000097212 001__ 97212
000097212 005__ 20230313141236.0
000097212 0247_ $$2doi$$a10.1021/acs.jpcc.0c07346
000097212 0248_ $$2sideral$$a120981
000097212 037__ $$aART-2020-120981
000097212 041__ $$aeng
000097212 100__ $$aZhao, J.
000097212 245__ $$aCore-Satellite Gold Nanoparticle Complexes Grown by Inert Gas-Phase Condensation
000097212 260__ $$c2020
000097212 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097212 5203_ $$aSpontaneous growth of complexes consisted of a number of individual nanoparticles in a controlled manner, particularly in demanding environments of gas-phase synthesis, is a fascinating opportunity for numerous potential applications. Here, we report the formation of such core-satellite gold nanoparticle structures grown by magnetron sputtering inert gas condensation. Combining high-resolution scanning transmission electron microscopy and computational simulations, we reveal the adhesive and screening role of H2O molecules in formation of stable complexes consisted of one nanoparticle surrounded by smaller satellites. A single layer of H2O molecules, condensed between large and small gold nanoparticles, stabilizes positioning of nanoparticles with respect to one another during milliseconds of the synthesis time. The lack of isolated small gold nanoparticles on the substrate is explained by Brownian motion that is significantly broader for small-size particles. It is inferred that H2O as an admixture in the inert gas condensation opens up possibilities of controlling the final configuration of the different noble metal nanoparticles.
000097212 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RYC-2018-024561-I$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2014-59772-C2-2-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 755039-M4F$$9info:eu-repo/grantAgreement/EC/H2020/755039/EU/MULTISCALE MODELLING FOR FUSION AND FISSION MATERIALS/M4F$$9info:eu-repo/grantAgreement/EC/FP7/610256/EU/Gas and Dust from the Stars to the Laboratory: Exploring the NanoCosmos/NANOCOSMOS
000097212 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000097212 590__ $$a4.126$$b2020
000097212 591__ $$aCHEMISTRY, PHYSICAL$$b68 / 162 = 0.42$$c2020$$dQ2$$eT2
000097212 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b124 / 333 = 0.372$$c2020$$dQ2$$eT2
000097212 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b56 / 106 = 0.528$$c2020$$dQ3$$eT2
000097212 592__ $$a1.401$$b2020
000097212 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ1
000097212 593__ $$aEnergy (miscellaneous)$$c2020$$dQ1
000097212 593__ $$aSurfaces, Coatings and Films$$c2020$$dQ1
000097212 593__ $$aPhysical and Theoretical Chemistry$$c2020$$dQ1
000097212 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000097212 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000097212 700__ $$0(orcid)0000-0002-5229-2717$$aMayoral, A.$$uUniversidad de Zaragoza
000097212 700__ $$aMartínez, L.
000097212 700__ $$aJohansson, M.P.
000097212 700__ $$aDjurabekova, F.
000097212 700__ $$aHuttel, Y.
000097212 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000097212 773__ $$g124, 44 (2020), 24441-24450$$pJ. phys. chem., C$$tJOURNAL OF PHYSICAL CHEMISTRY C$$x1932-7447
000097212 8564_ $$s705568$$uhttps://zaguan.unizar.es/record/97212/files/texto_completo.pdf$$yVersión publicada
000097212 8564_ $$s87419$$uhttps://zaguan.unizar.es/record/97212/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000097212 909CO $$ooai:zaguan.unizar.es:97212$$particulos$$pdriver
000097212 951__ $$a2023-03-13-13:55:06
000097212 980__ $$aARTICLE