and C316N. 

In summary, although these patients had all failed the same DAA regimen, each HCV 

subtype showed a different pattern of RAS (Figure 4A). 

3.4.2 Simeprevir [SMV] + Sofosbuvir [SOF] (n=39) 

NS3 substitutions at position 168 (D168A/E/V/T/Y) were the most prevalent RAS in 

G1a, G1b, and G4d. Q80R/K were found in G1b and G4d, while R155K appeared only in G1a 

and R155Q only in G1b. As to the NS5B region, 16/28 (57.1%) and 18/28 (64.3%) patients 

carried L159F and C316N, respectively, at the time of the analysis (Figure 4B). 

3.4.3 Daclatasvir [DCV] + Sofosbuvir [SOF] (n=35) 

RAS resistance to DCV was characterized by the Y93H mutation in G1a, G1b, and G3a, 

followed by L31I/M/V at positions 30 and 28. (Figure 4C). The NS5B RAS, L159F and C316N, 

appeared exclusively in G1b (3/6, 50% of patients).  

Interestingly, all G1b patients with L159F+C316N in NS5B had L31I/M/V+Y93H in NS5A. 

Moreover, in two of the three G1b patients carrying the L159F+C316N+L31I/V+Y93H four-

mutant combination in the same genome, S282T, a well-recognized SOF resistance mutation, 

was also present (Figure 4C). 

In G3a patients, the A30K substitution never appeared in combination with Y93H, 

which could suggest a restriction for co-selection of these RAS in the same genome. There was 

a notable absence of RAS in NS5B except in 1 patient who carried the high-resistance S282T 

alone in 100% of the viral genomes sequenced (Figure 4C). 

3.4.4 Paritaprevir/ritonavir [PRV/r] + Ombitasvir [OMV] + Dasabuvir [DSV] (n=20) 
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No dominant RAS were observed in NS3, but most of those found were at positions 56, 

80, and 168 (Figure 4D). In NS5A, the dominant RAS in G1a patients were at positions 30 and 

28, whereas the most prevalent RAS in G1b were Y93H and R30Q.  

Resistance to the allosteric NS5B inhibitor DSV included L159F, C316N, V321A, and 

S556G in G1b, and C316Y, M414T, and A421V in G1a. 

3.4.5 SOF-treated patients (n=174) 

In all SOF-based combinations, RAS in NS5B were almost exclusively found in G1b-

infected patients (Figures 4A, 4B, 4C), and 32.2% (56/174) of patients in this group had RAS 

mutations in viral regions that were not targeted by the drug they received (extra-target).  

3.5 RAS quantity profile at failure 

An overview of the RAS detected by subtype and failed treatment shows that a larger 

number of RAS were seen at failure in G1a and G1b-infected patients than in those with other 

subtypes, regardless of the treatment received (Figures 5 and S2). In addition, the RAS 

response pattern to triple therapy (3D) differed from the response to SOF-based treatments in 

some genotypes. There were no NS5B mutations in G3a patients receiving 3D, but this region 

was affected in G3a patients receiving SOF.  No such differences were found in G1a and G1b 

patients. (Figure S2). 

3.6 RAS combination profiles  

Several RAS combinations were observed in G1b-infected patients who failed 

LDV/DCV+SOF (Figure 6). In the NS5A region, L31I/M/V was combined with Y93H in a high 

percentage of patients, and especially after ledipasvir-based treatment. These RAS confer a 

high level of resistance to DAAs in subtypes G1a and G1b. Specifically, L31M+Y93H confer 

increased resistance to daclatasvir, with a 4200 to 16,000-fold change (FC) in G1b patients, and 

to elbasvir (FC=7568 for G1a and 5000 for G1b), ledipasvir (FC=20,270 for G1b), ombitasvir 

(FC=142-12,323 for G1b), pibrentasvir (FC=195 for G1a and  0.7 for G1b), and velpatasvir 

(FC=44 for G1b). The L31V+Y93H combination confers resistance to daclatasvir (FC=166,667 for 
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G1a and 8336-4789 for G1b), elbasvir (FC=53571 for G1a), and ombitasvir (FC=12,328 for G1b) 

(12). 

In the NS5B region, L159F+C316N were combined in the same genome in almost half 

of G1b-infected patients, and quadruple RAS combinations in NS5A+NS5B emerged in 16.7% of 

patients after LDV/DCV+SOF treatment (Figure 6). 

In SMV+SOF-treated patients, the Q80R+D168E combination in NS3, which confers a 

418-fold increase in SMV resistance in vitro (8), was associated with L159F+C316N in NS5B in 

2/28 (7.1%) G1b-infected patients. D168V, which confers a 3100-fold increase in resistance to 

SMV in vitro, was associated with L159F+C316N in 4/28 (14.3%) G1b patients. 

3D therapy was especially prone to emergence of multiple RAS combinations, including 

a quintuple combination in 2/7 (28.6%) G1b-infected patients (Figure 6).  

On analysis of haplotype frequencies, the L31M+Y93H combination appeared at 

frequencies >90% in 12/16 (75%) G1b-infected patients who failed LDV/DCV+SOF, whereas 

L31I+Y93H and L31V+Y93H showed a wider range of frequencies (Table S3.1 and S3.2). In G1b 

SMV+SOF failures, the Q80R+D168E combination was detected at frequencies >80% in all 

except 1 case. On the other hand, the R155Q+D168A combination appeared at frequencies of 

<20% in all patients (Table S3.3). Moreover, after 3D treatment, Y56H+D168V and R30Q+Y93H 

were both found in 5/6 (83.3%) patients (Table S3.4). The NS5B L159F+C316N combination 

prevailed at frequencies >98% in all viral isolates where it had been observed, regardless of the 

failed regimen (Table S3.2, S3.3, and 3.4). 

3.7 Putative new resistance-associated substitutions 

An overview of the amino acid sequence patterns in NS3, NS5A, and NS5B (Figures 2 

and 4) distinguished 3 possible outcomes following treatment failure: 1) no RAS detected in 

any region analyzed, 2) presence of well-known RAS (Figure 2), and 3) previously undescribed 

amino acid substitutions found in a residue corresponding to a known RAS (Figure 7). The new 

substitutions at previously assigned RAS positions included Y56F, V132I, and V170I in NS3 for 
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G1b, A30V in NS5A for G3a, and S282G in NS5B for G1a and G1b. For example, Y56F was found 

in most GT1b patients at failure. In addition, variants at position 62 in NS5A were also 

repeatedly observed in G1b- and G3a-infected patients, regardless of the treatment received. 

L314P in NS5B was the only RAS found in G1a, G1b, and G3a. 

4. DISCUSSION 

In a large cohort of HCV-infected patients who failed DAA therapy, emergent RAS were 

classified by viral subtype, target protein, and antiviral treatment. There was evidence of a 

considerable influence of viral subtype on the development of specific mutations. These 

results were obtained using NGS in a clinical diagnostic laboratory that provides support to the 

publicly-funded Spanish healthcare system. The method can generate a report describing the 

number and frequency of minor and major RAS in the viral sample, and whether two or more 

mutations are combined in the same genome. Hence, the NGS protocol developed may be a 

good candidate to serve as a standardized test for HCV RAS detection to guide retreatment 

decisions when needed (7).  

The 220 samples included underwent high-resolution HCV subtyping before RAS 

analysis so that subtype-specific primers could be used with deep sequencing. Surprisingly, of 

the 100 samples genotyped at the hospital of origin, 7 (7%) had been assigned a different 

genotype than that determined in the high-resolution analysis. Hence, it is possible that these 

patients had received suboptimal treatments according to their genotype (7), which may have 

facilitated RAS selection and DAA treatment failure (6;7;9;15;18;25;26). In a study investigating 

the consequences of inaccurate genotyping, Polilli et. al. cited potential prescription of 

suboptimal therapy and remarkable increases in treatment costs (27). 

In our study, the number and type of RAS detected did not differ significantly between 

treatments including or not ribavirin. This finding may support addition of ribavirin to 

retreatment regimens, as the potential mutagenic effect of the drug did not significantly 

change RAS frequencies. 
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We found that 88.6% of patients carried one or more RAS.  Poor response rates to 

retreatment with the same DAA regimen (13) suggest that switching DAA class is indicated in 

salvage treatments. However, the presence of various RAS in the same viral genome causing a 

dramatic increase in resistance to the inhibitor and cross-resistance to inhibitors of the same 

type, together with the presence of extra-target RAS (Figures 6 and 7), may hamper this option 

(12). Blind treatment of resistant viruses using a pangenotypic triple combination is a 

possibility, but it carries the risk of multiresistant virus selection. In these patients, NGS 

resistance testing could be useful to guide treatment decisions and to document RAS 

elimination on follow-up (9;28-33). The absence of RAS should be ascertained by NGS because 

the viral quasispecies “memory” from previous treatments may favor selection of HCV escape 

mutants, as has been reported in human immunodeficiency virus (HIV) patients (34).  

The basic features of RNA viral genetics can explain the diversity of RAS and their wide 

range of frequencies in these infections. First, bona fide RAS can increase in frequency 

depending on the fitness cost they inflict. In addition, substitutions can occur in genomes on 

their way to dominance and be hitchhiked towards various frequency levels. Some 

substitutions may play strong or minor compensatory roles on the bona fide RAS substitutions. 

Furthermore, RNA viruses can find multiple mutational pathways (ie, alternative RAS) in 

response to selective constraints, thereby increasing their replicative fitness (35).  

In contrast to the situation before first-line therapy, the viral population emerging at 

completion of treatment has a history of replication in the presence of antiviral agents. These 

RAS may have a greater impact on resistance than the same RAS detected at baseline, as viral 

adaptation to growth in the presence of drugs may have co-selected compensatory mutations 

(7;36;37). For example, in G1b-infected patients receiving DSV-based treatments, L159F and 

C316N emergence in the NS5B palm 2 domain (23), a site distant from the palm 1 domain 

where most DSV RAS have been mapped (38), suggests that extra-target mutations at palm 2 
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may act as compensatory structural changes. Thus, L159F+C316N might jeopardize salvage 

treatment with other NS5B inhibitors (39). 

Our results show that the RAS profile is to some degree subtype-dependent and that it 

can differ even in the presence of 2 different antiviral agents of the same class (eg, the NS5A 

inhibitors LDV and DCV). Furthermore, certain high-frequency RAS, such as Q30R in NS5A for 

G1a, Y93H in NS5A for G1b and G3a, and L159F and C316N in NS5B for G1b, emerged 

regardless of the drugs administered. As to the number of RAS and their combinations, G1b-

infected patients showed the most variable profile, followed by G1a, G4d, and G3a, with all 

treatments. This suggests that G1b may require a larger number of RAS than other subtypes to 

achieve comparable resistance levels.  

A considerable percentage of G1a-, G3a-, and G4d-infected patients showed no known 

RAS, despite treatment failure. Viral escape in the absence of RAS can be associated with 

unconfessed poor adherence to treatment, a deficient host immune response, or 

inappropriate timing of virus isolation for RAS analysis (31). The clinical reports made poor 

adherence or a deficient immune response unlikely in most of the patients studied. Hence, this 

point should be investigated in view of similar observations in other patient cohorts (6;18), and 

previous evidence in cell culture that HCV fitness may be a determinant of RAS-independent 

resistance (40;41). 

As an additional complication to RAS analysis, amino acids that confer a RAS 

phenotype in one subtype may be present in wild-type sequences of another subtype. 

Moreover, several new substitutions, such as Y56F in NS3, are being accepted as RAS (7;12).  

Although these mutations are not yet validated as bona fide RAS, they should be considered 

when designing salvage treatments, and in vitro studies should be done to investigate their 

contribution to resistance.  
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Most studies on HCV RAS have used Sanger sequencing,  and have suggested that this 

method would suffice to detect most clinically significant RAS (14), even though mutants 

present at frequencies below 15% to 25% would be excluded (42). In our cohort, around 19% 

of patients had RAS frequencies in the range of 1% to 20%, and some of them carried RAS 

combinations in the same genome. Low-frequency RAS have also been reported in other 

cohorts (43), and one study has shown that RAS present at frequencies of less than 15% can be 

selected as majority variants following treatment (19). NGS enables quantification of genomes 

carrying a combination of different RAS per amplicon with high confidence when more than 

10,000 reads per amplicon are obtained, with a 1% cut-off value (16), enabling detection of 

these minority variants.  

Additional experience with NGS will define the practical value of deep-sequencing RAS 

detection in DAA failures. Fortunately, triple therapy with voxilaprevir+velpatasvir+sofosbuvir 

is a highly effective retreatment regimen in most cases, including patients with RAS. 

Nonetheless, caution must be exercised when treating patients with viral resistance mutations 

in 2 protein targets because of the risk of selecting genomes resistant to the 3 inhibitors and 

inducing cross resistance to other inhibitors of the same drug class. This could be a special 

concern for specific subtypes and after failure to NS5Ai+NS5Bi double therapies. It is 

reasonable to think that in clinical practice, some treatment failures will be a challenge for 

retreatment and require RAS-tailored rescue therapy. Complex patients with comorbidities 

requiring medication that can reduce the efficacy of DAAs by drug-drug interactions could also 

benefit from individualized therapy. For example, those receiving strong anti-epileptic drugs 

(AEDs) such as carbamazepine, phenytoin and phenobarbital (44), which activate CYP 3A4 and 

thereby, lower the effective dose of several HCV inhibitors. 

 

5. CONCLUSIONS 
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In summary, NGS analysis in a cohort of HCV-infected patients failing DAA treatment 

documented a complex array of amino acid substitutions in treatment-targeted proteins. The 

analysis showed subtype-specific substitutions and multiple alternative minority sequences in 

viruses that survived treatment. These findings in real-life clinical samples indicate that HCV 

drug resistance testing based on deep-sequencing before retreatment could be useful for 

designing salvage therapies, particularly in difficult-to-treat cases. The increasing descriptions 

of naturally occurring RAS in treatment-naïve patients, as well as RAS in extra-target regions, 

begs for further studies to understand their clinical meaning in relation to DAA therapy, and 

NGS RAS testing could also be useful in this scenario. Finally, RAS listing may be a valuable 

component in the worldwide effort to eliminate HCV infection as a public health threat, as 

advocated by the World Health Organization.  

ABBREVIATIONS 

HCV, hepatitis C virus, RAS, resistance-associated substitutions;  DAA, direct-acting antiviral; 

SVR, sustained virological response; NS3i, nonstructural region 3 inhibitor; PTV, paritapevir; r, 

ritonavir; SMV, simeprevir; GLE, glecaprevir; FDV, faldaprevir; GZR, grazoprevir; NS5Ai, NS5A 

inhibitor; DCV, daclatasvir; LDV, ledipasvir; OMV, ombitasvir; EBR, elbasvir; PIB, pibrentasvir; 

NS5Bi, N5B inhibitor;  SOF, sofosbuvir; DSV, dasabuvir; DLV, deleobuvir; UPF, uprifosbuvir; 

RBV, ribavirin; IFN-α, interferon-α; EOT, end-of-treatment; HRCS, high-resolution HCV 

subtyping; G1a, genotype 1 subtype a; Y93H, Y wild type amino acid residue; 93 relates to 

position; H is the mutated genome.  
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FIGURE LEGENDS 

 

Figure 1. HCV subtype distribution in the cohort under study. A) Number of patients per 

subtype: G1a N=50, G1b N=87, G1l N=1, G2c N=1, G2i N=1, G2j N=2, G3a N=47, G4d N=27 and 

mixed infections G1b+G1a, G4a+G1b, G4d+G1b, and G4d+G3a N=4 (N=1 each).  B) Percentage 

of patients who received each DAA treatment type with color darkness indicating inclusion of 

RBV. The purple slice (11.4%) has been enlarged to report twelve minor treatments (see Table 
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1 for additional details). Abbreviations: PTV, paritaprevir; r, ritonavir; SMV, simeprevir; GLE, 

glecaprevir; FDV, faldaprevir; GZR, grazoprevir; DCV, daclatasvir; LDV, ledipasvir; OMV, 

ombitasvir; EBR, elbasvir; PIB, pibrentasvir;  SOF, sofosbuvir; DSV, dasabuvir; DLV, deleobuvir; 

UPF, uprifosbuvir; RBV, ribavirin 

 

Figure 2. Heat map of resistance-associated substitutions (RAS). Each column represents a 

patient. The target protein (NS3, NS5A or NS5B), the amino acid (one code letter; eg, V), the 

position in each protein (eg, 36), and the substitution (eg, A or M) are indicated in the 4 

columns on the left. The viral subtype (eg, G1a) and mixed infections (eg, G4d+G1b) are 

indicated at the top. The treatment code (eg, 1, 2…) is given at the bottom and decoded in a 

large framed box (eg, 1 LDV+SOF). RAS frequency above the 1% limit of detection is color-

coded in each box of the heat map, showing which mutations occurred; the color indicates the 

frequency at which the mutations were found in the isolate. The frequency code is shown in 

the bottom right box. Amino acids depicted in red indicate changes previously described as 

RAS, but with a different wild-type (parental) amino acid than the one indicated. Empty slots 

mean that no amino acid mutation was observed compared with the subtype reference (wild-

type) amino acid sequence. 

 

Figure 3. Venn diagrams represent the number and substitutions shared between the major 

subtypes according to the target protein. Only subtypes showing more than 1 RAS following 

treatment failure and RAS present in more than 1 patient are included. Only the mutant amino 

acid detected at the time of the analyses was included in this analysis, regardless of the wild-

type amino acid. The background color in the ellipses identifies the HCV subtype. The numbers 

indicate the RAS detected in that subtype, whereas numbers in overlapping ellipses denote 

RAS shared by the different subtypes. Encircled letters define the amino acid substitutions, 

listed on the right. 
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Figure 4. Heat map of RAS divided according to DAA treatment (A to D). The HCV subtype is 

given on the left, the treatment in the upper empty boxes and the target protein in the upper 

filled boxes, above the amino acid replacements. Amino acids depicted in red indicate changes 

previously described as RAS, but with a different wild-type (parental) amino acid than the one 

indicated. Under each RAS, black-filled circles mean that the RAS has been previously 

described for that subtype, empty circles indicate that the RAS was not previously described 

for that subtype, and crossed circles identify RAS that have been reported, but with a different 

wild-type amino acid at that position. A) Ledipasvir + sofosbuvir (N=88) with a mean sampling 

time after EOT of 21 weeks (data available for 56/88 patients); B) Simeprevir + sofosbuvir 

(N=39); with a mean sampling time after EOT of 31 weeks (data available for 23/39 patients); 

C) Daclatasvir + sofosbuvir (N=35) with a mean sampling time after EOT of 30 weeks (data 

available for 18/35 patients); D) Paritaprevir/r + ombitasvir + dasabuvir (N=20) with a mean 

sampling time after EOT of 33 weeks (data available for 12/20 patients). The color code for RAS 

frequency is that same as in Figure 2.  

 

Figure 5. RAS quantity profile according to subtypes and treatment failure (empty boxes). HCV 

subtype and number of patients are given on the left. The percentage of patients carrying 

different total numbers of RAS at treatment failure are indicated by the number and color 

code within the boxes on the right. 

Figure 6. Heat map of putative new RAS. Schematic representation of the prevalence of amino 

acid changes detected in our cohort study, but not described as bona fide RAS in the literature. 

Display and symbols are the same as in Figures 2 and 4. Symbols in amino acids (upper part of 

the figure) include (Ɨ) in V132, which means that I132V was a RAS described for G1a, and (#) in 

I170, which indicates that both V and I are wild-type amino acids described for G1a and G1b. 
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Figure S1. Hospitals or medical centers belonging to the Spanish health care system that 

provided samples for the study, grouped by autonomous community. 

 

Figure S2.  RAS profile according to subtypes, treatment failure (empty boxes). HCV subtype 

and number of patients are given on the left. The percentages of patients carrying different 

numbers of RAS in each anti-viral targeted region at treatment failure are indicated by the 

number and color code within the boxes on the right.  
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Table 1. Patient distribution according to subtype, DAA regimen, and ribavirin use. (a) G1l; (b) 

G2i; (c) G2j; (d) G2c; (e) Mixed infection (Mi) 4d (69.3%) + 1b (30.6%); (f) Mi 4a (98.5%) + 1b 

(1.5%); (g) Mi 1b (80%) + 1a (19.9%); (h) Mi 4d (96.7%) + 3a (3.3%). 

 

 

 

Table S1. Clinical characteristics of the cohort under study. ^ and * indicate the same patient 

who failed 2 different DAA regimens. n.d. no data. 

Table S2. Comparison of the RAS reports for the same sample from patient (Pt005) analyzed 

using the 454 GS-Junior platform and MiSeq (21). 

Table S3. Frequency of highest individual and combined RAS in the same genome, related to 

the total number of sequences obtained after deep-sequencing reads filtering procedure. S3.1: 

RAS combinations in NS5A after failure to LDV+SOF and DCV+SOF. S3.2: RAS combinations in 

NS5B after failure to LDV+SOF and DCV+SOF. S3.3: RAS combinations in NS3 and NS5B after 

  Subtypes  
  G1b G1a G3a G4d Others Mix  
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 LDV + SOF (+RBV/-RBV) 12/23 7/21 4/5 10/3 1(a) / 0 1(e) / 1(f) 35/53 

SMV + SOF (+RBV/-RBV) 18/10 4/2 - 3/1 - 1(g) / 0 26/13 
DCV + SOF (+RBV/-RBV) 2/4 0/2 11/16 - - - 13/22 
SOF + RBV 3 - 3 - 2(b) - 8 
SOF + IFN + RBV - - 2 - 1(c) - 3 
GZR + EBR + SOF - - 1 - - - 1 
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PTV/r + OMV + DSV (+RBV/-
RBV) 

4/3 6/4 1/2 - - - 11/9 

PTV/r + OMV (+RBV/-RBV) - 1/1 2/0 8/0 - 1(h) / 0 12/1 
SMV + DCV (+RBV/-RBV) 0/2 1/0 - 0/1 - - 1/3 
DCV + IFN + RBV 2 - - - - - 2 
SMV + IFN + RBV - 1 - - - - 1 
GZR + EBR + RBV  - - - 1 - - 1 
FDV + DLV (+RBV/-RBV) 2/1 - - - - - 2/1 
UPF - - - - 1(d) - 1 
GLE + PIB 1 - - - - - 1 

 TOTAL (+RBV / -RBV) 43/44 20/30 23/24 22/5 4/1 3/1 220 
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failure to SMV+SOF. S3.4. RAS combinations in NS3, NS5A and NS5B after failure to 3D 

(PTV/r+OMV+DSV).  
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HIGHLIGHTS  

• At treatment failure, most patients carry subtype-dependent resistance-associated 

substitutions (RAS). 

• RAS appear even in non-treatment-targeted regions.  

• RAS screening should include all target regions (NS3, NS5A and NS5B). 

• At failure, NGS-based RAS testing is recommended before tailoring salvage 

treatment. 

 


