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Resumen  

El límite superior del bosque (LSB) ha experimentado importantes variaciones en su distribución 

debido al cambio global y la influencia antrópica. Dado su carácter de zona de transición de for-

maciones de arbolado y comunidades de matorral o herbáceas, su delineación cartográfica y mo-

nitorización se erigen como un indicador ambiental. Habitualmente su identificación y análisis se 

ha realizado mediante trabajo de campo o fotointerpretación. Existen también experiencias basa-

das en el uso de teledetección digital sobre ortofotografía e imágenes ópticas, si bien presentan 

ciertas limitaciones para capturar la estructura tridimensional de la vegetación, rasgo fundamental 

para garantizar la precisión y exactitud en su delimitación. En este sentido, los sensores activos 

gozan de un mayor potencial. En el presente trabajo se desarrolla e implementa una metodología 

para automatizar la detección del LSB, a partir de datos de fracción de cabida cubierta (FCC) y 

altura del arbolado, derivados de nubes de puntos LiDAR del Plan Nacional de Ortofotografía Aérea 

(PNOA), utilizando el algoritmo de detección de bordes ‘Prewitt’. El proceso, implementado usando 

el software R, se desarrolla de forma iterativa y jerárquica, mejorando la resolución (escala) en 

cada iteración. La metodología se ha probado en el paraje Peña Ezcaurre, donde se disponen de 

datos LiDAR PNOA con una densidad de puntos muy contrastada (0,5 puntos/m2 y 10 puntos/m2), 

la que ha permitido evaluar la sensibilidad a este parámetro. Se ha realizado una validación con 

ayuda de ortofotos y datos de FCC. Se han obtenido porcentajes de superposición del 81 % para 

los datos con menor densidad y 88 % para los de mayor densidad. La metodología presentada 

abre la puerta a la monitorización del límite de bosque a gran escala.  

Palabras Clave: LiDAR, límite de bosque, detección de bordes, filtrado espacial, Prewitt. 

Abstract 

The timberline has experienced different variations in its distribution due to global change and 

anthropic influence. Since it is a highly sensitive transition zone, its cartographic delineation and 

monitoring stand as an environmental indicator of great interest. Their identification and analysis 

have usually been carried out through field work. More sophisticated approaches involved ortho-

photography and optical images assuming a great uncertainty as the three-dimensional of the 

vegetation structure is essential to reduce the uncertainty of its delimitation. In the present work, 

a methodology to automate its detection has been developed, based on canopy cover data and 

tree height, derived from LiDAR of the National Air Orthophotography Plan (PNOA), using the 

Prewitt edge detection algorithm. In this way, the process has been run iteratively, improving the 

resolution at each iteration using the programming language R. The methodology has been tested 

at Peña Ezcaurre. Here, two datasets of the LiDAR of PNOA data with very different pulse density 

(0.5 pulses / m2 and 10 pulses / m2) were tested, to evaluate the sensitivity of the methodology 

to this parameter. A manual validation has been performed through the use of high resolution 

orthophotos and canopy cover data. The validation showed a consistency of 81% for the data with 

lower density and 88% for those with higher density. The presented methodology could lead to 

large-scale timberline monitoring. 

Key Words: LiDAR, timberline, edge detection, spatial filtering, Prewitt. 
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1. INTRODUCCIÓN 

1.1. El límite superior del bosque 

Desde mediados del siglo XX la Tierra ha experimentado cambios a gran velocidad en sus ciclos 

biogeoquímicos. Estos cambios derivados de la actividad humana vienen ocurriendo desde su existencia 

y son conocidos como cambio global. Sin embargo, en las últimas décadas los cambios han acelerado 

drásticamente, con el cambio de uso de suelos, la contaminación y el aumento de consumo de energía 

entre otros. Una de las consecuencias más conocidas es el cambio climático, que a su vez ha traído la 

degradación de los ecosistemas, fragmentación de hábitats y por consiguiente la pérdida de biodiversi-

dad (Vitousek, 1994). Las zonas más vulnerables al cambio climático y la actividad humana son los 

ecotonos o zonas de transición entre sistemas. Las especies que se encuentran en los ecotonos o a su 

alrededor, son altamente sensibles a las variaciones ambientales, por lo que son un buen indicador am-

biental. Debido a que son sensibles a cambios ambientales tanto pasados como recientes, han sido am-

pliamente estudiados. 

El ecotono del límite superior del bosque (LSB), es la zona de transición que delimita el punto más 

alto hasta donde se encuentra un estrato arbóreo (Körner, 1998a). Mas allá de este límite, los árboles no 

son capaces de crecer debido a las condiciones ambientales desfavorables: bajas temperaturas, falta de 

humedad, condiciones del suelo etc.   

Existen varios conceptos alrededor de este ecotono que han sido definidos por múltiples autores. 

Entre ellos encontramos, el ecotono del límite superior del bosque, el límite superior del bosque, el 

límite de árbol y el límite de especie arbóreo (Figura 1). El límite superior del bosque, también conocido 

como “timberline”, se define como el umbral superior del bosque cerrado donde comienza el ecotono 

(Elliott, 2017). El límite de árbol se encuentra por encima del LSB. Está formado por árboles más dis-

persos y es la barrera entre la vegetación subalpina y la alpina o tundra (Holtmeier, 2009). Cerca del 

límite de árbol, la tasa de crecimiento desciende debido a las condiciones adversas por viento y nieve. 

Los árboles tienden a ser retorcidos o pequeños y son conocidos como “krummholz” o límite de especie 

arbóreo (Körner, 1998b). El ecotono del LSB por lo tanto, es la zona de transición entre el LSB , hasta 

el límite de árbol (últimos arboles verticales que alcanzan los 2 o 3 metros, dependiendo el autor) 

(Holtmeier and Broll, 2005; Case and Duncan, 2014).  

 

Figura 1. Representación esquemática del ecotono límite superior del bosque 

(Figura modificada, extraída de Johnson y Yeakley, 2019). 

Límite de árbol 

 
Límite superior 
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Bosque continuo 
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Como cualquier otro límite natural, la posición exacta del límite de bosque variará, además de por 

y su definición, en función de la escala de estudio. En realidad el LSB es una zona de transición y no un 

límite estricto (Paulsen and Körner, 2001), pudiendo adoptar un patrón de cambio abrupto con una tran-

sición inmediata de subalpino a alpino; o difuso, con una transición gradual (Harsch and Bader, 2011). 

Las características concretas para definir el LSB varían notablemente dependiendo del autor y el 

lugar de estudio. La mayoría de definiciones incorporan un umbral de altura mínima del arbolado y un 

grado cobertura o densidad necesarias. Holtmeier (2009) en su libro sobre el límite de bosque recoge 

diferentes definiciones, con alturas mínimas de árbol que van desde los 2 a los 8 metros y coberturas 

mínimas de bosque de entre 30 y 40%. 

 Los factores que condicionan su distribución espacial han sido también objeto de estudio, con nu-

merosos trabajos al respecto. Entre otros se indica que la temperatura, el suelo, el viento o la nieve son 

algunos de los condicionantes, además de la actividad humana (Tranquillini, 2012; Wielgolaski et al., 

2017). Los factores y procesos estudiados en una escala pueden no ser tan importantes a otra escala 

diferente (Turner, 1989). De hecho a escala local/regional se relaciona más con procesos específicos 

más complejos de investigar, mientras que a escala global se dice que la temperatura es el factor limitante 

(Holtmeier and Broll, 1992; Körner, 1998c, 1998b; Körner and Paulsen, 2004).  

A escala global el límite de árbol se ha relacionado principalmente con una temperatura media de 

suelo de 6,7º C en la época de crecimiento (Körner and Paulsen, 2004). Por debajo de este umbral las 

especies arbóreas no son capaces de generar tejidos y, por tanto, crecer. Esta limitación de temperatura 

hace que en las latitudes altas se pueda encontrar cerca del nivel del mar y progresivamente aumente 

conforme desciende en latitud. Debido a que la temperatura es limitante, el ecotono del LSB es consi-

derado un buen indicador del cambio climático y la influencia antrópica (Kullman, 2001; Kirdyanov et 

al., 2011). El aumento de la temperatura podría desplazar el LSB a cotas más altas, por lo que los eco-

sistemas montañosos podrían sufrir cambios más abruptos que otros a menor altitud con un aumento de 

temperatura superior al de la media (Diaz and Bradley, 1997; Liu et al., 2009; Pepin et al., 2015). En 

caso de un aumento repentino de la temperatura, como han predicho algunos modelos, el LSB no tendría 

una respuesta espontánea y más bien ocurriría en un lapso de tiempo de varias décadas o incluso siglos 

(Noble, 1993; Hofgaard and Wilmann, 2002; Lloyd, 2005). Además, varios estudios realizados en dife-

rentes puntos del planeta, han concluido que el avance del LSB ha sido menor de lo que podría esperarse 

debido al calentamiento climático. Los estudios fueron realizados en Laponia Finlandesa (Tasanen et 

al., 1998), Nueva Zelanda (Wardle and Coleman, 1992) , Suecia (Holmgren and Tjus, 1996) y Canadá 

(MacDonald et al., 1998). Por otra parte, diferencias significativas entre la posición real y potencial del 

ecotono podrían indicar alteraciones derivadas de la actividad antrópica.  

El trabajo realizado por Harsch et al. (2009) es uno de los más relevantes. En él analizó el límite de 

árbol de 166 lugares alrededor del planeta para comprobar si habían tenido un avance altitudinal desde 

1900. El 52% de las ubicaciones mostraron un avance y se relacionó con un incremento de temperaturas 

en los inviernos y con unos límites más graduales o difusos. Solo un 1% mostro un retroceso y el resto 

no mostro cambios. 

 Estudios realizados a escala regional se identificaron factores condicionantes diferentes a la tem-

peratura. Theurillat y Guisan (2001) demostraron que la actividad humana era responsable de la distri-

bución actual de muchas especies, especialmente arbóreas, e hipotetizaron que podría ser un factor más 

limitante que el propio clima en la dinámica del límite de bosque de los Alpes. En el Pirineo Catalán, 

Ameztegui et al. (2016) evidenciaron que el uso de suelo histórico era responsable de la posición actual 

del límite de árbol. En cambio, en zonas donde la presión ganadera no ha tenido tanto impacto, indican 

como factores principales la humedad, el viento y la competencia intra e interespecífica (Holtmeier and 

Broll, 2005; Malanson et al., 2007; Johnson and Yeakley, 2016). En el caso del Pirineo, con el fin de 

ampliar las zonas de pastoreo, el uso tradicional de la tierra redujo el límite altitudinal del bosque. En la 

segunda mitad del siglo XX debido al abandono de tierras la tendencia ha sido de una reforestación 

natural en las zonas subalpinas (Vega, 2003; Lasanta and Vicente-Serrano, 2007; Améztegui et al., 2010; 

García-Ruiz et al., 2015). Carreras et al. (1996), uno de los primeros estudios conocidos del límite de 
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bosque en el Pirineo, ha contribuido en gran manera a su estudio, remarcando la importancia del análisis 

de estas zonas. 

1.2. La importancia de detectar el límite de bosque 

Diferentes estudios respaldan el límite de bosque como un buen indicador de los efectos del cambio 

climático sobre las masas forestales ya que éste responde tanto en su posición como estructura o incluso 

composición (Kullman, 2001; Kirdyanov et al., 2011). El LSB se relaciona con diferentes funciones 

ecosistémicas como el sostén de nieve, la protección de laderas, el rendimiento/balance hídrico; y so-

cioeconómicas, como la producción agrícola o las oportunidades de recreo. 

La mayoría de estudios, se centran en la pérdida de especies, ya que las regiones montañosas y más 

concretamente las especies florísticas son las más vulnerables al cambio climático (Gottfried et al., 1999; 

Thuiller et al., 2005). Con el avance del límite de bosque, las especies vegetales que se encuentran por 

encima, podrían quedar más aisladas en lo alto de las cordilleras y tendrían dificultad para desplazarse 

altitudinalmente debido a la falta de espacio, pudiendo llegar a desaparecer (Theurillat et al., 1998; 

Körner, 2007). Por lo tanto, es importante ubicar el límite de bosque para el estudio de las especies que 

se encuentran por encima ya que será una región estratégica para la conservación de especies vegetales 

en un escenario de cambio climático. Cabe destacar, que un gran número de estas especies son endémi-

cas o raras (Steinbauer et al., 2016). 

Existen muchos estudios sobre la importancia y la ubicación del límite de bosque. En su gran ma-

yoría son estudios a escala local. De ello se deriva la necesidad de una metodología estandarizada para 

la delineación del límite de bosque, con el fin de realizar estudios comparables y aplicables a zonas más 

amplias. Esto facilitaría la monitorización del estado del límite de bosque y el los estudios posteriores 

realizables tanto de pronóstico de cambio climático, distribución de especies, ecología etc. 

1.3. La aplicación de la teledetección para el estudio del límite de bosque   

La teledetección ha demostrado ser un recurso muy útil debido a su capacidad para adquirir datos 

remotamente de áreas muy extensas y su potencial para estudiar cambios ambientales es bien reconocido 

(Buchanan et al., 2015; Donoghue, 2016). En las últimas décadas se ha realizado un esfuerzo conside-

rable para mejorar la precisión y cobertura global de los datos adquiridos mediante teledetección para 

ayudar a monitorizar los cambios ambientales.  

Tradicionalmente la delineación y análisis del límite de bosque se ha realizado mediante trabajo de 

campo, siendo actualmente la teledetección la herramienta más común. Las fuentes de teledetección más 

utilizadas han sido las ortofotografías aéreas e imágenes por satélite (Morley et al., 2017). Las ortofoto-

grafías han sido utilizadas en estudios tales como Ameztegui et al. (2016) en el Pirineo o Díaz-Varela 

et al. (2010) en los Alpes, e imágenes ópticas en Estados Unidos (Allen and Walsh, 1996), los Alpes 

(Danzeglocke and Oluić, 2005), Austria (Hill et al., 2007), China (Zhang et al., 2009), Rusia (Mathisen 

et al., 2014) y en la India (Mohapatra et al., 2019). Danby (2011), remarcó el hecho de poder comprender 

los cambios pasados en el ecotono del LSB para predecir los cambios futuros y sus impactos, e hizo un 

análisis de diferentes métodos para estudiar estos cambios. Entre ellos incluyo reevaluaciones de parce-

las de campo y transectos, ortofotografías, dendrocronología, registros históricos, teledetección e incluso 

paleoecología, mostrando los beneficios y limitaciones de cada enfoque. 

La monitorización del límite de bosque mediante teledetección óptica pasiva está sujeta a una gran 

incertidumbre debido a la falta de estructura tridimensional y los problemas de sombras. Estas limita-

ciones se pueden superar mediante el uso de sistemas activos como el Light Detection and Ranging 

(LiDAR). Se trata de un sensor óptico activo ampliamente utilizado para la caracterización de la estruc-

tura forestal, que supone una mejora para la caracterización forestal debido a que permite modelar la 

estructura de la vegetación en tres dimensiones (van Leeuwen and Nieuwenhuis, 2010; Coops et al., 

2013; Bolton et al., 2018). Como previamente se ha mencionado una de las características para definir 

el límite de bosque es la altura mínima de árbol. Por lo tanto, el LiDAR resulta más que adecuado para 

detectar este límite ya que podemos establecer el dato de las alturas de los árboles entre otras cosas.  
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Gracias a la disponibilidad de datos LiDAR en el marco del proyecto LiDAR-PNOA se han reali-

zado una gran variedad de estudios de índole forestal entorno a estos datos, si bien éstos no fueron 

inicialmente tomados para este tipo de aplicaciones. Una gran parte de los estudios tienen como objetivo 

obtener variables dasométricas a partir de datos LiDAR (González-Ferreiro et al., 2012; Cabrera et al., 

2014; Guerra Hernández et al., 2016) y realizar inventarios forestales (Guerra et al., 2019). Entre otros 

se han realizado estudios del análisis de severidad de incendios (Montealegre et al., 2014, 2017) , esti-

mación de los combustibles forestales (Gonzalez and Bech, 2017; Botequim et al., 2019) y estimación 

de la biomasa forestal (Lekuona Zuazo et al., 2017; Domingo et al., 2018). A su vez, también se han 

realizado estudios combinando la tecnología LiDAR con otros satélites ópticos como para obtener in-

ventarios forestales (Fernández-Landa et al., 2018) y discriminar especies arbóreas (Blázquez-Casado 

et al., 2019). 

A pesar de ser una fuente de información valiosa, debido a su elevado coste económico no son 

muchos los estudios realizados con LiDAR para estudiar el LSB (Coops et al., 2013). Rees (2006) es-

tudio cambios en el límite de bosque con imágenes multiespectrales y LiDAR, permitiendo caracterizar 

la estructura en el límite de bosque. Næsset y Nelson (2007) demostraron que el LiDAR era capaz de 

detectar el 91% de árboles pioneros superiores a 1m, con una densidad de 7,7 puntos/m2. Thieme et al., 

(2011) obtuvieron resultados muy similares a los anteriores detectando un 90% de los árboles de más de 

1 m y un 49% de los árboles de menos de 1m. Demostraron que casi todas las coníferas con al menos 

1,4 m y un área de copa de 1,1 m2 podían ser detectadas con sensores LiDAR con al menos 7 puntos/m2 

o superiores. Además, las coníferas tienen una mayor probabilidad de ser detectadas frente a los árboles 

de hoja caduca debido a la menor densidad del follaje en estas últimas. Ørka et al. (2012) utilizaron una 

combinación de muestras de franjas con datos LiDAR e imágenes Landsat de menor resolución para 

delinear la zona subalpina en Noruega. Sin embargo, no se conoce una metodología estandarizada y 

automatizada que permita la detección del límite de bosque incorporando datos LiDAR.  

1.4. Objetivos 

El objetivo principal de este Trabajo de Fin de Master es desarrollar un protocolo metodológico 

para automatizar la detección del límite superior de bosque (LSB), partiendo de datos LiDAR PNOA 

del paraje denominado “Peña Ezcaurre”. Como objetivos secundarios se contempla: 

1. Evaluar el efecto de la densidad de retornos en la precisión y exactitud del LSB, utilizando 

hojas LIDAR-PNOA con diferente densidad de puntos (0,5 vs 10 puntos/m2). 

2. Integrar el operador Prewitt para la detección adecuada de discontinuidades en la vegeta-

ción. 

3. Evaluar la sensibilidad de la metodología para los distintos tipos de LSB: cambios abruptos, 

difusos e islas de árboles. 

2. MATERIALES Y MÉTODOS 

2.1. Área de estudio 

El área de estudio para la realización del trabajo se sitúa en el Pirineo occidental, en el límite entre 

las Comunidades de Navarra y Aragón. Más precisamente se ha analizado el paraje denominado “Peña 

Ezcaurre” situado a 2045 m de altitud sobre el nivel del mar. La zona ha sido acotada a las hojas de 

LiDAR disponibles en ambas comunidades en el marco del proyecto PNOA (Figura 2). Esta zona ha 

sido seleccionada debido a su discontinuidad estructural de bosque, donde se presupone que se ha de 

encontrar el LSB debido a la altitud. Además, se encuentra en el límite entre Navarra y Aragón donde 

los datos LIDAR-PNOA tienen una diferencia de densidad de puntos muy alta y resulta interesante para 

adaptar y evaluar la sensibilidad del algoritmo. 

El relieve del lugar es montañoso con laderas de fuerte pendiente y valles muy angostos, lo que ha 

condicionado de forma notable los usos del espacio que, a su vez, han influido en el paisaje. En las áreas 

más elevadas que predominan las superficies abiertas, el paisaje está influido por el pastoreo extensivo 
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y en las laderas, por la explotación forestal. Se ha realizado una comparación entre una ortofoto del 

PNOA de máxima actualidad y una del Vuelo Americano del año 1945 y se aprecia una reforestación 

natural, posiblemente debido a la menor presión ganadera o al cambio de uso de suelo. El área de estudio 

es parte de una Zona de Especial Conservación (ZEC) y una Zona de Especial Protección para las Aves 

(ZEPA). Por lo que tiene un gran interés en cuanto a especies. El estrato arbóreo de este gran macizo 

kárstico está formado por un bosque abierto de Pinus uncinata (pino negro a partir de ahora), desarro-

llado en su límite altitudinal. Y en la parte inferior del piso subalpino pueden encontrarse Pinus sylvestris 

(pino silvestre), Abies alba (abeto común) y Fagus sylvatica (haya). El hayedo está muy extendido y el 

límite de bosque está mayoritariamente formado por hayas, seguidas de pino negro y del ecotono de 

matorral propio de zona subalpina con vegetación rupícola en la cima. Junto a los pinares de pino negro 

que constituyen un hábitat de interés prioritario, se puede encontrar Juniperus communis subsp. alpina 

(enebro rastrero). En general, los ejemplares de pino negro son de talla mediana, disponiéndose con una 

mayor separación y presentando morfologías más retorcidas al incrementarse la altitud. Además, el ma-

cizo tiene un gran interés florístico, es el límite de distribución meridional de los pinares de pino negro 

y contiene flora de alta montaña mediterránea y flora rara y de interés (Villar Pérez, 1980). Sin embargo, 

el conocimiento que se tiene sobre la flora y las comunidades vegetales presentes es escaso.  

La zona en su conjunto es bastante heterogénea y cuenta con zonas abiertas de pastos, islas de 

árboles, bosque cerrado, zonas rocosas, caminos y diferentes discontinuidades, además de grandes des-

niveles. Estos escenarios servirán para ver cómo funciona la metodología en distintas condiciones. 

 

Figura 2. Localización del área de estudio. 

2.2. Materiales 

2.2.1. Datos LiDAR-PNOA 

El LiDAR (Light Detection And Ranging) es un sensor activo de teledetección que es capaz de 

obtener una mayor densidad de medidas tridimensionales del terreno que cualquier otro sistema cono-

cido (Landa et al., 2013). Los escáner láser aerotransportados (Airbone Laser Scanning, ALS), utilizan 
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un escaneado láser en vuelo desde una posición y dirección conocida gracias a al uso de sistemas inte-

grados GPS (Global Positioning Systems) o GNSS (Global Navigation Satellite Systems) e INS (Inertial 

Navigation System). Miden la distancia relativa existente desde el punto de emisión al punto de recep-

ción, así como la intensidad del pulso láser recibido, consiguiendo, de esta forma, un gran volumen de 

puntos. El uso de GPS e INS permite georreferenciar cada uno de los puntos reflejados. Estos datos 

tienen un elevado potencial en diferentes ámbitos, pero destacan en el ámbito forestal ya que permite 

capturar información bajo la cubierta vegetal, cosa que el resto de sensores ópticos utilizados en telede-

tección son incapaces de realizar. 

Los datos LiDAR utilizados en este trabajo han sido adquiridos en el marco del Plan Nacional de 

Ortofotografía Aérea (PNOA), iniciado en el año 2008. Este proyecto surgió a raíz de la Directiva eu-

ropea 2007/60/CE de “Evaluación y gestión de los riesgos de inundación”, que introdujo un nuevo en-

foque e instrumentos para gestionar este tipo de riesgos (Ministerio de Medio Ambiente y Medio Rural 

y Marino, 2011). Actualmente se han realizado dos coberturas, la primera entre 2008 y 2015, con 0,5 

puntos/m2 de media; la segunda iniciada en 2015 y con perspectivas de finalización de este año 2020, 

con una media de 1 pulso/m2, exceptuando La Rioja y Navarra, con una densidad mayor (Figura 3 y 4). 

En el caso de la zona de estudio que se sitúa entre Navarra y Aragón, los datos LiDAR han sido captu-

rados por dos sensores diferentes según el modo de registro de los datos y por lo tanto los datos LiDAR 

son muy diferentes. Mientras que en el caso del Norte de Aragón ha sido obtenido por un sensor con un 

sistema discreto y pertenecen a la primera cobertura, en Navarra se obtuvieron con la tecnología Single 

Photon LiDAR (SPL) y pertenecen a la segunda cobertura.  

Los datos utilizados para el proyecto de la zona Norte de Aragón se obtuvieron mediante el sensor 

ALS60 de Leica. Tienen una densidad de 0,5 puntos/m2, con un error entre 20 y 40 cm de altimetría y 

30 cm de planimetría. Se distribuyen en ficheros de 2x2 km de extensión ya clasificados. En concreto 

las hojas LiDAR que se utilizaron fueron capturadas en octubre de 2011.  

Figura 3. Coberturas publicadas del proyecto LiDAR del PNOA. Fuente: IGN, 2019. 
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Los datos utilizados pertenecientes a la cobertura de Navarra se realizaron con la tecnología SPL 

en concreto con el sensor SPL100 de Leica Geosystems. El SPL consiste en un haz de luz láser emitido 

que se divide en una matriz de 10x10. Al dividir cada haz laser en 100, la cantidad de energía es menor 

comparando con el LiDAR tradicional, sin embargo debido a su gran sensibilidad un único fotón de 

retorno es suficiente para medir un rango (Wulder et al., 2008). Puede llegar a generar hasta 60 000 

pulsos por segundo, y como cada pulso se divide en 100, esto se traduce en una frecuencia de 6 MHz, 

Figura 4. Densidad de puntos LiDAR por metro cuadrado en el ámbito del proyecto LiDAR del PNOA. 

Fuente: IGN, 2019. 

 

Figura 5. Huellas de las pasadas de la segunda cobertura LiDAR de Navarra. 
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significativamente más alta que en los LiDAR discretos. Los datos tienen una densidad media de 14 

puntos/m2, con un error inferior a 20 cm tanto en altimetría como en planimetría y se distribuyen en 

ficheros de 1x1 km de extensión. Las nubes de puntos fueron clasificadas automáticamente mediante 

procesos de machine learning y contienen alturas elipsoidales. Los datos fueron adquiridos en el año 

2017, aunque hubo que realizar pasadas complementarias ya que en algunas zonas no se obtuvieron las 

densidades que se habían especificado. Esto fue debido a que los sensores LiDAR, tienen un rango en 

el que los pulsos son devueltos al sensor, y por encima y por debajo de este rango no se obtienen datos. 

Las zonas con orografía más escarpada del norte, noroeste y noreste de Navarra fueron sobrevoladas 

repetidas veces y podemos llegar a encontrar zonas con hasta 60 puntos/m2 debido al solapamiento de 

varios vuelos (Figura 5). En cambio, la zona sur obtuvo las densidades requeridas sin necesidad de 

repeticiones. Las hojas LiDAR que se utilizaron para este trabajo fueron obtenidas en diferentes pasadas 

entre septiembre y noviembre del año 2017.  

2.2.2. Lenguaje de programación R 

La metodología y el algoritmo de detección se han implementado mediante el lenguaje de progra-

mación R (R Core Team, 2019), el cual se distribuye bajo la licencia GNU GPL de código abierto. 

Aunque originalmente estaba enfocado al análisis estadístico, debido a su flexibilidad hoy en día está 

entre los más utilizados en el ámbito científico.  Debido a la gran comunidad que tiene detrás, se facilita 

mucho la implementación de códigos y existen infinidad de paquetes con todo tipo de utilidades, ya que 

está formado por un conjunto de herramientas muy flexibles. Los paquetes, son colecciones de funciones 

desarrollados por la comunidad que añaden nuevas funcionalidades a la base de R. Los datos espaciales 

también pueden ser analizados por R y existen diferentes paquetes orientados a ello.  

En el presente trabajo los paquetes utilizados principalmente han sido “lidR” (Roussel and Auty, 

2020) y “raster” (Hijmans, 2020). “lidR” implementa una amplia caja de herramientas para leer, filtrar, 

manipular y fusionar datos LiDAR de una manera extremadamente flexible y directa. De la misma ma-

nera, el paquete “raster” permite leer, analizar, manipular y realizar el modelado de datos espaciales para 

datos ráster. Gracias a todo esto se han creado diferentes funciones para automatizar el proceso y que 

pueda ser implementado de manera sencilla. 
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2.3. Métodos 

El proceso metodológico seguido se desarrolla en 4 etapas (Figura 6). Primero se ha realizado el 

preprocesamiento de los datos LiDAR PNOA consistente en la normalización de alturas y eliminación 

de ruido. A partir de las nubes de puntos normalizadas se han seleccionado las variables de entrada para 

la metodología, fracción de cabida cubierta y altura mínima de árbol, creando rásters a diferentes reso-

luciones, de 50 m hasta 2 m. Estos ráster se utilizarán en la siguiente etapa para bajar la resolución de 

manera iterativa. En la tercera etapa se ha realizado un suavizado previo de los ráster y mediante el 

algoritmo de detección de bordes Prewitt se han seleccionado las zonas candidatas a LSB. Estas zonas 

candidatas serán la entrada de la siguiente iteración, ya con una resolución menor, repitiendo el proceso 

hasta lograr la resolución deseada. Por último, se ha realizado la validación de la metodología. 

Figura 6. Esquema del proceso metodológico que se ha llevado a cabo. 
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2.3.1. Pretratamiento de los datos LiDAR 

El paquete LidR permite la lectura de datos LiDAR tanto comprimidos (.laz) como descomprimidos 

(.las). La lectura de los datos comprimidos tiene un coste computacional más elevado, requiriendo más 

tiempo de procesamiento, por lo que dependerá del usuario elegir un formato anteponiendo el espacio 

de almacenamiento o el tiempo de cálculo. En este caso se ha trabajo directamente con los datos com-

primidos. Dentro de este paquete existe la posibilidad de trabajar con un LAScatalog. Este catálogo es 

un conjunto de archivos las o laz, y sirve para gestionar y procesar un conjunto de datos, sin cargar todos 

los datos en la memoria del ordenador. Por lo que es posible trabajar con grandes cantidades de datos, 

ya que los separa en fragmentos, que no necesariamente tienen que coincidir con el patrón del archivo 

y los procesa de manera separada en los procesadores del ordenador. 

En la primera etapa de pretratamiento de datos LiDAR, se filtró la nube de puntos mediante la 

función “lasfilter” y únicamente se mantuvieron las clases de puntos clasificadas como 2 (suelo), 3 (ve-

getación baja), 4 (vegetación media) y 5 (vegetación alta). Una vez filtrada la nube de puntos, se utili-

zaron los puntos clasificados como suelo para generar un Modelo Digital de Elevaciones (MDE), el cual 

representa la topografía del terreno de la zona de estudio. Los puntos clasificados como suelo fueron 

convertidos a una superficie ráster con una resolución de 2 m. El MDE es necesario para la normaliza-

ción de las alturas de la nube de puntos, es decir, para obtener la altura real en cada punto de la superficie. 

De manera simplificada, es la resta entre la nube de puntos y el MDE, que crea una superficie normali-

zada con el suelo a 0 m. Para ello, se utilizó la función “grid_terrain” con el método “knnidw”, que 

combina el vecino más próximo con la Ponderación de Distancia (IDW) para realizar la interpolación. 

2.3.2. Variables de entrada para la detección del límite de bosque 

En la segunda etapa, se seleccionan las variables de entrada para la metodología. La definición de 

un bosque incluye una altura mínima y una cobertura de copa mínima para las especies arbóreas que 

variara dependiendo de la región biogeográfica. Estas variables se utilizan para la detección del LSB y 

serán elegidas por el usuario. Las variables pueden ser seleccionadas con un conocimiento previo de la 

zona. A este respecto pueden servir de referencia los trabajos realizados por Cienciala et al. (2010) y 

Lund (2018), los cuales mencionan diferentes valores para distintos países. En este caso, estas variables 

de LSB se han definido en base a la definición dada por Holtmeier y Broll (2005) y la adoptada por 

España de cara a la  Convención Marco de Naciones Unidas sobre el Cambio Climático (UFCCC). Por 

lo que los valores han sido, 3 m de altura mínima y una cobertura de copa mínima del 30 %. 

Una vez están definidos los valores, se han calculado los ráster con la fracción de cabida cubierta 

(FCC) y la altura mínima de árbol partiendo de los datos normalizados de la etapa anterior. A partir de 

la nube de puntos es posible extraer diferentes métricas forestales, como las alturas, los diferentes estra-

tos y la densidad entre otros. La FCC es el porcentaje (entre 0 y 100%) de suelo cubierto por la proyec-

ción de todas las copas arbóreas. Para estimar la FCC se utilizó el total de retornos por encima de 3 m 

respecto al total de primeros retornos, ecuación 1. Este cálculo ha sido utilizado en trabajos como Ørka 

et al. (2012) o Hopkinson y Chasmer (2009). 

 

𝐹𝐶𝐶 =  
𝑁𝑐

𝑁𝑟
   [%]                 (Ec. 1) 

 

Donde Nc es el número de primeros retornos sobre una altura establecida y Nr el total de primeros 

retornos. 

Para la creación de los ráster de FCC se utilizó la función “grid_metrics” que permite calcular una 

serie de estadísticas definidas por el usuario dentro de cada pixel. Los ráster de FCC se crearon a cinco 

resoluciones distintas, 50, 25, 10, 5 y 2 m para posteriormente poder realizar el filtrado espacial e ir 

reduciendo la resolución en cada iteración. En total se crearon 10 ráster, cinco con el vuelo de Aragón 

(0,5 puntos/m2) y otros cinco con el de Navarra (10 puntos/m2).  
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2.3.3. Filtrado espacial 

Para detectar el límite de bosque se han empleado filtros de detección de bordes. Estos filtros han 

sido utilizados ya por distintos autores para detectar los límites de bosques y ecotonos (Johnston and 

Bonde, 1989; Fortin, 1994; Camarero et al., 2000). Los bordes son definidos como un cambio signifi-

cativo en el nivel de intensidad de los pixeles adyacentes. En este caso no va a ser intensidad ya que los 

ráster que se han empleado contienen datos de FCC (%).  

Se ha empleado el operador Prewitt, que es un filtro rápido y fácil de aplicar, orientado a la detec-

ción de ejes longitudinales y latitudinales. Se basa en el cálculo de la primera derivada o pendiente, en 

las direcciones x e y para luego medir la distancia de sus productos. En la Figura 7 se muestran las dos 

kernel que se aplican.   

 

𝐺 =  √𝐺𝑥2 + 𝐺𝑦2                      (Ec. 2) 

Una vez aplicadas las dos kernels por separado, se combinan para obtener la magnitud del gradiente 

utilizado la ecuación 2. 

Previo a aplicar el filtro de Prewitt, se ha realizado un suavizado del ráster utilizando una ventana 

móvil con la media, para reducir la cantidad de variaciones del valor FCC entre pixeles vecinos. De esta 

manera será más fácil detectar los bordes. La ventana móvil que se ha aplicado durante toda la metodo-

logía, tanto para el filtro espacial como para la media, es de 3x3. Esta medida se ha determinado empí-

ricamente, resultando ser más óptima que otras de mayor tamaño. En la Figura 8 se muestra un ejemplo 

del filtrado espacial en una iteración. 

Una vez se ha realizado el suavizado y la detección de bordes, se obtiene un nuevo ráster con valores 

que indican un borde más pronunciado cuanto más alto es el valor resultante y la ausencia de bordes 

conforme se acerca a 0. Los valores obtenidos han estado entre 0 y 60 aproximadamente, dependiendo 

la iteración. De estos pixeles, hay que seleccionar aquellos considerados como bordes, estableciendo un 

umbral. Previo a la selección del umbral, hay que tener en cuenta algunos criterios utilizados en el pro-

cesamiento de imágenes. Los más utilizados para la detección optima de bordes priorizan minimizar la 

probabilidad de falsos negativos (pixeles que forman parte de un borde y no han sido asignados como 

tal) y también la de falsos positivos (pixeles que no forman parte de un borde, y han sido asignados 

como tal). Esto se podría minimizar utilizando máximos locales o mínimos locales. Magnier et al. (2018) 

remarcaron la importancia de penalizar los falsos negativos, frente a los falsos positivos. Algunos pixe-

les falsos positivos no necesariamente perturban la visibilidad de los objetos deseados, mientras que los 

pixeles falsos negativos pueden cambiar significativamente el aspecto de un objeto, en este caso el LSB. 

Además, debido a que hay que seleccionar un umbral, si algún falso negativo quedase por debajo se 

perdería su información, mientras que un falso positivo podrá ser corregido en las próximas iteraciones. 

Por lo tanto, se ha optado por aplicar un filtro focal de ventana móvil para identificar el máximo local. 

Este filtro focal asignara el valor más alto de la ventana al pixel central. 

Posteriormente, se selecciona un umbral a partir del cual se considerarán zonas candidatas a LSB y 

las que estén por debajo se descartarán. Este umbral puede ser modificado por el usuario; en este caso 

se han descartado aquellos datos por debajo del 15 % ya que no se consideran bordes de mucho peso. 

El ráster resultante contiene una zona más acotada que el ráster original y serán las zonas candidatas a 

Gx= 
 

Gy= 
 

Figura 7. Kernels utilizadas por el operador Prewitt. 

 

 

 

Figura 12. Las dos kernels utilizadas por el operador Prewitt. 
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LSB. Estas zonas candidatas se utilizan para recortar el siguiente ráster de mayor resolución. Se repite 

el mismo proceso de forma iterativa mejorando la resolución en cada iteración, hasta llegar a la resolu-

ción que ha sido establecida por el usuario o en este caso hasta los 2 metros. Por último, el ráster final, 

es recortado con el ráster de FCC a 25 m con una FCC superior a 30 %, como se ha establecido en la 

segunda etapa. De esta manera nos aseguramos que solo se incluyen las zonas definidas como LSB y no 

aquellas con menor densidad.  

 

 

Figura 8. Ejemplo del filtrado espacial en una iteración. 
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2.3.4. Validación  

Se ha realizado una validación con la ayuda de QGIS. Para ello se ha utilizado una ortofoto del 

PNOA del año 2017 a máxima resolución y se ha superpuesto el ráster de FCC a 25 m superior a 30% 

(con árboles superiores a 3 m). De esta manera, se han delineado aquellas zonas consideradas LSB, 

obteniendo una línea por hoja LiDAR que se ha utilizado en el área de estudio. Este proceso nos permi-

tirá evaluar el grado de correspondencia que existe entre los resultados de la metodología, teniendo en 

cuenta las dos resoluciones, y los límites establecidos mediante la fotointerpretación de la ortografía del 

PNOA y la FCC mínima. Para el cálculo de correspondencia se ha utilizado la herramienta llamada 

“diferencia”. Con esta herramienta se mantienen aquellas partes de la capa de entrada que no se encuen-

tran dentro de los límites de la capa superpuesta. Como capa de entrada se ha introducido la que se ha 

digitalizado a partir de la ortofotografía y la capa que se superpone es el resultado de la metodología. La 

Figura 9 muestra un ejemplo de cómo se ha realizado la validación. El resultado final de la validación 

contendrá la longitud (m) de la delineación y cuántos de estos metros no están incluidos en los pixeles 

del resultado de la metodología, es decir la diferencia. Finalmente tendremos un porcentaje de superpo-

sición entre el LSB delineado y el resultado de la metodología. Un mayor porcentaje de superposición 

mostrará una mayor correspondencia entre ambos. 

Se ha realizado otro proceso de validación para comprobar el error de omisión de los resultados. El 

error de omisión hace referencia a aquellos puntos o pixeles que pertenecen a una determinada categoría 

y no han sido clasificado como tal, es decir un falso negativo. Para ello se han creado puntos sobre la 

línea delineada como LSB, a la misma distancia de la resolución final del resultado. Luego se ha cuan-

tificado los puntos que estaban dentro del resultado de la metodología y aquellos que no estaban. Los 

puntos que aparecen fuera del resultado son considerados errores de omisión, ya que están sobre la 

delineación de la validación, pero no han sido detectados como LSB (Figura 10). 

 

 

Figura 9. Ejemplo de la validación realizada.  
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Figura 10. Ejemplo de la validación realizada mediante puntos para ver 

el error de omisión.  
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3. RESULTADOS Y DISCUSIÓN 

Tras aplicar la metodología se han obtenido dos resultados para el LSB, cada uno realizado a partir 

de una densidad de puntos diferente. La Figura 11 muestra el mapa del LSB realizado con los datos 

LiDAR de Aragón a 0,5 puntos/ m2, con los que se ha obtenido una resolución de 5 metros. La Figura 

12 muestra el resultado del LSB realizado a partir de los datos de Navarra a 10 puntos/m2, con una 

resolución final de 2 m. Los mapas con los resultados intermedios de la metodología se adjuntan en el 

Anexo I para los datos de Aragón y en el Anexo II para los datos de Navarra. En estos mapas se pueden 

ver las zonas candidatas a LSB comenzando con una resolución de 50 metros y obteniendo zonas más 

reducidas conforme se aumenta la resolución. Para un análisis más detallado de los resultados, en los 

Anexos III y IV se muestran los mapas con las hojas LiDAR ampliadas junto con la capa delineada en 

la validación. 

Figura 11. Resultado del LSB a 5 metros, tras la aplicación de la metodología a los datos de LiDAR de Ara-

gón (0,5 puntos/m2). 

 



16 

La Tabla 1 y Tabla 2 muestran el resultado de la validación manual para cada hoja de datos LiDAR. En 

las tablas se pueden encontrar las medidas (m) de la línea realizada manualmente y el porcentaje de 

superposición con el área de LSB resultado de la metodología. En el caso de los resultados realizados a 

partir de datos con baja densidad de puntos se ha obtenido una superposición de entre 75 y 89 % (Tabla 

1).  En el caso de los resultados realizados a partir de unos datos con mayor densidad de puntos, la super-

posición ha sido de entre 80 y 96 % (Tabla 2). 

Tabla 1. Resultados de la validación con puntos para los datos de Aragón. 

 

 

 

 

 

 

Hoja LiDAR Aragón Delineación manual (m) Diferencia (m) Superposición (%) 

1 4509 929 79.4 

2 5150 663 87.1 

3 3110 339 89.1 

4 3494 631 81.9 

5 7312 1837 74.9 

6 1970 410 79.2 

TOTAL 25545 4809 81.2 

Figura 12. Resultado del LSB a 2 metros, tras la aplicación de la metodología a los datos de LiDAR de Ara-

gón (10 puntos/m2). 
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Tabla 2. Resultados de la validación con puntos para los datos de Navarra. 

 

La Tabla 3 y Tabla 4 muestran el resultado de la validación donde se ha comprobado el error de 

omisión de los resultados para cada hoja LiDAR. En ellas se muestran el total de puntos que se han 

creado sobre la delineación y la cantidad de puntos erróneos, es decir, que no han sido detectados como 

LSB. Por último, se muestra el porcentaje de error de omisión. Los resultados realizados con los datos 

de Aragón tienen un porcentaje más elevado de error frente a los de Navarra.  

 

Tabla 3. Resultados de la validación con puntos para los datos de Aragón. 

 

 

 

 

 

 

Tabla 4. Resultados de la validación con puntos para los datos de Navarra. 

 

 

 

 

 

 

 

 

 

 

Hoja LiDAR Navarra Delineación manual (m) Diferencia (m) Superposición (%) 

1 1812 231 87.3 

2 3065 265 91.4 

3 1255 196 84.4 

4 4549 773 83.0 

6 1066 40 96.2 

7 2100 188 91.0 

8 2060 406 80.3 

9 2425 177 92.7 

12 1920 195 89.8 

13 3246 236 92.7 

14 1979 244 87.7 

TOTAL 25477 2951 88.4 

Hoja LiDAR Puntos Puntos erróneos Error de omisión (%) 

1 1101 367 25.0 

2 556 71 11.3 

3 898 136 13.2 

4 720 186 20.5 

5 576 127 18.1 

6 314 82 20.7 

TOTAL 4165 969 18.9 

Hoja LiDAR Puntos Puntos erróneos Error de omisión (%) 

1 795 117 12.8 

2 1407 131 8.5 

3 533 97 15.4 

4 1892 390 17.1 

6 519 18 3.4 

7 962 91 8.6 

8 823 209 20.3 

9 1127 92 7.5 

12 867 98 10.2 

13 1512 118 7.2 

14 871 121 12.2 

TOTAL 11308 1482 11.6 
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La validación ha mostrado resultados satisfactorios. Por una parte, los resultados obtenidos con 

datos iniciales de menor densidad han tenido un 81% de superposición en su conjunto. Los resultados 

obtenidos con una mayor densidad de puntos han tenido una superposición total del 88%, superior a los 

anteriores como se podía esperar.  

A continuación, se ha realizado un análisis más detallado de los resultados de las hojas LiDAR 

individualmente, que pueden ser consultadas en el Anexo III para Aragón, y en el Anexo IV para Nava-

rra. La primera hoja LiDAR de Aragón, ha obtenido un 79% de superposición. Ha detectado errónea-

mente como LSB una zona de pastos donde existe una discontinuidad en la vegetación, pero una isla de 

árboles parte del LSB ha sido detectada de manera precisa. La hoja 2, con un 87%, ha tenido un resultado 

bastante preciso, sin embargo, la zona que rodea un claro dentro del bosque ha sido detectada como 

LSB. La hoja 3 ha obtenido un 89% de superposición, siendo el más alto de todos, con un resultado muy 

preciso e incluyendo una pequeña isla de árboles. En el caso de la hoja 4, el LSB delineado para la 

validación es bastante menor que los pixeles detectados como LSB, ya que el gran desnivel, no hizo 

posible realizar la delineación más allá de lo que se muestra. Este obtuvo un 82% de superposición, no 

obstante, se aprecian muchos pixeles falsos positivos. La hoja 5, con un 74% de superposición, es la que 

menor valor ha obtenido, aunque visualmente parece ser más precisa que la 4, ya que no contiene tantos 

falsos positivos. Algunos de los falsos positivos que se han detectado, están alrededor de un camino el 

cual tiene una zona de pasto en sus inmediaciones. Los falsos positivos no se han podido cuantificar con 

la validación, de modo que, en algunos casos a pesar de tener un mayor porcentaje en la validación, no 

significa estrictamente que tengan un mejor resultado. Por último, la hoja 6 con un 79%, parece tener la 

mayor cantidad de falsos positivos. Corresponden a unas zonas con menor densidad de árboles, bastantes 

claros y a un camino rodeado de pastos.  

Entre las hojas LiDAR de Navarra, la hoja 1 con un 87% de superposición, contiene un gran número 

de pixeles falsos positivos, que corresponden a zonas con una densidad de copas muy heterogénea. La 

hoja 2 con 91%, ha detectado con mucha precisión el LSB e incluso una isla de árboles, que también 

fue detectada en la hoja 1 de Aragón. La hoja 9 con un 92%, ha obtenido un resultado muy similar a este 

anterior. Las hojas 3 y 4, con 84% y 83%, a pesar de tener una superposición menor han sido muy 

precisas y también han detectado islas de árboles que formaban parte del LSB. No resulta extraño que 

la superposición pueda ser menor en algunos casos, ya que los pixeles tienen únicamente 2 m. La deli-

neación que se realizó, en algunos casos se queda a escasos 2 o 3 m del resultado, quedando este fuera 

de la superposición. La hoja 6, con un 96%, es la de mayor superposición. Este resultado se puede deber 

a la marcada discontinuidad con una transición inmediata de bosque a pasto y un bosque con una densi-

dad muy homogénea. Las hojas LiDAR 7 (91%), 12 (89%) y 13 (92%) muestran unas características 

muy similares a la anterior, con una discontinuidad inmediata y densidades homogéneas. La hoja 8 

muestra el valor de superposición menor, con un 80%. A primera vista, no parece tener muchos errores, 

por lo que puede suceder como en el caso de las hojas 3 y 4, debiéndose a la gran resolución de los 

pixeles. Por último, la hoja 14, con 87%, contiene muchos falsos positivos. Al igual que la hoja 6 de 

Aragón que se encuentra en la misma zona, los falsos positivos se corresponden con un camino rodeado 

de pastos. Las hojas LiDAR de Navarra 5 y 10 no se han incluido en los anexos ya que no hay LSB en 

ninguna de ellas. 

En una comparación general de ambos resultados, el realizado con los datos de Navarra, resulta 

más preciso ya que contiene menos falsos positivos que el realizado con los datos de Aragón. Con inde-

pendencia de la resolución espacial utilizada (2 o 5 m), en las zonas con un terreno más complejo no ha 

sido posible ubicar correctamente el LSB, tan solo parcialmente. Las hojas que contenían este tipo de 

terreno, han dado lugar a formas complejas. Otra de las limitaciones generales que ha surgido, se ha 

dado en los casos que en los que el LSB era más difuso con una transición más gradual y el bosque tenía 

una densidad más heterogénea. Además, algunos claros de los bosques también han sido detectados 

como LSB, al igual que los bordes de los pastos. A pesar de que, la metodología ha sido creada y testada 

con el fin de encontrar el LSB, es sensible a las discontinuidades en la vegetación y por esa razón detecta 

otras zonas que no se corresponden al LSB. Por eso mismo, podría explorarse su utilización para otro 

tipo de fines.  
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La metodología desarrollada para la detección del LSB ha demostrado ser suficientemente robusta 

tal y como sugieren los resultados obtenidos en la zona de estudio piloto. Tal y como señalaron Fortin 

et al. (2000), es importante que los métodos desarrollados para la detección de ecotonos tengan en cuenta 

la naturaleza de éstas fronteras, pudiendo mostrar transiciones muy nítidas y abruptas como graduales o 

incluso desconectadas, sinuosas o en distribuciones aisladas. En línea con este razonamiento, la meto-

dología propuesta se ha diseñado deliberadamente para la identificación de zonas donde se ubica poten-

cialmente el LSB en contraposición con lo visto en otros estudios de detección de LSB (Szerencsits, 

2012; Ørka et al., 2012; Czajka et al., 2015).  

Tal y como se esperaba, la densidad de pulsos de las nubes de puntos ha influido en resultado de la 

resolución final, y es que la precisión de la detección de ecotonos está directamente relacionada con la 

resolución de los datos iniciales (Fortin, 2009). En el caso de Navarra, con mayor densidad, se ha obte-

nido una resolución final de 2 m, mientras que, con los datos de Aragón, no ha sido posible llegar a esa 

resolución ya que se formaban huecos creando un efecto de “sal y pimienta”, como se muestra en la 

Figura 13. La metodología propuesta se ha diseñado para alcanzar la resolución máxima que permitan 

los datos LiDAR originales. Sin embargo, es posible especificar la resolución final a la que se quiere 

llegar. De acuerdo con Paulsen and Körner (2001) la posición exacta del LSB varía en función de la 

escala y las variables utilizadas. Por lo que una resolución menor, no implica necesariamente un peor 

resultado, sino simplemente menor precisión. Sin embargo, lo ideal es que la escala elegida refleje la 

escala de los procesos abordados y que alcance la mayor exactitud posible en la representación del fe-

nómeno. En caso contrario, la disposición de límites geográficos resultantes pueden verse drásticamente 

alterados (Jacquez et al., 2000; Fortin, 2009). En el caso de esta metodología, una resolución espacial 

de 2 m es ideal para abordar el LSB y 5 m parece razonable dependiendo de la finalidad de los resultados. 

Por lo que, a pesar de obtener una menor resolución con los datos de menor densidad de puntos, se 

obtiene un resultado con una escala válida. Aunque el hecho de tener menor densidad de puntos, puede 

acarrear otro tipo de limitaciones que se comentaran a continuación.  

El algoritmo de bordes Prewitt ha funcionado de manera correcta en la metodología, si bien es 

cierto que no se han encontrado estudios que lo hayan utilizado para detectar ecotonos o bordes, salvo 

aquellos que utilizan además la información de intensidad. Este algoritmo se ha utilizado más frecuen-

temente en aplicaciones de teledetección para detectar características lineales continuas en las imágenes 

(Jensen, 2015), por lo que se consideró adecuado para delimitar la disposición del LSB. Además, la 

utilización de ventanas móviles ha resultado ser efectiva, tal y como demostró Szerencsits (2012) para 

cartografiar el límite de bosque y de árbol en Suiza. Uno de los algoritmos alternativos al utilizado en 

esta metodología, puede ser el “lattice wombling”. Camarero et al. (2000) lo utilizaron para detectar el 

ecotono del límite de árbol, e incorporaron diferentes variables (densidad, tamaño y crecimiento entre 

Figura 13. A la izquierda un ráster con una resolución de 2 metros y a la derecha con 5. 
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otras variables) para medir el gradiente de variables continuas en el espacio. Fortin et al. (2000) realiza-

ron una revisión sobre los algoritmos para la detección de bordes de fronteras ecológicas entre los que 

mencionó el algoritmo de Sobel, muy similar a Prewitt pero con otros valores en la kernel, el ya men-

cionado “lattice wombling” y “moving plit window” entre otros. Cabe destacar la simpleza de los algo-

ritmos como Prewitt o Sobel frente a “lattice wombling”. Su sencillez puede resultar muy beneficiosa a 

la hora de trabajar con grandes cantidades de datos, suponiendo un coste computacional menor.  

No obstante, sería interesante probar la metodología con densidades de nubes de puntos intermedias 

o al menos con las de la segunda cobertura LiDAR del PNOA que cuentan con 1 punto /m2. Debido a 

que solo se ha testado en el área de estudio seleccionada, sería importante aplicarla en otras zonas con 

características diferentes para ver las complicaciones que puedan surgir. Además, se deberían utilizar 

otras fuentes de información como datos de campo o cartografía ya existente para validar el procedi-

miento desarrollado. Como por ejemplo las cartografías realizadas en el estudio llevado a cabo por 

Ameztegui et al. (2016), donde cartografiaron el ecotono del límite de árbol en el Pirineo Catalán para 

los años 1956 y 2006. Las cartografías se realizaron mediante la reclasificación de fotografías aéreas. 

Debido a que esto no permitía determinar las alturas utilizaron un criterio de cobertura con celdas de 50 

m. Los sensores LiDAR multiespectrales (M-LiDAR) desarrollados recientemente tienen un gran po-

tencial para la cartografía forestal. Pueden proporcionar no solo una nube de puntos densa, sino también 

información espectral que puede simplificar el procesamiento de datos y facilitar la interpretación de los 

mismos (Yu et al., 2017). Ya se han realizado varios estudios que han demostrado el potencial de estos 

datos para clasificar las especies arbóreas (Budei et al., 2017; Axelsson et al., 2018). Por lo que la 

implementación de la metodología con este tipo de datos podría resultar muy interesante, dando la po-

sibilidad de identificar las especies que se encuentran en el LSB. 

Se ha analizado la altitud del resultado y se ha observado una diferencia entre la altitud del LSB en 

exposición Sur y Norte (Figura 14). La cara Sur muestra mayor variación altitudinal, desde los 1000 a 

2000 m, mientras que el resultado para la cara Norte se distribuye entre los 1000 y 1800 m. Las condi-

ciones topo climáticas como la nieve o la exposición solar, pueden ser la causa de esta diferencia como 

explican Paulsen y Körner (2001),  Treml y Banaš (2008). 

Como se ha comentado previamente algunas zonas han sido erróneamente seleccionadas, ya que a 

pesar de tener una discontinuidad en la vegetación no son parte del LSB. Esto puede permitir que el 

algoritmo tenga otras utilidades aparte de poder detectar el LSB ya que es sensible a discontinuidades 

en la vegetación. Entre los posibles usos se encuentran la detección de cambio de uso de suelo, la mo-

nitorización de masas forestales, delimitación de zonas de vegetación incendiadas, detección de islas de 

árboles y claros de bosque, así como la detección de setos vivos y monitorización de bosque de ribera. 

Si el LiDAR se convierte en una tecnología más accesible en un futuro, esta metodología podría también 

servir para detectar áreas deforestadas y talas ilegales a escala planetaria.  
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Figura 14. Comparación de la frecuencia de altitud en la exposición Sur y Norte. 
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Næsset y Nelson (2007) demostraron que con una diferencia de diez años de datos LiDAR con 

suficiente densidad (alrededor de 8 puntos/m2) se podrían detectar arboles recién establecidos en el LSB 

y afirmar si se está produciendo una expansión. Por lo que, en unos años, sería posible estudiar los 

posibles avances del LSB si el proyecto PNOA-LiDAR continúa como se espera con una mayor densi-

dad de puntos en su tercera cobertura como apuntan las actas del Consejo Superior Geográfico (2019). 

Se abre la posibilidad de crear una base de datos con el LSB de todo el territorio español , como el 

que creó (Szerencsits, 2012) en Suiza. De esta manera sería posible realizar una monitorización perió-

dica y detectar los cambios que sucedan. Además, un análisis del LSB de los Pirineos a escala regional 

es posible ya que se obtuvo una resolución de 5 m con la nube de puntos de baja densidad. Esta resolu-

ción es óptima para estudiar este fenómeno.   

5. CONCLUSIONES 

Se ha desarrollado e implementado una metodología para la detección automatizada del límite su-

perior del boque mediante filtrado espacial de datos LiDAR. Se trata por tanto de una nueva experiencia 

de puesta en valor de los datos LiDAR PNOA en al ámbito forestal. Pese a las limitaciones observadas 

en relación con topografía compleja y el inherente efecto en la precisión derivado de la densidad de 

retornos en la nube de puntos LiDAR, los resultados se muestran eficaces en la detección del LSB. En 

términos generales de los resultados obtenidos se puede concluir que: 

• La metodología en su conjunto resulta válida para detectar el LSB, aunque presenta ciertas 

limitaciones. 

• La utilización de datos LiDAR y su posterior filtrado espacial mediante el filtro de detección 

de bordes Prewitt muestra un gran potencial para detectar el LSB. 

• La automatización de la metodología supone una ventaja a la hora de implementar todo el 

proceso en zonas amplias. 

• Las densidades de las nubes de puntos que se emplearon en la metodología afectaron al 

resultado final. Aquellas con una mayor densidad (10 puntos /m2) obtuvieron un resultado 

de mayor resolución y con menor error, mientras que las de baja densidad (0,5 puntos/m2) 

obtuvieron menor resolución y mayor error, pero se siguen considerando válidas para de-

tectar el LSB. 
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ANEXO I – LAS ZONAS CANDIDATAS A LSB CON LOS DATOS DE ARAGÓN  
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ANEXO II -LAS ZONAS CANDIDATAS A LSB CON LOS DATOS DE NAVARRA 
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ANEXO III – RESULTADOS LSB CON LOS DATOS DE ARAGÓN POR HOJAS LIDAR 
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ANEXO IV - RESULTADOS LSB CON LOS DATOS DE NAVARRA POR HOJAS LIDAR 

 

  



39 

 



40 

  



41 

  



42 

 

 



43 

  



44 

 

 

 


