000097227 001__ 97227
000097227 005__ 20210902121844.0
000097227 0247_ $$2doi$$a10.1167/tvst.9.11.26
000097227 0248_ $$2sideral$$a120924
000097227 037__ $$aART-2020-120924
000097227 041__ $$aeng
000097227 100__ $$aAriza-Gracia, M.A.
000097227 245__ $$aCorneal Biomechanics After Intrastromal Ring Surgery: Optomechanical In Silico Assessment
000097227 260__ $$c2020
000097227 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097227 5203_ $$aPurpose: To provide a biomechanical framework to better understand the postsurgical optomechanical behavior of the cornea after ring implantation.
Methods: Calibrated in silico models were used to determine the corneal shape and stresses after ring implantation. After mechanical simulations, geometric ray-tracing was used to determine the change in spherical equivalent. The effect of the surgical procedure, circadian variation of intraocular pressure, or the biomechanical weakening introduced by keratoconus (KC) were evaluated for each intrastromal ring.
Results: Models predicted the postsurgical optomechanical response of the cornea at a population level. The localized mechanical effect of the additional intrastromal volume introduced by the implants (size and diameter) drives the postsurgical corneal response. However, central corneal stresses did not increase more than 50%, and thus implants did not strengthen the cornea globally. Because of the biomechanical weakening introduced by laser pocketing, continuous implants in a pocket resulted in higher refractive corrections and in the relaxation of the anterior stroma, which could slow down KC progression. Implants can move within the stroma, acting as a dynamic pivot point that modifies corneal kinematics and flattens the corneal center. Changes in stromal mechanical properties did not impact on refraction for normal or pathological corneas.
Conclusions: Implants do not stiffen the cornea but create a local bulkening effect that regularizes the corneal shape by modifying corneal kinematics without canceling corneal motion.
Translational Relevance: In silico models can help to understand corneal biomechanics, to plan patient-specific interventions, or to create biomechanically driven nomograms.
000097227 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/EC/H2020/786692/EU/Multiscale Integrative Approach for Corneal Biomechanics to Assess Corneal Crosslinking/MIMetiCO$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 786692-MIMetiCO$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2015-073630$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2017-84047-R
000097227 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000097227 590__ $$a3.283$$b2020
000097227 591__ $$aOPHTHALMOLOGY$$b19 / 62 = 0.306$$c2020$$dQ2$$eT1
000097227 592__ $$a1.508$$b2020
000097227 593__ $$aOphthalmology$$c2020$$dQ1
000097227 593__ $$aBiomedical Engineering$$c2020$$dQ1
000097227 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000097227 700__ $$aFlecha-Lescun, J.$$uUniversidad de Zaragoza
000097227 700__ $$aBuchler, P.
000097227 700__ $$0(orcid)0000-0001-9713-1813$$aCalvo, B.$$uUniversidad de Zaragoza
000097227 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000097227 773__ $$g9, 11 (2020), 26 [16 pp]$$pTransl. vis. sci. technol.$$tTranslational vision science & technology$$x2164-2591
000097227 8564_ $$s1256297$$uhttps://zaguan.unizar.es/record/97227/files/texto_completo.pdf$$yVersión publicada
000097227 8564_ $$s46508$$uhttps://zaguan.unizar.es/record/97227/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000097227 909CO $$ooai:zaguan.unizar.es:97227$$particulos$$pdriver
000097227 951__ $$a2021-09-02-10:25:30
000097227 980__ $$aARTICLE