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Abstract 

For colonic stents design, the interaction with colonic tissue is essential in order to 

characterize the appropriate radial stiffness which provides a minimum lumen for 

intestinal transit to be maintained. It is therefore important to develop suitable 

constitutive models allowing the mechanical behavior of the colon tissue to be 

characterized. 

The present work investigates the biomechanical behavior of colonic tissue by means 

of biaxial tests carried out on different parts of the colonic tract taken from several 

porcine specimens. Samples from the colonic tract were quasi-statically tensioned 

using a load-controlled protocol with different tension ratios between the 

circumferential and the axial directions. Fitting techniques were then used to adjust 

specific hyperelastic models accounting for the multilayered conformation of the 

colonic wall and the fiber-reinforced configuration of the corresponding tissues. 

It was found that the porcine colon changed from a more isotropic to a more 

anisotropic tissue and became progressively more flexible and compliant in 

circumferential direction depending on the position along the duct as it approaches 

the rectum. The best predictive capability of mechanical behavior corresponds to the 

Four Fiber Family (FFF) model showing mean values of coefficient of determination 

�� = 0.97, and a normalized root mean square error of �	
�� = 0.0814 for proximal 

spiral samples, and  �� = 0.89	, �	
�� = 0.1600 and �� = 0.94	, �	
�� = 0.1227 for 

distal spiral and descending colon samples, respectively. The other analyzed models 

provide good results for proximal spiral colon specimens, which have a lower degree of 

anisotropy.  

The analyzed models with the fitted elastic parameters can be used for more realistic 

and reliable FE simulations, providing the appropriate framework for the design of 

optimal devices for the treatment of colonic diseases. 
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1. Introduction 

Many pathologies of the digestive system occur in the colon. Diseases such as 

diverticulosis, inflammatory bowel syndrome and cancer are the most common [1, 2]. 

A high percentage of them cause varying degrees of obstruction in the colon, which is 

treated using self-expanding stents. Unfortunately, no long-term minimally invasive 

solutions are currently available for treatment of these pathologies.  

To reproduce realistic biomechanical behavior in computational simulations of 

digestive surgery procedures and to design safe and effective therapeutic devices (i.e., 

rectal catheters and colonic stents), it is important to develop suitable constitutive 

models allowing the mechanical behavior (stress-strain relation) of the colon tissue to 

be characterized. Such models would enable a more accurate analysis of the 

propulsion of stools along the colon during digestion, of the risk of perforation during 

occlusions, and of the interaction phenomena between biological tissues and 

biomedical devices. 

 

Traditionally, porcine tissue has been used for the modeling of various human tissues 

in medicine due to their size, physiological and functional similarities, as well as the 

ease of procurement. In the scientific literature, it is usually accepted that human and 

pig colon morphology and dimensions appear similar [3]. However, the human colon is 

shorter (measuring up to about 1.5 meters as against 4.5 meters in pigs) and has five 

main regions: Cecum, ascending colon, transverse colon, descending colon, and 

sigmoid colon. The pig colon has three regions: Cecum, spiral colon (proximal), and 

descending colon (distal). Despite these differences, the potential similarities and the 

existence of available biomechanical data make porcine tissue a potentially ideal 

model for obtaining valuable information for characterizing the biomechanical 

behavior of colorectal tissue. 

 

It is well known that the reliability of biomechanical simulation models depends on the 

appropriate material behavior characterization, especially in the case of soft tissues. 

For colonic stents design, the interaction with colonic tissue is essential in order to 

characterize the appropriate radial stiffness which allows a suitable lumen for 

intestinal transit to be maintained [4, 5].  
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There are not many publications in the specialized literature that provide experimental 

test data relating to colonic tissues, and even fewer studies of constitutive models that 

reproduce the tissue behavior in order to obtain more reliable results in numerical 

simulations. 

 

Among the published works, a few reports can be found of tensile tests performed on 

human colon tissue. Ergov et al. (2002) [6] and more recently Massalou et al. (2016) [7] 

present different results corresponding to uniaxial dynamic tensile tests.  However, 

there are several reports of biomechanical characterization of colon tissue from 

common laboratory animals using different mechanical tests and constitutive models: 

tests of compression in goat colon [8], tensile tests and a constitutive model for  pig 

colon tissue [9-11], extension-inflation tests and a constitutive model for pig colon 

tissue [12] and tensile tests and biomechanical characterization of rat colon [13, 14]. 

Finally, in Carniel et al. (2014) [15] a physio-mechanical model by means of an inflation 

test is proposed. Uniaxial tensile tests do not provide enough information in order to 

appropriately characterize the mechanical behavior of colonic tissue. More complex 

tests are recommended, as for example biaxial tests [16, 17] or inflation tests, because 

they subject the sample to a stress state closer to the actual physiological conditions. 

 

To the best of our knowledge, there are no works concerning biaxial testing of porcine 

colonic tissue in the specialized literature. A biaxial test study has recently been 

published  but this refers to mouse colorectal specimens [18].  The present study 

concerning biaxial tests for samples obtained from different locations of the porcine 

colon may therefore be considered a highly original contribution.  

 

Despite the above-mentioned works, there is no general consensus about the most 

appropriate model for colorectal tissue modeling in numerical simulations, due to the 

inherent complexity involved. In this context, the objective of the present work is to 

investigate the biomechanical behavior of colonic tissue by means of biaxial tests 

carried out in different parts of the colonic tract taken from several porcine specimens, 

taking into account the morphologic similarities with the human colon. Fitting 
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techniques are then used to adjust specific hyperelastic models accounting for the 

multilayered conformation of the colonic wall and the fiber-reinforced configuration of 

the corresponding tissues. 

 
2. Materials and Methods 

2.1. Colon physiology 

The colon has an almost cylindrical shape with a lumen of variable diameter 

surrounded by a wall composed of four main layers (from the lumen outwards):  the 

mucosa, submucosa, muscularis externa, and serosa. The mucosa membrane, the 

inner lining of the colonic tract, is made up of epithelial lining, a lamina propria of 

loose connective tissue and a muscularis mucosa. The submucosa is a layer of dense 

irregular connective tissue with large blood vessels and lymphatic vessels. Its main 

mechanical components are collagen fibers arranged in a criss-cross pattern [19, 20]. 

The muscularis externa is composed of two muscular layers, an internal layer whose 

fibers are arranged in a circumferential direction, and an external layer with fibers in a 

longitudinal direction (Fig. 1). Both are responsible for segmentation and peristalsis 

motions (the mechanical processing and movement of materials along the digestive 

tract). The Serosa is a layer of squamous epithelium covering the muscularis externa 

with a dense sheath of collagen fibers that firmly attaches the colonic tract to adjacent 

structures called the adventitia. 

 

Fig. 1. Schematic representation of physiological structure of the colon: (a) configuration by layers of the 

colonic duct; (b) schematic diagram of collagen fibers arrangement and their correlation with the 

different layers. 
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Thus, colonic tissue is a composite biological structure producing a complex 

mechanical response involving non-linear, anisotropic and time-dependence behavior. 

As explained above, the colon is composed of several tissue layers. Within each layer, 

different fiber families are distributed according to specific spatial orientations, which 

lead to a strongly anisotropic configuration. 

 

2.2. Experimental tests 

The experimental tests were performed on tissue specimens taken from pig colon, 

given the similarity between pig and human tissue mechanics reported in some 

studies. The sacculated shape of the spiral colon due to the taeniae is very similar to 

that observed in humans, and the wall of the descending colon appears smooth due to 

less pronounced taeniae in that region.  The most usual colonic stent insertion sites are 

in the zone of the descending and sigmoid colon. Therefore, the present study is 

focused on the analogous parts of the porcine large intestine. Due to the great length 

of the spiral colon, it is divided into two zones to detect possible behavior variations 

along the duct. These are defined as the proximal and distal spiral, followed by 

descending colon. 

The whole large intestine of five female porcine subjects (aged 5–6 months and a 

weight of 95-105 kg) were sectioned and removed postmortem. Immediately, the 

luminal content was drained and carefully flushed with a 0.9% NaCl physiological saline 

solution (PSS). Porcine bowel tissues were kept frozen at − 80°C until testing. Once 

defrosted, samples were preserved in ion-free PSS (0.9% NaCl) at 4°C until 

preparation for mechanical testing. Specimens from the spiral colon (both proximal 

and distal) and descending colon were tested to investigate the potential regional 

variability of the mechanical behavior. A total of 56 biaxial tests were performed at 

different locations of the large intestine: 18 in the proximal spiral colon area (PS), 25 in 

the distal spiral colon area (DS), and 13 in the descending colon area (DC). Some 

problems appeared during testing (sliding at fixations, tissue tear, premature rupture) 

and many samples were discarded. Finally, 4/5 valid samples for each of the studied 

areas were selected for processing. 
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Tests were carried out in a high precision drive system adapted for biological 

specimens, an Instron BioPuls™ low-force planar-biaxial testing system (Fig. 2a), 

immersed in a bath filled with PSS and maintained at 37 °C by a circulation heater. 

Square specimens were mounted in the planar-biaxial machine by connecting five 

arms to each gag axis with clamp needles. The gag arms mechanism allows free 

displacements at the perpendicular direction to the arm. Needles attaching the 

specimen were located as close as possible to the edges to minimize the edge effects 

on strain measurements (Fig. 2b). 
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Fig. 2. Testing mounting, instrumentation and protocol: (a) Instron BioPuls™ biaxial tensile testing 

device; (b) specimen fixations system; (c) Testing loading history. Representation of biaxial tests 

protocol performed on experimental samples. Evolution of the 1st Piola-Kirchhoff (engineering) stress 

for each axis (��: ��). 
 

For the biaxial tensile tests, square specimens of approximately 30x30 mm were cut 

from the spiral colon in the proximal and distal zones and from the descending colon 

using a punch cutter and a scalpel. The specimens were prepared with their sides 
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aligned in the circumferential and axial directions of the colonic duct (Fig. 1b). A caliper 

gauge and a Mitutoyo Digimatic micrometer were used to measure the length, width 

and thickness of the samples, and taking the mean value of 3 measures of them.  

The samples were quasi-statically tensioned using a load-controlled protocol with 

different tension ratios between the circumferential and the axial direction (Pθ:Pz) 

corresponding to values of 1:1, 0.75:1, 0.5:1, 0:1, 1:0.75, 1:0.5, 1:0, respectively (Fig. 

2c). Tests were carried out at stress rates of approximately 2kPa/s [21]. A maximum 

engineering stress (First Piola Kirchhoff stress tensor P) of 60 kPa was reached in every 

cyclic test (i.e. 1:1 corresponds to 60:60 KPa).  

The test protocol considers 5 loading cycles for each stress ratio: every specimen was 

preconditioned through five loading–unloading cycles (Figs. 3a, 5a and 7a), and the last 

cycle (fifth, Figs. 3b, 5b and 7b) was used for further analysis [22]. A randomized points 

cloud of black markers was attached on the surface of the specimen for deformation 

measurements with the video-extensometer [23, 24] using a Digital Image Correlation 

(DIC) Strain Master LaVision System equipped with two high performance digital 

cameras with a megapixel sensor (2.5 [μm] ± 0.5%).  

 

2.3. Constitutive models 

The mechanical response of colonic tissue subject to loading, like many other soft 

biological tissues, exhibits strong nonlinearity, large strains and anisotropic elastic 

behavior due to the presence of preferred directions in its microstructure and 

reorientation of the fiber directions with deformation. The simulation of these 

nonlinear effects requires constitutive models formulated within the framework of 

anisotropic hyperelasticity by defining strain energy functions (SEF).  

 

In order to select the most suitable constitutive model (to reproduce and predict the 

mechanical response of the colon) which could be used in computational simulations, 

five SEFs were considered. 

 

2.3.1. Holzapfel-Gasser-Ogden (HGO) model 

This model corresponds to a hyperelastic anisotropic behavior proposed by Holzapfel 

et al. [25] for stress-strain description. The model is characterized by an isotropic 



10 

 

matrix of neo-Hookean form and the anisotropic contribution of two collagen fiber 

layers reinforcing the colon wall.  

 

The model assumes that both families of fibers are symmetrical and mechanically 

equivalent (they have the same mechanical response). The anisotropy directions 

adopted describe a helical shape oriented at ±θ degrees relative to the circumferential 

direction. This model uses an exponential function for describing the SEF in the 

collagen fibers: 

 

� = ���� − 3� +  ! "�2"� #$%�&'(��% − 1)*+,,-
 (1) 

 

where  �� is the first invariant of the right Cauchy-Green deformation tensor . 
(�� = /0	. = 1�� + 1��). The anisotropic invariants: �, = . ∶ 345 and  �- = . ∶ 346 are 

related to two families of fibers in each layer, where 37* = 87* 	⨂	87*  are structural 

tensors referring to an individual family of fibers. Using the direction vectors 

87� = �cos =, 	sin =, 0�@ and 87� = �cos =,−sin =, 0�@ specifying the orientation of 

the fibers, where = represents the angle between each fiber family with respect to the 

circumferential direction in the undeformed configuration. So, the anisotropic 

invariants are: 

 

                                        �, = 1�� cos��=� + 1�� sin��=�	                                 (2) 

                                        �- = 1�� cos��−=� + 1�� sin��−=�	                                          (3) 

 

Finally, µ >0 is a stress-like material constant describing the isotropic matrix response, 

"� > 0 is a stress-like constant defining the layer stiffness of collagen fibers, and 

"� > 0 is a dimensionless material parameter related to the progressivity of fiber 

stiffening behavior during deformation. 

 

It is assumed that the strain energy corresponding to the anisotropic terms only 

contributes to the global mechanical response of the tissue when stretched (invariants 
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�, > 1  and �- > 1). Therefore, a total of 4 elastic parameters	�	�, "�, 	"�, =) should be 

fitted to define the stress-strain behavior. 

 

 

2.3.2. Gasser-Ogden-Holzapfel (GOH) model 

This model proposed by Gasser et al. [26] is based on the previous HGO model [25] 

introducing generalized structural tensors of an individual family of fibers BC=D ∙ 1+�1 − 3D�37*; where 1 is the identity tensor and 37* = 87* 	⨂	87*  is a structural 

tensor defined using unit vectors 87� = �cos =, 	sin =, 0		�@ , and  87� =�cos =, −sin =, 0		�@ specifying the mean orientation of fibers. The SEF is defined as: 

 

� = ���� − 3� +  ! "�2"� #$%�FGH �% − 1)*+,,-
 (4) 

 

where the parameter IJH =D�� + �1 − 3D��* − 1	; 	L = 4, 6 is introduced, representing 

the average strain measure of fibers for the layer L , and D	 ∈ N0, 1/3P is a parameter 

describing the dispersion of each fiber family orientation around its = direction and is 

defined through D = �,Q R sinS =	T=;U7  D = 0 describes the total alignment of all 

collagen fibers in = direction, and D = 1/3 corresponds to the maximum dispersion 

with random/isotropic fiber distribution [27]. This constitutive model therefore 

requires a total of 5 elastic parameters 	��, "�, "�, D, =) that should be fitted. 

 

2.3.3. Four-Fiber-Family model (FFF) 

The third constitutive model, called Four Fiber Family (FFF), is a hyperelastic 

anisotropic model proposed by Baek et al. [28] and Ferruzzi et al. [29] for the stress-

strain description of aortas and aneurysms. It is a variation of the HGO model, in which 

two more fiber families are added in longitudinal and circumferential orientations 

respectively. This model therefore presents a total of four families of fibers; one axial, 

one circumferential and two symmetrical in diagonal directions. Its SEF adopts the 

following expression: 

 



12 

 

� = ���� − 3� +  ! "�*2"�* #$%'�&V'(��% − 1)*+�,,
 (5) 

 

where  �� is the first invariant of the right Cauchy-Green deformation tensor ., and the 

invariants �,* = . ∶ 34C are related to four families of fibers; 37* = 87* 	⨂	87*  are 

structural tensors referring to the four individual families of fibers �L = 1	to	4�, and 

	87*  are unit vectors defining the orientation of individual fiber families (Fig.1b.); L = 1 
corresponds to axis 2 (axial) 87� = �0, 1, 0�@, L = 2 corresponds to axis 1 

(circumferential)  87� = �1, 0, 0�@, L = 3 (diagonal direction +=) 87S = �cos =, 	sin =,0		�@, and L = 4 (diagonal direction −=)  87, = �cos =,−sin =, 0		�@. So: �,� = 1��	, 
�,� = 1�� , �,S = 1�� cos��=� + 1�� sin��=�	, and �,, = 1�� cos��−=� + 1�� sin��−=�	. 
 

Finally, µ >0 is a stress-like material constant describing the isotropic matrix response, 

"�* > 0 is a stress-like constant defining the stiffness of each layer  of the collagen 

fibers, and "�* > 0 represents dimensionless parameters referring to collagen-based 

stiffening during deformation. It is assumed that diagonal family fibers with an 

orientation angle = (measured from axis 1 circumferential) are mechanically equivalent 

[29], thus "�S = "�, and "�S = "�,. Thus, a total of 8 material 

parameters	�	�, "��, "��, "��, "��,	"�S, "�S, =) should be fitted. 

 

2.3.4. Microstructural models (MFM and MFB) 

Finally, the last constitutive models correspond to microstructural models initially 

proposed by Lanir [30], assuming the total response of fibers as a sum of responses 

from all the fibers (in all directions) distributed in the three-dimensional (3D) Euclidean 

space. The distribution of fibers is described by an appropriate probabilistic 

distribution function also called orientation density function (ODF), so that the 

directional arrangement of fibers and directional dependence of other material 

parameters can be taken into account. The model is characterized by an isotropic 

matrix (analogous to the models described above) and by reinforcing collagen fibers 

with orientation defined through the appropriate ODF [31, 32].  
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The microfiber model takes into account the dispersion of the collagen fibers around a 

preferential direction, overcoming the 1D limitation of previous characterizations of 

the collagen fiber [33]. The SEF function is defined by the addition of two terms, 

corresponding to the contribution of the ground isotropic matrix and collagen fibers. It 

is written as: 

 

                                                           � = ���� − 3� + �X           (6) 

 

where �X refers to the collagen fiber contribution, and is defined as the sum of the 

contributions of each collagen family of fibrils, so that: 

 

�X = Y�XZ[
	
[+�

= 〈]R^X〉[
	
[+�

= 14`a b]RN^XPc[Tde%
	
[+�

 (7) 

 

where the average of the n contributions is denoted by the notation 〈⋅〉, g corresponds 

to the number of families of collagen fibers, according to experimental results, N=2. 

The integration of the fiber stress over a unit sphere e� can be written in a discretized 

way as: 

 

Y�XZ[ = h*]Rbi*; 1X	*c
j
*+�

^X	*  (8) 

 

which represents the contribution of the fibers, where i* expresses the unit vectors 

associated with the discretization on the micro-sphere, m is the number of discrete 

orientation vectors [34], 1X	* = ‖l ∙ i*‖ the stretch in the i* direction and ^X	*�1X	*� 
the strain energy function associated to the corresponding i* direction. Including Eq. 

(8) in Eq. (7) one can get: 

�X =  bh*]RN^X	*Pc[
j
*+�

	
[+�

 (9) 
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where h* denotes related weighting factors associated with the integration, and ρ is 

the orientation density function (ODF) to take into account the fiber dispersion [34]. 

 

An exponential strain energy function like that proposed in Holzapfel et al. (2000) [25] 

was used to model the fiber response 

 

                    ^X	*b1X	*c = m 0 Ln			1X	* < 1	pq�p% rexp	 vw�Y1X	*� − 1Z�x−1	y Ln			1X	* ≥ 1                        (10) 

 

where w� is a stress-valued constant, w� is a dimensionless parameter, and 1X	* the 

stretch in the fiber direction of i*. 
 

To evaluate the fiber distribution, two different approaches have been adopted to 

define the ODF, which are known as Microfiber von Mises model (MFM) and 

Microfiber Bingham Model (MFB). 

 

2.3.4.1 Microfiber Von Mises Model (MFM)  

In this case, a bi-`-periodic von Mises ODF is adopted for the incorporation of 

anisotropy in the microsphere-based model previously described [34]. So, the 

orientation density  function R is expressed as the sum of two transversely isotropic 

and `-periodic von Mises functions R*  and takes the form: 

 

                                                       R�θ� = R��θ� + R��θ�                                                      (11) 

with  

R*�θ� = 4| }2` exp�}Ncos�2=� + 1P�erfib√2}c  (12) 

                                                                                                                         

where = = arccos�mmmm ∙ �� is the mismatch angle with respect to the reference mean 

orientation of the collagen fiber distribution mmmm , and the concentration parameter 

}	N0,∞P describes the degree of anisotropy if b=0 represents the maximum fiber 

dispersion (isotropic fiber distribution). Finally, erfi��� = −L erf��� denotes the 
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imaginary error function. A total of 5 material parameters	�	�, w�, w�, }, =) should be 

fitted. 

 

2.3.4.2 Microfiber Bingham (MFB)  

The Bingham ODF  [35] was initially proposed by Alastrué et al. [33] in the formulation 

of a microsphere-based constitutive model introducing the anisotropy induced by 

fibers and its application to the modelling of arterial tissue. The dispersion of the 

collagen fibers with respect to their referential orientation can be written as: 

 

R��;�� Td4` = N����P(�exp��� ∙ � ∙ �� Td4` (13) 

 

where � is a symmetric order 3 matrix, Td is the Lebesgue invariant measure on the 

unit sphere, � ∈ e6 and ���� is a normalizing constant. And it can be rewritten as: 

 

R��; �, �� Td4` = N�777���P(�expb/0�� ∙ �� ∙ � ∙ �� ∙ ��c Td4` (14) 

 

where � is a diagonal matrix with eigenvalues D�,�,S ,	� ∈ ℚ� defining the orientation 

of the three principal orthogonal directions relative to the reference basis, such that 

� = � ∙ � ∙ �� and: 

�777��� = 14`a expb/0�� ∙ � ∙ ���cTde6  (15) 

 

Therefore, the probability concentration is controlled by the eigenvalues of Z, which 

might be interpreted as concentration parameters. To be precise, the difference 

between pairs of eigenvalues D�,�,S – i.e., ND� − D�P, ND� − DSP and ND� − DSP – 

determines the shape of the distribution over the surface of the unit sphere. Thus, if 

one of these three parameters is fixed to a constant value (in this case DS = 0), by 

varying the other two values	D� and D�, different distributions of the family of fibers 

might be achieved without reducing initial versatility. So, a total of 5 material 

parameters	��, w�, w�, D�, D�) should be fitted. 
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2.4. Fitting material parameters 

Stress-stretch curves resulting from the biaxial tensile tests were used to fit five of the 

most widely-recognized constitutive models proposed in the literature. 

 

Each model was fitted to biaxial test data at different ratios 1:1, 0.5:1, 1:0.5 (Figs. 4a, 

6a and 8a). The tissue was assumed to be incompressible, i.e. det��� = 1�1�1S = 1, 
where � is the deformation gradient tensor and 1*, L = 1, 2, 3, the stretches in the 

principal directions. The predicted behavior obtained with each of the five models was 

compared with the experimental biaxial data response of two different loading 

protocols, 0.75:1 and 1:0.75 (not coincident with those used in the fitting), as shown in 

Figs. 4b, 6b and 8b, respectively. In order to quantify the predictive capability of each 

model, the parameters coefficient of determination R
2
 and the normalized root mean 

square error �	
�� were evaluated. Here, �	
��  is defined as:  

 

�	
�� = �
1]∑ �����	_* − �j��_*���*+�
�1] ∑ ����	_*�*+� �  (16) 

 

with ] the number of experimental points, and ����	_*  and �j��_*  represent the 

experimental and model values, respectively. So �	
�� quantifies the mean deviation 

between the experimental and the model data.  

 

The five models explained above were fitted to the experimental data by means of 

least square optimization algorithms. A numerical Nelder-Mead method was used [36] 

to minimize the objective function Eq. (17) using HyperFit software [37]. This is a direct 

heuristic search method (based on a function comparison) using the concept of 

simplex and is often applied to nonlinear optimization problems. The objective 

function is defined as: 

 

                                          �� = ∑ rb��� − ���� c*� +	���� − �����*�	y�*+�                                (17) 

 



17 

 

where ��� and ��� are the 1
st

 Piola-Kirchhoff (engineering) stress data (3D) obtained 

from the tests, ���� = ����   and ���� = ����¡  are the 1
st

 Piola-Kirchhoff (engineering) 

stress data theoretically calculated for the i 
th

 point for a homogeneous pure biaxial 

state Ψ, and n is the number of data points.  

 

2.5. Statistical analysis 

A statistical analysis was performed to study possible significant variations in the 

mechanical behavior of colonic tissue along the intestinal tract. The normal 

distribution of the variables was tested using the Shapiro-Wilk test. The values were 

divided into three groups, corresponding to the PS, DS and DC samples, and all the 

groups were compared by means of an independent one-tailed t-test. p< 0.05 was 

established to indicate statistical significance. 
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3. Results 

 

3.1. Biaxial behavior 

The colon revealed nonlinear, anisotropic and viscoelastic behavior with the apparition 

of hysteresis loops. However, those hysteresis loops are narrow enough to be 

considered as almost elastic behavior and they are not taken into account in the 

models proposed to describe the colonic tissue behavior. 

 

The representative biaxial mechanical response (First Piola-Kirchhoff stress vs. stretch) 

is plotted in Figs. 3, 5 and 7 for PS, DS and DC, respectively. The tested specimens did 

not tear or exhibit signs of preliminary damage during testing. Generally, the force-

controlled testing protocol allowed us to reach maximum stresses up to 60 kPa, before 

tearing. 

 

Softening between subsequent stress levels was clearly visible in all specimens (Figs. 

3a, 5a and 7a, respectively). The main softening occurred in the first cycles when the 

permanent stretch was increased. However, the elimination of this residual stretch 

resulted in similar material properties for each increased stress level. A typical 

preconditioning behavior in terms of loading-unloading cycles at maximum stress 

levels of 60 kPa is depicted in Figs. 3a, 5a and 7a for PS, DS and DC, respectively, which 

was consistent in all the tested specimens. PS shows less softening behavior than DS 

and DC.  

The curves were stable and repeatable after a few preconditioning cycles; in particular, 

five cycles were enough to precondition each specimen. Figs. 3b, 5b and 7b show a 

representative biaxial stress test behavior with different stress ratios between the 

circumferential and longitudinal directions (1:1, 0.75:1, 0.5:1, 0:1, 1:0.75, 1:0.5, 1:0) for 

PS, DS and DC, respectively.  

A plot of axial stretch versus circumferential stretch at different ratios for PS, DS and 

DC samples is presented in Figs. 3d, 5d and 7d, respectively, for the fifth cycle. Figs. 3c, 

5c and 7c show the respective experimentally covered ranges of 1st PK stresses.  

For PS specimens the maximum stretches are 1.07 and 1.05 for circumferential and 

longitudinal directions, respectively, for the 1:1 protocol. The homologous values for 
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the DS were 1.092 and 1.075, and for the DC 1.09 and 1.07. For protocol 1:0.5, we 

have 1.077 and 1.02 for PS, 1.118 and 1.03 for DS, and 1.12 and 1.025 for DC.  

The results show high stretch values in the circumferential direction and a stiffer 

behavior in the longitudinal direction. These results demonstrate a progressively 

increasing degree of anisotropy from the proximal spiral to the descending colon. 

Stiffness in the longitudinal direction is maintained; however, in the circumferential 

direction it is progressively reduced until reaching the descending colon. 

 

Finally, Figs. 3e-f, 5e-f and 7e-f correspond to equibiaxial 1:1 experimental data 

samples in circumferential (e) and longitudinal (f) directions. The plots clearly depict 

differences in behavior between the longitudinal and circumferential directions.  For 

the maximum stress level (60KPa), the difference (%) of the stretch between the 

circumferential and longitudinal axis ranged between 1.9-5% for PS, 2.8-9% for DS, and 

between 1.5%-5% for DC. These results have been evaluated taking the upper and 

lower limit curves for stretch values in the circumferential direction and their 

homologous values in the longitudinal direction for the three evaluated zones. The 

dispersion of results observed does not reveal a clear tendency, so Figs. 3e-f, 5e-f and 

7e-f include an average curve corresponding to each analyzed zone in the 

circumferential (e) and (f) longitudinal directions. Evaluating percentage differences in 

average stretches for a �� = �� = 60��£ stress level, the following increments are 

obtained in the circumferential  direction compared to the longitudinal direction:  PS = 

0.6%, DS = 5.8%, and DC = 4.75%. The proximal spiral shows a quasi-isotropic behavior, 

and both the distal spiral and the descending colon a similar degree of anisotropy. A 

similar dispersion of results has been observed in the three areas in both directions.   

 

3.2. Material parameters and constitutive models comparison 

 

The dispersion revealed by the experimental results of the tested samples show the 

logical impossibility of obtaining a generic model from those data. However, a general 

trend in the stress-strain behavior and dependence can be extracted from the results 

for different parts of the large intestine. The results of the fitting of material 

parameters that define the strain energy density function (SEF) for each of the five 



20 

 

analyzed models for samples from the different colonic zones (PS, DS and DC) are 

shown in Tables 1-3, respectively. The range of values observed for certain material 

parameters reflect the variation in the mechanical behavior from sample to sample. 

Therefore, the average values of the material parameters and the standard deviation 

are shown in Tables 1-3.  

Material parameters have been fitted using jointly the three curves of the 

experimental biaxial protocols [1:1, 0.5:1 and 1:0.5] for each specimen. The coefficient 

of determination R
2
 and the normalized root mean square error �	
�� values are 

included in Tables 1-3. 

Each fitted model has been used to reproduce the biaxial protocols 0.75:1 and 1:0.75. 

The obtained curves from models have been compared to corresponding experimental 

data for each specimen, in order to provide a measure of prediction capability, by 

means of the R
2
 and �	
�� included in Tables 1-3. 

 

A first observation of the results shows that the predictive capability of SEF models 

corresponds to the HGO model for all positions, especially for the DS and DC samples 

which have a higher anisotropic behavior. The mean values for those samples were 

R
2
<0.85 and �	
��>0.2 (�� = 0.80	, �	
�� = 0.2277 and �� = 0.84	, �	
�� = 0.2047 

for the DS and DC samples, respectively). For PS samples better results were obtained 

(�� = 0.907	, �	
�� = 0.1633). 
 

On the other hand, the best predictive capability corresponds to the Four Fiber Family 

(FFF) model showing mean values of �� = 0.97	, �	
�� = 0.0814 ; 

�� = 0.89	, �	
�� = 0.1600 and �� = 0.94	, �	
�� = 0.1227 for the PS, DS and DC 

samples, respectively.  

 

The orientation angles found as a result of fitting the FFF model for submucosal 

collagen fibers of the proximal spiral, distal spiral and descending colon have mean 

values of 41.1⁰, 46.4⁰ and 43.17⁰, respectively. The spiral colon shows high standard 

deviation with values ranging from 32.3⁰ to 52.6⁰, depending on the sample. However, 

the descending colon has less variation with values ranging from 37.8⁰ to 47.2⁰.  
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Similar angle values were obtained for the HGO and Microfiber von Mises models, but 

for the GOH model extreme angles of 0º and 90º were obtained, without a clear 

physical meaning. This is because the model has a parameter which describes the level 

of dispersion in the fiber directions, with values near to maximum dispersion (κ = 

0.33). This means that the fibers are randomly distributed and the material becomes 

nearly isotropic. Therefore, this angle is not significant since the fitting model describes 

a quasi-isotropic behavior. This may be due to the fact that the dispersion of the 

results of the samples masks the smooth anisotropy, reaching practically an isotropic 

fitting in this case, and presenting acceptable average values of �� and	�	
�� with 

respect to the experimental data. 

The values of parameter b for the von Mises microfiber model obtained are similar in 

all the samples and closer to 0.0 in the case of PS, which is consistent with the less 

anisotropic behavior detected in this area. However, SD and DC show higher values, 

indicating a greater directionality of the fibers (low dispersion) and therefore a more 

anisotropic behavior. 

The Bingham microfiber model has very high similar κ1 and κ2 values, which indicates a 

distribution of fibers contained in a dominant plane. 
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Fig. 3. Representative (specimen PS III) 1
st

 Piola-Kirchhoff stress vs. stretch behavior for the proximal 

parts of porcine spiral colon specimens:  (a) preconditioning behavior in terms of loading-unloading 

cycles at 60 [kPa]; (b) biaxial behavior at different ratios (Circ axis : Long axis) 1:1, 0.5:1, 1:0.5, 0.75:1, 1: 

0.75, 0:1, 1:0; (c) Plots showing experimentally covered ranges of 1
st

 PK stresses and (d) stretches of a 

typical sample; (e) equibiaxial 1:1 experimental data samples in circumferential  and (f) longitudinal 

directions. 
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Table 1. Material parameters for the Proximal Spiral colon specimens (PS) for each analyzed model, 

along with average (Mean) and standard deviation (SD). 

 
Fitting Predicting 

 

 1:1, 0.5:1 and 1:0.5 0.75:1 and 1:0.75 

HGO model                

 

  

 

  

Specimen µ [kPa] k1 [kPa] k2 [-] θ [⁰]         R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

PS I 59.4452 20.2270 58.1421 49.52 

    

0.8027 0.2440 0.9186 0.1622 

PS II 20.1180 30.6340 34.2500 43.54 

    

0.7167 0.2692 0.8689 0.1858 

PS III 44.3680 45.8780 103.9260 45.72 

    

0.7626 0.2506 0.9193 0.1602 

PS IV 105.751 15.8220 129.1080 48.70 

    

0.8326 0.2234 0.9233 0.1451 

             Mean 57.4206 28.1402 81.3565 46.87 

    

0.7787 0.2468 0.9075 0.1633 

SD 31.2321 11.5673 37.2408 2.38 

    

0.0435 0.0164 0.0224 0.0146 

 GOH model                        

Specimen µ [kPa] k1 [kPa] k2 [-] κ [-] θ [⁰]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

PS I 19.4105 2313.3107 0.001 0.3196 89.46    0.8685 0.1832 0.9579 0.1104 

PS II 4.8060 2355.4320 0.001 0.3200 0.00    0.7964 0.2110 0.8958 0.1788 

PS III 40.9900 4774.8573 0.001 0.3266 89.99    0.8749 0.1763 0.9388 0.1181 

PS IV 42.7710 3334.2850 0.001 0.3240 0.00    0.9031 0.1648 0.9594 0.1079 

             Mean 26.9944 3194.4712 0.0010 0.3226 --    0.8607 0.1838 0.9379 0.1288 

SD 15.7688 999.6998 0.0000 0.0029 --    0.0393 0.0170 0.0257 0.0291 

 Four Fiber Family model                     

Specimen µ [kPa] k11 [kPa] k21 [-] k12 [kPa] k22 [-] 
k13=k14  

[kPa] 

k23=k24    

[-] 
θ [⁰] R

2 
[-] ε NRMSE [-] R

2 
[-] ε NRMSE [-] 

PS I 3.0609 100.5361 65.1690 17.7940 17.3431 88.2790 22.6840 40.51 0.9760 0.0845 0.9812 0.0761 

PS II 0.1010 13.7740 29.5251 110.2720 27.9420 39.1730 25.8280 55.81 0.9717 0.0936 0.9634 0.1014 

PS III 7.3550 164.9000 70.2312 12.5430 15.6364 146.4790 33.5900 32.31 0.9741 0.0870 0.9856 0.0698 

PS IV 3.1150 131.9790 7.6870 3.8580 137.6820 190.9040 30.5200 35.81 0.9585 0.1115 0.9812 0.0781 

             Mean 3.4080 102.7973 43.1531 36.1168 49.6509 116.2088 28.1555 41.11 0.9701 0.0941 0.9779 0.0814 

SD 2.5846 56.2107 25.7948 43.1018 51.0430 57.4679 4.1976 8.97 0.0069 0.0106 0.0085 0.0120 

 Microfiber Von Mises model                     

Specimen µ [kPa] c1 [kPa] c2 [-] b [-] θ [⁰]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

PS I 25.0310 85.1160 39.8920 2.9340 58.56    0.9582 0.1158 0.9553 0.1175 

PS II 5.0000 62.1530 48.0550 1.7650 30.88    0.9425 0.1393 0.7907 0.2129 

PS III 12.2820 235.0890 47.2700 1.5200 53.34    0.9666 0.0979 0.9828 0.0767 

PS IV 11.4400 167.3760 34.8750 3.2660 41.83    0.9332 0.1301 0.9619 0.1044 

             Mean 13.4383 137.4335 42.5230 2.3713 46.15    0.9501 0.1207 0.9227 0.1279 

SD 7.2616 68.6247 5.4441 0.7432 10.69    0.0131 0.0156 0.0769 0.0512 

 Microfiber Bingham model                     

Specimen µ [kPa] c1 [kPa] c2 [-] κ1 [-] κ2 [-]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

PS I 23.9370 89.5020 26.1110 9.4280 11.4330    0.9426 0.1395 0.9583 0.1157 

PS II 8.4780 48.0200 34.5780 15.6470 14.1800    0.9655 0.1037 0.9176 0.1274 

PS III 18.6710 448.8732 2.6564 0 0.5539    0.9339 0.1498 0.9287 0.1564 

PS IV 8.0120 156.1149 16.4626 28.5196 28.1548    0.8153 0.2111 0.9619 0.1044 

             Mean 14.7745 185.6275 19.9520 13.3987 13.5804    0.9143 0.1510 0.9416 0.1260 

SD 6.7918 156.8002 11.8656 10.3560 9.8371    0.0583 0.0386 0.0189 0.0194 
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Fig. 4. Representative plot of predictive capability of the analyzed constitutive models for a typical 

behavior for the proximal parts of porcine spiral colon (specimen PS III). All the models were fitted to 

biaxial test data at different ratios 1:1, 0.5:1, 1:0.5 and then their predicted biaxial response to 2 

different loading protocols 0.75:1 and 1:0.75 was compared with experimental data: (a) biaxial 

experimental data behavior after preconditioning cycle at ratios 1:1, 0.5:1, 1:0.5 used for the 5 proposed 

model calibrations; (b) biaxial experimental data protocols 0.75:1 and 1:0.75 to compare the behavior 

prediction given by the 5 models; (c) biaxial 0.75:1 protocol to compare predictive results vs 

experimental data in circumferential and (d) longitudinal direction; (e) Descriptive capability of the 5 

constitutive models: comparative results (R
2
) of each fitted constitutive model to capture the measured 

biaxial response (protocols 1:1, 0.5:1 and 1:0.5) of proximal parts of porcine spiral colon; (f) Predictive 

capability of the 5 constitutive models: comparative results (R
2
) of each fitted constitutive model to 

predict the biaxial response (protocols 0.75:1 and 1:0.75) of proximal parts of porcine spiral colon. 
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Fig. 5. Representative (specimen DS I) 1

st
 Piola-Kirchhoff stress vs. stretch behavior for the distal parts of 

porcine spiral colon specimens:  (a) preconditioning behavior in terms of loading-unloading cycles at 60 

[kPa]; (b) biaxial behavior at different ratios (Circ axis : Long axis) 1:1, 0.5:1, 1:0.5, 0.75:1, 1: 0.75, 0:1, 

1:0; (c) Plots showing experimentally covered ranges of 1
st

 PK stresses and (d) stretches of a typical 

sample; (e) equibiaxial 1:1 experimental data samples in circumferential  and (f) longitudinal directions. 
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Table 2. Material parameters for the Distal Spiral colon specimens (DS) for each analyzed model, along 

with average (Mean) and standard deviation (SD). 

 

Fitting Predicting 

 

 1:1, 0.5:1 and 1:0.5 0.75:1 and 1:0.75 

HGO model                

 

  

 

  

Specimen µ [kPa] k1 [kPa] k2 [-] θ [⁰]         R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

DS I 62.8480 10.9211 73.2590 46.64 

 

0.8232 0.2251 0.8754 0.1765 

DS II 44.5462 16.0596 42.0310 48.47 

 

0.8156 0.2274 0.9177 0.1555 

DS III 41.8570 4.2541 28.0443 50.94 

 

0.6743 0.3184 0.6914 0.3158 

DS IV 38.2527 8.7432 55.0785 45.95 

 

0.7006 0.2846 0.8193 0.2093 

DS V 43.7351 15.2372 46.6890 52.83 

 

0.7583 0.2610 0.6908 0.2816 

 Mean 46.2478 11.0430 49.0204 48.96 

 

0.7544 0.2633 0.7989 0.2277 

SD 8.5788 4.3394 14.9566 2.59 

 

0.0597 0.0353 0.0934 0.0614 

 GOH model                        

Specimen µ [kPa] k1 [kPa] k2 [-] κ [-] θ [⁰]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

DS I 15.8550 3017.3426 0.01 0.3300 89.93 

 

0.8824 0.1543 0.9071 0.1349 

DS II 8.8319 1570.4851 114.118 0.3200 89.99 

 

0.8859 0.1481 0.9693 0.0784 

DS III 11.6322 523.9737 0.001 0.3160 89.99 

 

0.7454 0.2727 0.8312 0.2251 

DS IV 14.4270 1702.6370 0.01 0.3330 89.32 

 

0.7966 0.2301 0.9001 0.1538 

DS V 10.9957 1141.1080 0.01 0.3070 89.67 

 

0.7000 0.2296 0.7259 0.2518 

 Mean 12.3484 1591.1093 22.8298 0.3212 89.78 

 

0.8021 0.2070 0.8667 0.1688 

SD 2.5030 823.1992 45.6441 0.0095 0.26 

 

0.0737 0.0482 0.0829 0.0626 

 Four Fiber Family model                     

Specimen µ [kPa] k11 [kPa] k21 [-] k12 [kPa] k22 [-] 
k13=k14  

[kPa] 

k23=k24    

[-] 
θ [⁰] R

2 
[-] ε NRMSE [-] R

2 
[-] ε NRMSE [-] 

DS I 4.4198 53.6151 15.3170 64.2110 7.9490 67.8232 41.7690 47.67 0.9759 0.0707 0.9468 0.0943 

DS II 3.2870 40.7893 20.5125 28.4687 5.4111 62.7480 29.3791 47.84 0.9729 0.0908 0.9491 0.1164 

DS III 27.8910 0.1490 47.1046 41.5059 0.0101 16.5769 47.1050 89.99 0.6417 0.3076 0.7698 0.2529 

DS IV 2.9408 64.7509 22.6780 61.8451 0.0267 40.2280 23.2473 37.64 0.8316 0.2341 0.9493 0.1285 

DS V 10.6090 32.2380 139.6419 27.2159 3.7140 52.6283 33.0361 52.60 0.9588 0.1156 0.8349 0.2078 

 Mean 9.8295 38.3085 49.0508 44.6493 3.4222 48.0009 34.9073 55.15 0.8762 0.1637 0.8900 0.1600 

SD 9.4483 22.0574 46.6014 15.8365 3.0888 18.3287 8.5544 18.09 0.1289 0.0916 0.0744 0.0602 

 Microfiber Von Mises model                     

Specimen µ [kPa] c1 [kPa] c2 [-] b [-] θ [⁰]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

DS I 5.9235 87.2130 31.6210 3.6787 47.15 

 

0.9706 0.0975 0.9810 0.0762 

DS II 29.9570 27.4451 39.8286 10.0950 52.25 

 

0.9102 0.1497 0.9367 0.1270 

DS III 19.5492 50.1733 14.9151 1.4363 89.95 

 

0.7464 0.2781 0.7589 0.2668 

DS IV 3.5040 97.6110 24.4160 2.0531 48.93 

 

0.9643 0.1066 0.6882 0.2603 

DS V 3.6971 15.1478 13.0984 3.1930 61.65 

 

0.8785 0.1883 0.7622 0.2628 

 Mean 12.5262 55.5180 24.7758 4.0912 59.99 

 

0.8940 0.1640 0.8254 0.1986 

SD 10.5461 32.3197 10.0714 3.1056 15.80 

 

0.0814 0.0656 0.1130 0.0808 

 Microfiber Bingham model                     

Specimen µ [kPa] c1 [kPa] c2 [-] κ1 [-] κ2 [-]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

DS I 6.6764 85.0973 19.0718 20.6261 20.9594 

 

0.9202 0.1542 0.9742 0.0880 

DS II 27.1623 66.2180 7.4431 25.1645 26.6451 

 

0.7902 0.2630 0.8208 0.2407 

DS III 31.9270 21.1689 16.8911 25.9654 29.6680 

 

0.7964 0.2609 0.8247 0.2364 

DS IV 6.2567 61.9283 21.8431 20.9546 21.4588 

 

0.9475 0.1222 0.7411 0.2459 

DS V 9.6260 94.7143 8.0223 24.7374 27.3754 

 

0.8887 0.1940 0.8400 0.2241 

 Mean 16.3297 65.8254 14.6543 23.4896 25.2213 

 

0.8686 0.1988 0.8401 0.2070 

SD 10.9564 25.3595 5.8682 2.2413 3.4282       0.0643 0.0563 0.0754 0.0600 
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Fig. 6. Representative plot of predictive capability of the analyzed constitutive models for a typical 

behavior for the distal parts of porcine spiral colon (specimen DS I). All the models were fitted to biaxial 

test data at different ratios 1:1, 0.5:1, 1:0.5 and then their predicted biaxial response to 2 different 

loading protocols 0.75:1 and 1:0.75 was compared with experimental data: (a) biaxial experimental data 

behavior after preconditioning cycle at ratios 1:1, 0.5:1, 1:0.5 used for the 5 proposed model 

calibrations; (b) biaxial experimental data protocols 0.75:1 and 1:0.75 to compare the behavior 

prediction given by the 5 models; (c) biaxial 0.75:1 protocol to compare predictive results vs 

experimental data in circumferential and (d) longitudinal direction; (e) Descriptive capability of the 5 

constitutive models: comparative results (R
2
) of each fitted constitutive model to capture the measured 

biaxial response (protocols 1:1, 0.5:1 and 1:0.5) of proximal parts of porcine spiral colon; (f) Predictive 

capability of the 5 constitutive models: comparative results (R
2
) of each fitted constitutive model to 

predict the biaxial response (protocols 0.75:1 and 1:0.75) of proximal parts of porcine spiral colon. 
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Fig. 7. Representative (specimen DC II) 1
st

 Piola-Kirchhoff stress vs. stretch behavior for porcine 

descending colon specimens:  (a) preconditioning behavior in terms of loading-unloading cycles at 60 

[kPa]; (b) biaxial behavior at different ratios (Circ axis : Long axis) 1:1, 0.5:1, 1:0.5, 0.75:1, 1: 0.75, 0:1, 

1:0; (c) Plots showing experimentally covered ranges of 1
st

 PK stresses and (d) stretches of a typical 

sample; (e) equibiaxial 1:1 experimental data samples in circumferential  and (f) longitudinal directions. 
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Table 3. Material parameters for the Descending Colon specimens (DC) for each analyzed model, along 

with average (Mean) and standard deviation (SD). 

 
Fitting Predicting 

 

 1:1, 0.5:1 and 1:0.5 0.75:1 and 1:0.75 

HGO model                

 

  

 

  

Specimen µ [kPa] k1 [kPa] k2 [-] θ [⁰]         R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

DC I 40.6322 16.7518 44.5265 48.42     0.7534 0.2647 0.8987 0.1804 

DC II 36.5595 38.5816 44.0640 47.45     0.8705 0.1866 0.9241 0.1544 

DC III 72.6798 17.2810 66.6798 45.87     0.8496 0.2125 0.9168 0.1637 

DC IV 14.9011 10.6687 60.7227 43.84     0.6811 0.3020 0.6260 0.3306 

DC V 17.9258 9.2812 32.8583 46.73     0.6945 0.2808 0.8529 0.1947 

             Mean 36.5397 18.5129 49.7703 46.46     0.7698 0.2493 0.8437 0.2047 

SD 20.6764 10.5274 12.2635 1.56     0.0779 0.0431 0.1116 0.0644 

 GOH model                        

Specimen µ [kPa] k1 [kPa] k2 [-] κ [-] θ [⁰]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

DC I 7.6383 1887.1271 0.179616 0.3204 90.00    0.7928 0.2076 0.9533 0.1218 

DC II 16.0708 3091.3800 0.013461 0.3255 90.00    0.9458 0.1182 0.9590 0.1001 

DC III 26.0342 3297.4191 0.001 0.3300 90.00    0.9368 0.1320 0.9656 0.1021 

DC IV 17.7803 11.2590 47.2009 0.0000 41.94    0.7147 0.2581 0.8224 0.2171 

DC V 1.7693 729.2622 159.3817 0.3223 85.37    0.7541 0.2258 0.8592 0.1805 

             Mean 13.8586 1803.2895 41.3554 0.2596 79.46    0.8288 0.1884 0.9119 0.1443 

SD 8.4067 1285.5767 61.7725 0.1299 18.85    0.0951 0.0543 0.0593 0.0466 

 Four Fiber Family model                     

Specimen µ [kPa] k11 [kPa] k21 [-] k12 [kPa] k22 [-] 
k13=k14  

[kPa] 

k23=k24    

[-] 
θ [⁰] R

2 
[-] ε NRMSE [-] R

2 
[-] ε NRMSE [-] 

DC I 16.3396 69.8095 61.8184 16.8650 0.0639 27.5047 32.2740 37.86 0.9455 0.1226 0.9279 0.1523 

DC II 7.6860 61.1610 34.9920 74.8340 2.5770 54.2910 51.5760 47.21 0.9503 0.1240 0.9809 0.0782 

DC III 7.3264 67.3851 32.4355 19.4257 32.9646 109.4537 30.5541 42.10 0.9802 0.0798 0.9887 0.0619 

DC IV 7.8120 51.7360 50.6680 27.5171 8.5570 29.8450 42.8130 44.29 0.9804 0.0812 0.8643 0.1891 

DC V 11.7420 19.0057 40.3961 20.0796 3.4725 6.2925 42.9804 44.41 0.9343 0.1451 0.9469 0.1318 

 Mean 10.1812 53.8194 44.0620 31.7443 9.5270 45.4774 40.0395 43.17 0.9581 0.1106 0.9417 0.1227 

SD 3.4742 18.4929 10.8610 21.8348 12.0397 35.4217 7.7422 3.11 0.0188 0.0258 0.0446 0.0470 

 Microfiber Von Mises model                     

Specimen µ [kPa] c1 [kPa] c2 [-] b [-] θ [⁰]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

DC I 8.7240 73.6395 28.2483 3.4121 57.39 

   

0.9036 0.1717 0.9395 0.1392 

DC II 7.6589 88.8636 32.0682 3.4929 51.15 

   

0.8812 0.1999 0.9404 0.1358 

DC III 8.8831 109.5239 35.7969 3.3008 48.03 

   

0.9785 0.0827 0.9879 0.0633 

DC IV 7.1726 60.8699 25.9966 4.7301 51.17 

   

0.8541 0.1812 0.8629 0.1970 

DC V 10.7740 16.0397 32.7274 7.4692 53.13 

   

0.8340 0.2090 0.7846 0.2138 

             Mean 8.6425 69.7873 30.9675 4.4810 52.17 

   

0.8903 0.1689 0.9031 0.1498 

SD 1.2439 31.3881 3.4565 1.5813 3.08 

   

0.0500 0.0451 0.0715 0.0531 

 Microfiber Bingham model                     

Specimen µ [kPa] c1 [kPa] c2 [-] κ1 [-] κ2 [-]       R
2 

[-] ε NRMSE [-] R
2 

[-] ε NRMSE [-] 

DC I 7.8667 91.4500 14.4029 9.7448 11.5473    0.8819 0.1968 0.8968 0.1826 

DC II 7.8296 112.6515 6.2376 13.6653 14.2236    0.8507 0.1880 0.8828 0.1994 

DC III 8.3193 111.2712 16.6386 22.1284 22.4134    0.8654 0.1958 0.9260 0.1561 

DC IV 1.4008 78.0271 16.1766 12.5735

38 

14.3098    0.8350 0.2349 0.8961 0.1771 

DC V 7.2616 43.4192 11.8627 10.8312 12.5500    0.7643 0.2840 0.8250 0.2410 

             Mean 6.5356 87.3638 13.0637 13.7887 15.0088    0.8395 0.2199 0.8853 0.1912 

SD 2.5892 25.4795 3.8027 4.3850 3.8460    0.0407 0.0360 0.0333 0.0285 
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Fig. 8. Representative plot of predictive capability of the analyzed constitutive models for a typical 

behavior for porcine descending colon (specimen DC II). All the models were fitted to biaxial test data at 

different ratios 1:1, 0.5:1, 1:0.5 and then their predicted biaxial response to 2 different loading protocols 

0.75:1 and 1:0.75 was compared with experimental data: (a) biaxial experimental data behavior after 

preconditioning cycle at ratios 1:1, 0.5:1, 1:0.5 used for the 5 proposed model calibrations; (b) biaxial 

experimental data protocols 0.75:1 and 1:0.75 to compare the behavior prediction given by the 5 

models; (c) biaxial 0.75:1 protocol to compare predictive results vs experimental data in circumferential 

and (d) longitudinal direction; (e) Descriptive capability of the 5 constitutive models: comparative results 

(R
2
) of each fitted constitutive model to capture the measured biaxial response (protocols 1:1, 0.5:1 and 

1:0.5) of proximal parts of porcine spiral colon; (f) Predictive capability of the 5 constitutive models: 

comparative results (R
2
) of each fitted constitutive model to predict the biaxial response (protocols 

0.75:1 and 1:0.75) of proximal parts of porcine spiral colon. 
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Finally, Fig. 9 shows the comparison among PS, DS and DC zones where a variation of 

the flexibility in circumferential direction is observed. In longitudinal direction the 

variations of mechanical response are practically negligible. 

 

 
 

Fig. 9. Influence of colon region on the mechanical response. Comparison of average curves obtained for 

each zone: (a) Equibiaxial response in circumferential direction; (b) Equibiaxial response in longitudinal 

direction.  

 

 

3.3. Statistical analysis 

The mechanical properties for the PS, DS and DC were compared for both 

circumferential and longitudinal directions. The values were divided into three groups 

corresponding to the PS, DS and DC samples, and all the groups were compared. These 

values correspond to 25 and 50 kPa of engineering stress. Anisotropy was analyzed by 

the difference in circumferential and longitudinal stretches divided by their average 

value (Table 4).  

The statistical analysis revealed significant differences between the mechanical 

behavior from PS to DS and DC samples in circumferential direction (p<0.05) at 

virtually any stress level. In contrast, the longitudinal tests show similar stress-stretch 

curves for all locations. The anisotropic parameter of PS tissue is significantly lower 

(p<0.05) and closer to 0 than the anisotropic parameters for DS and DC tissue for all 

stress levels. This fact demonstrates that PS tissue is more isotropic than DS and DC. 
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Table 4. Circumferential (λθ
25

, λθ
50

) and longitudinal (λz
25

, λz
50

) stretches and anisotropy measurements 

corresponding to 25 kPa and 50 kPa during equibiaxial test (1:1), respectively. Anisotropy (A
25

, A
50

) was 

analyzed by the difference in circumferential and longitudinal stretches at each stress level (25 kPa and 

50 kPa respectively) divided by their average value. Values are presented as Mean ± Standard Deviation. 

 

Specimens λθ
25

 λz
25

 A
25

 λθ
50

 λz
50

 A
50

 

PS 1.052 ± 0.016  1.049 ± 0.022 0.003 ± 0.026  1.074 ± 0.019  1.068 ± 0.024 0.006 ± 0.031  

DS 1.103 ± 0.034 1.052 ± 0.013 0.047 ± 0.032 1.133 ± 0.038 1.070 ± 0.016 0.056 ± 0.036 

DC 1.087 ± 0.024 1.051 ± 0.013 0.034 ± 0.017 1.111 ± 0.025 1.069 ± 0.013 0.039 ± 0.020 

 

 

 

4. Discussion 

 

The objective in this work was to obtain appropriate useful information about the 

colon mechanical response in order to fit the elastic parameters of different 

specialized behavior models. These material parameters allow us to do reliable 

simulations in which the role played by the colonic tissue is essential, as for example 

colonic stent design. 

 

To achieve this objective, this paper aims to study and better understand the 

mechanical properties of pig colon tissue, selected because its physiological similarity 

to human tissue. To demonstrate any possible position-related difference, the study 

analyzed and compared the biaxial mechanical properties of different parts, focusing 

on the proximal spiral colon (PS), distal spiral colon (DS) and descending colon (DC) 

stemming from the same porcine subjects. Based on the experimental obtained 

results, the values of elastic parameters for five well-known constitutive models with 

different strain energy functions (SEF) were fitted, showing how these mechanical 

properties are affected by location along the colon. 

 

Hysteresis loops were relatively narrow, i.e. the specimens behaved nearly elastically. 

However, all samples were preconditioned with initial loading-unloading cycles. 

Specifically, five cycles were enough to precondition all the tissue samples 

independently of the zone (PS, DS and DC) before processing the results.  

 

We found that the nature of the porcine colon changed from a more isotropic to a 

more anisotropic tissue and became progressively more flexible and compliant in 
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circumferential direction depending on the position along the duct as it approaches 

the rectum (Fig. 9).   Significant differences in the anisotropy parameters between the 

PS, DS and DC samples were observed (Table 4). The PS samples showed an overall 

quasi-isotropic behavior.  

 

The orientation angles found after fitting the FFF model for submucosal collagen fibers 

of the proximal spiral, distal spiral and descending colon had mean values of 41.1⁰, 

46.4⁰ and 43.17⁰, respectively. Spiral colon shows a high standard deviation with 

values ranging from 32.3⁰ to 52.6⁰, depending on the sample. However, descending 

colon has less variation with values ranging from 37.8⁰ to 47.2⁰. These values are 

similar to those presented in previous colon studies obtained from extension-inflation 

tests [12], and somewhat higher than the 31.3⁰ [11] estimated from uniaxial tests. 

 

In view of the fitting results obtained in this work, it is possible to establish a 

comparison of the capability of prediction of the five selected constitutive models, 

some with a phenomenological approach and others being structural models providing 

a more physiological description through their material parameters. It can be seen that 

the four fiber family model (FFF) provides the best prediction independently of the 

colon location analyzed. Furthermore, the fibers can be associated with the layered 

structure of the tissue.  There is a direct correlation between the fiber families’ 

orientation and the physiological structure (Fig 1.b).  

 

On the other hand, the HGO and GHO models provide acceptable results for proximal 

spiral colon specimens, which have a lower degree of anisotropy. The values of the 

orientation angles obtained in the GHO model do not have a clear physiological 

meaning, because the fitting parameter κ reaches values around 0.33 corresponding to 

the maximum dispersion of the fibers, describing a quasi-isotropic behavior. The fiber 

angle is therefore irrelevant.    

 

The results confirm that the FFF model used with a similar formulation to models 

presented in Natali et al. (2009) [38], Ciarletta et al. (2009) [10], Sokoli et al. (2011) 

[14], and Patel et al. (2018) [12] are the most suitable for modeling this type of tissue. 
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However, this model has more material parameters than the other analyzed models, 

which would be a disadvantage for numerical simulation, involving a higher 

computational cost.  Microfiber models used for the modeling of vascular tissues [33, 

34] do not provide better results, because colon tissue has a lower fiber orientation 

dispersion  than arteries [12]. 

 

One of the main limitations of the present study is the use of frozen samples, which 

can affect the passive mechanical properties of the tissue. Despite structural 

differences between human and porcine colonic tissues [39],  there is consensus that 

porcine tissues are suitable for a first approach towards developing  test models and 

increasing the understanding of the biomechanical behavior of the human colon. This 

is due to both their size and functional similarities, as well as the ease of procurement 

of porcine tissue. Experimental tests were performed on samples with the whole 

structure of the tissue, without dissection by layers. We would emphasize the need for 

further studies involving layer-specific mechanical tests and micro-structured 

constitutive models that take into account experimental data obtained from 

histological analysis with the help of advanced microscopic imaging. 

 

5. Conclusion  

 

Our results showed that the excised porcine colon is non-linear and anisotropic with 

the circumferential direction being more compliant. When comparing PS, DS and DC, 

we found statistically significant differences for the stiffness of PS tissues, being stiffer 

in the circumferential direction and that they display a quasi-isotropic behavior. The 

tissue along the colon changed from being more isotropic to being more anisotropic 

and became progressively more flexible in the circumferential direction. However, the 

same stiffness in the longitudinal direction towards the rectum is maintained. 

 

In conclusion, the analyzed models, with the fitted elastic parameters, may be used for 

more realistic and reliable FE simulations, providing an appropriate framework for the 

design of optimal devices for the treatment of colonic diseases. In this respect, the four 

fiber family model (FFF) provides the best prediction independently of the colon 
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location analyzed. This model would therefore be the most appropriate for simulating 

the mechanical behavior of colonic tissue. 

 

List of abbreviations 

 

DC: Descending colon 

DIC: Digital image correlation 

DS: Distal spiral colon 

FFF: Four fiber family model 

GOH: Gasser-Ogden-Holzapfel model 

HGO: Holzapfel-Gasser-Ogden model 

MFB: Microfiber Bingham model 

MFM: Microfiber von Mises model 

ODF: Orientation density function 

PS: Proximal spiral colon 

PSS: Physiological saline solution 

SEF: Strain energy function 
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Highlights 

o Characterization of mechanical hyperelastic behavior of colonic tissue.  

o Multiaxial experimental testing of colonic tissue by means of biaxial tests carried out in 

different parts along large intestine. 

o Comparative study of five hyperelastic constitutive models for colonic tissue. 

o Fitting of elastic parameters for the different analyzed models, accounting for the multilayered 

conformation of the colonic tissue. 

o Predictive capability study of the analyzed constitutive models and determination of the most 

suitable for numerical simulations. 

 

       

 


