000097388 001__ 97388
000097388 005__ 20210902121916.0
000097388 0247_ $$2doi$$a10.3390/cryst10121106
000097388 0248_ $$2sideral$$a121773
000097388 037__ $$aART-2020-121773
000097388 041__ $$aeng
000097388 100__ $$aNova, V.
000097388 245__ $$aCharacterization of nematic liquid crystals at microwave frequencies
000097388 260__ $$c2020
000097388 5060_ $$aAccess copy available to the general public$$fUnrestricted
000097388 5203_ $$aThe use of nematic liquid crystal (LC) mixtures for microwave frequency applications presents a fundamental drawback: many of these mixtures have not been properly characterized at these frequencies, and researchers do not have an a priori clear idea of which behavior they can expect. This work is focused on developing a new procedure for the extraction of the main parameters of a nematic liquid crystal: dielectric permittivity and loss tangent at 11 GHz under different polarization voltages; splay elastic constant K11, which allows calculation of the threshold voltage (Vth); and rotational viscosity ¿11, which allows calculating the response time of any arbitrary device. These properties will be calculated by using a resonator-based method, which is implemented with a new topology of substrate integrated transmission line. The LC molecules should be rotated (polarized) by applying an electric field in order to extract the characteristic parameters; thus, the transmission line needs to have two conductors and low electric losses in order to preserve the integrity of the measurements. This method was applied to a well-known liquid crystal mixture (GT3-23002 from MERCK) obtaining the permittivity and loss tangent versus bias voltage curves, the splay elastic constant, and the rotational viscosity of the mixture. The results validate the viability of the proposed method.
000097388 536__ $$9info:eu-repo/grantAgreement/ES/AEI/BES-2017-079728$$9info:eu-repo/grantAgreement/ES/DGA/E47-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-103982RB-C41
000097388 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000097388 590__ $$a2.589$$b2020
000097388 591__ $$aCRYSTALLOGRAPHY$$b9 / 25 = 0.36$$c2020$$dQ2$$eT2
000097388 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b204 / 333 = 0.613$$c2020$$dQ3$$eT2
000097388 592__ $$a0.538$$b2020
000097388 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ2
000097388 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ2
000097388 593__ $$aInorganic Chemistry$$c2020$$dQ2
000097388 593__ $$aCondensed Matter Physics$$c2020$$dQ2
000097388 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000097388 700__ $$aBachiller, C.
000097388 700__ $$0(orcid)0000-0001-9814-0834$$aVillacampa, B.$$uUniversidad de Zaragoza
000097388 700__ $$aKronberger, R.
000097388 700__ $$aBoria, V.E.
000097388 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000097388 773__ $$g10, 12 (2020), 1106 [1-14]$$pCrystals$$tCrystals$$x2073-4352
000097388 8564_ $$s471907$$uhttps://zaguan.unizar.es/record/97388/files/texto_completo.pdf$$yVersión publicada
000097388 8564_ $$s460814$$uhttps://zaguan.unizar.es/record/97388/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000097388 909CO $$ooai:zaguan.unizar.es:97388$$particulos$$pdriver
000097388 951__ $$a2021-09-02-10:45:58
000097388 980__ $$aARTICLE