
Received September 21, 2020, accepted October 12, 2020, date of publication October 19, 2020, date of current version November 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3032145

Automatic Safe Data Reuse Detection for the
WCET Analysis of Systems With Data Caches
JUAN SEGARRA 1, JORDI CORTADELLA 2, (Fellow, IEEE), RUBÉN GRAN TEJERO 1,
AND VÍCTOR VIÑALS-YÚFERA 1, (Member, IEEE)
1Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, 50018 Zaragoza, Spain
2Computer Science Department, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Corresponding author: Juan Segarra (jsegarra@unizar.es)

This work was supported in part by MINECO/AEI/ERDF (EU) under Grant TIN2016-76635-C2-1-R, Grant TIN2017-86727-C2-1-R, and
Grant PID2019-105660RB-C21; in part by the Aragón Government under Grant T58_20R research group; in part by the Generalitat de
Catalunya under Grant 2017 SGR 786 and Grant FI-DGR 2015; and in part by the Construyendo Europa desde Aragón under Grant ERDF
2014-2020.

ABSTRACT Worst-case execution time (WCET) analysis of systems with data caches is one of the key
challenges in real-time systems. Caches exploit the inherent reuse properties of programs, temporarily
storing certain memory contents near the processor, in order that further accesses to such contents do
not require costly memory transfers. Current worst-case data cache analysis methods focus on specific
cache organizations (LRU, locked, ACDC, etc.). In this article, we analyze data reuse (in the worst case)
as a property of the program, and thus independent of the data cache. Our analysis method uses Abstract
Interpretation on the compiled program to extract, for each static load/store instruction, a linear expression
for the address pattern of its data accesses, according to the Loop Nest Data Reuse Theory. Each data access
expression is compared to that of prior (dominant) memory instructions to verify whether it presents a
guaranteed reuse. Our proposal manages references to scalars, arrays, and non-linear accesses, provides both
temporal and spatial reuse information, and does not require the exploration of explicit data access sequences.
As a proof of concept we analyze the TACLeBench benchmark suite, showing that most loads/stores present
data reuse, and how compiler optimizations affect it. Using a simple hit/miss estimation on our reuse results,
the time devoted to data accesses in the worst case is reduced to 27% compared to an always-miss system,
equivalent to a data hit ratio of 81%. With compiler optimization, such time is reduced to 6.5%.

INDEX TERMS Real-time, WCET, data-cache, data-reuse.

I. INTRODUCTION
Real-time systems are increasingly present in industry and
daily life. We can find examples in many sectors including
avionics, robotics, automotive processes, manufacturing, and
air-traffic control. A real-time system consists of a number
of tasks with a required functionality. These tasks have to be
scheduled in a way that they meet their deadlines. To ensure
that this occurs, and hence that the system operates cor-
rectly, worst-case execution time (WCET) and schedulability
have to be analyzed. Most WCET analysis methods study
the execution flow of the program and its interaction with
the hardware, and then build an Integer Linear Program-
ing (ILP) model to solve the problem, either as a flow-based
problem [19] or a structure-based problem [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Kaitai Liang .

Analyzing the interactions between the program and the
hardware is perhaps the most complex part, since cur-
rent processors perform many operations with a variable
duration in order to improve performance. To mitigate
these time-predictability drawbacks of hardware, recent stud-
ies propose software-defined architectures [21]. Neverthe-
less, the memory hierarchy seems an unavoidable problem.
A memory hierarchy made up of one or more cache levels
takes advantage of program reuse and saves execution time
and energy consumption by delivering data and instructions
with an average latency of a few processor cycles instead
of requiring costly memory transfers. Most WCET studies
assume just one cache level, although some of them consider
a multi-level memory architecture [27].

There are many studies on the worst-case analysis of
instruction caches, but data cache analysis is much more
complex [20], [23]. This complexity can be seen in common

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 192379

https://orcid.org/0000-0003-1550-735X
https://orcid.org/0000-0001-8114-250X
https://orcid.org/0000-0002-4031-5651
https://orcid.org/0000-0002-5976-1352
https://orcid.org/0000-0003-0262-7678


J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

scenarios such as loops, function calls, and execution-time
addressing. In loops, a memory instruction may access
different data memory addresses depending on the loop
iteration. In functions, memory instructions accessing the
local variables of a subroutine use stack frames, whose base
address depends, among other things, on the nesting level.
Regarding address computation, a memory instruction may
access a data-dependent memory address unknown at com-
pilation/static analysis time. With such added complexity,
calculating data hits and misses in the worst case analysis
is much harder than calculating instruction hits and misses.
Furthermore, previous studies show that around half of the
WCET comes from data accesses [24].

To the best of our knowledge, all WCET analyses of sys-
tems with data caches have focused on locality analysis for
specific cache organizations [20], but not on the data reuse of
the program. Essentially this means that a specific analysis
must be carried out for each specific data cache to test.

In this article, we propose a general method to obtain
safe data reuse information from a binary, independently of
the cache levels and data cache characteristics. Essentially,
we track the content of registers and memory in each part of
the program by means of Abstract Interpretation [7]. We use
polyhedra to obtain linear access patterns of data accesses,
suitable to be analyzed bymeans of thewell knownLoopNest
Data Reuse Theory [33]. This theory provides the mathemat-
ical procedures to extract (safe) reuse information between
memory instructions.

Although modern compilers perform source-code/inter-
mediate-code data access pattern analyses, they are not suit-
able for real-time systems. In a real-time context, any analysis
must be performed on the final stages or after the compilation
in order to take into account the possible code transfor-
mations due to optimizations or architectural features (e.g.,
array padding, vectorization, predicated instructions, etc.).
Also, a safe analysis is required, whereas compilers perform
analyses for the average case. Furthermore, analysis of library
calls is only possible by working directly on a statically
linked binary, as we propose. Existing WCET frameworks
do not perform a deep access pattern analysis. For example,
Heptane [13] and AiT [9] carry out an address range analysis
for each memory instruction, but they do not provide its
specific access pattern.

With our proposal, the reuse properties of each static
load/store instruction in the program are detected, inde-
pendently of the data cache. Essentially, this means that
each load/store is linked to the previous load/store access-
ing the same data (if any), and the reuse type they
present. The reuse type will determine the potential always-
hit/always-miss/first-hit/first-miss classical categorizations,
plus others much more detailed (e.g., 1 miss out of each
8 accesses). Then, a further analysis for a specific data cache
can be carried out to confirm these potential categoriza-
tions, i.e., for the selected data cache, test whether each
reusable cached line is not evicted before it is referenced
again.

Our approach has the following strengths:
• It is safe due to the correct use of Abstract Interpretation,
meaning that our method only includes situations of
guaranteed data reuse.

• Analysis is performed on binary code, enabling the anal-
ysis of binaries generated by different compilers and
optimization levels.

• The separation between the reuse analysis (as a property
of the binary code) and the hit/miss analysis (as the
exploitation of such reuse on a particular cache) enables
a much more efficient WCET analysis, since our reuse
analysis needs to be performed just once, and then apply
the detected reuse to as many memory architectures as
desired.

• Analysis is completely automatic and needs no manual
tuning.

As a proof of concept demonstrator, we have imple-
mented our proposal (available at https://webdiis.unizar.es/
gaz/repositories/polygaz using angr [25] and apron [16], and
apply it to TACLeBench [8], considering different compiler
optimization levels.

The rest of this article is organized as follows. Relatedwork
is outlined in Section II. Section III details the core of our
proposal, which extracts the data address generation of each
load/store in the program as a linear function, if possible.
Section IV shows how to perform a reuse analysis to pre-
vious linear functions under the well known loop nest data
reuse theory. Our experimentation environment and results
are described in Section V. Finally, Section VI presents our
conclusions.

II. RELATED WORK
To the best of our knowledge, all WCET analyses of systems
with data caches have focused on locality analysis for spe-
cific cache organizations [20], but not on the data reuse of
the program. Essentially this means that a specific analysis
must be carried out for each specific data cache to test. For
conventional LRU data caches, this may imply exploring
the explicit sequences of data accesses (e.g., [19], [31]), but
working in such detail would require an exponential analy-
sis time [2]. To avoid such a problem, Cache Miss Equa-
tions (CMEs) [11] or must/may analysis [10] can be used,
but these approaches present problems for non-perfectly
nested loops, accesses to unknown addresses, etc., and they
require a prior data access pattern analysis. Huynh et al.
showed that results of previous methods can be improved by
a scope-aware analysis regarding the persistence of contents
in cache [14]. However, they need a very specific compiler
for their prior data access pattern analysis [5]. Further, they
consideredwrite-through caches with a no-write-allocate pol-
icy to avoid the analysis of copybacks. This simplifies the
analysis, but conventional caches usually follow the opposite
approach, namely, write-allocate with fetch on write-miss
and copyback, which results in fewer memory transfers in
general [17]. A recent study on must/may analysis also
improves its precision, but it does not consider copybacks

192380 VOLUME 8, 2020



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

either [28].Moreover, all these previous approaches are based
on tracking the specific value of memory addresses, whereas
our proposal represents accesses as expressions and abstract
relations, so that reuse is marked when it can be asserted
that two data references access the same memory address,
independently of whether the address is known or unknown.
In order to determine hits and misses without knowing the
specific memory addresses accessed, a congruence analysis
has been proposed [12]. Such analysis uses Abstract Interpre-
tation with symbolic names, and determines whether accesses
are mapped to the same cache set/block, so they may obtain
hit/miss information even for accesses to unknown memory
addresses. However, this analysis still focus on an LRU cache
with a particular number of sets and ways, and it is no longer
valid if these parameters change. Compared to this study,
our proposal asumes a broader scope (whole memory), uses
a more precise abstract domain (polyhedra), and provides
equal or more precise relations than the symbolic names and
relations.

Alternatively to conventional caches, lockable data caches
could be used. A locked data cache is much easier to analyze,
and its WCET-aware configuration can be included in the
WCET analysis method [30], [34]. Still, the dynamism of
data accesses severely restrict the effectiveness of locked data
caches. Specifically, a locked data cache cannot exploit array
traversals in loops. Thus, such data accesses will be always
miss, unless the whole data structure is locked in the data
cache [29], [32]. CMEs [11] have been used to estimate
whether it is worth locking the whole data structure [29].
If locking is desired, extra code is inserted to preload and
lock the corresponding data, although this operation has costs
and the drawback of evicting a relatively large portion of the
cache. Methods specialized in the analysis of lockable data
caches focus on either temporal (e.g., [30], [34]) or spatial
reuse (e.g., [11], [29], [32]), whereas our proposal provides
both temporal and spatial reuse information.

Another alternative would be to use the predictable
Address-Cache Data-Cache (ACDC) structure, which can be
analyzed as easily as a locked data cache while providing a
dynamic behavior similar to that of conventional caches [24].
As all previous caches, it also requires safe reuse informa-
tion for its correct configuration, since the estimated hits
and misses depend on the detected reuse, and may affect
the WCET.

III. AUTOMATIC EXTRACTION OF DATA ADDRESS
GENERATION PATTERNS
A. ABSTRACT INTERPRETATION: OVERVIEW
The exact analysis of all possible memory access patterns of a
program is impractical. However, relevant information can be
extracted when doing the analysis at a higher level of abstrac-
tion. In this workwe resort to Abstract Interpretation [7], [10],
[12] to obtain reuse information from the memory access
patterns generated by the load/store instructions.

Abstract Interpretation is based on a Galois connec-
tion between a concrete domain and an abstract domain.

The abstract domain represents over-approximations of
subsets in the concrete domain. In our particular frame-
work, the concrete domain is defined by the set of vectors
(r0, . . . , rn−1) ∈ Wn representing the state of a program we
are interested in, i.e., all possible values of an integer register
file with n registers.1 The setW = {0, . . . , 2w−1} represents
all possible values of a register with a word size of w bits.

The abstract state of a program is represented as a set of
invariants that hold for the set of registers. In our case, we use
convex polyhedra to represent the elements of the abstract
domain as a set of linear inequalities of the form2∑

i∈{0,...,n−1}

ciri ≤ k, ci, k ∈ Z.

For example (Figure 1), let us consider a register file with
two registers. At a certain point of a program, the registers
can hold the values in set S (concrete states represented by
solid dots). The abstract state (shadowed area) represents an
over-approximation of S, e.g., the state (1, 1) also meets the
three invariants but does not belong to S.

FIGURE 1. Concrete and abstract domains in Abstract Interpretation.

Abstract interpretation guarantees that any safety property
holding in the abstract domain also holds in the concrete
domain. In particular, it will be used to find safe approxima-
tions of data access patterns by analyzing the contents of the
registers represented by the abstract states.

An Abstract Interpretation engine computes the abstract
states at each point of the program by iteratively visiting
the instructions in program order and updating the abstract
states until an equilibrium is reached. The computation starts
with all abstract states at ⊥ (empty). They grow until a least
fixed-point is reached that represents an over-approximation
of the concrete states.

The Abstract Interpretation engine requires a set of func-
tions to transform the abstract states during the traversal of
the program. The transfer function captures the semantics
of each instruction and transforms the abstract state before
the execution of the instruction into the abstract state after its
execution. An example is shown in Figure 2.
The control flow between basic blocks is captured by

the meet (union, u) and join (intersection, t) functions.

1For simplicity, in the general description of our proposal we disregard
the contents of the memory space, but Section III-E describes how they have
been included.

2Equality constraints can be defined by combining two inequalities.

VOLUME 8, 2020 192381



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

FIGURE 2. Transfer function for the instruction add r0,r0,r1.

Finally, widening (O) is a special meet function applied
at the back-edges3 of the loops to guarantee convergence
towards a fixed-point. We refer the reader to the theory of
Abstract Interpretation [7] for a more detailed discussion on
the calculation of the abstract states.

Depending on the desired precision, alternative domains
can be used for Abstract Interpretation. Section V includes
some discussion on these domains.

B. INTUITIVE EXAMPLE
Let us start with the example in Figure 3, which shows a
sequential access to the elements of a matrix A within two
nested loops. Assuming an int takes 4 bytes and the base
address for A (row-major order) being @A, the address for
A[i][j] is computed as:

addr(A[i][j]) = @A+ 200 · i+ 4 · j (1)

In general, @A can be either a constant, in case of a global
array allocated in the static region, or a register, in case it is
the parameter of a function.

FIGURE 3. Linear data access pattern dependent on the loop induction
variables.

A classical execution sequence for the computation of
addr(A[i][j]) could be as follows:

r4 = 200*r2; r2 stores i
r5 = 4*r3; r3 stores j
r6 = r4+r5;
r7 = r1+r6; r1 stores @A, r7=addr(A[i][j])
r8 = load r7; memory access

and the following linear invariant could be inferred from
the abstract state after the execution of the previous code:

r7 = r1 + 200 · r2 + 4 · r3

where r1 would hold the base memory address, and r2 and r3
would hold the values of i and j, respectively.
However, the interesting invariants for memory reuse anal-

ysis are often implicit and ‘‘hidden’’ in the representation
of complex abstract states, e.g., they must be obtained by
computing a linear combination of the explicit invariants of
the representation. On the one hand, code optimizations per-
formed by the compiler may transform the relations between

3Given two basic block nodes a, b from a control-flow graph, a back-edge
is an edge a→ b whose head b dominates its tail a [1]. All edges that enter
the loop header b from the loop body are back-edges.

registers, for instance by using the base address of a data
structure as the starting point of an induction variable, or by
increasing induction variables using steps different from
those in the source code. On the other hand, data held in regis-
ters are not only used for address calculation, thus obfuscating
the implicit relations required for memory addressing.

An example is shown in Figure 4 with an intermediate rep-
resentation of the code in Figure 3. The basic blocks are repre-
sented by boxes in the control-flow graph. The variables t1,
t2 and t3 are temporary registers used to perform arithmetic
operations for address calculation. Figure 4(a) shows the rep-
resentation after code generation, whereas Figure 4(b) shows
the final code after optimization. In this case, the variables
i, j, t1 and t2 are identified as induction variables. After
strength reduction, multiplications are replaced by additions.
The variables i and j disappear after dead-code elimination
under the assumption they are dead after the loops.

FIGURE 4. Induction variables and strength reduction.

Essentially, our proposal reconstructs the linear access pat-
terns, e.g., eq. (1), from the abstract states, and analyzes the
reuse of the memory space.

C. SCOPE OF APPLICATION
Our proposal can be applied to any program that does not
contain non-natural loops. Natural loops are those with a
single-entry node (header) dominating all nodes in the loop,
and with at least one back-edge going to the header [1]. Given
two natural loops, they are either disjoint or nested.

Roughly speaking, all loops derived from high-level state-
ments (while, for, etc.) are natural. Non-natural loops may
appear only in the rare case of using goto statements.

D. TRANSFER FUNCTION
The transfer function is associated to the execution seman-
tics of every instruction and defines the relation between
the abstract states before and after the execution of one
instruction.

We assume that instructions are composed of a sequence
of basic microoperations, each of them containing no
more than a single destination register and a unary/binary

192382 VOLUME 8, 2020



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

arithmetic/logic operation, e.g., ri ← rj + rk . This microde-
coding feature is present in tools such as angr [25] and
OTAWA [4].

Let us assume that sin and sout are the states before and after
executing a micro-operation I , respectively, and rdst is the
destination register of I . The transfer function for I modifies
rdst and maintains the values of all the remaining registers.
It is implemented by three steps:
• s′← sin ∩ {τ = Transfer(I )}.
• s′′← s′\rdst .
• sout ← s′′[rdst := τ ].

The first step creates a new state s′ with a fresh variable τ
and a new relation defined according to the semantics of I .
For example, if I is sub r3,r2,r5 then the constraint
τ = r2 − r5 is added. The second step eliminates the vari-
able rdst from s′, typically using a Fourier-Motzkin elim-
ination [15] for linear inequalities. Finally, the third step
substitutes τ by rdst in s′′.
For any instruction I of the form rdst ← rhs (right-hand

side), the transfer function is defined as follows:

Transfer(I ) =

{
rhs if rhs ∈ {ri, k, ri ± rj, ri ± k, ri · k}
> otherwise

where ri and rj represent source registers of the instruction
and k represents an integer constant. Notice that the trans-
fer function defines the relation τ = > when the instruc-
tion does not represent any linear relation between registers,
e.g., rdst ← r1 · r2. The symbol> represents the top value of
the abstract domain.

E. EXTENSION TO TRACK MEMORY CONTENT
Previous scheme performs a value tracking on registers,
which works well for most optimized codes. However,
non-optimized codes regularly perform register spilling and
reloading, which requires extending our tracking to memory.
We consider the memory as a large byte-sized register bank,
where each memory address is equivalent to a register name,
and the access type (byte, word, double word) determines a
set of consecutive ‘‘registers’’. With such a view, load/store
instructions are equivalent to mov instructions, with the
following two conservative exceptions: (1) a load from an
unknown address assigns > to the destination register, and
(2) a store to an unknown address assigns > to all memory
positions.

F. INDUCTION VARIABLES
Induction variables are those increased or decreased by a
fixed amount at each iteration of a loop, and play an essential
role in array indexing within loops. Some induction variables
depend linearly on other induction variables [1].

1) DETECTION OF INDUCTION VARIABLES
We exploit the use of Abstract Interpretation for the detection
of induction variables stored in registers within natural loops.
The following scheme is used. For every candidate r , a new

variable rprev is created to store the value of r at the previous
iteration. At the entrance of the loop header, the assignment
rprev = r is introduced. At every back edge of the loop the
assignment rstep = r − rprev is evaluated.

An induction variable is detected when the union of the
states that traverse all back edges of the loop fulfill that:

rstep = k, for some k ∈ Z.

Notice that this scheme is more general than the classical
structural methods for detecting of induction variables. It also
detects those variables with multiple assignments within the
loop that result in an constant accumulated value after all the
assignments, even in the presence of conditional statements.

2) ASSOCIATION OF LOAD/STORE ADDRESSES WITH
INDUCTION VARIABLES
Target memory addresses generated by load/store instructions
may be either constant (access to scalars), linear with respect
to an induction variable (sequential access), or non-linear.
Depending on whether the analyzed CFG represents each
function just once or once per call, stack accesses (relative
to the stack or frame pointer) will be non-linear or constant,
respectively.

During the Abstract Interpretation analysis, both the
abstract state at the load/store program point, and the variable
name (virtual or actual processor register) associated to the
target memory address are known.

For accesses to constant addresses, obtaining such value is
immediate by extracting its interval of values from the target
variable, and verifying that both upper and lower bounds are
constants and coincide.

For sequential accesses to arrays in a single loop, linear
expressions usually follow this scheme:

targetAddr = baseAddr + step · inductionVar

After detecting the induction variables and performing
strength reduction (as shown in the example of Figure 4),
the address calculation is reduced to a scheme like this:

targetAddr = targetAddr + step

where targetAddr is initialized to baseAddr before entering
the loop and step is a known constant at compile time.

In nested loops accessing multidimensional arrays, a dif-
ferent induction variable is typically used at each level. After
applying the optimizations for strength reduction, the result-
ing calculation has the following scheme for n nested loops:

targetAddr = baseAddr +
n∑
i=1

ti

where ti represents the induction variables (usually in regis-
ters) that store the corresponding offsets. These variables are
updated by increasing/decreasing their values by an integer
constant. In Figure 4, the variables t1 and t2 play the role
of induction variables for the two dimensions of the array A.

VOLUME 8, 2020 192383



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

If constant values for baseAddr and all ti steps can be
inferred, a precise linear access pattern such as the one in
eq. (1) is generated. If steps are known but the baseAddr
value cannot be inferred, the generated pattern will be impre-
cise, which will prevent group-reuse detection, as described
below. In any other case, the memory reference is considered
non-linear.

IV. DATA REUSE
In this section we describe the detection of data reuse based
on the information gathered from previous analysis. Such
information can be either a precise linear access pattern (con-
stant accesses, or sequential accesses with a known stride and
base address), a linear access pattern (known stride) with an
unknown base address, or a non-linear access pattern.

A. DATA REUSE FOR PRECISE LINEAR ACCESS PATTERNS
Our reuse analysis is based on loop nest data reuse the-
ory [33], briefly introduced below. Each iteration in a loop
nest corresponds to a node in the iteration space. In a loop
nest of depth n, this node is identified by its induction vari-
ables vector Ei = (i1, i2, . . . , in), where ij is the iteration
value of the jth loop in the nest, counting from the outermost
to innermost loop. Let d be the number of dimensions of
an array A. The reference A[Ef (Ei)] is said to be uniformly
generated if Ef (Ei) = HEi + Ec, where Ef is an indexing function
Zn→ Zd , the d × n matrix H is a linear transformation, and
Ec is a constant vector. Row k in H represents the linear com-
bination of the induction variables corresponding to the kth
array index. Since any data structure is mapped to memory
and memory can be seen as a single dimension space, Ef can
be transformed into an equivalent f (Ei) = Eh · Ei + c, where
matrix H has been transformed into a vector Eh and vector Ec
has been transformed into a constant c. So, c = baseAddr
and Eh is composed of the corresponding steps ti.
For each memory instruction with a linear access pattern

function, the next step is to recognize reuse among accesses of
the same memory instruction (self reuse) or among accesses
of different memory instructions (group reuse). As above, let
us outline the mathematical procedures provided by the loop
nest data reuse theory to detect such reuse [33].

Essentially, group reuse appears for two distinct references
H1Ei + Ec1 and H2Ei + Ec2 if H1 = H2 and Ec1 = Ec2. Although
other group reuse situations could easily be detected
(e.g., stencil codes such as ‘‘for (i=0;i<100;i++)
A[i]=A[i+1];’’), in this article we consider just iden-
tical patterns, since it is the most common group reuse
case. Hence, our process for group reuse detection for a
given load/store consists of testing whether there is another
load/store with the same access pattern with a dominance
relation (i.e., it always appears earlier in program order).
Regarding self reuse, it is classified as self-temporal, when

the same data element is repeatedly accessed in time (e.g.,
accessing repeatedly a scalar variable in a loop), or self-
spatial, when close elements are accessed following a partic-
ular pattern (e.g., traversing an array in a loop). Self-temporal

reuse happens when a referenceHEi+Ec accesses the same data
element in iteration Ei1 and Ei2, that is, HEi1 + Ec = HEi2 + Ec.
The solution of this equation can be obtained by applying the
kernel operation onH [33]. Self-spatial reuse can be detected
in the same way, but using a truncated H , with all elements
of its last row replaced by 0.

In the presence of caches, reuse arises among instances of
memory references if they target to the same data memory
line, not only to the same byte, word, or double word. So, tem-
poral reuse for scalars includes all loads/stores that access an
already accessed memory line. This already accessed mem-
ory line may be brought from memory by the same load/store
that reuses it (classified as self-temporal reuse), or may be
brought by a previous load/store not reusing it (classified
as first use). Arrays follow a similar classification. Short
self-spatial reuse represents array traversals with a stride/step
small enough that at least every other consecutive memory
access is serviced from the same data cache line, while
long self-spatial reuse represents array traversals with a
stride too long to guarantee hits in general, e.g., travers-
ing an array by columns. Group-temporal reuse represents
loads/stores with an access pattern function identical to an
earlier load/store, with such an earlier load/store classified
as either short or long self-spatial reuse. Figure 5 shows
examples of these categories.

FIGURE 5. Example of reuse classifications, assuming that scalar
variables are located at different memory lines and the compiler has not
optimized, except for allocating variable i to a register.

B. REUSE FOR NON-LINEAR OR IMPRECISE LINEAR
ACCESS PATTERNS
For linear access patterns with an unknown base address,
we have f (Ei) = Eh ·Ei+ c where c is unknown. This means that
self-spatial reuse can be detected, since detection does not
require the c value. However, a further hit/miss analysis on
such self-spatial reuse cannot provide the specific addresses
generating hits/misses, but only the hit/miss ratio. On the
other hand, group reuse cannot be detected with the data reuse
theory, since it requires the c value. Nevertheless, group reuse
can be detected from the Abstract Interpretation analysis. If
the two variables holding the target data address of the two
accesses to compare are identical, they present group reuse,
even if the the base address is unknown.

For non-linear access patterns, the data reuse theory is not
applicable. Nevertheless, group reuse can be detected from
the Abstract Interpretation analysis as above.

Figure 6 shows several examples for these data accesses.

192384 VOLUME 8, 2020



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

FIGURE 6. Example of reuse classifications, for non-linear and imprecise
linear memory accesses.

V. RESULTS
In this section we evaluate our safe data reuse detection
method. First, we describe the experimental framework and
benchmarks. Then, we study the reuse classification of their
data memory accesses.With this reuse classification, a simple
estimation on how much time they would take in the worst
case is computed, i.e. their contribution to theWCET. Finally,
we present the analysis times required to apply our method.

A. EXPERIMENTAL FRAMEWORK AND BENCHMARK
CHARACTERIZATION
The 33 benchmarks tested have been compiled with the
different optimization levels (-O0, -O1, -O2, -O3) with
gcc-9.2.1 for ARM, disabling thumb extensions, as previous
studies [22].We assume that loop bounds (flow-facts) are pro-
vided in advance, as in other frameworks (e.g., OTAWA [4]).
For each one of the binaries, this information has been manu-
ally set, carefully studying the effect of compiler optimiza-
tions. Nevertheless, existing loop bound analysis methods
could be used [6], [18].

Table 1 shows the benchmarks used in our experiments,
from the TACLeBench suite [8]. Recursion has not been
addressed in this work, so recursive benchmarks have been
discarded. We use angr (version 8.19.7.25) to extract and
process the CFGs [25]. It must be taken into account that
angr is in active development stage, and it may decode some
instructions incorrectly. In the cases that such errors result
in invalid CFGs the corresponding benchmarks4 have been
discarded. Functions in the CFG are not virtually inlined, that
is, in our analysis a function is associated to a unique sub-
CFG, and not associated to a specific sub-CFG instance for
each call it receives. So, we first process each node in the CFG
following a fixed-point algorithm, generating an abstract state
at each load/store instruction and the input/output abstract
states for each node. For the Abstract Interpretation analy-
sis, we use apron (version 0.9.10) with the polka (equali-
ties mode) polyhedra library [16]. That is, each update in
a register or memory address is translated to a call to the
apron library updating the specified data. Once the CFG is
completely processed, we perform another Abstract Inter-
pretation analysis to discover the registers holding induction
variables in loops. Results of both analyses are then combined

4adpcm_dec, adpcm_enc, ammunition, cjpeg_transupp, cjpeg_wrbmp,
cover, duff, epic, gsm_dec, gsm_enc, h264_dec, ndes, prime, petrinet, sha,
susan, and also bsort-O1, lift-O2, and lift-O3.

to generate access patterns. Finally, knowing the access pat-
tern for each load/store in the CFG, the reuse information is
generated. Figure 7 depicts this process as a flowchart.

FIGURE 7. Flowchart for obtaining load/store access patterns and reuse
information between them.

In Table 1, for each benchmark and optimization level,
columns under ‘‘Dominant loads/stores with exploitable
reuse’’ show the number of load/store instructions that bring
content with exploitable reuse from memory, for the first
time (i.e., with a dominant relation). They show both the
absolute value, and the percentage out of the total number
of static loads/stores for each optimization level (O0 to O3).
O0 usually contains unnecessary temporal variables that opti-
mizations remove, and hence column O0 in general presents
more dominant loads/stores than the other columns. In order
to provide a more realistic insight, accesses to scalars are
presented considering a cache line of 64 bytes (typical for
Intel and ARM L1 caches). So, a scalar access is assumed
to cache a whole memory line, and not only its accessed
bytes. Thus, all results in this section regarding scalars appear
as if they were grouped by their memory location in blocks
of 64 bytes. Columns under ‘‘Estimated accesses in the worst
case’’ show an estimation of the number of dynamic (account-
ing loop iterations) data memory accesses for each binary in
the worst case, as an absolute value for O0, and the percentage
in respect of O0 for optimized binaries. As can be seen, opti-
mizations markedly reduce the number of memory accesses.
Finally, columns under ‘‘Analysis time (s)’’ show the time
required to complete the analysis, in seconds, in a 3.20 GHz
Intel Core i5-4570 CPU with 16 GiB of RAM. Benchmark
test3 requires more virtual memory when compiled with O0
(134 GiB) and O1 (37 GiB). This benchmark overwrites
the same global variables many times from functions, but
optimization levels 2 and 3 remove most of them, reducing
very much the total number of memory accesses and the
required analysis time. For these binaries, and also formpeg2

VOLUME 8, 2020 192385



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

TABLE 1. Benchmark characterization.

compiled with O3 (77 GiB), a different machine has been
used. It is important to take into account that this analysis
must be seen as a proof of concept, and currently it is not
optimized. Nevertheless, notice that our analysis should be
conducted just once for each binary in order to extract its
reuse properties, independently of the data cache. Then, for
each specific data cache, a much more simple analysis on
top of our reuse analysis should provide the detailed hit/miss
cases. That is, test which reuse cases, from those provided by
our analysis, can be effectively exploited by the selected data
cache.

Figure 8 shows the number of dominant loads/stores with
exploitable reuse of Table 1, with benchmark ordered by
their value for O0. Such ordering provides an insight into the
data complexity of each benchmark regarding their reusable
data. As it can be seen, similar trends appear when applying
optimizations, although in general with lower absolute val-
ues. All figures in this section follow this ordering for the
benchmarks.

Despite the different absolute number of dominant refer-
ences among binaries, the percentage of dominant references
out of total references is rather homogeneous (around 12.5%).

B. REUSE CLASSIFICATION
In Figure 9, we present our reuse classification, as described
in Section IV, weighting each load/store by its maximum
number of executions in loops. Benchmarks are ordered as

above to provide an insight of their data complexity. The
different reuse types are separated by their associated data
access type (scalar, array, non-linear). The average case is
shown on the right. For each data access type, bar fill color
shows the specific reuse type detected. Types with darker
colors are prone to generate always hits, whereas lighter
colors would usually turn into misses.

Figure 9 shows that the compiler optimization level may
significantly change the amount and relative distribution
among reuse types. A plain compilation (O0) usually has
many temporal variables and replicated memory accesses,
as seen in Table 1, this increasing group-temporal reuse on
scalars. Optimizations remove these unnecessary accesses,
and hence the scalar bar is reduced with optimizations. This
can be seen in many benchmarks, specially in those on
the left.

Compiling without optimizations also hinders the detec-
tion of array accesses, which many times are classified as
non-linear accesses. With optimizations, sequential accesses
are easier to detect, as can be seen, for instance, in isqrt,
countnegative, and ludcmp. This is also reflected in the
average.

The full unrolling of loops with memory instructions also
affects reuse. When compiling with O3, the short stride
self-spatial reuse (array) in the affected loops disappears in
favor of group-temporal reuse (scalar). This can be clearly
seen in complex_updates, and in a lesser extent also in

192386 VOLUME 8, 2020



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

FIGURE 8. Absolute number of dominant load/store instructions with exploitable reuse.

matrix1, binarysearch, ludcmp, minver, and lift comparing
to O2. Unrolling can also produce other effects regarding
locality exploitation. For instance, filterbank processes two
8 × 32 arrays by columns, and when applying O3 the deep-
est loop is fully unrolled. So, this loop is substituted by a
sequence of 8 instructions for each array which individually
access the arrays by rows. Thereby, long self-spatial reuse
is transformed into short self-spatial reuse. Although short
self-spatial reuse is much better for the WCET, notice that
the opposite transformation would occur if these nested loops
were interchanged.

Regarding ‘‘Not reusing (scalar)’’ cases, in general they
represent a very small fraction of the memory accesses, with
deg2rad and rad2deg in O1, O2, and O3 being the most
clear exceptions. As it can be seen in Table 1, the number of
memory accesses when optimizing these benchmarks drops
to less than 0.5%, since 17 memory instructions in deg2rad
and 18 in rad2deg are removed from the only loop in each
benchmark. So, with optimizations O1, O2, and O3, the num-
ber of memory accesses is 25, 9, and 9 for deg2rad, and
24, 8, and 8 for rad2deg, respectively. Thus, the first time
they access each scalar variable, accounted as ‘‘Not reusing
(scalar)’’, is a significant percentage out of the few performed
accesses.

C. INTEGRATION IN THE WCET ANALYSIS
The methodology described above enables the safe data reuse
detection from data access patterns of load and store instruc-
tions. Such reuse information is valid for any data cache
hardware, since reuse is a property of the compiled code.
Depending on the data cache, such reuse may or may not
be exploited as cache hits. In general, this would require
an additional safe data interference/interleaving analysis on
top of our safe data reuse information, i.e., a persistence
analysis [14], although it should be straightforward:

• Memory instructions tagged as ‘‘not reusing’’ (scalar
and non-linear) should be accounted as unknown
(misses, if no timing anomalies are considered) in the
worst case.

• Loads/stores classified as ‘‘group-temporal’’ reuse
(scalar, array, and non-linear) would always hit,
unless the accessed content is evicted between reusing
accesses. Although such analysis is beyond the scope
of this article, it could be addressed by comparing the
the minimal life-span [23] of the target data cache to the
number of loads/stores between two data accesses with
reuse.

• Scalar accesses classified as ‘‘self-temporal’’ should
generate an unknown (miss, without timing anomalies)
for its first access in the loop, and hits for all other
accesses in the loop (assuming it is not evicted between
accesses).

• Array accesses classified as ‘‘short self-spatial’’ reuse
(e.g., a large array traversal accessing 8 elements per
cache line, sequentially) should generate a significant
hit ratio, depending on the element size, cache line
size, stride, and base address, again verifying that the
accessed content is not evicted between accesses.

• Array accesses classified as ‘‘long self-spatial’’ reuse
(e.g., an array of large structs where a single small field
per struct is accessed) should be considered as unknown
(always miss, if no timing anomalies are considered) in
the worst case (unless the cache is able to hold the whole
data structure, which would generate a hit ratio similar
to accesses classified as ‘‘short self-spatial’’ reuse).

In order to provide some insight into the application
of our proposal, we perform a simple rough estimation
on the execution time devoted to data accesses. For each
binary, we assume that all load/store instructions are exe-
cuted, each one weighted by the maximum number of times

VOLUME 8, 2020 192387



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

FIGURE 9. Percentage of reuse types found in each binary. Each load/store operation in the binary is weighted by its maximum possible number of
executions.

derived from the loop bounds. We count as misses those
accesses from instructions classified as ‘‘not reusing’’ and
‘‘long self-spatial’’ reuse, and as hits those accesses from
instructions classified as ‘‘group-temporal’’. We consider the

‘‘self-temporal (scalar)’’ reuse cases as one first miss, and
hits for the rest of the accesses in the loop. For the ‘‘short
self-spatial’’ reuse (array sequential accesses), we assume
a cache line able to hold 8 elements, resulting in one miss

192388 VOLUME 8, 2020



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

FIGURE 10. Rough estimation of worst case execution time devoted to data memory accesses in respect of an always-miss O0 binary.

out of 8 accesses. This would be equivalent to accessing
elements of type doublewith cache lines of 64 B (typical Intel
and ARM L1 caches). All these assumptions are reasonable
(in general more pessimistic than optimistic) for a general
application running on a system with just a small L1 data
cache.

Assuming the estimation of hits and misses described
above, Figure 10 shows the time devoted to data accesses
in the worst case, in respect of the always miss case for the
O0 binary. We consider a hit cost of a single cycle, and a miss
cost of 10 cycles. Higher values would improve the benefits of
a good reuse detection. Execution time of instructions is not
accounted. Hence, bars tagged as O0 show the execution time
reduction due to the estimated hits, and the remaining bars
also consider the reduction of the number of data accesses
due to optimizations. For each column, the mark × shows
the (unreachable) always-hit bound. With previous hit/miss
costs, for O0 the always-hit bound is 10% of the always-miss
by construction.

As it can be seen, the resulting times in Figure 10 represent
a very low percentage. Focusing on the results without opti-
mizations (O0 columns), worst-case times represent 27% in
average in respect of the always miss case. Considering the
previous hit/miss times, this corresponds to a data hit ratio
of 81%, with misses generally associated to non-linear data
accesses. Both deg2rad and rad2deg are exceptions, since
they present a data hit ratio of 99.7%. With optimizations
(columns 1, 2, 3) the time required for data accesses drops

to 6.5% in average. By optimizing the code, unnecessary data
memory accesses are removed, so in general there are far less
accesses, as already seen in Table 1. Also, the percentage of
accesses classified as non-linear is usually lower with opti-
mizations, since both data memory addressing and address
computations are simplified in the process.

D. ANALYSIS TIME
In this sectionwe study the analysis time required to apply our
method, both with polyhedra and octagon domains. It must
be taken into account that our analysis has been implemented
as a proof of concept, and currently it is not optimized. We
use apron [16] as our Abstract Interpretation engine, which is
reported to be slower than others [26]. Also, angr [25] runs on
python, an interpreted language that is usually much slower
than standard compiled codes.

Values in all previous figures and tables use the poly-
hedra domain for the Abstract Interpretation analysis. The
polyhedra domain is expressively richer than octagons (rela-
tions such as xi − xj ≥ k). So, octagons should gener-
ate less precise results (e.g., more non-linear cases), and
more data cache misses should be expected in the worst
case. However, after performing the equivalent analysis with
octagons, the obtained results (not shown) have been iden-
tical or with inappreciable differences. Hence, for the tested
benchmarks, octagons suffice for our methodology.

Figure 11 shows the analysis times using polyhedra (polka
equalities mode, as in Table 1), and also using the apron

VOLUME 8, 2020 192389



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

FIGURE 11. Analysis time, with horizontal lines representing 1 minute, 1 hour, and 1 day. Octagon experiments taking more than 1 day are not shown.

octagon domain. Since polyhedra are more complex than
octagons, polyhedra should require more computation time,
but it is not so for our analysis. The analysis time ratio
between octagons and polyhedra has a median over 5. Focus-
ing on polyhedra, O0 and O3 present similar analysis times,
whereas O1 and O2 require half the analysis time than O0 and
O3, in median. Although performance of numeric analysis
is out of our scope, possibly our analysis takes profit of
the sparse representation in the polyhedra library. On the
other hand, apron octagons use a dense representation, which
would be inefficient for our analysis.

VI. CONCLUSION
In this article, we propose a general method to extract safe
data access patterns for the load/store instructions in a pro-
gram, and detect reuse between their accesses. Since data
reuse is a property of the program, such information is inde-
pendent from the data cache of the target system (LRU,
locked, ACDC, etc.). Depending on the specific data cache,
such reuse may or may not be exploited as cache hits. Thus,
our safe reuse information can be used as the basis for the
WCET analysis of systems with any data cache. Our proposal
analyzes binary code, does not require the exploration of
explicit data access sequences, provides both temporal and
spatial reuse information, manages references to unknown
addresses, and is completely automatic. It uses Abstract Inter-
pretation, tracking the operations carried on the registers and
memory. Such operations are transformed into relations and

data access pattern functions for the corresponding load/store
instructions, and then a reuse analysis is performed.

As a demonstrator, we have implemented our pro-
posal (available at https://webdiis.unizar.es/gaz/repositories/
polygaz using angr and apron. Apart from validating our
reuse detection method, we characterize the data accesses of
TACLeBench benchmarks for different optimization levels.
Further, we calculate a simple estimation on the worst-case
time devoted to data accesses for these benchmarks. Without
optimizations, our results show that the time devoted to data
accesses in the worst case is reduced to 27% compared to an
always-miss system. That is, our proposal guarantees a data
hit ratio of 81% in the worst case. With optimizations, such
time is reduced to 6.5%.

ACKNOWLEDGMENT
The use, investigation or development, in a direct or indirect
way, of any of the scientific contributions of the authors
contained in this work by any army or armed group in the
world, for military purposes and for any other use which is
against human rights or the environment, is strictly prohibited
unless written consent is obtained from all the authors of this
work, or all the people in the world.

REFERENCES
[1] V. A. Aho, S. M. Lam, R. Sethi, and D. J. Ullman, ‘‘Compilers: Principles,

techniques, and tools,’’ in Addison-Wesley Series in Computer Science /
World Student Series Edition. Reading, MA, USA: Addison-Wesley, 2007.

192390 VOLUME 8, 2020



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

[2] L. C. Aparicio, J. Segarra, C. Rodriguez, J. L. Villarroel, and V. Vinals,
‘‘Avoiding the WCET overestimation on LRU instruction cache,’’ in Proc.
14th IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2008,
pp. 393–398.

[3] L. C. Aparicio, J. Segarra, C. Rodríguez, and V. Viñals, ‘‘Improving the
WCET computation in the presence of a lockable instruction cache in mul-
titasking real-time systems,’’ J. Syst. Archit., vol. 57, no. 7, pp. 695–706,
Aug. 2011.

[4] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, ‘‘OTAWA: An
open toolbox for adaptive WCET analysis,’’ in Software Technologies for
Embedded and Ubiquitous Systems (Lecture Notes in Computer Science),
vol. 6399, S. L. Min, R. G. Pettit IV, P. P. Puschner, T. Ungerer, Eds.
Waidhofen/Ybbs, Austria: Springer, Oct. 2010, pp. 35–46.

[5] M. E. Benitez and J. W. Davidson, ‘‘A portable global optimizer and
linker,’’ in Proc. ACM SIGPLAN Conf. Program. Lang. design Implement.
- PLDI, Jun. 1988, pp. 329–338.

[6] A. Bonenfant, M. D. Michiel, and P. Sainrat, ‘‘oRange: A tool for static
loop bound analysis,’’ in Proc. Workshop Resource Anal., 2008, p. 35–468.

[7] P. Cousot and R. Cousot, ‘‘Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points,’’ in Proc. 4th ACM SIGACT-SIGPLAN Symp. Princ. Program.
Lang. POPL, 1977, pp. 238–252.

[8] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sorensen, P. Wägemann, and S. Wegener,
‘‘Taclebench: A benchmark collection to support worst-case execution
time research,’’ in Proc. 16th Int. Workshop Worst-Case Execution Time
Anal., WCET, vol. 55, M. Schoeberl, Ed. Toulouse, France: OASICS,
Jul. 2016, pp. 2:1–2:10.

[9] C. Ferdinand andR. Heckmann, ‘‘Ait:Worst case execution time prediction
by static program analysis,’’ in Building the Information Society (IFIP
International Federation for Information Processing), vol. 156, R. Jacquart,
Ed. Toulouse, France: Springer, Aug. 2004, pp. 377–383.

[10] C. Ferdinand and R. Wilhelm, ‘‘Efficient and precise cache behavior
prediction for real-time systems,’’ Real-Time Syst., vol. 17, nos. 2–3,
pp. 131–181, 1999.

[11] S. Ghosh, M.Martonosi, and S. Malik, ‘‘Cache miss equations: A compiler
framework for analyzing and tuning memory behavior,’’ ACM Trans.
Program. Lang. Syst., vol. 21, no. 4, pp. 703–746, Jul. 1999.

[12] S. Hahn and D. Grund, ‘‘Relational cache analysis for static timing
analysis,’’ in Proc. 24th Euromicro Conf. Real-Time Syst., Jul. 2012,
pp. 102–111.

[13] D. Hardy, B. Rouxel, and I. Puaut, ‘‘The heptane static worst-case exe-
cution time estimation tool,’’ in Proc. 17th Int. Workshop Worst-Case
Execution Time Anal., WCET, vol. 57, J. Reineke, Ed. Dubrovnik, Croatia:
OASICS, Jun. 2017, pp. 8:1–8:12.

[14] B. K. Huynh, L. Ju, and A. Roychoudhury, ‘‘Scope-aware data cache
analysis for WCET estimation,’’ in Proc. 17th IEEE Real-Time Embedded
Technol. Appl. Symp., RTAS, Chicago, IL, USA, Apr. 2011, pp. 203–212.

[15] J.-L. Imbert, ‘‘Fourier’s elimination: Which to choose,’’ in Proc. Int. Conf.
Princ. Pract. Constraint Program., 1993, pp. 117–129.

[16] B. Jeannet and A. Miné, ‘‘Apron: A library of numerical abstract domains
for static analysis,’’ in Computer Aided Verification (Lecture Notes in
Computer Science), vol. 5643, A. B. O. Maler, Ed., Grenoble, France:
Springer, Jun. 2009, pp. 661–667.

[17] N. P. Jouppi, ‘‘Cache write policies and performance,’’ in Proc. 20th Annu.
Int. Symp. Comput. Archit., May 1993, pp. 191–201.

[18] H. Li, I. Puaut, and E. Rohou, ‘‘Traceability of flow information: Recon-
ciling compiler optimizations and WCET estimation,’’ in Proc. 22nd Int.
Conf. Real-Time Netw. Syst. - RTNS, 2014, p. 97.

[19] Y.-T.-S. Li, S. Malik, and A. Wolfe, ‘‘Cache modeling for real-time soft-
ware: Beyond direct mapped instruction caches,’’ in Proc. 17th IEEE Real-
Time Syst. Symp., Dec. 1996, pp. 254–263.

[20] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, ‘‘A survey on static
cache analysis for real-time systems,’’ Leibniz Trans. Embedded Syst.,
vol. 3, no. 1, pp. 05:1–05:48, 2016.

[21] T. Mitra, ‘‘Time-predictable computing by design: Looking back, looking
forward,’’ in Proc. 56th Annu. Design Autom. Conf., Jun. 2019, p. 153.

[22] A. Pedro-Zapater, J. Segarra, R. G. Tejero, V. Viñals, and C. Rodríguez,
‘‘Reducing the WCET and analysis time of systems with simple lockable
instruction caches,’’ PLoS ONE, vol. 15, no. 3, pp. 1–21, Mar. 2020.

[23] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, ‘‘Timing predictability of
cache replacement policies,’’ Real-Time Syst., vol. 37, no. 2, pp. 99–122,
Sep. 2007.

[24] J. Segarra, C. Rodríguez, R. Gran, C. L. Aparicio, and V. V. Nals, ‘‘ACDC:
Small, predictable and high-performance data cache,’’ACMTrans. Embed-
ded Comput. Syst., vol. 14, no. 2, pp. 38:1–38:26, 2015.

[25] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, ‘‘SOK: (State
of) the art of war: Offensive techniques in binary analysis,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2016, pp. 138–157.

[26] G. Singh, M. Püschel, and T.M. Vechev, ‘‘Fast numerical program analysis
with reinforcement learning,’’ in Computer Aided Verification (Lecture
Notes in Computer Science), vol. 10981, H. C. G. Weissenbacher, Ed.
Oxford, U.K.: Springer, Jul. 2018, pp. 211–229.

[27] T. Sondag and H. Rajan, ‘‘A more precise abstract domain for multi-level
caches for tighter WCET analysis,’’ in Proc. 31st IEEE Real-Time Syst.
Symp., Nov. 2010, pp. 395–404.

[28] G. Stock, S. Hahn, and J. Reineke, ‘‘Cache persistence analysis: Finally
exact,’’ in Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2019,
pp. 481–494.

[29] X. Vera, B. Lisper, and J. Xue, ‘‘Data caches in multitasking hard real-time
systems,’’ in Proc. Int. Symp. Syst. Chip, Dec. 2003, pp. 154–165.

[30] Q. Wan, H. Wu, and J. Xue, ‘‘Wcet-aware data selection and allocation for
scratchpad memory,’’ in Proc. SIGPLAN/SIGBED Conf. Lang., Compil.
Tools Embedded Syst., R.Wilhelm, H. Falk, andW.Yi, Eds. Beijing, China:
ACM, Jun. 2012, pp. 41–50.

[31] T. Randall White, F. Mueller, A. Christopher Healy, B. David Whalley,
and G. Marion Harmon, ‘‘Timing analysis for data and wrap-around fill
caches,’’ Real-Time Syst., vol. 17, nos. 2–3, pp. 209–233, 1999.

[32] J. Whitham and N. Audsley, ‘‘Studying the applicability of the scratchpad
memory management unit,’’ in Proc. 16th IEEE Real-Time Embedded
Technol. Appl. Symp., Apr. 2010, pp. 205–214.

[33] M. E.Wolf andM. S. Lam, ‘‘A data locality optimizing algorithm,’’ inProc.
ACM SIGPLAN Conf. Program. Lang. Design Implement. PLDI, 1991,
pp. 30–44.

[34] W. Zheng andH.Wu, ‘‘WCET-aware dynamic D-cache locking for a single
task,’’ in Proc. 16th ACM SIGPLAN/SIGBED Conf. Lang., Compil. Tools
Embedded Syst. CD-ROM - LCTES, 2015, pp. 8:1–8:10.

JUAN SEGARRA received the degree in computer
science and the Ph.D. degree from Universitat
Jaume I, Spain, in 2003. In 2003, he joined theUni-
versity of Zaragoza, where he is currently work-
ing with the Informática e Ingeniería de Sistemas
Department. He ismember of the Computer Archi-
tecture Group (gaZ), University of Zaragoza. His
research interests include worst-case execution
time and worst-case memory performance in hard
real-time systems.

JORDI CORTADELLA (Fellow, IEEE) received
the Ph.D. degree in CS from the Universi-
tat Politècnica de Catalunya, Barcelona, Spain,
in 1987. He is currently a Professor with
the Computer Science Department, Univer-
sitat Politècnica de Catalunya. His current
research interests include formal methods and
computer-aided design of VLSI systems with a
special emphasis on asynchronous circuits, con-
current systems, and logic synthesis. He is a mem-

ber of the Academia Europaea. He received Best Paper Awards at ASYNC
2004 and 2016, DAC 2004, ACSD 2009, and FPGA 2020. He has served on
the technical committees of several international conferences in the field of
design automation and concurrent systems. He is an Associate Editor of the
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND

SYSTEMS.

VOLUME 8, 2020 192391



J. Segarra et al.: Automatic Safe Data Reuse Detection for the WCET Analysis of Systems With Data Caches

RUBÉN GRAN TEJERO received the degree in
computer science from the University of Zaragoza,
Spain, and the Ph.D. degree from the Universitat
Politècnica de Catalunya (UPC), in 2010. Since
2010, he has been working with the Informática
e Ingeniería de Sistemas Department, University
of Zaragoza. He is a member of the Computer
Architecture Group (gaZ), University of Zaragoza.
His research interests include worst-case in
hard real-time systems, microarchitecture, and
optimizing compilers for GPGPU’s.

VÍCTOR VIÑALS-YÚFERA (Member, IEEE)
received the M.S. degree in telecommunication
and the Ph.D. degree in computer science from
the Universitat Politècnica de Catalunya (UPC),
in 1982 and 1987, respectively. He was an Asso-
ciate Professor with the Facultat d’Informàtica
de Barcelona, UPC, from 1983 to 1988. He is
currently a Full Professor with the Informática e
Ingeniería de Sistemas Department, University of
Zaragoza, Zaragoza, Spain. His research interests

include processor microarchitecture, memory hierarchy, and parallel com-
puter architecture. He also belongs to the Juslibol Midday Runners Team and
the Computer Architecture Group, University of Zaragoza. He is a member
of ACM and the IEEE Computer Society.

192392 VOLUME 8, 2020


