Resumen: Synucleinopathies are a group of disorders characterized by the accumulation of a-Synuclein amyloid inclusions in the brain. Preventing a-Synuclein aggregation is challenging because of the disordered nature of the protein and the stochastic nature of fibrillogenesis, but, at the same time, it is a promising approach for therapeutic intervention in these pathologies. A high-throughput screening initiative allowed us to discover ZPDm, the smallest active molecule in a library of more than 14.000 compounds. Although the ZPDm structure is highly related to that of the previously described ZPD-2 aggregation inhibitor, we show here that their mechanisms of action are entirely different. ZPDm inhibits the aggregation of wild-type, A30P, and H50Q a-Synuclein variants in vitro and interferes with a-Synuclein seeded aggregation in protein misfolding cyclic amplification assays. However, ZPDm distinctive feature is its strong potency to dismantle preformed a-Synuclein amyloid fibrils. Studies in a Caenorhabditis elegans model of Parkinson’s Disease, prove that these in vitro properties are translated into a significant reduction in the accumulation of a-Synuclein inclusions in ZPDm treated animals. Together with previous data, the present work illustrates how different chemical groups on top of a common molecular scaffold can result in divergent but complementary anti-amyloid activities. Idioma: Inglés DOI: 10.3389/fbioe.2020.588947 Año: 2020 Publicado en: Frontiers in Bioengineering and Biotechnology 8 (2020), 588947 [12 pp] ISSN: 2296-4185 Factor impacto JCR: 5.89 (2020) Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 12 / 73 = 0.164 (2020) - Q1 - T1 Factor impacto SCIMAGO: 1.081 - Bioengineering (Q1) - Histology (Q1) - Biotechnology (Q1) - Biomedical Engineering (Q1)