000097190 001__ 97190
000097190 005__ 20210902121917.0
000097190 0247_ $$2doi$$a10.5194/cp-16-1889-2020
000097190 0248_ $$2sideral$$a120956
000097190 037__ $$aART-2020-120956
000097190 041__ $$aeng
000097190 100__ $$aSmith, V.
000097190 245__ $$aLife and death in the Chicxulub impact crater: A record of the Paleocene-Eocene Thermal Maximum
000097190 260__ $$c2020
000097190 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097190 5203_ $$aThermal stress on the biosphere during the extreme warmth of the Paleocene-Eocene Thermal Maximum (PETM) was most severe at low latitudes, with sea surface temperatures at some localities exceeding the 35 C at which marine organisms experience heat stress. Relatively few equivalent terrestrial sections have been identified, and the response of land plants to this extreme heat is still poorly understood. Here, we present a new record of the PETM from the peak ring of the Chicxulub impact crater that has been identified based on nannofossil biostratigraphy, an acme of the dinoflagellate genus Apectodinium, and a negative carbon isotope excursion. Geochemical and microfossil proxies show that the PETM is marked by elevated TEXH 86-based sea surface temperatures (SSTs) averaging 37:8 C, an in- crease in terrestrial input and surface productivity, salinity stratification, and bottom water anoxia, with biomarkers for green and purple sulfur bacteria indicative of photic zone euxinia in the early part of the event. Pollen and plants spores in this core provide the first PETM floral assemblage described from Mexico, Central America, and the northern Caribbean. The source area was a diverse coastal shrubby tropical forest with a remarkably high abundance of fungal spores, indicating humid conditions. Thus, while seafloor anoxia devastated the benthic marine biota and dinoflagellate assemblages were heat-stressed, the terrestrial plant ecosystem thrived.
000097190 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000097190 590__ $$a4.295$$b2020
000097190 591__ $$aGEOSCIENCES, MULTIDISCIPLINARY$$b41 / 198 = 0.207$$c2020$$dQ1$$eT1
000097190 591__ $$aMETEOROLOGY & ATMOSPHERIC SCIENCES$$b26 / 94 = 0.277$$c2020$$dQ2$$eT1
000097190 592__ $$a2.028$$b2020
000097190 593__ $$aGlobal and Planetary Change$$c2020$$dQ1
000097190 593__ $$aStratigraphy$$c2020$$dQ1
000097190 593__ $$aPaleontology$$c2020$$dQ1
000097190 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000097190 700__ $$aWarny, S.
000097190 700__ $$aGrice, K.
000097190 700__ $$aSchaefer, B.
000097190 700__ $$aWhalen, M.T.
000097190 700__ $$aVellekoop, J.
000097190 700__ $$aChenot, E.
000097190 700__ $$aGulick, S.P.S.
000097190 700__ $$0(orcid)0000-0003-4632-533X$$aArenillas, I.$$uUniversidad de Zaragoza
000097190 700__ $$0(orcid)0000-0003-0063-8752$$aArz, J.A.$$uUniversidad de Zaragoza
000097190 700__ $$aBauersachs, T.
000097190 700__ $$aBralower, T.
000097190 700__ $$aDemory, F.
000097190 700__ $$aGattacceca, J.
000097190 700__ $$aJones, H.
000097190 700__ $$aLofi, J.
000097190 700__ $$aLowery, C.M.
000097190 700__ $$aMorgan, J.
000097190 700__ $$aNuñez Otaño, N.B.
000097190 700__ $$aO''Keefe, J.M.K.
000097190 700__ $$aO''Malley, K.
000097190 700__ $$aRodríguez-Tovar, F.J.
000097190 700__ $$aSchwark, L.
000097190 7102_ $$12000$$2655$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Paleontología
000097190 773__ $$g16, 5 (2020), 1889-1899$$pClim. past.$$tClimate of the Past$$x1814-9324
000097190 8564_ $$s242933$$uhttps://zaguan.unizar.es/record/97190/files/texto_completo.pdf$$yVersión publicada
000097190 8564_ $$s545532$$uhttps://zaguan.unizar.es/record/97190/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000097190 909CO $$ooai:zaguan.unizar.es:97190$$particulos$$pdriver
000097190 951__ $$a2021-09-02-10:46:17
000097190 980__ $$aARTICLE