000097200 001__ 97200
000097200 005__ 20230519145352.0
000097200 0247_ $$2doi$$a10.1016/j.ijhydene.2020.10.019
000097200 0248_ $$2sideral$$a120966
000097200 037__ $$aART-2021-120966
000097200 041__ $$aeng
000097200 100__ $$aMatute, G.
000097200 245__ $$aMulti-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions
000097200 260__ $$c2021
000097200 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097200 5203_ $$aThe production of hydrogen through water electrolysis is a promising pathway to decarbonize the energy sector. This paper presents a techno-economic model of electrolysis plants based on multiple states of operation: production, hot standby and idle. The model enables the calculation of the optimal hourly dispatch of electrolyzers to produce hydrogen for different end uses. This model has been tested with real data from an existing installation and compared with a simpler electrolyzer model that is based on two states. The results indicate that an operational strategy that considers the multi-state model leads to a decrease in final hydrogen production costs. These reduced costs will benefit businesses, especially while electrolysis plants grow in size to accommodate further increases in demand.
000097200 536__ $$9info:eu-repo/grantAgreement/EC/H2020/824388/EU/Integrated multi-vector management system for Energy isLANDs/E-LAND$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 824388-E-LAND$$9info:eu-repo/grantAgreement/ES/UZ/Industrial Doctoral Program 2017
000097200 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000097200 590__ $$a7.139$$b2021
000097200 591__ $$aCHEMISTRY, PHYSICAL$$b43 / 165 = 0.261$$c2021$$dQ2$$eT1
000097200 591__ $$aENERGY & FUELS$$b38 / 119 = 0.319$$c2021$$dQ2$$eT1
000097200 591__ $$aELECTROCHEMISTRY$$b8 / 30 = 0.267$$c2021$$dQ2$$eT1
000097200 593__ $$aEnergy Engineering and Power Technology$$c2021$$dQ1
000097200 593__ $$aRenewable Energy, Sustainability and the Environment$$c2021$$dQ1
000097200 593__ $$aCondensed Matter Physics$$c2021$$dQ1
000097200 594__ $$a10.0$$b2021
000097200 592__ $$a1.201$$b2021
000097200 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000097200 700__ $$0(orcid)0000-0003-3174-9703$$aYusta, J.M.$$uUniversidad de Zaragoza
000097200 700__ $$0(orcid)0000-0003-3992-4393$$aBeyza, J.$$uUniversidad de Zaragoza
000097200 700__ $$aCorreas, L.C.
000097200 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000097200 773__ $$g46, 2 (2021), 1449-1460$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000097200 8564_ $$s328437$$uhttps://zaguan.unizar.es/record/97200/files/texto_completo.pdf$$yVersión publicada
000097200 8564_ $$s63780$$uhttps://zaguan.unizar.es/record/97200/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000097200 909CO $$ooai:zaguan.unizar.es:97200$$particulos$$pdriver
000097200 951__ $$a2023-05-18-13:27:50
000097200 980__ $$aARTICLE