000097189 001__ 97189
000097189 005__ 20230323131625.0
000097189 0247_ $$2doi$$a10.3389/fphys.2020.598314
000097189 0248_ $$2sideral$$a121101
000097189 037__ $$aART-2020-121101
000097189 041__ $$aeng
000097189 100__ $$aChauhan, V.S.
000097189 245__ $$aCommentary: Increased Beat-to-Beat Variability of T-Wave Heterogeneity Measured From Standard 12-Lead Electrocardiogram Is Associated With Sudden Cardiac Death: A Case-Control Study
000097189 260__ $$c2020
000097189 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097189 5203_ $$aThe electrocardiogram (ECG) reflects the electrical activity within the heart. Following the discovery of the small electrical signals in the human heart, the Dutch scientist Willem Einthoven developed sensitive methods for detecting them and recognized their clinical implications (Kligfield, 2002). For his contributions Willem Einthoven, whose scientific roots originated from the Utrecht physiology department (Einthoven, 1885), was awarded the Nobel Prize in 1924. Since then, many enigmas of the ECG have been solved and its intricate information carries valuable clues for clinical decision making. 
In vivo mapping studies have established that spatial heterogeneity in repolarization is a requisite for re-entrant ventricular arrhythmias by effecting unidirectional conduction block. Important modulators of spatial heterogeneity of repolarization include autonomic tone, ischemia, heart rate and premature or ectopic beats, which can produce temporal heterogeneity in the order of seconds, minutes, or hours depending on their time-constants. In the contemporary era of dynamic surface electrocardiography, a formidable challenge is quantifying spatiotemporal repolarization heterogeneity with sufficient fidelity to image the arrhythmogenic myocardial substrate and thereby provide indices for a patient’s risk of arrhythmic death (Laguna et al., 2016). Hekkanen et al. (2020) performed a large case-control study of 200 victims...
000097189 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104881RB-I00$$9info:eu-repo/grantAgreement/ES/DGA-FSE/T39-20R-BSICoS group
000097189 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000097189 590__ $$a4.566$$b2020
000097189 591__ $$aPHYSIOLOGY$$b14 / 81 = 0.173$$c2020$$dQ1$$eT1
000097189 592__ $$a1.32$$b2020
000097189 593__ $$aPhysiology (medical)$$c2020$$dQ2
000097189 593__ $$aPhysiology$$c2020$$dQ2
000097189 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000097189 700__ $$0(orcid)0000-0002-7503-3339$$aMartínez, J.P.$$uUniversidad de Zaragoza
000097189 700__ $$avan der Heyden, M.A.G.
000097189 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000097189 773__ $$g11 (2020), 598314 [3 pp]$$pFront. physiol.$$tFRONTIERS IN PHYSIOLOGY$$x1664-042X
000097189 8564_ $$s74775$$uhttps://zaguan.unizar.es/record/97189/files/texto_completo.pdf$$yVersión publicada
000097189 8564_ $$s29066$$uhttps://zaguan.unizar.es/record/97189/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000097189 909CO $$ooai:zaguan.unizar.es:97189$$particulos$$pdriver
000097189 951__ $$a2023-03-23-12:57:33
000097189 980__ $$aARTICLE