000097204 001__ 97204
000097204 005__ 20230914083300.0
000097204 0247_ $$2doi$$a10.1021/acsomega.0c02212
000097204 0248_ $$2sideral$$a120970
000097204 037__ $$aART-2020-120970
000097204 041__ $$aeng
000097204 100__ $$aFuentes-García, J.A.
000097204 245__ $$aSimple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia
000097204 260__ $$c2020
000097204 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097204 5203_ $$aWe developed a fast, single-step sonochemical strategy for the green manufacturing of magnetite (Fe3O4) magnetic nanoparticles (MNPs), using iron sulfate (FeSO4) as the sole source of iron and sodium hydroxide (Na(OH)) as the reducing agent in an aqueous medium. The designed methodology reduces the environmental impact of toxic chemical compounds and minimizes the infrastructure requirements and reaction times down to minutes. The Na(OH) concentration has been varied to optimize the final size and magnetic properties of the MNPs and to minimize the amount of corrosive byproducts of the reaction. The change in the starting FeSO4concentration (from 5.4 to 43.1 mM) changed the particle sizes from (20 ± 3) to (58 ± 8) nm. These magnetite MNPs are promising for biomedical applications due to their negative surface charge, good heating properties (˜324 ± 2 W/g), and low cytotoxic effects. These results indicate the potential of this controlled, easy, and rapid ultrasonic irradiation method to prepare nanomaterials with enhanced properties and good potential for use as magnetic hyperthermia agents.
000097204 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26$$9info:eu-repo/grantAgreement/ES/MCIU/MAT2016-78201-P$$9info:eu-repo/grantAgreement/ES/MCIU/RTC-2017-6620-1
000097204 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000097204 590__ $$a3.512$$b2020
000097204 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b78 / 178 = 0.438$$c2020$$dQ2$$eT2
000097204 592__ $$a0.779$$b2020
000097204 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000097204 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000097204 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000097204 700__ $$aCarvalho Alavarse, A.
000097204 700__ $$0(orcid)0000-0002-9198-5882$$aMoreno Maldonado, A.C.$$uUniversidad de Zaragoza
000097204 700__ $$0(orcid)0000-0002-0087-7780$$aToro-Córdova, A.$$uUniversidad de Zaragoza
000097204 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra, M.R.$$uUniversidad de Zaragoza
000097204 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza
000097204 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000097204 773__ $$g5, 41 (2020), 26357-26364$$pACS Omega$$tACS OMEGA$$x2470-1343
000097204 8564_ $$s570834$$uhttps://zaguan.unizar.es/record/97204/files/texto_completo.pdf$$yVersión publicada
000097204 8564_ $$s85079$$uhttps://zaguan.unizar.es/record/97204/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000097204 909CO $$ooai:zaguan.unizar.es:97204$$particulos$$pdriver
000097204 951__ $$a2023-09-13-10:52:45
000097204 980__ $$aARTICLE