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Preface

In the present work we see how advanced set-theoretic methods apply to the study of

infinite abelian groups. It has been written under the supervision of Prof. Dr. Fer-

nando Montaner Frutos, from the University of Zaragoza, and Prof. Dr. Joan Bagaria

i Pigrau, from the University of Barcelona, and it has been partially supported by the

IUMA (Instituto Universitario de Matemáticas y Aplicaciones de la Universidad de

Zaragoza) under grant PEX-17-007.

The first chapter is a brief collection of preliminary results needed for the remaining

chapters. Most of the proofs are omitted but can be easily found in any standard

textbook in the topic. In the second chapter, we see a few examples in which some in-

stances of large cardinals such as measurable, strongly compact and δ-strongly compact

cardinals naturally arise when dealing with infinte abelian groups. In particular, we see

Eda’s Theorem and some results regarding the Dugas-Göbel cardinal. The third and

last chapter focuses on the Whitehead’s Problem, which asks whether every Whitehead

group is free. Although its restriction to groups of countable cardinality has a positive

solution in ZFC, the general problem is undecidable. Indeed, both a positive and a

negative answer for groups of size ℵ1 are consistent with ZFC. An Appendix at the end

intends to be a short and intuitive introduction to the technique of forcing, including

the iteration of forcing used by Martin and Solovay to prove the consistency of Martin’s

Axiom.

v





Introduction

Most of mathematics can be done within ordinary set theory (that is, ZFC) or even

smaller fragments of it. In fact, the working mathematician rarely needs to explicitly

mention the axioms that he or she uses, with the possible exception of the Axiom of

Choice. However, it might happen that a given proposition neither can be proved nor

disproved in ZFC. Indeed, after Gödel’s Incompleteness Theorems we know that every

recursive axiomatic system powerful enough to formalize arithmetic, and ZFC is one

of them, is either consistent or complete. Of course, mathematicians believe that ZFC

is consistent. But assuming that ZFC is consistent implies accepting its incomplete-

ness, that is, the existence of mathematical assertions which neither can be proved nor

disproved in ZFC. This motivates a rich debate which is still on going on the necessity

of new axioms for mathematics (see [FFMS]), being the most popular position among

set-theorists that new axioms are needed. For instance, although ZFC is not able to

decide the Continuum Hypothesis, mathematicians could eventually agree on the new

axioms to be added to ZFC so that ZFC plus those new axioms is still consistent and

powerful enough to decide whether the Continuum Hypothesis does or doesn’t hold.

The purpose of this work, however, is not to convince the reader to embrace this po-

sition. Less ambitious, we will just focus on how different set-theoretic methods like

large cardinal axioms, forcing and ultrapowers apply to the study of infinite abelian

groups.

It usually happens that if we restrict ourselves to the study of mathematical objects of

countable size, things are provable in ZFC. This does not mean that one cannot deal

with objects of uncountable size in ZFC. Indeed, as we shall see, Specker’s Lemma,

which shows that the additive group Z is slender, can be generalized to the product of

uncountable-many copies of Z. More precisely, for any uncountable cardinal κ and any

homomorphism h : Zκ −→ Z, then h(eα) = 0 for all but finitely many α, where eα is the

function en : κ −→ {0, 1} such that eα(β) = 1 if and only if α = β. However, although

it is a theorem of ZFC that Hom(Zω/Z<ω,Z), where the classes in Zω/Z<ω consists

of the vectors in Zω differing in just finitely many coordinates, is the trivial group, it

vii
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is independent of ZFC whether the same holds for the group Hom(Zκ/Z<ω,Z) with

κ uncountable. Indeed, Eda’s Theorem shows that Hom(Zκ/Z<ω,Z) is not the trivial

group if and only if there exists a measurable cardinal. As we shall see, the existence of

measurable cardinals cannot be proved in ZFC (assuming ZFC is consistent). There-

fore, the question of whether Hom(Zκ/Z<ω,Z) with κ uncountable is the trivial group

is independent of ZFC.

Throughout the second chapter we shall see some other examples of independent state-

ments regarding infinite abelian groups apart from Eda’s result. For instance, the

so-called Dugas-Göbel cardinal of a strongly cotorsion-free group is, if it exists, greater

than or equal to the first measurable cardinal. Some other large cardinal notions such

as strongly compact and δ-strongly compact will appear. As it happens for measurable

cardinals, strongly compact and δ-strongly compact cardinals can be defined in terms

of complete filters which can be extended to complete ultrafilters. To provide a more

practical characterization of the weaker δ-strongly compact cardinals dealing with ul-

trapowers and  Loś’ results is necessary. This characterization of δ-strongly compact

cardinals will be useful to prove Dugas-Eda-Abe’s Theorem, which states that if κ is a

δ-strongly compact cardinal, then RX = RκX for every group of size less than δ, from

which it follows that RZ = RκZ if and only if κ is ω1-strongly compact. Again, since the

existence of ω1-strongly compact cardinals cannot be proved in ZFC (provided ZFC

is consistent), knowing whether Z satisfies the cardinal condition for some cardinal κ

is another example of a mathematical proposition that cannot be decided in ZFC for

it follows from the existence of a large cardinal.

In the third chapter we will just focus on the Whitehead’s problem. The Whitehead’s

problem asks whether every W -group (an abelian group is said to be a W -group if

every homomorphism onto A whose kernel is isomorphic to Z splits) is free. Although

in 1951 Stein answered this question in the positive for groups of countable cardinality,

the question remained open for groups of arbitrary cardinality until Saharon Shelah

proved in 1974 that, restricted to groups of size ℵ1, both a negative and a positive an-

swer are consistent with ZFC. To be precise, Shelah showed that in the constructible

universe L every W -group of size ℵ1 is free and that under the assumption of Mar-

tin’s Axiom one can always find a W -group of cardinality ℵ1 which is not free. Since

both the Axiom of Constructibility and Martin’s Axiom are consistent with ZFC, the

undecidability of the Whitehead’s problem follows. Gödel proved the consistency of

the Axiom of Constructibility in the late 30’s by constructing the universe L, an inner

model of ZF where he showed that the Axiom of Choice and the Continuum Hypoth-
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esis hold. To prove the consistency of Martin’s Axiom, Martin and Solovay, based on

Solovay and Tennenbaum’s work on the consistency of the Suslin’s Hypothesis, built a

model of ZFC in which MA holds. To follow the proof some background in forcing is

required. In the Appendix the reader will find a short exposition of forcing, Solovay-

Tennenbaum’s iterated forcing and Solovay-Martin’s proof.





Chapter 1

Preliminaries

In this chapter we review the set-theoretic and algebraic background which is needed

for the next chapters. We assume that the reader is familiar with the basic notions

of first-order logic, the logical machinery we use to build statements and conditions of

sets. If any doubt, we suggest the reader to consult [Men97]. In order to avoid this

chapter to be unnecessary long, we omit most of the proofs. Nevertheless, everything

here can be easily found in any standard book on the topic. For questions related to

the set-theoretic part, we refer to [Kun13], specifically I.7-11 and I.13; and [Jech03],

Chapters 2 and 3; and for those related to the algebraic part, we refer to [Lan02], I,

III.2, and XX; [EM02], II; and [Kap69].

1.1 Set-theoretic background

The language of set theory consists of the following symbols:

(1) the variables, which run exclusively over sets;

(2) the logical symbols:

(i) the logical connectives ¬,∧,∨,→,↔, to be read as not, and, or, if and if

and only if, respectively;

(ii) the quantifiers ∀, ∃, to be read as for all and there exists;

(iii) the identity symbol =;

(3) A relation symbol ∈ which is the membership relation.

Moreover, we will use some auxiliary symbols like parentheses, square brackets, etc.

The atomic formulas are strings of symbols of the form x ∈ y or x = y for any pair of

variables x, y. The remaining formulas are recursively built from the atomic formulas

applying the following rules:

1



2 Chapter 1. Preliminaries

(1) If ϕ is a formula, then ¬ϕ is a formula.

(2) If ϕ and ψ are formulas, then ϕ∗ψ is a formula as well, where ∗ might be ∧,∨,→

or ↔.

(3) If ϕ is a formula and x is a variable, so are ∀xϕ and ∃xϕ.

The occurrences of variables under the scope of a quantifier are said to be bound.

Otherwise, they are said to be free. A formula with no free variables is called sentence.

A formula ϕ in which one variable occurs free expresses a property. If a is a set and x

occurs free in ϕ(x), we say that a satisfies the property ϕ if ϕ(a) holds.

1.1.1 The axioms of ZFC

We will work in the Zermelo-Fraenkel with the Axiom of Choice axiom system, simply

denoted by ZFC. We assume that ZFC is consistent with no further comment. The

theorems of ZFC are the sentences which logically follow from the axioms according

to any logical calculi for first-order logic with equality. The axioms of ZFC are the

following:

Existence. There is at least one set:

∃x(x = x).

Extensionality. Sets with exactly the same elements are equal:

∀a∀b[∀x(x ∈ a↔ x ∈ b)→ a = b].

Pair. If a, b are sets, there exists a set containing both a and b as elements.

∀a∀b[∃x(a ∈ x ∧ b ∈ x)].

Union. If a is a set, there exists a set whose elements are the elements of the elements

of a.

∀a[∃x∀y ∈ a∀z ∈ y(z ∈ a)].

Power Set. If a is a set, there exists a set whose elements are the subsets of a, that

is, the sets whose elements are elements of a.

∀a[∃x∀y(∀z ∈ y(z ∈ a)→ y ∈ x)].

We will denote by P(a) the power set of a.

Infinity. There exists an inductive set.

∃x(∃y(y ∈ x) ∧ ∀y ∈ x∃z ∈ x(y ∈ z)).
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Foundation. Every non-empty set contains and ∈-minimal element.

∀a[∃y(y ∈ a)→ ∃y ∈ a∀z ∈ a(z /∈ y)].

Separation Schema. For every set a and every property ϕ there is a set whose

elements are exactly the elements in a satisfying the property ϕ.

∀a[∃x∃y(y ∈ x↔ y ∈ a ∧ ϕ(y))],

for every ϕ(y) where x does not occur. Note that since this happens for every formula

ϕ, this is a list of infinite-many axioms.

Replacement Schema For every definable function on a set a, there is a set whose

elements are the values of this function.

∀a[∀x ∈ a∃!yϕ(x, y)→ ∃z∀x ∈ a∃y ∈ z∀(x, y)].

A function f is said to be definable in a if there exists a formula ϕ(x, y) such that for

every x ∈ a there exists a unique y (∃!y) such that ϕ(x, y) holds. Again, this is a list

of infinite-many axioms, one for each definable function.

Axiom of Choice (AC) For every set a of pairwise disjoint non-empty sets, there is

a set that contains exactly one element from each set in a.

In ZF, AC is equivalent to Zermelo’s Well-ordering Principle: for every set a there

exists a well-ordering in a, that is, a linear ordering in which every non-empty set has

a least element. AC is equivalent to Zorn’s Lemma, modulo ZF, too.

Remark. The objects of ZFC are sets. However, we shall consider collections of objects

that are not sets. We call proper class to any collection of sets which is not a set. For

instance, the collection V of all sets, determined by the formula x = x, is a proper

class. It cannot be a set because it doesn’t satisfy the axiom of Foundation. A class is

a collection of sets and it can be either a proper class or a set.

1.1.2 Ordinals and cardinals

Definition 1.1. A class a is said to be transitive if for every y ∈ x ∈ a, then y ∈ a. An

ordinal number is a transitive set well ordered with respect to the memership relation

∈.

This definition can be expressed as the following proposition shows:
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Proposition 1.2. A set a is an ordinal if and only if a is transitive, ∀x, y ∈ a(x ∈

y ∨ x = y ∨ y ∈ x), and ∀x ⊆ a(x 6= ∅ → ∃y ∈ x(y ∩ x = ∅)).

We denote by OR the class of ordinals.

Proposition 1.3.

(1) Any transitive set of ordinals is an ordinal and any element of an ordinal is an

ordinal.

(2) If X is a set of ordinals,
⋃
X is an ordinal. If α is an ordinal,

⋃
a = a.

Consequently, OR is a proper class. Moreover, the empty set is an ordinal and if α

is an ordinal, so is α ∪ {α}. We usually write 0 and α + 1 instead of ∅ and α ∪ {α},

respectively. Also, if a is a set of ordinals, we might write
⋃
a = sup a, that is, the least

ordinal which is greater than or equal to any ordinal in a. Analogously, we might write⋂
a = min a.

Definition 1.4. If α is an ordinal, α + 1 is the successor of α. If α isn’t a successor

ordinal, it is said to be a limit ordinal.

The class of ordinals can be well ordered by <, where a < b if and only if a ∈ b. Indeed:

Proposition 1.5. For any ordinals α, β:

(1) α ∈ β if and only if α ( β.

(2) Either α ∈ β or β ∈ α or α ∈ β.

An ordinal is said to be countable if it is finite or bijectable with ω. Otherwise, it

is uncountable. The first uncountable ordinal, denoted by ω1 is the set of countable

ordinals; ω2 is the next ordinal which is not bijectable with any of its predecessors.

Analogously, we define the ordinals ωα. At the limit stages we let ωα to be the union

of its predecessors.

The Axiom of Choice is equivalent, modulo ZF, to Zermelo’s Well-Ordering Principle,

which states that every set can be well-ordered.

Theorem 1.6 (The Enumeration Theorem). Every well-ordered set is isomorphic with

an ordinal.

Therefore we might define for every well-ordered set a its order type, denoted ot(a),

which is the unique ordinal with which a is isomorphic.
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Theorem 1.7 (Transfinite Recursion). If G is a class function on V , then there is a

unique class function F on the ordinals such that for each ordinal α, F (α) = G(F � α).

The function F is defined as F (α) = x if and only if there is a function f with domain

α such that for every β < α, f(β) = G(f � β) and x = G(f � α).

In OR we can define the operations of addition:

α+ 0 = α,

α+ (β + 1) = (α+ β) + 1,

α+ β = sup{α+ ξ : ξ < β} if β is a limit;

multiplication:

α · 0 = 0,

α · (β + 1) = (α · β) + 1,

α · β = sup{α · ξ : ξ < β} if β is a limit;

and exponentiation:

α0 = α,

α(β+1) = (αβ) · α,

αβ = sup{αξ : ξ < β} if β is a limit,

for all ordinals α, β.

Remark. Ordinal addition and ordinal multiplication are not commutative. For in-

stance, 1 + ω = ω 6= ω + 1 and 2 · ω = ω 6= ω · 2.

Definition 1.8. A cardinal number is an ordinal which is not bijectable with any

predecessor.

Therefore, if κ and λ are cardinals and there exists a bijection between them, κ = λ.

All finite ordinals are cardinals and so are the ordinals of the form ω, ω1, . . . , ωω, . . ..

Note that every cardinal is a limit ordinal.

Proposition 1.9 (AC). Every set is bijectable with a unique cardinal.

We denote by |a| the cardinality of a, that is, the unique cardinal which a is bijectable

with.

Remark. The assertion in Proposition 1.9. is actually equivalent to the Axiom of

Choice.

The least cardinal greater than a cardinal κ is the set of ordinals bijectable to a cardinal

smaller or equal to κ. We denote it by κ+.



6 Chapter 1. Preliminaries

Definition 1.10. We say that κ+ is the successor cardinal of κ. If κ is not a successor

cardinal, it is said to be a limit cardinal.

Proposition 1.11.

(1) If κ is a limit cardinal, then for all λ < κ, λ+ < κ.

(2) For every cardinal κ there is a limit cardinal λ such that κ < λ.

(3) If X is a set of cardinals, so is
⋃
X. If κ is a cardinal,

⋃
κ = κ.

It follows from (3) that the class of cardinals, which we will denote by CARD, is proper.

We will denote the transfinite sequence of cardinals as follows: ℵ0,ℵ1, . . . ,ℵω, . . . ,ℵα, . . ..

We note that ℵn = ωn for every n < ω. Indeed:

Definition 1.12.

(1) ℵ0 = ω,

(2) ℵα = ℵ+
α ,

(3) ℵα = sup{ℵβ : β < α} if α is a limit ordinal.

Of course, for every α, α ≤ ℵα and, if β < α then ℵβ < ℵα.

For every pair of cardinals κ, λ we define κ+ λ as |(κ× {0}) ∪ (λ× {1})|; the product

is defined as κ · λ = |κ× λ| and the exponentiation as κλ = |Πα<λκ|.

Proposition 1.13. Let κ and λ be cardinals. The union of every family of at most λ

sets of cardinality at most κ has cardinality at most λ · κ.

Proposition 1.14. If κ and λ are infinite cardinals, κ+ λ = κ · λ = max{κ, λ}.

In particular, the addition and multiplication of cardinals is commutative. Although

the sum and multiplication of infinite cardinals are easy to work with, exponentiation

isn’t trivial at all. For instance, 2ℵ0 is undecidable in ZFC.

Definition 1.15. The Continuum Hypothesis CH is the assertion that 2ℵ0 = ℵ1. The

Generalized Continuum Hypothesis asserts that 2ℵα = ℵα+1 for every α ∈ OR.

CH is independent of ZFC, thus so is GCH.

1.1.3 Cofinality

Let α be a limit ordinal. A subset b of α is said to be unbounded in α if and only if

supb = α, or, equivalently, if for all β < α there is some γ ∈ b such that β < γ. We

say that an ordinal β is cofinal in α if and only if there i a strictly increasing function

f : β −→ α whose range is unbounded in α.
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Definition 1.16. The cofinality of α is the least ordinal which is cofinal in α. We

denote it by cf(α).

Proposition 1.17.

(1) If α and β are limit ordinals and α is cofinal in β, cf(α) is cofinal in cf(β).

(2) If α is a limit ordinal, cf(α) = cf(ℵα).

Note that for every α, cf(α) ≤ α.

Definition 1.18. A limit ordinal α is regular if cf(α) = α. Otherwise, we say that α

is singular.

Proposition 1.19.

(1) If α is a limit ordinal, cf(α) is a regular cardinal.

(2) If κ is an infinite cardinal, cf(κ) is the least cardinal λ such that κ is the union

of a family of λ-many sets of cardinality less than κ.

(3) Every infinite successor cardinal is regular.

(4) In general, for every infinite cardinal κ, κ < κcf(κ). If 2 ≤ λ, κ < cf(λκ).

Theorem 1.20. An infinite cardinal κ is regular if and only if the union of every family

of less than κ-many seats each of cardinality less than κ is a set of cardinality less than

κ.

Proposition 1.21. If GCH holds, for all infinite cardinals κ and λ:

κλ =


λ+ if λ ≥ κ

κ+ if cf(κ) ≤ λ ≤ κ

κ if λ < cf(κ)

1.1.4 Models of Set Theory

We assume that ZFC is consistent. Then, there exist models of ZFC. A model of ZFC

is a pair 〈M,R〉 where M is a non-empty class and R is a binary relation on M such

that 〈M,R〉 satisfies the axioms of ZFC. We can define analogously what a model of

a fragment of ZFC is. The relation R on a class M is said to be well-founded if it is

set-like in the sense that for every x ∈ M the class {y ∈ M : yRx} is a set and there

is no infinite descending R-chain. We say that a subset x ∈ M is R-transitive if for

every zRyRx, then zRx. The transfinite recursion on well-founded relations holds. We

say that a model 〈M,R〉 is standard if R is the membership relation on M , that is, if

R =∈ ∩(M ×M). A submodel 〈N,∈N 〉 of 〈M,∈〉 is a model such that N ⊆ M and
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∈N=∈ ∩(N × N). If N ⊆ M is a submodel of M of ZFC and N � ZFC, N is said

to be an inner model of M . Whenever the context is clear, we will denote any model

〈M,∈〉 simply by M .

Theorem 1.22 (Downward Löwenheim-Skolem-Tarski Theorem). (ZFC minus Power

Set) Let M be an L-structure and let κ be a cardinal such that max(|L|,ℵ0) ≤ κ ≤ |M |

and fix S ⊆ B with |S| ≤ κ. Then, there is an elementary substructure N of M , that

is, an substructure satisfying the same L-sentences, such that S ⊆ N and |N | = κ.

The Downward Löwenheim-Skolem-Tarski theorem tell us that for every model of set

theory there is always a countable elementary submodel.

Theorem 1.23 (Mostowski Collapse). If 〈M,R〉 is a well-founded model of the axiom of

Extensionality, then there is a unique transitive model 〈N,∈〉 and a unique isomorphism

π : 〈M,R〉 −→ 〈N,∈〉.

We call 〈N,∈〉 the Mostowski or transitive collapse of 〈M,R〉; the isomorphism π is

called the collapse mapping. It is clear that if 〈M,∈〉 and 〈N,∈〉 are isomorphic, then

M = N .

In ZFC the universe of all sets forms a cumulative hierarchy. Then, x ∈ V if and only

if there exists some ordinal α such that x ∈ Vα, where the Vα are defined as follows:

Definition 1.24.

V0 = ∅,

Vα+1 = P(Vα),

Vα =
⋃
β<α Vβ, if α is a limit.

Then, V =
⋃
α∈OR Vα.

V � ZFC. For every set a ∈ V , the rank of a, denoted by rk(a), is the least ordinal α

such that a ∈ Vα. Vα is transitive for every α ∈ OR. If α < β, then Vα ∈ Vβ. For every

ordinal α, α ⊆ Vα but α /∈ Vα.

Lemma 1.25. Every transitive class satisfies Extensionality and Foundation.

Proof. Let a be a transitive class and let x, y ∈ a which are seen in a to be equal. Since

a is transitive, it contains all elements of x and y, so they have the same elements so,

by Extensionality, they are equal. To see Foundation, let a be a class and suppose that

b ∈ a is non-empty. Then a ∩ b is non-empty and, by Foundation, a ∩ b contains an

∈-minimal element. �
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Proposition 1.26.

(1) Vα satisfies Foundation, Extensionality, Union, Separation for every ordinal α.

(2) If α is a limit ordinal, then Vα satisfies Pairing, Power Set and AC.

(3) If α > ω, then Vα satisfies Infinity.

(4) If α = ω, then Vα satisfies Replacement.

Proof. Let α ∈ ORD. By the previous lemma, since Vα is transitive, it satisfies Exten-

sionality and Foundation. For Union, we proceed by transfinite induction. The limit

case being clear, let α = β + 1. If a ∈ Vα, then a ⊆ Vβ. Since
⋃
a = {b ∈ Vβ : β ∈ a},

then
⋃
a ⊆ Vβ, hence

⋃
a ∈ Vα. For Separation we go analogously. Let ϕ be an

arbitrary formula in the language of set theory and let a ∈ Vα. Then a ⊆ Vβ, so

{b ∈ a : ϕ(b)} ⊆ Vβ. Therefore, {b ∈ a : ϕ(b)} ∈ Vα. This proves (1). To see (2),

let a, b ∈ Vα with α a limit. Since Vα =
⋃
β<α Vβ, let β be the least ordinal such that

a, b ∈ Vβ. Then {a, b} ⊆ Vβ, so {a, b} ∈ Vβ+1. Since β + 1 < α, {a, b} ∈ Vα, which

proves Pairing. For Power Set let a ∈ Vα, with α a limit and let β < α be the least

ordinal such that a ∈ Vβ, then P(a) ∈ Vβ+2. Since β + 2 < α, P(a) ∈ Vα. Now,

let a ∈ Vα and let f be a choice function for a. Then f(b) ∈ b for every non-empty

b ∈ a, so f = {〈b, f(b)〉 : b ∈ a, b 6= ∅}. That is, f is a set of ordered pairs of the form

{{b}, {b, f(b)}}. But b ∈ a and f(b) ∈ b so if β is an ordinal below α such that a ∈ Vβ+2,

then a ⊆ Vβ+1, hence b ∈ Vβ+1, so b ⊆ Vβ and f(b) ∈ Vβ. Therefore, b, f(b) ∈ Vα. Since

Vα satisfies Pairing, {{b}, {b, f(b)}} ∈α for every b ∈ a, so f ∈ Vα and Vα satisfies AC.

To see that (3) holds just note that ω ∈ Vα for every uncountable α. Since ω is an

inductive set, if α is uncountable, then Vα satisfies Infinity. For (4), let f ∈ Vω be a

definable function with domain a, i.e., a function for which there is a formula ϕ(x, y)

such that f(b) = c if and only if ϕ(b, c) and ϕ(x, y)∧ϕ(z, y)→ x = z. Let rg(f) be the

range of f . Since a is a finite set, rg(f) is finite as well. Note that for each b ∈ rg(f),

rk(b) < ω, so let γ = sup{rk(b) : b ∈ rg(f)}. Then, rg(f) ⊆ Vγ , hence rg(f) ∈ Vγ+1,

so in rg(f) ∈ Vω, which finishes the proof. �

The following is a very useful result. The proof, which we omit, goes by induction on

the complexity of the formula. See [Jech03], Theorem 12.14, p. 168.

Theorem 1.27 (Reflection Theorem. Levy, 1960). Let ϕ(x1, . . . , xn) be a formula

of the language of set theory. Let 〈Aα : α ∈ OR〉 be a cumulative hierarchy and let

A =
⋃
α∈ORAα. Then there is a closed proper class C of ordinals β such that for all

a1, . . . , an ∈ Aβ,

A � ϕ(a1, . . . , an) if and only if Aβ � ϕ(a1, . . . , an).
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For any infinite cardinal κ we denote by Hκ the set of all sets whose transitive closure

has cardinality less than κ. The transitive closure of a set a, denoted by tc(a) is the

smallest transitive set containing a. For every κ, Hκ ⊆ Vκ and Hω = Vω. The Hκ

form a cumulative hierarchy: if λ < κ then Hλ ⊆ Hκ, and if κ is a limit cardinal then

Hκ =
⋃
λ<κHλ. Then, V =

⋃
κ∈CARDHκ. There is a closed proper class of cardinals

C such that Vκ = Hκ for every κ ∈ C. Actually, for every uncountable cardinal κ,

Hκ = Vκ if and only if iκ = κ, where i is the beth function (see [Kun13], Definition

I.13.24). Hκ in general satisfies every axiom but Infinity, Replacement and Power Set.

It satisfies Infinity if and only if κ > ℵ0, it satisfies Replacement if and only if κ is

regular, and it satisfies Power Set if and only if κ is a strong limit. Therefore only if κ

is inaccessible, Hκ � ZFC.

1.1.5 Inaccessible cardinals

Definition 1.28. A cardinal is weakly inaccessible if is a regular, uncountable limit

cardinal. Equivalently, a cardinal κ is weakly inaccessible if and only if κ is regular and

ℵκ = κ. A strong limit cardinal is an infinite cardinal κ such that 2λ < κ for every

cardinal λ < κ. An inaccessible cardinal is a regular uncountable strong limit cardinal.

Theorem 1.29. If κ is inaccessible, then Vκ � ZFC.

Proof. Since κ is an uncountable cardinal, so a limit ordinal, Vκ satisfies ZFC minus

possibly Replacement. So let us show that if κ is inaccessible, then Vκ satisfies Replace-

ment. Let f be a definable function with domain a with a ∈ Vκ. It is a well-known fact

that if κ is inaccessible, then |Vκ| = κ so, since |a| < κ, then |rg(f)| < κ, so there is

some α < κ such that rg(f) ⊆ Vα, hence rg(f) ∈ Vκ. �

As a consequence, since ZFC is a recursive axiom system in which arithmetic can be

formalized, Gödel’s Second Incompleteness Theorem applies. Therefore, if the existence

of inaccessibles was provable from ZFC, ZFC would prove its own consistency, which is

not possible. In general, we call large cardinals to those cardinals whose existence must

be taken as an axiom for it cannot be proven inside ZFC. Inaccessible cardinals are an

example of those. As seen in Theorem 1.26, for every uncountable limit ordinal α, Vα

satisfies ZFC except possibly Replacement. From the assumption of the existence of

an inaccessible cardinal κ it can be proved the existence of many cardinals λ < κ such

that all axioms of ZFC hold in Vλ.
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1.2 Algebraic background

We assume some familiarity with the basic concepts of the theory of abelian groups and

category theory. If any doubt, we refer the reader to [Lan02], I.11. Some of the concepts

in this section can be studied in the more general context of homological algebra. Might

the reader be interested, see [Lan02], XX. The material introduced in this section will

be needed to show important features of W -groups in Chapter 2.

1.2.1 Free abelian groups

Throughout the text, although otherwise specified, group will mean abelian group.

Most of the notions introduced here will be used in Chapter 3. Recall that if {Ai : i ∈ I}

is a family of abelian groups, their direct sum A =
⊕

i∈I Ai is the subgroup of the

product
∏
i∈A consisting of the families (ai)i∈I where ai ∈ Ai for every i ∈ I and ai = 0

for all but finitely many i ∈ I. We say that a family {xi : i ∈ I} of elements of A is a

basis for A if it is non-empty and if every element a of A has a unique expression as a

linear combination a =
∑

i∈I rixi with ri ∈ Z and almost all ri = 0.

Definition 1.30. A group A is said to be free if it has a basis.

Equivalently, a free group is a direct sum of infinite cyclic groups. It is then clear that

free groups are isomorphic to the direct sum of copies of Z. Therefore, the additive

group Z is a trivial example of a free group while the additive group R is an example

of a non-free group.

Theorem 1.31 (See [Lan02], Theorem 7.3, p. 41). A subgroup of a free group is free.

Since abelian groups are Z-modules, most of the notions and results in this section can

be generalized to the more general theory of modules. For an approximation to the

topic from this perspective, use [Kap69]. Theorem 1.31 can be also found in [Kap69],

Lemma 15.

Definition 1.32. A surjective homomorphism of groups π : B −→ A splits if there is

a homomorphism ρ : A −→ B such that π ◦ ρ = idA, where idA denotes the identity on

A. The mapping ρ is sometimes called the splitting function for π.

Free groups can be characterized in terms of splitting homomorphisms.

Theorem 1.33. A group A is free if and only if every homomorphism onto A splits.

Proof. Suppose first that A is free and let π : B −→ A be a epimorphism, with B

arbitrary. Let S = {si : i ∈ I} be a basis of A and let bi ∈ B such that π(si) = bi for

each i ∈ I. Since S is a basis of A, there exists a unique homomorphism ρ : A −→ B
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such that ρ(si) = bi for each i ∈ I. It is easy to see that ρ is a splitting function for π.

Conversely, let F be the free group generated by S = {sa : a ∈ A} and let π : F −→ A

be the unique homomorphism such that π(sa) = a for all a ∈ A. Since π is surjective,

by assumption there is a splitting homomorphism ρ : A −→ F for π. But ρ is injective,

so A is isomorphic to a subgroup of F . Then, by Theorem 1.31, A is free. �

Corollary 1.34. If B be a subgroup of A such that B and A/B are both free, then A

is free. Moreover, any basis of B extends to a basis of A.

Proof. We sketch the proof. Let π : A −→ A/B be the canonical projection. By

assumption, since A/B is free there is a splitting homomorphism ρ : A/B −→ A for

π. The unique presentation of any a ∈ A as a sum of element of ρ(A/B) and B is

a = ρ(π(a)) + (a− ρ(π(a)), so A = ρ(A/B)⊕ B. Since ρ is injective, if S is a basis of

A/B, then ρ(Y ) is a basis of ρ(A/B). Therefore, if R is a basis of B then ρ(S) ∪ R is

a basis of A and we are done. �

An ascending chain of sets A0 ⊆ A1 ⊆ . . . Aµ ⊆ . . . with µ < α is called a smooth chain

if for every limit ordinal λ < α, Aλ =
⋃
µ<λAµ. It is said to be strictly increasing if

for every µ < α; Aµ 6= Aµ+1. A family {Aµ : µ < α} is a chain of groups if for every

µ < α, Aµ is a group which is a subgroup of Aµ+1.

Theorem 1.35. If {Aµ : µ < α} is a smooth chain of groups such that A0 is free

and Aµ+1/Aµ is free for every µ < α, then A =
⋃
µ<αAµ is free. Moreover, for every

µ < α, A/Aµ is free.

Proof. A0 is assumed to be free, so let S0 be a basis of it. By transfinite induction we

construct a smooth chain of sets S0 ⊆ S1 ⊆ . . . ⊆ Sµ ⊆ . . . for µ < α such that each

Sµ is a basis of Aµ. Suppose we have already defined the chain up to some ordinal

β < α. If β is a limit, let Sβ =
⋃
µ<β Sβ. Then, Sβ is a basis of

⋃
µ<β Aµ = Aµ. So

suppose β is a successor ordinal, say β = δ + 1. Aδ+1/Aδ is free by hypothesis, so by

Corollary 1.34, Sδ extends to a basis Sδ+1 to Aδ+1. Then, S =
⋃
µ<α Sµ is a basis of A

and {s+Aµ : s ∈ X \Xµ} is a basis of A/Aµ. �

Recall that a group A is said to be torsion if all its elements are of finite order and is

said to be torsion-free if all its elements are of infinite order.

Theorem 1.36 (See [Lan02], Theorem 8.4, p. 45). Every finitely-generated torsion-free

group is free.

Consequently, since every subgroup of a torsion-free group is torsion-free, every finitely-

generated subgroup of a torsion-free group is free.
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1.2.2 Basics of homological algebra

An open complex of groups is a sequence of groups and homomorphisms {(Ai, f i)}

→ Ai
f i−1

−−−→ Ai
f i−→ Ai+1 →

where i ranges over all integers, f i maps Ai into Ai+1 and f i ◦ f i−1 = 0 for all i. We

say that the open complex is exact whenever Ker(f i) = Im(f i−1) for every i. One can

consider finite sequences of homomorphism

A1 → . . .→ An

but this can be made into a complex sequence by inserting the trivial groups at each

end with the corresponding zero homomorphisms. These kind of complexes are called

short or finite sequences.

Hom(A,B) denotes the set of homomorphisms A → B for any two groups A,B. To-

gether with the addition defined by (f1 + f2)(x) = f1(x) + f2(x), the set Hom(A,B)

has a group structure. For every group C, Hom(·, C) is a contravariant functor (that

is, a reversing arrow functor) from the category of abelian groups to the category of

group homomorphisms into C, as every group homomorphism f : A → B induces

a homomorphism f ′ : Hom(B,C) → Hom(A,C) given by f ′(g) = g ◦ f for every

g ∈ Hom(B,C). Actually, from every sequence A′ → A → A′′ we get the induced

sequence Hom(A′′, B) → Hom(A,B) → Hom(A′, B). Moreover, the sequence A′ →

A → A′′ → 0 is exact if and only if 0 → Hom(A′′, B) → Hom(A,B) → Hom(A′, B)

is exact (equivalently, 0 → A′ → A → A′′ is exact if and only if Hom(A′′, B) →

Hom(A,B) → Hom(A′, B) → 0 is exact; see [Lan02], Propositions 2.1 and 2.2, pp.

122, 123). Fixing the other coordinate, note that if 0 → B′ → B → B′′ is a exact

sequence, so is the sequence 0→ Hom(A,B′)→ Hom(A,B)→ Hom(A,B′′).

Definition 1.37. A short exact sequence 0→ A′
f−→ A

g−→ A′′ → 0 splits if the surjective

homomorphism g splits.

It is easy to see that if 0 → A′
f−→ A

g−→ A′′ → 0 splits, A is the direct sum of Ker(f)

and Im(ρ), where ρ stands for the splitting function ρ : A′′ → A. Conversely, if Ker(f)

is a direct summand of M , the short exact sequence splits.

Proposition 1.38 (See [Lan02], Proposition 3.2, p. 132). Let 0→ A′
f−→ A

g−→ A′′ → 0

be an exact sequence, the following are equivalent:

(1) There exists a homomorphism φ : A′′ −→ A such that g ◦ φ = idA.

(2) There exists a homomorphism ψ : A −→ A′ such that ψ ◦ f = idA′.
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The following fact would also work if we tookR-modules for any ringR. The satisfaction

of these equivalent properties defines what a projective module is. We will simply talk

about projective groups.

Proposition 1.39 (See [Lan02], p. 137). Let A be a group. The following are equiva-

lent.

(1) Given a homomorphism f : A −→M ′′ and a surjective homomorphism g : M −→

M ′′, there exists a homomorphism h : A −→M such that g ◦ h = f .

(2) Every exact sequence 0→M ′ →M ′′ → A→ 0 splits.

(3) A is a direct summand of a free group.

Definition 1.40. A short exact sequence 0→ F0
f0−→ F1

f1−→ A→ 0, where F1 is free is

called a free resolution.

Note that since a free resolution is exact, f0 is injective because Ker(f1) = Im(0) = 0.

Therefore, F0 is a subgroup of F1 so, by Theorem 1.31, is a free group.

Definition 1.41. Let 0→ F0
f0−→ F1

f1−→ A→ 0 be a free resolution. For any group C

we define

Ext(A,C) = Hom(F0, C)/Im(f ′0),

where f ′0 denotes the induced homomorphism f ′0 : Hom(F1, C) −→ Hom(F0, C).

In Chapter 3, Ext will be shown to be very a useful tool to define Whitehead groups.

We finish with the following result.

Theorem 1.42 (See [Lan02], Lemma 8.3, p. 809). Let 0→ F0
f0−→ F1

f1−→ A→ 0 be a

free resolution (it is enough if it is exact) and let C be an arbitrary group. Then, there

is an exact sequence

0→ Hom(A,C)
f ′1−→ Hom(F1, C)

f ′0−→ Hom(F0, C)→

→ Ext(A,C) −→ Ext(F1, C) −→ Ext(F0, C) −→ 0

where f ′1 and f ′2 denote the induced homomorphisms by f1 and f2, respectively.



Chapter 2

Large cardinals and infinite

abelian groups

Large cardinals axioms arise naturally in several contexts of the theory of infinite abelian

groups. In this chapter we will see a characterization of the existence of measurable

cardinals in terms of the group of homomorphisms from Zκ/Z<ω into Z discovered

by Katsuya Eda in 1982. More precisely, Eda’s theorem shows that there exists a

cardinal κ such that Hom(Zκ/Z<κ,Z) is not the trivial group if and only if there

exists a measurable cardinal. Since the existence of measurable cardinals cannot be

proved in ZFC, the question of whether Hom(Zκ/Z<κ,Z) is the trivial group or not

is independent of ZFC. In further sections we shall see how the so-called Dugas-

Göbel cardinal relate to some large cardinals like measurables, strongly compact and

δ-strongly compact cardinals. Throughout this chapter we will make use of highly

useful techniques and results such as ultrapowers and the Wald- Loś’s Lemma.

2.1 Filters, ultrafilters and measurable cardinals

Definition 2.1. Let A be a non-empty set. The set F is a filter on A if F ⊆ P(A)

and

(1) A ∈ F and ∅ /∈ F ,

(2) X ∩ Y ∈ F whenever X,Y ∈ F ,

(3) For every X ∈ F and Y ∈ P(A), if X ⊆ Y , then Y ∈ F .

Note that filters on a set A formalize the idea of being a ”big” subset of A. Indeed, (1)

confirms the intuition that A is a big subset of A and excludes the empty set; (2) tells

that two subsets of A are big only when their intersection is also big; (3) tells that if a

subset X of A is big, so must be every set containing X.

15
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Example. Clearly, {A} is a filter on A, which we call the trivial filter. If a ∈ P(A)

is a non-empty set, then F = {X ∈ P : a ⊆ X} is a filter as well. If κ is an infinite

cardinal, the Fréchet filter on κ is F = {X ⊆ κ : |κ−X| < κ}.

Definition 2.2. A filter F on A is said to be principal if there exists some non-empty

Y ⊆ A such that X ∈ F if and only if Y ⊆ X.

It is easy to see that every filter on a finite set A is principal. Indeed, if A is finite, so

is F , hence
⋂
F ∈ F . Then, if F was non-principal,

⋂
F = ∅. The Fréchet filter on κ

is non-principal for every κ.

Definition 2.3. We say that a filter F on A is maximal if there is no proper filter on

A containing F . A filter F on a set A is an ultrafilter if it is maximal.

Note that if F is an ultrafilter and X is an arbitrary subset of A, then either X or

its complement in A is a member of F . Indeed, if there exists a subset X of A such

that neither X nor A \ X were in F , then X ∩ Y 6= ∅ for every Y ∈ F . Otherwise,

if X ∩ Y = ∅, Y ⊆ X \ A, so X \ A ∈ F , which contradicts our assumption. Then,

since X ∩ Y 6= ∅ for every Y ∈ F , the intersection of any finite collection of members

of F ∪ {X} is non-empty. And it is easy to see that every collection of sets with this

property can be extended to a filter. So let G be that filter. Of course, F ⊆ G, which

contradicts the maximality of F . Conversely, if for every X ∈ P(A) either X ∈ F or

A \X ∈ F , F is clearly maximal, hence an ultrafilter. This proves the following:

Proposition 2.4. A filter F is an ultrafilter on A if and only if for every X ∈ P(A),

either X ∈ F or A−X ∈ F .

Theorem 2.5 (Tarksi). Every filter can be extended to an ultrafilter.

Proof. Let F be an arbitrary filter on A. We can partially order, with respect to the

inclusion relation, the set P of filters on A containing F . Take C to be an arbitrary

chain in P . Then
⋃
C is a filter on A and an upper bound of C. By Zorn’s Lemma, P

has a maximal element, that is, an ultrafilter. �

As next lemma shows, principal ultrafilters are easily characterizable.

Lemma 2.6. An ultrafilter F on a is principal if and only if there exists some a ∈ A

such that F = {X ⊆ A : a ∈ X}.

Proof. The implication to the right is straightforward. Let F be a principal ultrafilter

on a and let Y be a non-empty set such that Y ⊆ X for all X ∈ F . Since F is an

ultrafilter, if a ∈ Y , then A − {a} /∈ F because Y * A − {a}, so {a} ∈ F . Then

Y = {a}, so F = {X ⊆ A : a ∈ X}. �
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Clearly, if F is principal, the intersection of any arbitrary large collection of elements

in F belongs to F . This motivates the following definition.

Definition 2.7. Let κ be an infinite cardinal. A filter F on A is said to be κ-complete

if the intersection of any family of less than κ-many members from F remains in F .

Lemma 2.8. If κ is singular, every κ-complete filter on κ is κ+-complete.

Proof. Let κ be singular and let F be a κ-complete filter on κ. It is enough to prove

that the intersection of κ-many elements of F belongs F . Let {Xα : α < κ} ⊆ F and

let S = {µ : µ < cf(κ)} be a cofinal sequence on κ. For every µ, let Yµ =
⋂
α<µXα.

Since F is κ-complete and µ < cf(κ) < κ, Yµ ∈ F for every µ < cf(κ). Also,

since S is cofinal, for every α < κ there is some µ ∈ S such that α < µ. Therefore,⋂
µ<cf(κ) Yµ =

⋂
α<κXα. Again by the κ-completeness of F ,

⋂
µ<cf(κ) Yµ ∈ F . Thus⋂

α<κXα ∈ F and F is κ+-complete. �

We can now introduce measurable cardinals, which will play an important role through-

out this chapter.

Definition 2.9. A cardinal κ is measurable if it is uncountable and it has a κ-complete

non-principal ultrafilter.

Measurable cardinals are large cardinals. Indeed, their existence implies the existence

of inaccessible cardinals which, as we have already seen, cannot be proved in ZFC.

Theorem 2.10. Measurable cardinals are inaccessible.

Proof. From Definition 1.21, an inaccessible cardinal is a regular uncountable strong

limit cardinal. Let κ be measurable. We already have that it is uncountable. Let us

see that it is regular. By Proposition 1.19 (2), κ = cf(κ) if and only if κ cannot be

partitioned into less than κ-many sets of cardinality less than κ. Since κ is measurable,

there exists a κ-complete non-principal ultrafilter F on κ.

Lemma 2.11. Let κ, λ be infinite cardinals with λ ≤ κ. If an ultrafilter F on κ is

λ-complete, then for every partition {Xα : α < µ} of κ with µ < λ there exists an α

such that Xα ∈ F .

Proof of the lemma. For the sake of contradiction, suppose that there is no Xα ∈ F .

Since F is an ultrafilter, κ − Xα ∈ F for every α < µ. By λ-completeness, ∅ =⋂
α<µ κ−Xα ∈ F . �

Lemma 2.12. Every set of a κ-complete non-principal ultrafilter on κ is of cardinality

κ.
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Proof of the lemma: Assume on the contrary that X ∈ F is of cardinality less than

κ. F is non-principal, so for every α ∈ X there is some Xα ∈ F such that α /∈ Xα.

Otherwise, α ∈
⋂
F . Since |X| < κ and F is κ-complete,

⋂
{Xα : α < |X|} ∈ F . But

X ∩
⋂
{Xα : α < |X|} = ∅, which is a contradiction. �

If follows from Lemma 2.11 that every partition of κ has an element X in F . By Lemma

2.12, X has cardinality κ. Therefore, there is no partition of κ in less than κ-many sets

of cardinality less than κ, hence κ is regular.

Let us see that κ is a strong limit. Suppose the contrary, that is, assume that there

exists some λ < κ such that κ ≤ 2λ. Then there is a set {fα : α < κ} of κ-many

functions fα : λ −→ {0, 1}. Let F be a κ-complete non-principal ultrafilter. Then, for

each β < λ and each α < λ, either {α : fα(β) = 0} ∈ F or {α : fα(β) = 1} ∈ F so

let Xβ be the one in F and let εβ = 0 if {α : fα(β) = 0} ∈ F , εβ = 1 otherwise. By

κ-completeness,
⋂
β<λXβ ∈ F . Note that the only element in

⋂
β<λXβ is actually the

ordinal α such that fα(β) = εβ. By Lemma 2.6, F is principal, which is a contradiction.

We conclude that κ is a strong limit, hence inaccessible. �

Remark. The converse of Lemma 2.11 also holds. We can prove it by induction on

λ. By definition, every filter is ℵ0-complete, so assume that F is λ-complete. We show

that F is λ+-complete. Let {Xα : α < λ} ⊆ F and define the sequence {Yα : α < λ}

as follows:

Y0 = X0,

Yα+1 = Yα ∩Xα+1

Yα =
⋂
β<α Yβ if β is a limit.

Note that
⋂
α<λ Yα =

⋂
α<λXα. Since F is λ-complete, Yα ∈ F for every α < λ.

Let Zα = Yα − Yα+1. It follows that {κ − X0} ∪ {Zα : α < λ} ∪ {
⋂
α<λ Yα} is a

partition of κ. Now, since F is an ultrafilter and X0 ∈ F , κ − X0 /∈ F . Also, since

κ−Zα = κ−(Yα−Yα+1) = (κ−Yα)∪Yα+1 ∈ F , then Zα /∈ F for any α < λ. Therefore,

since for every partition of κ in less than λ-many sets there must be at least one set in

F , it must be
⋂
α<λ Yα ∈ F , that is,

⋂
α<λXα ∈ F . Thus, F is λ+-complete. For λ a

limit cardinal the result follows trivially.

Remark. If F is an ultrafilter on κ all whose elements have cardinality κ, F is said to

be uniform. Lemma 2.12 then says that every κ-complete non-principal ultrafilter on

κ is uniform.

The following proposition will be useful in the next section.
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Proposition 2.13. If κ is the least cardinal for which there exists a non-principal

ω1-complete ultrafilter F on κ, then F is κ-complete.

Proof. Let F be a ω1-complete ultrafilter on κ. Assume that F is not κ-complete. By

the Remark, there exists a partition {Xα : α < λ} of κ with λ < κ and Xα /∈ F for

all α < λ. Let f : κ −→ λ be a surjective mapping given by f(α) = β if and only if

α ∈ Xβ for each α ∈ κ. Then, the set D = {X ∈ P(λ) : f−1(X) ∈ F} is a non-principal

ultrafilter on λ. Indeed, since f−1(λ) = κ, which is in F , λ ∈ D. Also, ∅ = f−1(∅)

is not in in D. If X,Y ∈ D, then f−1(X), f−1(Y ) ∈ F , hence f−1(X) ∩ f−1(Y ) ∈ F .

But f−1(X) ∩ f−1(Y ) = f−1(X ∩ Y ), so X ∩ Y ∈ U . And, if f−1(X) ∈ F and

X ⊆ Y ⊆ λ, then f−1(X) ⊆ f−1(Y ), so Y ∈ D. This proves that D is a filter. To

see that it is maximal just take an arbitrary X ⊆ λ. F is assumed to be an ultrafilter,

so either f−1(X) ∈ F or κ − f−1(X) ∈ F . If the former, X ∈ D; if the latter, since

κ − f−1(X) = f−1(λ) − f−1(X) = f−1(λ − X), then λ − X ∈ D. By Lemma 2.6,

to see that D is non-principal it is just enough to see that there is no β ∈ λ such

that β ∈ X for all {β} ∈ D. Suppose the opposite. If {β} ∈ D, then f−1({β}) ∈ F .

But f−1(β) = {α : f(α) = β} = {α : α ∈ Xβ} = Xβ which, by assumption, isn’t in

F , so we have a contradiction. It remains to show that D is ω1-complete. For this,

let {Yn : n < ω} be a partition of λ. If Yn /∈ D for any n, then f−1(Yn) /∈ F for

any n < ω. But
⋃
n<ω f

−1(Yn) = κ, which contradicts that F is ω1-complete. We

conclude that in λ there is a ω1-complete non-principal ultrafilter, contradicting that κ

was the least cardinal with that property. This is a contradiction. We therefore have

that every partition of κ in less than κ-many parts has an element in F , that is, F is

κ-complete. �

2.2 Eda’s Theorem

For each n < ω, en will denote the function en : ω −→ {0, 1} such that en(m) = 1 if

and only if m = 1. Recall that for every two sets A,B, the set of functions f : B −→

A is denoted by AB. The Baer-Specker group is Zω together with addition defined

componentwise.

Lemma 2.14 (Specker, 1949). If h : Zω −→ Z is a homomorphism, then h(en) = 0

for all but finitely many n.

Proof. We prove it by contradiction. Suppose that h(en) 6= 0 for infinitely many n. We

may assume that h(en) 6= 0 for all n. Define a sequence 〈kn : n < ω〉 by letting k0 = 1

and taking kn+1 > kn!|h(en)|; and let X = {
∑
xnen ∈ Zω : ∀n(xn = 0∨xn = kn!)}. We

have that |X| = 2ℵ0 . Then, since the function h takes values in Z and |Z| = ℵ0, there
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exist
∑
xnen and

∑
ynen such that

∑
xnen 6=

∑
ynen and h(

∑
xnen) = h(

∑
ynen).

Since
∑
xnen 6=

∑
ynen there must be a least m such that xm 6= ym. Then, h((xm −

ym)em) = −h(
∑

i>m(xi − yi)ei), as h is a homomorphism. Since for all n < ω, either

xn = 0 or xn = kn! and xm 6= ym, either xm = 0 and ym = km! or the contrary, so

xm − ym = . Therefore, h((xm − ym)em) = km!h(em). Since km+1 > km!|h(em)|, it

cannot happen that h(em) = km+1c for an arbitrary c ∈ Z, so km+1 does not divide

h((xm − ym)em). But km+1 divides h(
∑

i>m(xi − yi)ei) because for every i > m, if

xi − yi 6= 0, then xi − yi = ki!, to which km+1 divides. This is a contradiction, so we

are done. �

Definition 2.15. A groupG is slender if every homomorphism h from the Baer-Specker

group into G is such that h(en) = 0 for all but finitely many n.

Specker’s Lemma then shows that Z is a slender group. Specker’s Lemma can be easily

extended to homomorphisms from Zκ into Z, with κ uncountable. This provides a first

example of a situation in which one can naturally jump to uncountable groups.

Corollary 2.16. Let κ be an uncountable cardinal. If h : Zκ −→ Z is a homomorphism,

then h(eα) = 0 for all but finitely many α < κ.

Proof. Suppose the opposite. Let A be a set of the form {αn : h(eαn) 6= 0, n < ω}. The

restriction h � ZA : ZA −→ Z is still a homomorphism. Since A is isomorphic to Z, so

are ZA and Zω. This contradicts Lemma 2.14. �∏
n<ω Z simply denotes the set of ω-sequences of integers. We will denote by

∏
n≥mZ

the set of ω-sequences of integers whose first m elements are 0.

Lemma 2.17. For every homomorphism h : Zω −→ Z, there exists some m < ω such

that h[
∏
n≥mZ] = {0}.

Proof. Towards a contradiction, for each m take an element a ∈ Πn≥m with h(a) 6= 0.

For each r ∈
∏
n<ω Z, let z(r) = (

∑
m≤n rmam)n<ω ∈

∏
n<ω Z. Clearly, z(r) ∈ Πn<ωZ.

Now, let the function f : Zω −→ Z given by f(r) = h(z(r)). Note that f is an

homomorphism and that for all n < ω, f(en) = h(an) 6= 0, which contradicts Lemma

2.14. �

Recall that the direct sum
⊕

i∈I Ai is the subgroup of
∏
i∈I Ai consisting of all I-

sequences (ai)i∈I with ai ∈ Ai for all i ∈ I and ai = 0 for all but finitely many i ∈ I.

Corollary 2.18. Hom(
∏
n<ω Z,Z) ∼=

⊕
n<ω Z.

Proof. The mapping θ : Hom(
∏
n<ω Z,Z) −→

⊕
n<ω Z given by θ(h) =

∑
n≤m rnen

with rn = h(en) and m such that h[
∏
n≥mZ] = {0} is clearly an isomorphism. �
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The group Z<ω of finite sequences of integers is isomorphic to the subgroup A of Zω

of sequences of integers with all but finitely-many coordinates being 0, whenever the

context is clear we will identify A with Z<ω with no further comment. The equiva-

lence classes of the quotient Zω/Z<ω consists of vectors differing in just finitely many

coordinates. Later on we will see that we are just simply dealing with ultrapowers.

Corollary 2.19. Hom(Zω/Z<ω,Z) = {0}.

Proof. Let h ∈ Hom(Zω/Z<ω,Z) and let h′ be the function given by h′(
∑
rnen) =

h′([
∑
rnen]), where [

∑
rnen] is the equivalence class of

∑
rnen. Clearly, h′ is an element

in Hom(Zω,Z), so let m ∈ ω such that h′[
∏
n≥mZ] = {0}. Then, h([

∑
rnen]) =

h([
∑

n<m rnen]) + h([
∑

n≥m rnen]) = 0, because h([
∑

n<m rnen]) = h([0]) and

h([
∑

n≥m rnen]) = h′(
∑

n≥m rnen) = 0. �

According to Corollary 2.19, the only possible homomorphism between Zω/Z<ω and Z

is the trivial one. We now wonder if this would still remain true if instead of considering

the quotient of a product of countable-many copies of Z we consider the product of

uncountable-many copies. The following result is due to Katsuya Eda and lies on results

of Jerzy  Loś.

Theorem 2.20 (Eda, 1982). Hom(Zκ/Z<ω,Z) 6= {0} if and only if there exists an

ω1-complete non-principal ultrafilter on κ.

Proof. We first prove the right to left implication. Let F be an ω1-complete non-

principal ultrafilter on κ and let the mapping h : Zκ/Z<ω −→ Z with h([
∑

α<κ rαeα]) =

n if and only if {α : rα = n} ∈ F . We see that f is well-defined. Since F is ω1-complete

ultrafilter and {{α : rα = n} : n ∈ ω} is a partition of κ in ω-many pieces, there is

some n ∈ ω such that {α : rα = n} ∈ F , so f is defined on every class [
∑

α<κ rαeα].

Let now
∑

α<κ sαeα ∈ [
∑

α<κ rαeα], so both differ in just finitely many coordinates,

so since {α : rα = n} ∈ F and F is non-principal, then {α : sα = n} ∈ F . In-

deed, if F was principal, since it is an ultrafilter, there would be some β ∈ κ such

that β ∈ X for every X ∈ F . Then, {α : rα = n} − {β} /∈ F . To see that f is an

homomorphism just let two different classes [
∑

α<κ rαeα] and [
∑

α<κ sαeα]. First note

that [
∑

α<κ rαeα] + [
∑

α<κ sαeα] = [
∑

α<κ(rα + sα)eα]. Let nr = {α : rα = nr} and

ns = {α : sα = ns} and assume that nr, ns ∈ F . Then, {α : rα = nα and sα = ns} =

nr ∩ ns ∈ F . But n0 ∩ n1 ⊆ {α : rα + sα = nr + ns}, so {α : rα + sα = nr + ns} ∈ F .

Therefore, f([
∑

α<κ(rα + sα)eα]) = nr + ns = f([
∑

α<κ rαeα]) + f([
∑

α<κ sαeα]). Note

also that since for every n ∈ Z, f(n
∑

α<κ eα) = n, f is surjective.
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For the converse suppose f : Zκ/Z<ω −→ Z is a non-zero homomorphism. For every

Y ⊆ κ we denote by Zκ � Y the set of κ-sequences of integers whose non-zero coor-

dinates are indexed by elements in Y . Let S′ = {Y ⊆ κ : f [Zκ � Y/Z<ω] 6= 0}. By

assumption, f is a non-zero homomorphism. Then κ ∈ S′, as Zκ � κ = Zκ and for

every Z ⊆ Y with Y ∈ S′, either Z ∈ S′ or Y \ Z ∈ S′ or both.

Claim. Every set of pairwise disjoint elements of S′ is finite.

Proof of the claim. Towards a contradiction, let {Yn : n ∈ ω} ⊆ S′ with Yn ∩ Ym = ∅

whenever n 6= m. For each n ∈ ω, let a(n) ∈ Zκ � Yn with f([a(n)]) 6= 0. Such an a(n)

always exists. Let the function h : Zω −→ Z given by h(r) = f([
∑

n∈ω rna
(n)]). Then,

h(en) = f([a(n)]) 6= 0 for all n ∈ ω, contradicting Specker’s Lemma. �

Let S = {Y ∈ S′ : ∀Z ⊆ Y (either Z ∈ S′ or Y \ Z ∈ S′ but not both)}. Equivalently,

S might be seen as the set {Y ∈ S′ : ∀Z ⊆ Y (f [Zκ � Z/Z<ω] = {0} ∨ f [Zκ �

(Y \Z)/Z<ω] = {0})}. Note that S is not empty. Assume otherwise that S = ∅. Then,

for every Y ∈ S′ there is some Z ⊆ Y such that both Z and Y \Z belong to S′. Then,

since κ ∈ S′ we take Y0 ⊆ κ such that both Y0 and κ − Y0 belong to S′. Then, let

Y1 ⊆ κ − Y0 with Y1, (κ − Y0) − Y1 ∈ S′ and so on. This way we build a family of

ω-many pairwise-disjoint elements of S′, which contradicts the claim above. Now, let

D = {X ⊆ κ : X ∩ Y ∈ S′} for an arbitrary Y ∈ S.

Claim. D is an ω1-complete non-principal ultrafilter on κ.

Proof of the claim. We first check that D is a filter. It is clear that ∅ /∈ D and that D

is upwards closed. Let X0, X1 ∈ D and assume that X0 ∩X1 /∈ D. Since D is upwards

closed we might assume with no loss of generality that X0, X1 ⊆ Y . Then, X0 ∈ S′,

so f [Zκ � X0/Z
<ω] 6= {0}. Since f([Zκ � X0/Z

<ω]) = f([Zκ � (X0 ∩ X1)/Z<ω]) +

f([Zκ � (X0 \ X1)/Z<ω]) and, by assumption, f([Zκ � (X0 ∩ X1)/Z<ω]) = {0}, we

have that f([Zκ � (X0 \ X1)/Z<ω]) 6= {0}. Analogously, we can prove that f([Zκ �

(X1 \ X0)/Z<ω]) 6= {0}, which implies that f([Zκ � Y \ (X0 \ X1)/Z<ω]) 6= {0} as

X1 \X0 ⊆ Y \ (X0 \X1). But this contradicts that Y ∈ S because X0 \X1 ⊆ Y and

both X0 \X1 and Y \ (X0 \X1) belong to S′.

To see that D is an ultrafilter, let X ⊆ κ and suppose that X /∈ D. Since f [Zκ �

Y/Z<ω] 6= {0} and f [Zκ � Y/Z<ω] = f [Zκ � (X ∩ Y )/Z<ω] + f [Zκ � (Y \X)/Z<ω] =

f [Zκ � (Y \X)/Z<ω], then Y \X ∈ D.

Now, let {Xn : n ∈ ω} ⊆ D and assume, for the sake of a contradiction, that
⋂
n∈ωXn /∈

D. Without loss of generality we might assume that Xn+1 ⊆ Xn ⊆ Y for all n ∈ ω

and
⋂
n∈ωXn = ∅. Since for each n ∈ ω, Xn ∈ D, f [Zκ � Xn/Z

<ω] 6= {0}. Let a(n) ∈

Zκ � Xn with f([a(n)]) 6= 0 and let h : Zω −→ Z be as in the previous claim, which is
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a well-defined homomorphism because
⋂
n<ωXn = ∅. Then h(en) = f([a(n)]) 6= 0 for

each n ∈ ω, which contradicts Specker’s Lemma. This shows that D is ω1-complete.

To see that D is non-principal, note {α} /∈ D for any α ∈ κ because for every a ∈ Zκ �

{α}, then [a] = [0], so f [Zκ � {α}] = {0}. �

Consequently, if there is a non-zero homomorphism f : Zκ/Z<ω −→ Z, there exists an

ω1-complete non-principal ultrafilter on κ. �

Consequently, if κ is the least cardinal with Hom(Zκ/Z<ω,Z) 6= {0}, then κ is the

least cardinal having an ω1-complete non-principal ultrafilter. By Proposition 2.13,

this ultrafilter is κ-complete, so κ is measurable. That is:

Corollary 2.21. There exists a cardinal κ such that Hom(Zκ/Z<ω,Z) 6= {0} if and

only if there exists a measurable cardinal. The least measurable cardinal is the least

cardinal κ for which Hom(Zκ/Z<ω,Z) 6= {0} holds.

In particular, the question of whether there exists a cardinal κ such that the group

Hom(Zκ/Z<ω,Z) 6= {0} is independent of ZFC. Eda’s Theorem can be extended to

homomorphisms from Zκ/Z<κ into Z.

Theorem 2.22. Hom(Zκ/Z<κ,Z) 6= {0} if and only if there exists an ω1-complete

uniform ultrafilter on κ.

Proof. The same proof of Eda’s Theorem works, although small changes are required.

For the right to left implication we define the function f : Zκ/Z<κ −→ Z given by

f([
∑

α<κ rαeα]) = n if and only if {α : rα = n} ∈ F . However, for f to be well-

defined F we need F to be uniform instead of non-principal. For the claims we can just

consider families of κ-many pairwise-disjoint sets and define the function h : Zκ −→ Z

analogously. Contradictions will still arise as Specker’s Lemma still holds for those

functions, as showed in Corollary 2.16. �

By Lemma 2.12 every set of a κ-complete non-principal ultrafilter on κ is of cardinality

κ. It is also clear that κ-complete implies ω1-complete. Therefore, if κ is measurable,

Hom(Zκ/Z<κ,Z) 6= {0} and the least cardinal for which that holds is measurable.

Corollary 2.23. Hom(Zκ/Z<κ,Z) = {0} for all κ below the first measurable.

We finish this section with a generalization of Lemma 2.17 and Corollary 2.18.

Lemma 2.24. For every homomorphism h : Zκ −→ Z there is a finite subset I of

κ such that h[Z � (κ \ I)] = {0} if and only if there is no ω1-complete non-principal

ultrafilter on κ.
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Proof. By contraposition, if F is a ω1-complete non-principal ultrafilter on κ, the func-

tion h : Zκ −→ Z given by h(
∑

α<κ rαeα) = n if and only if {α : rα = n} ∈ F is a

non-zero homomorphism as for every I ⊆ κ, h[Zκ � (κ \ I)] = Z. Conversely, let h be a

mapping from Zκ to Z such that there is no finite subset I of κ with h[Z � (κ\I)] = {0}.

Let S′ = {Y ⊆ κ : f [Zκ � Y ] 6= 0} and S = {Y ∈ S′ : ∀Z ⊆ Y (either Z ∈ S′ or Y \Z ∈

S′ but not both)}. Now, fix Y ∈ S and let D = {X ⊆ κ : X 6= ∅ ∧X∩ ∈ S′}. D is an

ω1-complete ultrafilter. Since all cofinite sets are in D, it is non-principal. �

Corollary 2.25. If there is no ω1-complete non-principal ultrafilter on κ, then the

group Hom(
∏
α∈κZ,Z) is isomorphic to

⊕
α∈κZ. In particular, if κ is measurable,

then Hom(
∏
α∈κZ,Z) �

⊕
α∈κZ.

Proof. Let θ : Hom(
∏
α∈κZ,Z) −→

⊕
α∈κZ given by θ(h) =

∑
α∈I rαeα with rα =

h(eα) and I ⊆ κ such that h[Z � (κ \ I)] = {0}. θ is an isomorphism. �

2.3 Strongly compact and δ-strongly compact cardinals

Definition 2.26. An uncountable cardinal κ is said to be strongly compact if for any

set S, every κ-complete filter on S can be extended to a κ-complete ultrafilter on S.

The given characterization of strongly compact cardinals is due to Keisler and Tarski.

As we shall see, strongly compact cardinals are measurable cardinals, hence its existence

cannot be proven from ZFC. Let us first see some preliminary results.

Definition 2.27. Let κ be a cardinal. A κ-additive measure on a set S is a function

θ : P(S) −→ [0, 1] such that

(1) θ(S) = 1,

(2) θ({x}) = 0 for every x ∈ S, and

(3) θ(
⋃
α<κXα) =

∑
α<κ θ(Xα) for every family {Xα : α < κ} ⊆ P(S) of pairwise-

disjoint sets.

Note that if κ has a κ-complete non-principal ultrafilter F , the function θ : P(κ) −→

{0, 1} given by θ(X) = 1 iff X ∈ F is a κ-additive measure. Clearly, θ(κ) = 1 and

θ({x}) = 0 because F is non-principal. To see (3) let {Xα : α < κ} ⊆ P(κ) be a

family of pairwise-disjoint sets. We see that θ(
⋃
α<κXα) =

∑
α<κ θ(Xα). Clearly, if

Xα ∈ F for some α < κ (note that, since F is an ultrafilter, this α must be unique),

then
⋃
α<κXα ∈ F . Therefore, if

∑
α<κ θ(Xα) = 1, then θ(

⋃
α<κXα) = 1. By contra-

position, if
∑

α<κ θ(Xα) = 0, there is no α < κ such that θ(Xα) = 1. Then κ−Xα ∈ F

for every α < κ. By κ-completeness,
⋂
α<κ κ−Xα ∈ F , so κ−

⋃
α<κXα ∈ F , that is,⋃

α<κXα /∈ F and θ(
⋃
α<κXα) = 0.
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Remark. If θ is a κ-additive measure, θ(X) = 0 for every X of cardinality less than κ.

Then, every κ admitting a κ-additive measure is regular. Indeed, let {Xα : α < λ} ⊆ κ

with λ < κ and |Xα| < κ for every α < λ. Then |
⋃
α<λXα| < κ because θ(

⋃
α<λXα) =

0 and θ(κ) = 1.

Lemma 2.28 (Ulam, 1930). For any λ there is a collection of sets {Aξα|α < λ+ ∧ ξ <

λ} ⊆ P(λ+) satisfying:

(1) Aξα ∩Aξβ = ∅ whenever α < β < λ+ and ξ < λ; and

(2) |λ+ −
⋃
ξ<λA

ξ
α| ≤ λ for each α < λ+

Proof. For each µ < λ+ let fµ : λ −→ µ + 1 be a surjective map and for each α < λ+

and ξ < λ let Aξα = {µ < λ+ : fµ(ξ) = α}. (1) follows immediately from (2). For (2)

note that (λ+ −
⋃
ξ<λA

ξ
α) ⊆ α. �

The collection of sets {Aξα : α < λ+ ∧ ξ < λ} is known as Ulan matrix.

Lemma 2.29 (Ulam, 1930). If there is a κ-additive measure on κ, then κ is weakly

inaccessible.

Proof. From the remark, κ is already known to be regular. Let us see that it is a limit

cardinal. Towards a contradiction, assume that κ = λ+. Consider an Ulam matrix and

let θ be a κ-additive measure on κ. Then, by (2) above, for each α < λ+ there is a

ξα < λ such that θ(Aξαα ) > 0, so there must be some ξ < λ such that ξ = ξα for many

λ+-many α’s. Then, by (1) above, there is an uncountable set T whose elements are of

θ-measure greater than 0 for which there is no X,Y ∈ T with θ(X ∩ Y ) > 0, which is

impossible. �

Theorem 2.30 (Keisler-Tarski, 1964). Strongly compact cardinals are regular.

Proof. Assume that κ is singular. Let F ′ be a κ-complete ultrafilter on κ+ extending

the κ-complete Fréchet filter F = {X ⊆ κ+ : |κ+ − X| < κ+}. Note that F is non-

principal and so is F ′. By Lemma 2.8, F ′ is κ+-complete, so κ+ is measurable for it

has a non-principal κ+-complete ultrafilter, hence a κ+-additive measure. By 2.29, κ+

is weakly inaccessible which is impossible because κ+ is not a limit. �

Theorem 2.31 (Erdös-Tarski, 1943). Strongly compact cardinals are measurable.

Proof. By the previous, κ is regular so {X ⊆ κ : |κ −X| < κ} is κ-complete. Since it

can be extended to a κ-complete ultrafilter, κ is measurable. �

Consequently, the existence of strongly compact cardinals is independent of ZFC. We

introduce now a weaker large cardinal notion.
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Definition 2.32 (Bagaria-Magidor, 2013). Let δ < κ be uncountable cardinals which

might be singular. We say that κ is δ-strongly compact if for every set S, every κ-

complete filter in S can be extended to a δ-complete ultrafilter on S. An uncountable

limit cardinal κ is almost strongly compact if κ is δ-strongly compact for every uncount-

able cardinal δ < κ.

Clearly, if κ is κ-strongly compact, then it is strongly compact. Note as well that if λ

is a cardinal greater than κ and κ is δ-strongly compact, then, since every λ-complete

filter is κ-complete, λ is δ-strongly compact as well. Note that if κ is a regular ω1-

strongly compact cardinal, since {X ⊆ κ : |κ −X| < κ} is a κ-complete non-principal

ultrafilter, it extends to a ω1-complete non-principal ultrafilter, so, by Proposition 2.13,

there exists a measurable cardinal less than or equal to κ.

Proposition 2.33. If κ is ω1-strongly compact and λ is the first measurable, then κ is

λ-strongly compact.

Proof. Assume not. Then there is a λ-complete filter on a set I which is not extended

to a ω1-complete ultrafilter or, equivalently, no ω1-complete ultrafilter extends a λ-

complete filter. Let F be a ω1-complete ultrafilter. Since it doesn’t extend a λ-complete

filter, by Lemma 2.11 there is a partition {Xα : α < β} of I with β < λ such that

Xα /∈ F for any α < β. Then, the set U = {X ⊆ β :
⋃
{Xα : α ∈ X} ∈ F} is

non-principal ω1-complete ultrafilter on β. We first see that it is an ultrafilter. Let

Y /∈ U . Then,
⋃
α∈Y Xα /∈ F , so S \

⋃
α∈Y Xα ∈ F , because F is an ultrafilter. Since

{Xα : α < β} is a partition of S, S \
⋃
α∈Y Xα =

⋃
β\Y Xα, hence β \ Y ∈ U . From

this it easily follows that F is non-principal, because Xα /∈ F for any α ∈ β. It

remains to show that U is ω1-complete. Let {Yn : n ∈ ω} ⊆ U , so that
⋃
α∈Yn Xα ∈ F

for every n ∈ ω. Then, since F is ω1-complete,
⋂
n∈ω(

⋃
α∈Yn Xα) ∈ F . Note that if

a ∈
⋂
n∈ω(

⋃
α∈Yn Xα), then a ∈

⋃
α∈Yn Xα for every n ∈ ω. But then, a ∈

⋃
α∈

⋂
Yn
Xα,

so
⋂
n∈ω(

⋃
α∈Yn Xα) ⊆

⋃
α∈

⋂
Yn
Xα, hence

⋃
α∈

⋂
Yn
Xα ∈ F and

⋂
n∈ω Yn ∈ U . The

existence of a non-principal ω1-complete ultrafilter on β with β < λ contradicts that λ

is the first measurable. �

Magidor proved in [Mag76] that it is consistent that the least measurable is ω1-strongly

compact. In that case, if κ was such a cardinal, κ would actually be strongly compact

by Proposition 2.33.

Notation 2.34. Let S be a non-empty set. Pκ(S) denotes the set of subsets of S with

cardinality less than κ, that is, Pκ(S) = {x ⊆ S : |x| < κ}. By Xa we denote the set

{x ∈ Pκ(S) : a ∈ x}.
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Let S be a non-empty set and let κ be a regular δ-strongly compact. Then, since κ is

regular, the family of sets {Xa : a ∈ S} generates a κ-complete filter F on Pκ(S) by

closing upwards and under intersection of κ-many elements. Indeed, by closing under

intersection of κ-many elements, we first get from the collection of sets {Xa : a ∈ S} a

family of sets of the form XA = {x ∈ Pκ(S) : ∃A ∈ Pκ(S)(A ⊆ x)}. Then, by closing

upwards we get F = {Y ⊆ Pκ(S) : ∃A ∈ Pκ(S)(XA ⊆ Y )}. Clearly, F is κ-complete.

Then, since κ is δ-strongly compact, F can be extended to a δ-complete ultrafilter U

on Pκ(S).

Definition 2.35. A δ-complete ultrafilter F on Pκ(S) containing the sets Xa for each

a ∈ S is called a δ-complete fine measure on Pκ(S). The fineness condition is that

Xa ∈ F for all a ∈ S.

Then, by the previous we have the following.

Proposition 2.36. If κ is a regular δ-strongly compact cardinal, then for every set

there is a δ-complete fine measure on Pκ(S).

The converse also holds. In fact, the result is still true if we drop the condition of κ

being regular. This is a particular case of Theorem 2.42, which provides a nice charac-

terization of δ-strongly compact. To go into detail we first need to introduce the useful

notion of ultraproducts and ultrapowers and some important results.

Let F be an ultrafilter over a set I and let {Xi : i ∈ I} be a collection of first-order

structures. By
∏
i∈I Xi we denote the set of functions f with domain I such that

f(i) ∈ Xi for every i ∈ I. Define the relation

f ∼F g if and only if {i ∈ I : f(i) = g(i)} ∈ F ,

which is easily seen to be an equivalence relation whose equivalence classes are denoted

by [f ]F for each f ∈
∏
i∈I Xi. We construct a first-order structure with universe∏

i∈I Xi/F in the language of the structures {Xi : i ∈ I} by interpreting

R
∏
i∈I Xi/F ([f1]F , . . . , [fn]F ) if and only if {i ∈ I : RXi(f1(i), . . . , fn(i))} ∈ F for

every relation symbol R,

F
∏
i∈I Xi/F ([f1]F , . . . , [fn]F ) = fF with fF (i) = FXi(f1(i), . . . , fn(i)) for all i ∈ I

for every function symbol F , and

c
∏
i∈I Xi/F = [f ]F where f(i) = cXi for all i ∈ I, for every constant symbol c.

Definition 2.37. Let F be a filter on I and let {Xi : i ∈ I} be a collection of classes.

The reduced product of {Xi : i ∈ I} by F is the quotient
∏
i∈I Xi/ ∼F , which we denote
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by
∏
i∈I Xi/F . If F is an ultratilfer, the reduced product of {Xi : i ∈ i} is instead

called the ultraproduct of {Xi : i ∈ i} by F . If Xi = X for every i ∈ I, we denote∏
i∈I X by XI and the ultraproduct, which i this case we call ultrapower of X by F ,

by UltF (X).

Next theorem shows how important ultraproducts are.

Theorem 2.38 ( Loś, 1955). Let F be an ultrafilter on a set I and let {Xi : i ∈ I} be a

collection of first-order structures in the language L. Let ϕ(x1, . . . , xn) be a L-formula

and let f1, . . . , fn ∈
∏
i∈I Xi. Then,

(∗)
∏
i∈I

Xi/F � ϕ([f1]F , . . . , [fn]F ) if and only if {i ∈ I : Xi � ϕ(f1(i), . . . , fn(i))} ∈ F .

Proof. We go by induction on the complexity of ϕ. We first start with the atomic

formulas:

x1 = x2:∏
i∈I Xi/F � [f ]F = [g]F if and only if f ∼ g if and only if {i ∈ I : f(i) = g(i)} ∈

F if and only if {i ∈ I : Xi � f(i) = g(i)} ∈ F .

For a predicate R(x1, . . . , xn):∏
i∈I Xi/F � R([f1]F , . . . , [fn]F ) if and only if R

∏
i∈I Xi/F ([f1]F , . . . , [fn]F ) if

and only if {i ∈ I : RXi(f1(i), . . . , fn(i))} ∈ F if and only if {i ∈ I : Xi �

R(f1(i), . . . , fn(i))} ∈ F

Now assume that (∗) holds for ϕ and ψ. Recall that since F is an ultrafilter on I,

X ∈ F if and only if I \ X /∈ F . Since the logical connectives ∨,→ and ↔ can be

written in terms of ¬ and ∧, it is enough proving only those cases.

¬ϕ:
∏
i∈I Xi/F � ¬ϕ([f1]F , . . . , [fn]F ) if and only if

∏
i∈I Xi/F 2 ϕ([f1]F , . . . , [fn]F )

if and only if, by Induction Hypothesis, {i ∈ I : Xi 2 ϕ(f1(i), . . . , fn(i))} ∈ F .

ϕ∧ψ:
∏
i∈I Xi/F � ϕ∧ψ if and only if

∏
i∈I Xi/F � ϕ and

∏
i∈I Xi/F � ψ if and

only if, by Induction Hypothesis, {i ∈ I : Xi � ϕ} ∈ F and {i ∈ I : Xi � ψ} ∈ F

if and only if {i ∈ I : Xi � ϕ ∧ ψ} ∈ F .

For the existencial quantifier it is enough proving that if (∗) holds for ϕ(y, x1, . . . , xn),

it also holds for ∃yϕ. Assume that
∏
i∈I Xi/F � ∃yϕ(y, [f1]F , . . . , [fn]F ). Then, there

exists some g ∈
∏
i∈I Xi such that

∏
i∈I Xi/F � ϕ(gF , [f1]F , . . . , [fn]F ), so {i ∈ I : Xi �

ϕ(g(i), f1(i), . . . , fn(i))} ∈ F , hence {i ∈ I : ∃yϕ(y, f1(i), . . . fn(i))} ∈ F . Conversely,

if {i ∈ I : ∃yϕ(y, f1(i), . . . fn(i))} ∈ F , for each i ∈ I let xi ∈ Xi be such that

Xi � ϕ(xi, f1(i), . . . , fn(i)) if such xi exists and arbitrary otherwise. Let the function

g ∈
∏
i∈I Xi be given by g(i) = xi. Then, {i ∈ I : Xi � ϕ(g(i), f1(i), . . . , fn(i))} ∈ F ,

hence
∏
i∈X Xi/F � ∃yϕ(y, [f1]F , . . . , [fn]F ). �
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As a consequence, the ultrapower of a model M is elementarily equivalent to M , mean-

ing this that they satisfy the same sentences. Indeed, by  Loś’ Theorem, if σ is a sentence

in the language of M , and F is an ultrafilter on I, since Mi = M for every i ∈ I, then

{i ∈ I : M � σ} is either empty or I, so UltF (M) � σ if and only if M � σ.

Definition 2.39. Let M be an L-structure and let F be an ultrafilter on I. The

canonical embedding jF : M −→ UltF (M) is the mapping given by j(x) = [f ]F where

f : I −→M is the constant function f(i) = x for all i ∈ I.

Given two L-structuresM andN , an elementary embedding is just a mapping f : M −→

N such that for every formula ϕ(x̄), where x̄ denotes an arbitrary tuple of coordinates,

and every ā ∈ M |ā|, M � ϕ(ā) if and only if N � ϕ(f(ā)), where f(ā) = (f(ai))i∈|ā|.

that is, an elementary embedding is an embedding preserving all formulas. It follows

from  Loś’ Theorem that the canonical embedding j : M −→ UltF (M) is an elementary

embedding. Indeed, if x ∈ M , UltF (M) � ϕ(j(x)) if and only if UltF (M) � ϕ([f ]F )

(with f the constant function described above) if and only if M � ϕ(x).

Defining the ultrapower of the universe V of all sets by an ultrafilter F on a set I

might be a bit more cumbersome. Note that if f ∈ V I , the equivalence class [f ]F =

{g ∈ V I : {i ∈ I : g(i) = f(i)} ∈ F}} is a proper class. To overcome this problem,

we let [f ]0F = {g ∈ [f ]F : ∀h(h ∈ [f ]F → rk(g) ≤ rk(h)))}, that is, the members of

minimal rank of [f ]F . Since [f ]0F is a set for every f ∈ V I , we can take the domain of

the ultrapower to be the set V I/F = {[f ]0F : f : S −→ V } and define the membership

relation ∈F by [f ]0F ∈F [g]0F if and only if {i ∈ I : f(i) = g(i)} ∈ F .

Definition 2.40. If F is an ultrafilter on a set I, the ultrapower of V by F is the model

〈V I/F ,∈F 〉.

 Loś’ Theorem still applies to this context, so 〈V I/F ,∈F 〉 is elementarily equivalent

to V . Moreover, under some extra assumptions on the corresponding ultrafilter, the

ultrapower of V by an ultrafilter F is isomorphic to an inner model of ZFC. Indeed,

next result shows that the assumption of F being ω1-complete is equivalent to the

relation ∈F being well-founded.

Proposition 2.41. F is ω1-complete if and only if ∈F is well-founded.

Proof. For the left to right direction, assume there is a countable (hence infinite) de-

creasing ∈F -sequence {[fn]0F : n ∈ ω}. Then, [fn+1]0F ∈F [fn]0F for every n ∈ ω, hence

{i ∈ I : fn+1(i) ∈ fn} ∈ F for every n ∈ ω. Since F is an ω1-complete ultrafilter on I,⋂
n∈ω{i ∈ I : fn+1(i) ∈ fn(i)} ∈ F , so it is non-empty. This leads to a infinite descend-

ing ∈-sequence, which is not possible. Conversely, assume that F is not ω1-complete
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and let {Xn : n ∈ ω} ⊆ F such that
⋃
n∈ωXn /∈ F . For each k ∈ ω we define the func-

tion gκ : S −→ V given by gκ(i) = n− k if i ∈ (
⋂
m<nXm) \Xn and n ≥ k or gk(i) = 0

otherwise. It is easy to see that {i ∈ I : gk+1(i) ∈ gk(i)} ⊇
⋂
m≤kXm −

⋂
n∈ωXn ∈ F

for k ∈ ω, hence {[gn]0F : n ∈ ω} is a infinite descending ∈F -sequence, contradicting our

assumption. �

By the previous and the Mostowski Collapse, Theorem 1.23, if F is ω1-complete, the

ultrapower 〈V I/F ,∈F 〉 of V by F is isomorphic to a unique transitive model 〈M,∈〉.

Therefore, for every [f ]0F , [g]0F ∈ 〈V I/F ,∈F 〉, [f ]0 ∈F [g]0 if and only if π([f ]) ∈ π([g]),

where π stands for the collapsing map. We will denote each [f ]0 simply by [f ]. Similarly,

to simplify notation we will denote π([f ]) by [f ] and UltF (V ) will denote the ultrapower

of V by F . By an abuse of notation we will sometimes denote UltF (V ) to the transitive

class M to which it is isomorphic whenever F is ω1-complete. Since the canonical

embedding is an elementary embedding, so is the mapping j = jF◦π : V −→ UltF (V ) ∼=
M , with M a transitive class. Therefore, if α is an ordinal, so is j(α) and if α < β,

then j(α) < j(β). Consequently, α < j(α) for every ordinal α. Moreover, again

by elementarity, j(α + 1) = j(α) + 1. It is also clear that j(n) = n for every natural

number. It is an easy consequence of F being ω1-complete that j(ω) = ω, for if [f ] < ω,

that is, if f(x) < ω for almost all x ∈ S, then there would be some n ∈ ω such that

f(x) = n for almost all x ∈ S. Using a similar argument, one can prove that if F

is κ-complete, then j(δ) = δ for every δ < κ. The following theorem, the last of this

section, characterizes δ-strongly compact cardinals in terms of δ-complete fine measures

and elementary embeddings. Recall that the critical point of an elementary embedding

is the first ordinal which does not map to itself.

Theorem 2.42 (Bagaria-Magidor, 2013). The following are equivalent for any un-

countable cardinals δ < κ:

(1) κ is δ-strongly compact.

(2) For every α greater than or equal to κ there exists a definable elementary embed-

ding j : V −→M , with M transitive, and a critical point greater than or equal to

δ, such that j is definable in V , and there exists D ∈ M such that j′′α ⊆ D and

M � ”|D| < j(κ)”, where j′′α = {j(β) : β ∈ α}.

(3) For every set I there exists a δ-complete fine measure on Pκ(I).

Proof. (1)⇒(2): Let κ be δ-strongly compact and let α ≥ κ. Suppose that there is a δ-

complete fine measure F on Pκ(α). Let jF : V −→M be the corresponding ultrapower

embedding. By Proposition 2.41, UltF (V ) is well-founded, hence isomorphic to a tran-

sitive class M . Let π : UltF (V ) −→ M be the collapsing map and let j = π ◦ jF . We
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show that j satisfies the conditions in (2). Define D := π([h]F ), where h : Pκ(α) −→ V

is given by h(a) = a for all a ∈ Pκ(α). Since Xa = {x ∈ Pκ(α) : a ∈ x} ∈ F ,

j′′α = {j(β) : β ∈ α} ⊆ D. Indeed, if x ∈ j′′α, then x = j(β) for some β ∈ α.

Since j(β) = π(jF (β)), j(β) ∈ π([h]F ) if and only if jF (β) ∈F h. This in turn hap-

pens if and only if {x ∈ Pκ(α) : jF (x) ∈ h(x)} = {x ∈ Pκ(α) : β ∈ x} ∈ F . But

{x ∈ Pκ(α) : β ∈ x} = Xβ, so j(β) ∈ π([h]F ), hence j′′α ⊆ D. Also, note that for

every x ∈ Pκ(α), |h(x)| = |x| < κ, so, by  Loś’ Theorem, UltF (V ) � |[h]F | < jF (κ),

hence M � |D| < j(κ).

The existence of δ-complete fine measure on Pκ(α) for every α ≥ κ under the assump-

tion that κ is regular has been proved already, so we show that it always exists such a

fine measure for κ singular. Note that if κ ≤ β < α and F is a δ-complete fine measure

on Pκ(α), then {X ⊆ Pκ(β) : {Y ∈ Pκ : Y ∩ β ∈ X} ∈ F} is a δ-complete fine measure

on Pκ(β), so fix α ≥ κ and assume, with no loss of generality, that α is regular. The suc-

cessor κ+ is regular and it is clearly δ-strongly compact as well, so there is a δ-complete

fine measure F∗ on Pκ+(α). Let j∗ = π∗◦jF∗ , where jF∗ : V −→ UltF∗(V ) is the corre-

sponding ultrapower embedding and π∗ : UltF∗(V ) −→ N the corresponding collapsing

map. The critical point of j∗ is greater than or equal to δ. Define D∗ := π∗([h∗]F∗)

with h∗ : Pκ+(α) −→ V is given by h∗(a) = a for all a ∈ Pκ+(α). Again, one can

show that D∗ ∈ N , j′′∗α ⊆ D∗, and N � |D| < j(κ+). Since j(κ+) = j(κ)+ by elemen-

tarity, N � |D| < j(κ)+. Now, if β = sup(j′′∗α), then β ∩ D∗ is cofinal in β1. Since

N � |D| < j(κ)+. By elementarity, since κ is singular, so is j(κ). Then, cf(β) < j(κ).

Let C be a club of β such that ot(C) = cf(β). Note that j′′∗α contains all limit points

of β of cofinality ω. Since cf(β) is uncountable, C ∩ j′′∗α is unbounded in β. Therefore,

the set I = {γ ∈ α : j(γ) ∈ C} is unbounded in α, so it has cardinality α. Now let

U = {X ⊆ Pκ(I) : j∗(I) ∩ C ∈ j∗(X)}, which is a δ-complete fine measure on Pκ(I).

Since |I| = α, U induces a δ-complete fine measure on Pκ(α), and we are done.

(2)⇒(3): Let us assume, with no loss of generality, that I is an ordinal α greater than

or equal to κ. Let j : V −→M and D be as defined before and let F = {X ⊆ Pκ(α) :

D ∈ j(X)}, which is a δ-complete fine measure on Pκ(α). Since M � |D| < j(κ), F is

well-defined.

(3)⇒(1): Let F be a κ-complete filter over a set I. Again, we assume with no loss

of generality that F is a κ-complete filter over α = |I|. By assumption, there exists

a δ-complete fine measure U on Pκ(F). Let j : V −→ UltU (V ) be the corresponding

ultrapower embedding and let π : UltU (V ) −→ M be the collapsing map, with M a

1A subset A of an ordinal α is said to be cofinal in α if sup(A) = α.
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transitive model. Define D as before. Again, j′′F ⊆ D and M � |D| < j(κ). By

elementarity, F is j(κ)-complete in M , so
⋂

(j(F) ∩ D) 6= ∅. Let V = {X ⊆ α : a ∈

j(X)}, where a is a fixed element in
⋂

(j(F) ∩ D). The set V is a δ-complete non-

principal ultrafilter on α and it contains F , because if X ∈ F , then j(X) ∈ D ∩ j(F),

so a ∈ j(F). �

2.4 The Dugas-Göbel cardinal

Let A be the category of abelian groups. A functor T : A −→ A is said to be a radical

if for every G ∈ A, then T (G/T (G)) = 0, where 0 is the trivial group.

Definition 2.43. Let X ∈ A. The radical singly generated by X, denoted by RX , is

the functor RX : A −→ A given by RX(G) =
⋂
{Ker(f) : f ∈ Hom(G,X)}.

Since the intersection of subgroups is a subgroup, RX(G) is a subgroup of G for every

X,G. Note also that RX is indeed a radical as RX(G/RX(G)) = 0 for all X,G.

To see this it is enough to show that if a ∈ RX(G/RX(G)), then a = 0. So let

a ∈ RX(G/RX(G)). Then, there is some g ∈ G such that a = g+RX(G) and f(a) = 0

for all f ∈ Hom(G/RX(G), X). Let h ∈ Hom(G,X). Note that if π : G −→ G/RX(G)

is the canonical projection, then there exists a unique f ∈ Hom(G/RX(G), X) such

that h(g) = f(π(g)). By assumption f(π(g)) = f(a) = 0. Since h was arbitrary,

g ∈ RX(G), hence a = 0.

Definition 2.44. A group X is said to be torsionless if and only if the canonical

homomorphism X −→ X∗∗ given by x 7→ (y 7→ y(x)), with y ∈ Hom(X∗,Z) is

injective.

We will denote the canonical homomorphism above by σX . The following result shows

that the radical singly generated by Z is a useful tool to determine whether a given

group G is torsionless.

Proposition 2.45. G is torsionless if and only if RZ(G) = 0. Then, for any group G,

G/RZ(G) is torsionless.

Proof. If G is torsionless, the mapping σG is injective. Let x ∈ G, then σG(x) :

Hom(G,Z) −→ Z such that f 7−→ f(x) for every f ∈ Hom(G,Z). Since σG is injective,

σG(x) = 0 if and only if x = 0. But then,
⋂
{Ker(f) : f ∈ Hom(G,Z)} = {0}, so

RZ = 0. Conversely, if RZ(G) = 0 and x, y ∈ G are such that σG(x) = σG(y), then

for every f ∈ Hom(G,Z), f(x) = f(y) so f(x− y) = 0 and x− y = 0 by assumption,

so x = y, hence σG is injective. The rest follows immediately by the fact that RX is a

radical functor for every X. �
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Proposition 2.46. Hom(A,X) = {0} if and only if RX(A) = A. In particular,

RZ(Zκ/Z<κ) = Zκ/Z<κ for all κ smaller than the first measurable.

Proof. Assume that Hom(A,X) = {0}. Since RX(A) ⊆ A for every A, let a ∈ A. Note

that RX(A) =
⋂
{Ker(f) : f ∈ Hom(A,X)}. Therefore, by assumption, since the only

homomorpshim from A into X is the zero-function, a ∈ RX(A). On the other way

around, if RX(A) = A then f(a) = 0 for every f ∈ Hom(A,X) and every a ∈ A, hence

f = 0. The rest follows by 2.23. �

A groupX is said to be strongly cotorsion-free if and only if RX(Zκ/Z<κ) = Zκ/Z<κ for

all uncountable regular cardinal κ up to the first measurable. Proposition 2.46 tells us

that Z is strongly cotorsion-free. One then naturally wonders whether RZ(Zκ/Z<κ) =

Zκ/Z<κ for κ greater than or equal to the first measurable. The following answers this

in the negative.

Proposition 2.47. If κ is greater than or equal to the first measurable cardinal λ, then

RZ(Zκ/Z<λ) = 0.

Proof. Let [a] ∈ Zκ/Z<λ different to [0]. Then, there is some X ⊆ κ of cardinality

λ such that aα 6= 0 for all α ∈ X. Since X is of cardinality λ, the first measurable,

there is an ω1-complete non-principal ultrafilter on X. Let F be this filter. Define the

homomorphism f : Zκ/Z<λ as in the proof of Eda’s Theorem, that is, f([
∑

α<κ rαeα]) =

n if and only if {α : rα = n} ∈ F . Clearly, [a] /∈ Ker(f). �

Definition 2.48. Let κ be a cardinal and X ∈ A, then

RκX(A) =
∑
{RX(B) : B ⊆ A, |B| < κ}.

That is, RκX(A) is the group generated by the set of generators consisting of all elements

in RX(B) with B ⊆ A and |B| < κ. It is easy to see that RX(B) ⊆ RX(A) whenever

B ⊆ A. Consequently, for every A we have RκX(A) ⊆ RX(A). Also, if A is of cardinality

less than κ, it is clear that RκX(A) = RX(A). This motivates the following definition.

Definition 2.49. Let X be a group. The Dugas-Göbel cardinal for X is the least

cardinal κ such that RX = RκX . We say that RX satisfies the cardinal condition

whenever there exists such a cardinal.

It may happen that for some group X the Dugas-Göbel cardinal doesn’t exist. Indeed,

in ZFC the singly generated radical of non-zero strongly cotorsion-free groups does not

satisfy the cardinal condition. More precisely:

Theorem 2.50. If there are no measurable cardinals then RX does not satisfy the

cardinal condition for every non-zero strongly cotorsion-free X.
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Before proving Theorem 2.50, let us see the following important lemma. Recall that in

the previous section we have defined the reduced product of a family of structures of the

same language. Of course, this applies to the situation in which the family of structures

consists of (abelian) groups, so let I be an infinite set and {Xi : i ∈ I} be a family of

I-many (abelian) groups. Recall that if x ∈
∏
i∈I Xi, then supp(x) = {i ∈ I : xi 6= 0}.

Let F be a filter on I. Then, XF = {x ∈
∏
i∈I Xi : I \ supp(x) ∈ F} is a subgroup

of
∏
i∈I Xi. To see this, note that x ∈ XF if and only if {i ∈ I : xi = 0} ∈ F . Then,

if x, y ∈ XF , since I \ supp(x + y) = {i ∈ I : xi + yi = 0} ⊇ {i ∈ I : xi = 0 ∧ yi =

0} = {i ∈ I : xi = 0} ∩ {i ∈ I : yi = 0} = (I \ supp(x)) ∩ (I \ supp(y)), it follows that

I \supp(x+y) ∈ F , so x+y ∈ XF . Similarly, x ∈ XF if and only if −x ∈ F . Then, the

reduced product of {Xi : i ∈ I} with respect to F is the quotient group
∏
i∈I Xi/XF .

We denote it by
∏
i∈I Xi/F .

Lemma 2.51 (Wald- Loś Lemma). Let I be an infinite set, {Xi : i ∈ I} a family of

I-many non-trivial groups and F a λ-complete filter over I for some infinite cardinal

λ. Then, every subgroup Y of
∏
i∈I Xi/F with |Y | < λ is embeddable into

∏
i∈I Xi.

Proof. Let Y be a subgroup of
∏
i∈I Xi/F of size less than λ and let ȳ be a representative

of each y ∈ Y . For every two a, b ∈ Y , we let the sets Ya,b = {i ∈ I : ai + bi = (a+ b)i}.

Note that Ya,b ∈ F for all a, b ∈ Y . Now, since F is λ-complete and |Y | < λ, then

Z =
⋂
a,b∈Y Ya,b ∈ F . Then, the function f : Y −→

∏
i∈I Xi given by f(a)i = ai if i ∈ Z,

f(a)i = 0 otherwise, is well defined and it is easy to see that f is an embedding. �

The Wald- Loś Lemma holds in a more general context. Namely, it also holds for fami-

lies {Mi : i ∈ I} of R-modules, generalizing the particular case we have taken. Recall

that abelian groups are Z-modules. The proof goes the same way, although Z must be

defined as
⋂
a,b∈Y Ya,b ∩

⋂
a∈Y,r∈R{i ∈ I : rāi = āri}.

Recall that if Xi = X for all i ∈ I we denote
∏
i∈I Xi by XI . Note that Z<κ = {x ∈

Zκ : |supp(x)| < κ} can be seen as ZκF = {x ∈ Zκ : κ \ supp(x) ∈ F} where F is the

filter consisting of the subsets A ⊆ Zκ whose complement has cardinality less than κ.

In this case, we will keep the notation Zκ/Z<κ for the reduced product, as we have

done in section 2.2. Note as well that if κ is regular, since F is non-principal, F is also

κ-complete.

Proof of Theorem 2.50. Suppose the contrary and let λ such that RλX = RX for a non-

zero strongly cotorsion-free group X. Let κ ≥ λ be a regular cardinal. By assumption

on X, Hom(Zκ/Z, X) = {0}, that is, RX(Zκ/Z) = Zκ/Z. Note that Zκ is torsionless.

To see this, assume that σZκ(x) = σZκ(y) and consider the projections from each factor
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to Z. By Proposition 2.45, RZ(Zκ) = 0. Every B ⊆ Zκ/Z with |B| < λ is embeddable

into Zκ by the Wald- Loś Lemma. Therefore, RZ(B) = 0 and RλZ(Zκ/Z<κ) = 0. But

RZ(Zκ/Z<κ) 6= 0 as seen in Proposition 2.46; contradiction. �

Corollary 2.52. If it exist, the Dugas-Göbel cardinal of a strongly cotorsion-free group

X is greater than or equal to the first measurable cardinal.

In particular, sinceZ is strongly cotorsion-free, RZ doesn’t satisfy the cardinal condition

in absence of some large cardinal assumptions. Therefore one can wonder whether

being κ measurable, it holds that RZ = RκZ. Note that for every group X, if κ < λ

and RκX = RX , then RλX = RX as well, so the question is equivalent to asking whether

RZ = RκZ holds when κ is the first measurable. The following result will clarify the

situation.

Theorem 2.53 (Dugas, 1985). If κ is a strongly compact cardinal and X is an abelian

group of cardinality smaller than κ, then RX = RκX .

We see however a different version of this theorem which uses weaker large cardinal

assumptions. It is due to Eda and Abe (see [EA87]) although the proof we provide is

due to Bagaria and Magidor (see [BM13]).

Theorem 2.54 (Dugas-Eda-Abe, 1987). If κ is δ-strongly compact an X is an abelian

group of cardinality smaller than δ, then RX = RκX . Hence, if κ is almost strongly

compact, then RX = RκX for every X of cardinality less than κ.

Proof. (Bagaria-Magidor, 2013) Let κ be a δ-strongly compact cardinal and let X

be an abelian group of cardinality smaller than δ. By taking an isomorphic copy of

X if necessary, we may assume that X ∈ Hδ. Let A be an arbitrary group. Since

RκX(A) ⊆ RX(A), we just have to prove that if a /∈ RκX(A), then a /∈ RX(A), so let

a ∈ A and assume that a /∈ RκX(A). For each B ∈ Pκ(A) with a ∈ 〈B〉, the smallest

group containing B, fix a homomorphism fB : 〈B〉 −→ X such that fB(a) 6= 0. If

a /∈ B, set fB(a) = 0. Since κ is a δ-strongly compact cardinal, there is a δ-complete fine

measure on Pκ(A). Let F be such δ-complete fine measure and let j : V −→ UltF (V ) be

the corresponding ultrapower embedding (see Definition 2.36). Since F is δ-complete,

UltF (V ) is well-founded and if π is its Mostowski collapse, π ◦ j = idHδV , that is,

the identity of V on Hδ, so j(X) ∼= X. In UltF (V ), the domain of the function

[f ] := [〈fB : B ∈ Pκ(A)〉] is the subgroup [
∏
B∈Pκ(A)〈B〉] of j(A) and takes values

in j(X). Now, since F is fine, then {B ∈ Pκ(A) : b ∈ B} ∈ F for every b ∈ A.

Equivalently, {B ∈ Pκ(A) : b ∈ 〈B〉} ∈ F for every b ∈ A. Since j(b) = [g] where

g : Pκ(V ) −→ V is the constant function with value b, that is, a vector of length Pκ(V )
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with all its coordinates equal to b, then for each b ∈ A, j(b) ∈ [
∏
B∈Pκ(A)〈B〉]. In

particular, j(a) ∈ [
∏
B∈Pκ(A)〈B〉]. Moreover, [f ](j(a)) 6= 0 because fB(a) 6= 0 for any

B ∈ Pκ(A) with a ∈ 〈B〉. Let π � j(X) : j(X) −→ X be the isomorphism between

j(X) and X, it follows that π � j(X) ◦ [f ] ◦ j � A : A → X doesn’t take a to 0, so

a /∈ RX(A). The rest follows immediately. �

Corollary 2.55. If κ is ω1-strongly compact and λ is the first measurable, then RX =

RκX for every X with size less than λ.

Proof. By Proposition 2.33, if κ is ω1-strongly compact and λ is least measurable λ

then κ is λ-strongly compact. Then, the previous applies. �

There is another important consequence of the previous theorem.

Proposition 2.56. κ is ω1-strongly compact if and only if RZ = RκZ.

Proof. The left to right direction is immediate, for Z is of countable cardinality. For

the right to left direction let S be an arbitrary set and let F be a κ-complete filter

on S. By the Wald- Loś Lemma, every subgroup B of ZS/F of cardinality less than

κ is embeddable into ZS . By Proposition 2.45 RZ(ZS) = 0, so RZ(B) = 0 for every

subgroup B with |B| < κ. Therefore, since RZ = RκZ, it follows that RZ(ZS) = 0.

Arguing as in the left to right direction of the proof of Eda’s Theorem, but taking a non-

zero homomorphism f from ZS/F into Z, we get a ω1-complete ultrafilter extending

F , showing that κ is ω1-strongly compact. �

Then, the question asked before, whether RZ = RκZ holds with κ the least measurable, is

equivalent to the question whether the first ω1-strongly cardinal is the first measurable.

By building a model of ZFC in which the first ω1-strongly compact cardinal is singular,

they showed that it is consistent that the first ω1-strongly compact cardinal is in between

the the first measurable cardinal and the first strongly compact cardinal. However, the

methods used are highly technical and go far beyond the scope of this work. May the

reader be interested, see [BM13], section 6.



Chapter 3

The Whitehead’s problem

In 1938, Kurt Gödel proved that in the constructible universe L the Continuum Hy-

pothesis and the Axiom of Choice hold. Since L is a model of ZF , both CH and AC are

therefore consistent with ZF . Two decades later, Paul J. Cohen developed the method

of forcing with which he constructed a model of ZF where ¬CH and ¬AC hold, show-

ing this way that AC and CH are undecidable in ZF . In this chapter we shall see

another example of undecidability in the context of infinite abelian groups. Namely,

we shall study Shelah’s proof on the undecidability of the Whitehead’s problem. To do

this we will proceed in a similar manner as Gödel and Cohen did. On the one hand, we

will show that the Whitehead’s problem has a positive solution in ZFC + V = L. On

the other, we will show that its solution is negative in ZFC +MA, where MA stands

for Martin’s Axiom.

3.1 W -groups and Stein’s Theorem

In this section we introduce Whitehead’s problem and see its solution for the countable

case. We also study some features of the Whitehead groups.

Definition 3.1. A group A is said to be a Whitehead-group, W -group for short, if

every homomorphism π onto A with Ker(π) ∼= Z splits.

By Theorem 1.33, every homomorphism onto a free group splits. Consequently, every

free group is a W -group. The Whitehead’s Problem asks whether the converse is true.

The countable case was answered in the positive by Stein in 1951. We shall study his

proof, for it will provide a useful guide to find a positive answer for the uncountable

case under the assumption of the Axiom of Constructibility. Some preliminary results

will be needed. Recall that in Definition 1.41 we introduced the Ext of a free resolution

0→ F0
f0−→ F1

f1−→ A→ 0, defined by

Ext(A,C) = Hom(F0, C)/Im(f ′0)

37
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where f ′0 : Hom(F1, C) −→ Hom(F0, C) is the homomorphism induced by f0. Next the-

orem shows that W -groups can be characterized in terms of the vanishing of Ext(·,Z).

Theorem 3.2. A group A is a W -group if and only if Ext(A,Z) = 0.

Proof. Let A be a W -group and let 0 → F0
f0−→ F1

f1−→ A → 0 be a free resolution.

Let ϕ be an arbitrary function in Hom(F0,Z). Let B = (Z ⊕ F1)/I where I =

{(ϕ(y),−f0(y)) : y ∈ F0}. This way we get the following commutative diagram

0 F0 F1 A 0

0 Z B A 0

f0

ϕ

f1

π2 idA

π1 g1

where π1 and π2 are the natural projections on the corresponding coordinates and

g1((x, y) + I) = f1(y) for every (x, y) ∈ B. Note that the bottom line is an exact

sequence. Indeed, to see that π1 is injective let x ∈ Ker(π1). Then (x, 0) ∈ I so there

exists some y ∈ F0 such that ϕ(y) = x and f0(y) = 0. Since f0 is injective, y = 0,

hence x = 0. Also, to see that g1 is surjective, let x ∈ A. Since f1 is surjective, there

is some y ∈ F1 such that f1(y) = x. But then g1(π2(y)) = x. To finish, let us see

that Ker(g1) = Im(π1). Let (x, y) + I ∈ Im(π1). Then, there is some a ∈ Z such

that π1(a) = (a, 0) + I = (x, y) + I. Then, g1((x, y) + I) = g1((a, 0) + I) = f1(0) = 0,

so (x, y) + I ⊆ Ker(g1), which shows that Im(π1) ⊆ Ker(g1). Now let (x, y) + I ∈

Ker(g1). Then, f1(y) = g1((x, y) + I) = 0, hence y ∈ Ker(f1) = Im(f0), so there is

an a ∈ F0 such that f0(a) = y (note that a is unique because f0 is injective). Then

(x, y) + I = (x, f0(a)) + I = (x + ϕ(a)) + I. Then π2(x + ϕ(a)) = (x, y) + I, so

(x, y) + I ∈ Im(π1). It is easy to see that Ker(g1) ∼= Z. Then, since the bottom line

is exact and A is a W -group, there exists a homomorphism ρ : A −→ B such that

ρ ◦ g1 = idA. By Proposition 1.38, there is a homomorphism τ : B −→ Z such that

π1 ◦ τ = idZ. If we let ψ = τ ◦ π2, then f ′0(ψ) = ϕ, so Im(f ′0) = Hom(F0,Z), hence

Ext(A,Z) = 0.

Conversely, suppose Ext(A,Z) = 0 and let the exact sequence 0→ Z
π1−→ B

g−→ A→ 0.

Let 0→ F0
f0−→ F1

f1−→ A→ 0 be a free resolution and let π2 : F1 −→ B be a surjective

homomorphism such that π1 ◦ π2 = f1 (the homomorphism π2 exists because F1 is a

projective group, see Proposition 1.39). Then there is a homomorphism ϕ : F0 −→ Z

such that we have a commutative diagram like the one above. By assumption, there

exists some ψ : F1 −→ Z such that f ′0(ψ) = ψ◦f0 = ϕ. Note that if Ker(π2) ⊆ Ker(ψ).

Indeed, if x ∈ Ker(π2), f1(x) = g1(π2(x)) = 0, so x ∈ Ker(f1) = Im(f0) and there

exists some y ∈ F0 such that f0(y) = x. Then, ψ(x) = ψ(f0(y)) = ϕ(y) = 0. Note that

ψ induces a mapping τ : B −→ Z such that τ ◦ π1 = idZ. So the bottom line splits,

hence A is a W -group. �
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Corollary 3.3.

(1) A subgroup of a W -group is a W -group.

(2) Every W -group is torsion-free.

(3) If B0 is a subgroup of B1 such that B1 is a W -group but B1/B0 is not, then there

exists a homomorphism ψ : B0 −→ Z which does not extend to a homomorphism

ψ′ : B1 −→ Z.

Proof. For (1) assume A is a W -group and let B be an arbitrary subgroup of A. Then,

the sequence 0 → B
i−→ A

π−→ A/B → 0, with i the inclusion and π the projection, is

exact. Then, by Theorem 1.42, there is an exact sequence Ext(A,Z)→ Ext(B,Z)→ 0.

Since A is a W -group, then Ext(A,Z) = 0. Therefore, Ext(B,Z) = 0, so B is a W -

group. We prove (2) by contraposition. First note that if π : Z −→ Z/nZ is the

canonical projection, although Ker(π) ∼= Z, π does not split, so Z/nZ is not a W -

group for any n > 0. Now let A be a non-torsion-free group. Then, there is a ∈ A such

that 〈a〉 is a non-zero finite cyclic group, hence isomorphic to some Z/nZ, so 〈a〉 isn’t

a W -group. Since subgroups of W -groups are W -groups and 〈a〉 is a subgroup of A,

A is not a W -group. To see (3) let the exact sequence 0 → B0
i−→ B1

π−→ B1/B0 → 0,

with i the inclusion and π the projection. By Theorem 1.42 there is an exact sequence

Hom(B1,Z)
i′−→ Hom(B0,Z) → Ext(B1/B0,Z) → Ext(B1,Z). By assumption and

Theorem 3.2, Ext(B1,Z) = 0 and Ext(B1/B0,Z) 6= 0, which implies that i′ is not

surjective, which means that there is a homomorphism from B0 into Z which does not

extend to a homomorphism from B1 into Z. �

The main result of this section is Stein’s proof for the countable case of Whitehead’s

Problem. Let us first introduce some terminology and a few useful results.

Definition 3.4. A subgroup B of a torsion-free group A is called pure subgroup if the

quotient group A/B is torsion-free. If B is a subgroup of A, the pure closure of B in

A is the subgroup B′ = {a ∈ A : na ∈ B for some n 6= 0}.

Remark. The actual definition of pure subgroup of A does not need A to be torsion-free

but it is enough for our purposes. For more details see [Kap69], p. 14.

It is clear that the pure closure of a subgroup B of A is a pure subgroup. Note that

if A is free, so is B′ by Theorem 1.31. Also, if B is finitely-generated, since B and B′

have the same dimension, so is B′. As a consequence, if A is free, then every finitely-

generated subgroup B of A is contained in a finitely-generated pure subgroup of A. The

following result shows that the converse also holds for countable torsion-free groups.
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Pontryagin’s condition: A is a countable torsion-free group such that every

finitely-generated subgroup of A is contained in a finitely-generated pure subgroup

of A.

Theorem 3.5 (Pontryagin’s Criterion). If A satisfies the Pontryagin’s condition, then

A is free.

Proof. Let {an : n < ω} be an enumeration of A. By induction, we define a smooth

chain {Bn : n < ω} of finitely-generated pure subgroups of A. We start with B0 = 0.

If Bn has been already defined, we let Bn+1 be a finitely-generated subgroup of A

containing Bn ∪ {an}. It is clear that
⋃
n<ω Bn = A. Moreover, since Bn is pure in A,

Bn+1/Bn is torsion-free, and it is finitely-generated because Bn+1 is finitely-generated.

Therefore, by Theorem 1.36, Bn+1/Bn is free. By Theorem 1.35, A is free. �

Later on in this chapter we will construct a torsion-free group of cardinality ℵ1 which

satisfies a stronger condition without being free, showing that the Pontryagin’s Criterion

is not true if A is not countable.

Definition 3.6. Let C be a set (or a group) of the form B × Z. By π we will denote

the projection of C onto the first factor. If B is a group, we define a (B,Z)-group to be

a group C whose underlying set is B ×Z such that the projection onto the first factor

π : C −→ B is a homomorphism and (0, n) + (0,m) = (0, n+m) for all integers n,m.

An easy example of a (B,Z)-group is B⊕Z. It is easy to see that for any (B,Z)-group,

Ker(π) ∼= Z. Therefore, if π does not split, then B is not a W -group.

Lemma 3.7 (See [Ekl76], Lemma 4.3). Let B0 be a subgroup of B1 such that B1 is a

W -group but B1/B0 is not. Let C0 be a (B0,Z)-group and ρ a splitting homomorphism

for the projection onto the first factor π : C0 −→ B0. Then there is a (B1,Z)-group C1

which is an extension of C0 such that ρ does not extend to a splitting homomorphism

for π : C1 −→ B1.

Proof. By the previous remark, π : C0 −→ B0 splits, there is a homomorphism ρ :

B0 −→ C0 such that π◦ρ = idB0 . Then, ρ(b) = (b,m) for any b ∈ B0 and a fixed m ∈ Z,

so the mapping τ : B0 ⊕ Z −→ C0 given by τ(b, z) = ρ(b) + (0, n) is an isomorphism.

We may assume that C0 = B0⊕Z and ρ(b) = (b, 0) for every b ∈ B0. Let C ′1 = B1⊗Z

and let ψ : B0 −→ Z a homomorphism which does not extend to a homomorphism

ψ′ : B1 −→ Z, which exists by Corollary 3.3 (3). Let the homomorphism γ : C0 −→ C ′1

given by γ(b, n) = (b, n+ψ(b)). Since ψ cannot be extended to a homomorphism from

B1 into Z, there is no splitting homomorphism ρ′1 : B1 −→ C ′1 for π : C ′1 −→ B1 whose

resitriction to B0 is γ ◦ ρ for otherwise, by letting ϕ be π ◦ ρ1, for any b ∈ B0 ⊆ B1,
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ϕ(b) = ψ(b), contradiction. Now, define the mapping f : C ′1 −→ B1 × Z taking each

pair (b, n) to itself if b /∈ B0 and to (b, n − ψ(b)) otherwise. Note that f is a bijection

such that f ◦ γ is the inclussion of B0 ⊕ Z into B0 × Z. Now we let C1 be the group

whose underlying set is B1 × Z with the addition u + v = f(f−1(u) + f−1(v)). Then

C1 is an extension of C0 and there is no splitting homomorphism ρ′1 : B1 −→ C1 for

τ : C1 −→ B1 extending ρ : B0 −→ C0. �

The following is the main theorem of this section and it answers positively the White-

head’s Problem in its countable case.

Theorem 3.8 (Stein, 1951). Every countable W -group is free.

Proof. Let A be a countable W -group. By Corollary 3.3, A is torsion-free. Therefore, it

is just enough that A satisfies Pontryagin’s Criterion. We go by contradiction. Assume

that there is a finitely-generated subgroup B0 of A which is not contained in a finitely-

generated pure subgroup of A. Let B be the pure closure of B0 in A, whih is not

finitely-generated by the choice of B0. Then, B is the union of a strictly-increasing

chain of finitely-generated groups B0 ( B1 ( . . . ( Bn ( . . .. Also, note that since B

is the pure closure of B0, B/B0 is a torsion group. Now, by induction on n we built a

chain C0 ( C1 ( . . . ( Cn ( . . . of groups such that Cn is a torsion-free (Bn,Z)-group

for every n < ω. Before we start with the construction, note that if S is the set of

generators of B0 and C is torsion-free, any homomorphism ρ : B −→ C is completely

determined by its values on S. Indeed, let b be an arbitrary element in B, then there

is some n 6= 0 such that nb ∈ B0. Since ρ is determined by its values on the elements

of S and C is torsion-free, the equation nx = ρ(nb) has a unique solution in C, which

is x = ρ(b). We list all set-mappings {gn : n < ω} with gn : S −→ S × Z such that

π ◦ g = idS . There are countable-many of them as S is finite and Z is countable. Let

C0 = B0⊕Z and suppose that Cn has been already defined. If gn extends to a splitting

homomorphism ρ for πn : Cn −→ Bn, we let Cn+1 be an extension of Cn such that ρ dos

not extend to a splitting homomorphism for πn+1 : Cn+1 −→ Bn+1. Since Bn+1/Bn is

torsion, it is not a W -group by Corollary 3.3 (2), hence Lemma 3.7 applies, and such

Cn+1 exists. If the first case does not hold, we just let ρ be any splitting homomorphism

for πn : Cn −→ Bn and define Cn+1 in the same way as before. Since Bn is finitely

generated and torsion-free, it is free by Theorem 1.36, so such ρ exists. This finishes the

construction of the chain, so let C =
⋃
n<ω Cn. Clearly, C is a torsion-free (B,Z)-group.

Now assume for the sake of contradiction that π : C −→ B splits and let ρ : B −→ C

be a splitting homomorphism for π. Then, ρ � S = gn for some n < ω. Then, by

construction, ρ � Bn is a splitting homomorphism for πn : Cn −→ Bn which extends

gn and extends, in turn, to a splitting homomorphism for πn+1 : Cn+1 −→ Bn+1, but
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this contradicts the construction of Cn+1. Therefore, π : C −→ B does not split. As

noticed before Definition 3.6, Ker(π) = Z. Since B is a subgroup of a W -group, it is a

W -group, by Corollary 3.3 (1). But π : C −→ B does not split, which is a contradiction.

We conclude that A is free. �

3.2 ℵ1-free groups and the Chase’s condition

Stein answers Whitehead’s problem in the positive in its countable case. However,

the same reasoning cannot work for the uncountable case for Stein’s proof lies on

Pontryagin’s Criterion, which just applies to countable (torsion-free) groups. Moreover,

the recursive constructions of B and C run over ω. In this section we generalize some

of the previous notions and results.

Definition 3.9. A group A is said to be ℵ1-free if all of its countable subgroups are

free.

There are examples of ℵ1-groups which are not free. For instance, Baer and Specker

proved that the direct product of an infinite set of infinite cyclic groups is ℵ1-group but

not free (see [Fuc70], Theorem 19.2). The following is an easy consequence of Stein’s

theorem.

Proposition 3.10. Every W -group is ℵ1-free.

Proof. Let A be a W -group. By Corollary 3.3 (1), every subgroup of A is a W -group.

In particular, every countable subgroup of A is a W -group. Then, by Stein’s Theorem,

every countable subgroup of A is free. �

Proposition 3.11. If A is an ℵ1-free group, then it is torsion-free and every finite

subset of A is contained in a finitely-generated pure subgroup.

Proof. It is clear that A is torsion-free, for otherwise there would exist a finite torsion

group, hence a countable non-free group. Now let S be a finite subset of A and let 〈S〉

be the group generated by S. Let 〈S〉∗ be the pure closure of 〈S〉 and assume for the

sake of contradiction that it is not finitely-generated. Then, there exists a countably

generated subgroup N of 〈S〉∗ which is not finitely-generated. Recall that the rank

of an abelian group is the cardinality of a maximal linearly independent subset. We

prove that the rank of N is finite. This, together with the fact that it is countably

generated, would imply that N is not free, contradicting that A is ℵ1-free. So let T be

a linearly independent set in N , since N is a subgroup of 〈S〉∗, for every t ∈ T there

exists some n ∈ N such that nt ∈ 〈S〉, so every t ∈ T can be written as the linear
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combination of elements in S. Therefore, every linearly independent subset of N has

cardinality less than or equal to |S|, thus N has finite rank. We conclude that 〈S〉∗ is

finitely-generated. �

The converse of Proposition 1.34 also holds (see [EM02], 2.3 Theorem, p. 98). We notice

that ℵ1-free groups may be seen as a generalization of torsion-free groups. Indeed, by

Theorem 1.36, every finitely-generated subgroup of a torsion-free group is free. In

this case, being an ℵ1-free group implies that not only finitely-generated but countable

subgroups are free. The following is a generalization of pure subgroups.

Definition 3.12. A subgroup of an ℵ1-free group A is called ℵ1-pure subgroup if A/B

is ℵ1-free.

As said above, Pontryagin’s condition just applies to countable torsion-free groups. We

generalize it to this more general context.

Chase’s condition: A is an ℵ1-free group such that every countable subgroup

of A is contained in a countable ℵ1-pure subgroup of A.

Chase’s condition can be expressed in terms of ascending chains, as next lemma shows.

Lemma 3.13. If A is a group of cardinality ℵ1, A satisfies the Chase’s condition if

and only if A is the union of a smooth chain of countable free groups {Aα : α < ω1}

such that A0 = 0 and for each α < ω1, Aα+1 is ℵ1-pure in A.

Proof. The right to left direction is easy, for if A is the union of a smooth chain of

countable free subgroups as in the statement, then for any countable subgroup B of A

there is some α < ω1 such that B ⊂ Aα+1. For the other direction, assume that A is a

group of cardinality ℵ1 which satisfies the Chase’s condition. We list all the elements

of A in a sequence of length ω1 so that A = {aα : α < ω1}. We define each Aα by

induction. Let A0 = 0. Suppose that Aβ has been already defined for all β < α we

consider two cases. If α is a limit, we just let Aα =
⋃
βαAβ, which is still countable for

it is the union of countable-many countable sets. If α = β + 1 let Aα be a countable

ℵ1-pure subgroup of A containing Aβ ∪{aβ}, which exists by the assumption on A. �

Note that for every group it is always possible to build a smooth chain of groups

without further requirements about the properties they should exhibit. If A is a group

of cardinality ℵ1, we will denote by EA the set of all ordinals α < ω1 such that Aα is

not ℵ1-pure in A, where {Aα : α < ω1} is the smooth chain of countable free groups of

the previous lemma. Next theorem shows that free groups can be characterized by the

stationarity of this set. To prove it we first need the following new concepts.
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Definition 3.14. A subset C of an infinite limit ordinal α is said to be unbounded if

for every β < α there is some γ ∈ C such that β < γ. We say that it is closed if and

only if for every limit ordinal β < α, if C ∩ β is unbounded in β, then β ∈ C. If C is

a closed and unbounded subset of an ordinal α, we say that C is a club. A subset S of

an ordinal α is said to be stationary if it intersects all club subsets of α.

A function f : ω1 −→ ω1 is said to be normal if it is an strictly increasing function such

that for any limit ordinal α in the domain, f(α) = sup{f(β) : β < α}. Note that, since

the image of every normal function is a club, every stationary subset S of ω1 intersects

it.

Theorem 3.15 (Chase’s Criterion). A group A of cardinality ℵ1 is free if and only if

EA is not a stationary subset of ω1.

Proof. Assume first that EA is not a stationary subset of ω1. Then there is a club

subset C of ω1 such that EA ∩ C = ∅. For every club subset C of ω1 there is a normal

function f : ω1 −→ ω1 such that Im(f) = C. Let f be a normal function on ω1 such

that EA ∩ Im(f) = ∅ and let A∗α = Af(α). Since Im(f) is unbounded and for any

limit ordinal α in the domain, f(α) = sup{f(β) : β < α}s, {A∗α : α < ω1} is a smooth

chain such that
⋃
α∈ORA

∗
α. By the choice of f , Im(f) ∩ E = ∅, so A∗α is ℵ1-pure for

every α < ω1, thus A∗α+1/A
∗
α is free for every α < ω1. By Theorem 1.35, A is free.

Conversely, suppose that A is a free group and let S be a basis of A. We define a

smooth chain {Sα : α < ω1} of subsets of S and a normal function f : ω1 −→ ω1

such that for every α < ω1, Sα is a basis of Af(α). We let S0 = 0 and f(0) = 0.

Suppose Sβ and f(β) have been already defined for every β < α. If α is a limit, we let

Sα =
⋃
β<α Sβ and f(α) = sup{f(β) : β < α}. Since Af(α) =

⋃
β<αAf(β), it is clear

that Sα is a basis of Af(α). If α = β + 1, let S∗0 be a countable subset of S such that

Sβ ( S∗0 (this is possible because S is uncountable) and let σ∗0 be an ordinal such that

S∗0 ⊆ Aσ∗0 . Note that f(β) < σ∗0. Now, let S∗1 be a countable subset of S such that Aσ∗0

is contained in the group generated by S∗1 . We repeat this argument inductively and

we get a chain of countable subsets X0 ( S∗0 ⊆ S∗1 ⊆ . . . ⊆ S∗n ⊆ . . . and a sequence of

ordinals f(β) < σ∗0 ≤ . . . ≤ σ∗n ≤ . . . such that for every n < ω, S∗n ⊆ Aσ∗n ⊆ 〈S
∗
n+1〉.

Then, let Sα =
⋃
n<ω S

∗
n and f(α) = sup{σ∗n : n < ω}, so that Sα is a basis of Af(α).

Then, the sequence built is the smooth chain {Sα : α < ω1} of subsets of S and the

normal function f : ω1 −→ ω1 such that for every α < ω1, Sα is a basis of Af(α). Note

that EA is not stationary in ω1 because for every α < ω1, f(α) /∈ EA because A/Af(α)

is isomorphic to the free group generated by X \ Xα, so Af(α) is ℵ1-pure in A. This

finishes the proof. �

Chase’s Criterion will be used in next section.
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3.3 The undecidability of the Whitehead’s problem

Our aim is to prove that the Whitehead’s problem is undecidable in ZFC. To do this

we will show that every W -group of size ℵ1 is free in the constructible universe L, which

we also study here. Then, we will show that a negative answer for W -groups of size ℵ1

is also consistent with ZFC. Indeed, under the assumption of Martin’s Axiom there is

always a W -group of size ℵ1 which is not free.

3.3.1 The Axiom of Constructibility

In Definition 1.24 we have seen how V is built by transfinite recursion on the ordinals.

Recall that we start with V0 = ∅ and for limit ordinals we just let Vα be the union of

all Vβ with β < α. In the successor case, Vα+1 is taken to be the power set of Vα. This

move is rather problematic, in a sense. Indeed, note that |Vω| = ℵ0. However, by the

well-known Cantor’s Theorem, |Vω+1| = |P(Vω)| > |Vω|, that is, Vω+1 has uncountable-

many sets. Since there are countable-many formulas of the language of set theory, it

follows that there are uncountable-many sets in Vω+1 that cannot be defined, not even

with parameters. To avoid this situation, instead of taking the power set of Vα to get

Vα+1, one can just let Vα+1 be the set of the subsets of Vα that are definable, with or

without parameters, in Vα. This is the idea of the Constructible Universe, which we

introduce here. We show that 〈L,∈〉 is a model of ZFC with interesting combinatorial

properties such as the ♦-principle. We refer the intereted reader to [Jech03], 13, pp.

175-200; and [Kun13] II.6 pp. 134-144.

Definition 3.16. A set X is definable over a model 〈M,∈〉 if there exists a first-

order formula ϕ in the language of set theory and some parameters a1, . . . , an ∈ M

such that X = {x ∈ M : 〈M,∈〉 � ϕ(x, a1, . . . , an)}. We let D(M) = {X ⊆ M :

X is definable over 〈M,∈〉}

It is easy to see that if X is a transitive set, then X ⊆ D(X). Indeed, if x ∈ X then

x ⊆ X. The set x can be defined in X as x = {y ∈ X : y ∈ x}, so x ∈ D(X). Moreover,

if X is transitive, then D(X) is also transitive, for if x ∈ D(X) and y ∈ x ⊆ X ⊆ D(X),

then y ∈ D(X).

Definition 3.17. The Constructible Universe is the union L =
⋃
α∈OR Lα, where:

L0 = ∅,

Lα+1 = D(Lα),

Lα =
⋃
β<α Lβ, if α is a limit.

As next result show 〈Lα : α ∈ OR〉 is a cumulative hierarchy.
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Proposition 3.18. For every α, β ∈ OR,

(1) Lα is transitive and if α ≤ β, then Lα ⊆ Lβ.

(2) α = Lα ∩OR.

Proof. To prove (1) we see by transfinite induction that Lα is transitive for every

α ∈ OR. The basic and limit cases being trivial, we just have to focus on the successor

case. But this follows from the fact that if X is transitive, so is D(X). Indeed, if Lα

is transitive, so is D(Lα) = Lα+1, and we are done. By induction on β we prove that

for every α ≤ β, then Lα ⊆ Lβ. Being again the basic and limit cases trivial, assume

that it holds for β. Since Lβ is transitive, Lβ ⊆ D(Lβ) = Lβ+1. We prove (2) by

transfinite induction as well, being again the basic and limit cases clear. Assume that

Lα ∩ OR = α. Then, α = {x ∈ Lα : Lα � ϕ(x)} ∈ D(Lα) = Lα+1, where ϕ(x) says

that x is an ordinal, which is first-order expressible. Then, α+ 1 = Lα+1 ∩OR. �

Theorem 3.19 (Gödel, 1938). L � ZFC.

Proof. By Proposition 3.18 (2) it easily follows that L satisfies Infinity because, since

ω + 1 = Lω+1 ∩ OR, ω ∈ Lω+1 ⊂ L. By Lemma 1.25, since L is a transitive proper

class, it satisfies Extensionality and Foundation. We first prove that Separation holds

in L. To see this, let ϕ be a formula without y free. The formula ϕ may have x, z free,

along with a vector v of n-many free variables, so let ϕ be written as ϕ(x, z, v). Fix

z, v ∈ L and let y = {x ∈ z : L � ϕ(x, z, v)}. Fix α ∈ OR such that z, v ∈ Lα. Then,

by the Reflection Theorem 1.27 we can take an ordinal β > α such that for all a ∈ Lβ,

Lβ � ϕ(a, z, v) if and only if L � ϕ(a, z, v). Then, y = {x ∈ Lβ : Lβ � ψ(x, z, v)} ∈

Lβ+1 ⊂ L where ψ(x, z, v) = ϕ(x, z, v) ∧ x ∈ z. Now that we have that Reflection

holds in L, it is easy to see that Union, Pairing, Power Set and Separation hold in L

as well. Indeed, if x, y ∈ Lα, then
⋃
x = {y ∈ Lα : ∃z ∈ x(y ∈ z)} ∈ Lα+1 ⊂ L

so Union holds; {x, y} = {z ∈ Lα : (z = x ∨ z = y)} ∈ Lα+1 ⊂ L so Pairing holds;

P(x) = {y ∈ Lα : ∃z(z ⊆ x ∧ z = y)} ∈ Lα+1 ⊂ L so Power Set holds. To see

that L satisfies Replacement, let f be a definable function with domain a ∈ L. Then

rg(f) = {b ∈ L : L � ∃x ∈ aϕ(x, b)}, where ϕ(x, y) is the defining formula for f . Then

rg(f) ∈ L. It remains to check that L satisfies the Axiom of Choice. We actually

prove something stronger. Namely, we show that there is a definable well-ordering in

L, which implies that every set in L has a choice function, that is, that L satisfies the

Axiom of Choice.

Lemma 3.20. There is a definable well-ordering of L.

Proof of the lemma. We go by induction. Assume we have already defined a well-

ordering <β of Lβ for all β < α in such a way that <β⊆<β′ whenever β < β′. Suppose
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that α = β + 1. Note that

D(Lβ) =
⋃
n<ω

(
⋃
k<ω

D(k, Lβ, n) ∪ {z : ∃m > 0∃(b0, . . . , bm−1) ∈ Lmβ ∃R ∈ D(Lβ, n+m)

(z = {(a0, . . . , an−1) ∈ Lnβ : (a0, . . . , an−1, b0, . . . , bm−1) ∈ R})}),

where

(i) D(0, Lβ, n) = {Diag(Lβ, n, i, j) : i, j < n}∪{Triang(Lβ, n, i, j) : i, j < n}, where,

in turn, Diag(Lβ, n, i, j) = {x ∈ Lnβ : xi = xj}, Triang(Lβ, n, i, j = {x ∈ Lnβ :

xi ∈ xj};

(ii) D(k + 1, Lβ, n) = D(k, Lβ, n) ∪ {Lnβ \ R : R ∈ D(k, Lβ, n)} ∪ {R ∩ S : R,S ∈

D(k, Lβ, n)} ∪ {Proj(R, i) : R ∈ D(k, Lβ, n), i < n+ 1}, where Proj(R, i) stands

for the projection of the set S ∈ Lnβ on its i-th coordinate; and

(iii) {z : ∃m > 0∃(b0, . . . , bm−1) ∈ Lmβ ∃R ∈ D(Lβ, n + m)(z = {(a0, . . . , an−1) ∈

Lnβ : (a0, . . . , an−1, b0, . . . , bm−1) ∈ R})} is the set of subsets of Lnβ defined with

parameters in Lβ.

Suppose α = β + 1. We define a well-ordering in Lα. For each n < ω we can well-

order
⋃
k<ω D(k, Lβ, n) in a natural way. We order it first with respect to k. For a

given k+1 we order D(k+1, Lβ, n) with respect to the operations of complementation,

intersection and projection using the already defined well-orderings of
⋃
k<ω D(k, Lβ, n)

for all n < ω. We denote by <β,n this well-ordering of D(Lβ, n). We also order

lexicographically, in acordante with <β, all finite sequences of elements of Lβ. We

denote this by <lexβ . So now we define a well-ordering of Lα given by x <α y if and

only if

(a) x, y ∈ Lβ and x <β y, or

(b) x ∈ Lβ and y /∈ Lβ, or

(c) x, y /∈ Lβ with x and y being x = {x0 : (x0, a0, . . . , amx−1) ∈ Rx} and y = {x′0 :

(x′0, a
′
0, . . . , a

′
my−1) ∈ Ry}, respectively, where (a0, . . . , amx−1) and (a′0, . . . , a

′
mx−1)

are the <lexβ -least possible, and Rx and Ry are the <β,mx+1-least possible and the

<β,my+1-least possible, respectively; and

(a’) (a0, . . . , amx−1) <lexβ (a′0, . . . , a
′
my−1), or

(b’) (a0, . . . , amx−1) = (a′0, . . . , a
′
my−1) and Rx <β,mx+1 Ry.

Now let <L be the union of the well-orderings defined in each Lα, that is, <L=⋃
α∈OR <α. It remains to show that <L is a well-ordering for L. We first show that it

is linear. Since <α+1 is a linear ordering of Lα+1 such that <α⊆<α+1 for all ordinals
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α, linearity is clear. So let us prove that <L is well-ordered. To see this, let a be a

non-empty set in L. Note that if x <L y, then ρL(x), that is, the least ordinal α such

that x ∈ Lα+1, called the rank of x in L, is greater than or equal to ρL(y). So let A0 be

the subset of A consisting of all elements of A with minimal rank. If A0 contains only

one element, this is the minimal element of A, so we are done. Otherwise, let x be the

<α+1-least element of A0 in Lα+1, where ρL(x) = α. Then x is the <L-least element

of A. �

If x ∈ L, then <L� x is a well-ordering of x, so in L every set has a well-ordering.

Therefore, since L is a model of ZF , AC holds in L, hence L is a model of ZFC. �

The assumption that the universe of all sets is actually L is known as the Axiom

of Constructibility. Our aim in this section is to prove that Whitehead groups of

cardinality ℵ1 are free under the assumption that V = L. The fact that L satisfies the

Jensen’s diamond principle will play a key role in the proof.

♦: There exists a sequence 〈Sα : α < ω1〉 such that Sα ⊆ α for all α and such that

for every S ⊆ ω1, the set {α : S ∩ α = Sα} is stationary.

We say that a sequence 〈Sα : α < ω1〉 satisfying the conditions of ♦ is a ♦-sequence.

Theorem 3.21 (Jensen, 1972). L � ♦.

Proof. We build a ♦-sequence in L. By induction on α < ω1 we define sequence of

pairs (Sα, Cα) such that Sα ⊆ α and Cα is a club subset of α. Let S0 = C0 = ∅ and

let Sα+1 = Cα+1 for all α. If α is a limit ordinal, we let (Sα, Cα) be the <L-least pair

such that Sα ⊆ α, Cα is a club subset of α and Sα ∩ ξ 6= Sξ for all ξ ∈ Cα, if such pair

exists. If it does not exist such a pair, we just let Sα = Cα = α. Let us prove that

the sequence 〈Sα : α < ω1〉 is a ♦-sequence. Assume the opposite. Then, there exists

X ⊂ ω1 such that {α : X ∩ α = Sα} is not stationary, that is, such that there exists

a club C ⊆ ω1 such that X ∩ α 6= Sα for all α ∈ C. Let (X,C) be the <L-least pair

satisfying that. Note that since 〈Sα : α < ω1〉 is an ω1-sequence of pairs of subsets of

ω1, it belongs to Lω2 , which is a model of ZFC− + V = L, that is, a model of ZFC

without Power Set and V = L. The well-order <L is absolute for all transitive models

of ZFC− + V = L for it requires only ZF−, so the sequence 〈Sα : α < ω1〉 is, in Lω2 ,

the <L-least pair such that Sα ⊆ α, Cα is a club subset of α and Sα ∩ ξ 6= Sξ for all

ξ ∈ Cα, if such pair exists and such that Sα = Cα = α, if it does not. Analogously,

(X,C) ∈ Lω2 is the <L-least pair with X ⊆ ω1 and C a club of ω1 such that X∩α 6= Sα

for all α ∈ C. By Theorem 1.22, let N be a countable elementary submodel of Lω2 .

Then N satisfies the same sentences than Lω2 , so 〈Sα : α < ω1〉 and (X,C) are in N ,
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for they are definable in Lω2 with no parameters. It is easy to see that ω1 ∩ N is an

ordinal. To see this, as every subset of ordinals is an ordinal if it is transitive, we just

have to show that ω1 ∩ N is transitive. But since the intersection of transitive sets is

transitive, it is enough to prove that N is transitive. So let a ∈ N and let f be the

<L-least mapping from ω1 onto a. Since f is definable in Lω2 from N , f ∈ N . Then

f(α) ∈ N for every α ∈ ω1, so a ⊆ N . Let us then let δ = ω1 ∩ N . The transitive

collapse of N is Lγ for some γ < ω1 by the Gödel’s Condensation Lemma (see [Jech03],

Lemma 13.17). Let π : N −→ Lγ be the collapsing map. We can show by induction on

OR ∩N that π(δ) = ω1. Moreover, for every b ⊆ ω1 which is in N , then π(b) = b ∩ δ.

Therefore, π(X) = X ∩ δ, π(C) = C ∩ δ and π(〈Sα : α < ω1〉) = 〈Sα : α < δ〉. We then

have that Lδ satisfies that (X ∩ δ, C ∩ δ) is the <L-least pair (Z,D) with (Z,D) such

that Z ⊆ δ, D is a club of δ and Z ∩ ξ 6= Sξ for all ξ ∈ D. By absoluteness this holds in

L, so X ∩ δ = Sδ. Since C ∩ δ is unbounded in δ and C is closed, δ ∈ C, which would

imply that X ∩ δ 6= Sδ, which is a contradiction. �

It is easy to see that ♦ implies the Continuum Hypothesis. Indeed:

Theorem 3.22. ♦ → CH

Proof. Since ℵ1 ≤ 2ℵ0 , we show that there is a one-to-one function from P (ω) to ω1.

Let S ∈ P (ω), that is, S ⊆ ω ∈ ω1. By ♦ there exists a sequence 〈Sα : α < ω1〉 with

Sα ⊆ α for every α such that for every S ⊆ ω1 the set {α : α ∩ S = Sα} is stationary.

Therefore, {α : α ∩ S = Sα} intersects the tail set Cω = {β < ω1 : β > ω}, which is

a club in ω1. Let a ∈ Cω such that a ∩ S = Sa. Since a ∈ ω1 such that a > ω and

S ⊆ ω then S ⊆ a so S = a ∩ S = Sa. Let S′ ⊆ ω such that a ∩ S′ = Sa. Again,

S′ = Sa hence S′ = S. Therefore the map f which sends every S ∈ P (ω) to the least

element a in Cω such that a ∩ S = Sa is a one-to-one function from P (ω) into ω1, so

2ℵ0 = |P (ω)| ≤ |ω1| = ℵ1. Thus, 2ℵ0 = ℵ1. �

More generally, as Gödel proved in 1938, the Generalized Continuum Hypothesis holds

in L.

Theorem 3.23 (Gödel, 1938). V = L −→ GCH.

Proof. It is enough to see that 2ℵα ≤ ℵα+1. So let a ∈ L be an element in P(ωα). By

Reflection, let λ be an ordinal big enough to satisfy the conjunction θ of the finitely-

many axioms of ZFC needed to construct L and such that a ∈ Lλ. By Löwenheim-

Skolem-Tarski, let N ∈ L be an elementary substructure of Lλ of countable cardinality

such that a ∈ N . Let M be its Mostowski collapse. Since it is a transitive set satisfying

θ, then M = Lα with α = M ∩ OR < ωα+1. Since if x ∈ y, then x <L y, a ∈ M = Lα
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with α < ωα+1, hence a ∈ Lω+1. We conclude that 2ℵα = |P(ωα)| ≤ |Lωα+1 | = ℵα+1,

hence 2ℵα = ℵα+1 for every α ∈ OR, and L � GCH. �

The Diamond Principle admits a generalization by changing ω1 for any other regular

cardinal κ. Also, if E is a stationary subset of a regular cardinal κ, then we have the

following more general principle.

♦(E): There exists a sequence 〈Sα : α ∈ E〉 such that Sα ⊆ α for all α and such that

for every S ⊆ κ, the set {α ∈ E : S ∩ α = Sα} is a stationary subset of κ.

Theorem 3.21’s proof can be generalized to show that the principle ♦(E) holds in L

for any cardinal κ and any stationary set E ⊂ κ. We notice that, as the Continuum

Hypothesis holds in L, ω1 is a regular cardinal. The ♦(E) principle is stronger than

what we actually need for our purposes. The following, a consequence of the fact that

♦(E) holds in L, shall be enough.

Lemma 3.24 (V=L). Let B be the union of a strictly-increasing smooth chain of

countable sets 〈Bα : α < ω1〉 and let Y ⊆ ω1. Let E be a stationary subset of ω1.

Then there is a sequence of functions 〈gα : Bα −→ Bα × Y : α ∈ E〉 such that for any

function h : B −→ B×X satisfying that h(Bα) ⊆ Bα×Y for all α, there is an ordinal

α ∈ E such that h � Bα = gα.

Proof. Let Cα = Bα × (Bα × Y ) and C = B × (B × Y ) and let {Sα : α ∈ E} be a

sequence such that Sα ⊆ Cα for all α ∈ E and such that for any subset X of C the set of

α ∈ E with X ∩Cα = Sα is stationary in ω1. Since ♦(E) holds in L and {Cα : α < ω1}

is a strictly increasing smooth chain of countable sets, this sequence exists. As a subset

of Bα × (Bα × Y ), Sα could be a function from Bα to Bα × Y . In that case, call it

gα. Otherwise, let gα be an arbitrar function from Bα to Bα × Y . Let h be a function

from B into B × Y , hence a subset of B × (B × Y ). By ♦(E), h∩Cα = Bα. But since

h(Bα) ⊆ Bα × Y for all α, then h ∩ Cα = h � Bα = gα. �

This is enough to prove that, in L, every W -group of size ℵ1 is free.

Theorem 3.25 (Shelah, 1974). ZFC+V = L implies that every W -group of cardinality

ℵ1 is free.

Proof. Let A be a W -group of cardinality ℵ1. By Corollary 3.10, A is ℵ1-free. We first

see that A satisfies the Chase’s condition. We go by contradiction. Suppose that A does

not satisfy the Chase’s condition, there is a countable subgroup B of A such that for

every countable subgroup C of A containing B, the quotient group A/C is not ℵ1-free,

or, equivalently, there is a countable subgroup B of A such that for every countable
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subgroup C of A containing B there exists a countable subgroup C ′ of A containing

C such that C ′/C is not free. Note that there is at least one of such subgroups C

for otherwise there would not be any counterexample. We can construct by transfinite

induction a strictly increasing smooth chain {Bα : α < ω1} of countable groups such

that Bα+1/Bα is not free for every α < ω. We let B0 = B. Suppose Bβ have been

defined for every β < α. If α is a limit we just let Bα =
⋃
β<αBβ. If α = β + 1,

since, by induction, Bβ is a countable subgroup of A containing B, there is a countable

subgroup C ′′ containing Bβ such that C ′′/Bβ, so let Bα = C ′′. It is clear that the set

E(B) = {α < ω1 : Bα+1/Bα is not free} is a stationary subset of ω1.

Lemma 3.26 (V=L). Let B be the union of a strictly increasing smooth chain {Bα :

α < ω1} of countable free groups such that E(B) is stationary in ω1. Then B is not a

W -group.

Proof of the lemma. By induction, we built a smooth chain of groups {Cα : α < ω1}

where each Cα is a (Bα,Z)-group and the union C is a (B,Z)-group such that π :

C −→ B does not split. To do this we mimic the construction in Stein’s theorem.

However, in this case we need Lemma 3.24, for it assures that there is a set of functions

{gα : Bα −→ Bα×Z : α ∈ E(B)} such that for any function h : B −→ B×Z satisfying

that h(Bα) ⊆ Bα×Z for all α, there is an ordinal α ∈ E(B) such that h � Bα = gα. The

construction then goes almost the same way. We start with C0, which we let to be any

(B0,Z)-group. Suppose that Cβ has been defined for all β < α. For limit ordinals we

take unions. If α = β + 1, we consider two cases. If β ∈ E(B) and gβ : Bβ −→ Bβ ×Z

is a splitting homomorphism for πβ : Cβ −→ Bβ, we let Cα to be an extension of Cβ

such that gβ does not extend to a splitting field for πα : Cα −→ Bα, which exists by

Lemma 3.7 because it is not free (because Bβ+1/Bβ is not), hence not a W -group.

Otherwise, if β /∈ E(B) or the mapping gβ is not a splitting field for πβ, we let Cα be

any (Bα,Z)-group extending Cα. Let C =
⋃
α<ω1

Cα. As in Stein’s theorem we note

that if ρ : B −→ C was a splitting homomorphism for π : C → B, there would be some

β ∈ E(B) such that ρ � Bβ = gβ which is impossible by the construction of Cβ+1, so π

does not split and we are done. �

Let B∗ =
⋃
α<ω1

Bα. By the lemma, since {Bα : α < ω1} is a strictly increasing smooth

chain of countable free groups and E(B) is stationary in ω1, B∗ is not a W -group. How-

ever, subgroups of W -groups are W -groups, which implies that A is not a W -group.

This is a contradiction, so A satisfies the Chase’s condition.

By Lemma 3.13, A is the union of a smooth chain {Aα : α < ω1} of countable free

groups such that Aα+1 is ℵ1-pure in A. We prove that the set E = {µ < ω1 :
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aµ is not ℵ1-pure in A}, is equal to E′ = {µ < ω1 : Aµ+1/Aµ is not free}. Since E′ ⊆ E

is clear we just have to show that E ⊆ E′. Suppose that µ /∈ E′. Then, by Corollary

1.34 and the Second Homomorphism Theorem, for every ξ > µ, Aξ/Aµ is free because

(Aξ/Aµ)/(Aµ+1/Aξ+1) ∼= Aξ/Aµ+1. Then A/Aµ is ℵ1-free for all its countable sub-

groups are in Aξ/Aµ for some ξ > µ. Therefore, µ /∈ E and E = E′. By the lemma, E′

is not stationary in ω1, as A is, by assumption, a W -group. But then, since E = E′,

the Chase’s Criterion implies that A is free. �

We conclude that a positive solution of the Whitehead’s Problem is consistent with

ZFC.

3.3.2 Martin’s Axiom

In this section we prove that assuming Martin’s Axiom there is a W -group of size ℵ1

which is not free. The consistency of Martin’s Axiom was proved by Donald A. Martin,

based on the work of Robert Solovay and Stanley Tennenbaum on the consistency of

the existence of Suslin trees. The proof, for which the powerful technique of forcing is

used, can be seen in the Appendix. However, the reader who is willing to accept on

faith the consistency of Martin’s Axiom will have no problem to follow this section.

Definition 3.27. A partial ordering is a pair 〈P,≤〉 such that P 6= ∅ and ≤ is a

reflexive, antisymmetric and transitive relation on P .

We will normally denoted 〈P,≤〉 simply by P and call it poset. The elements of P are

sometimes called conditions. If p, q ∈ P and p ≤ q we say that p extends q.

Definition 3.28. Let P be a poset. A subset D ⊆ P is dense if for every p ∈ P there

exists q ∈ D such that q ≤ p. It is dense below p if for every q ≤ p there is some r ∈ D

such that r ≤ q. D is said to be open if p ∈ D and q ∈ D for every q ∈ P such that

q ≤ p.

Note that if D is dense below p and q ≤ p, then D is dense below q and that D is dense

if and only if D is dense below p for every p.

Definition 3.29. Two elements p, q ∈ P are compatible if there exists an element r ∈ P

such that r ≤ p, q. If p and q are not compatible, they are incompatible.

Definition 3.30. A subset C ⊆ P is a chain if for every p, q ∈ C, either p ≤ q or

p ≤ q. It is an antichain if every two p, q ∈ C are incompatible. A partial ordering P

is ccc (has the countable chain condition) if all of its antichains are countable.

It is easy to see that if A is a maximal antichain of P , then D = {p : p ≤ q with q ∈ A}

is dense open, and that every dense open subset contains a maximal antichain.
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Definition 3.31. Let P be a poset and let G ⊆ P . G is said to be a filter if

(1) G 6= ∅,

(2) every two elements of G are compatible, and

(3) if p ∈ G and p ≤ q, then q ∈ G.

A generic filter with respect to a family of dense subsets of P is a filter whose intersection

with every dense subset of that familiy is non-empty.

The Martin’s Axiom is a generalization of the Baire Category Theorem, which states

that in every compact Hausdorff space the intersection of ℵ1-many dense open sets is

non-empty.

Martin’s Axiom (MA): For every ccc poset P and every family of 〈Dα : α < ω1〉

of dense subsets of P , there is a filter G ⊆ P such that G∩Dα 6= ∅ for all α < ω1.

The Martin’s Axiom statement is always true in ZFC for families of ω-many dense

substes. Further, if P is a poset and {Dn : n < ω} is a family of dense subsets of P .

Then, for every p ∈ P there exists a filter G ⊆ P such that p ∈ G and G is generic for

{Dn : n < ω}. Note as well that the restriction to ccc posets is necessary for otherwise

the axiom would be false. For instance, let P to be the set of functions with domain

a finite set of natural numbers and range a subset of ω1 ordered by reverse inclusion.

For every n ∈ ω, the set Dn of all f such that n ∈ dom(f) is dense, and for every

α ∈ ω1, the set Eα of all f with α ∈ rg(f). Then, if G were a generic filter for the

family {Dn : n ∈ ω} ∩ {Eα : α ∈ ω1}, then
⋃
G would be a function from ω onto ω1,

which is impossible. By a similar argument one gets the following.

Theorem 3.32 (MA). Let A and B be sets of cardinality less than 2ℵ0 and let P be a

family of functions from a subset of A into B such that

(1) for every a ∈ A and every f ∈ P , there exists g ∈ P with dom(g) = a extending

f , and

(2) for every uncountable subset P ′ of P , there exist f1, f2 ∈ P ′ and f3 ∈ P such that

f1 6= f2 and f3 extends both f1 and f2.

Then there exists a function g : A −→ B such that for every finite subset F of A there

exists f in P with F contained in the domain of f and g � F = f � F .

Note that (2) above means that P is ccc. We have seen that CH holds in L. The

situation is just the opposite under the assumption of Martin’s Axiom. Actually, in their

proof of th consistency of MA, Solovay and Tennenbaum proved that MA + 2ℵ0 = κ

is consistent with ZFC for every regular cardinal κ greater than ℵ1.
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Theorem 3.33 (Martin-Solovay, 1970). MA→ ¬CH.

Proof. It is enough proving that for any family {fα : α < ω1} of functions from ω into

2 = {0, 1}, there is a function g : ω −→ 2 which is not in the family. To see this, let P

be the partial ordering consisting of the functions p : S −→ 2 with S a finite subset of

ω such that p ≤ q if and only if p extends q. First note that P is ccc for it is countable.

Also, p and q are compatible if and only if they agree in dom(p)∩dom(q) for then p∪ q

extends p and q. For every n < ω let the set Dn = {p ∈ P : n ∈ dom(p)}. It is easy

to see that Dn is dense. Let also Eα = {p ∈ P : ∃n ∈ dom(p) such that p(n) 6= fα},

which is also dense. By MA, there exists a filter G ⊆ P such that G ∩Dn 6= ∅ for all

n < ω and G∩Eα 6= ∅ for all α < ω1. But then
⋃
G is a function with domain ω, as G

meets every Dn and different to fα for all α < ω1 for G meets every Eα. So
⋃
G = g

and we are done. �

The following theorem, proved in ZFC, will be key to answer the Whitehead’s Problem

in the negative.

Theorem 3.34. There is a group A of size ℵ1 which satisfies the Chase’s condition

but is not free.

Proof. By induction, we build a smooth chain {Aα : α < ω1} of countable groups Aα

such that

(1) Aα is free for every α < ω1,

(2) Aα/Aβ+1 is free for every β < α < ω1, and

(3) Aα+1/Aα is not free for every limit ordinal α.

Let A0 be the trivial group and assume that {Aα : α < δ} with δ < ω1 is a smooth

chain satisfying (1), (2) and (3). To define Aδ we consider three different cases. If δ is

a successor ordinal of a successor ordinal, we let Aδ = Aα ⊕ Z, which clearly satisfies

(1). It satisfies (2), too. Indeed, since Aα/Aβ+1 is a free subgroup of Aδ/Aβ+1, and

(Aδ/Aβ+1)/(Aα/Aβ+1) ≡ Aδ/Aα is free as well, then (2) holds by Corollary 1.34. If δ

is a limit ordinal, we let Aδ =
⋃
α<δ Aα. Let {σn : n < ω} be an increasing sequence

of ordinals whose limit is δ such that σn is a successor ordinal for every n < ω. Then,

Aδ =
⋃
n<ω Aωn , and Aσn+1/Aσn is free for every n < ω. Then, by Theorem 1.35 Aδ is

free and so is Aδ/Aσn for every n < ω, so (1) holds. By Corollary 1.34, since Aµ+1 is

contained in Aσn for some n < ω for every µ < δ, (2) holds. And, in the third case, if δ

is the successor ordinal of a limit α, we let {σn : n < ω} as above although we require

σ0 to be 0. By the proof of Theorem 1.35 we know that there is a smooth chain of sets

{Xn : n < ω} such that Xn is a basis of Aσn . For each n > 1 let xn ∈ Xn \ Xn−1.
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Define Yn = Xn \ {xn} and let B be the subgroup of Aα generated by
⋃
n<ω Yn. Let

P =
∏
n<ω〈xn〉 and define Aα+1 to be the subgroup of B ⊕ P generated by Aα and

{zm : 1 ≤ m < ω} where zm is the element in P of the form zm =
∑

n≥m
n!
m!xn. The

union
⋃
n<ω Yn ∪ {zm : 1 ≤ m < ω} is a basis of Aα+1, hence (1) holds. Now, note that

for each k < ω the quotient Aα+1/Aσk is isomorphic to the subgroup of Aα+1 generated

by
⋃
n>k(Yn\Yk)∪{zm : k+1 ≤ m < ω}. Therefore, again by Corollary 1.34, Aα+1/Aσk

is free. To see that (3) holds, note that m!zm− z1 ∈ Aα for every m ≥ 1, hence z1 +Aα

is a non-zero element of Aα+1/Aα, divisible by n for every n < ω. Free groups have no

such elements, so (3) holds.

Let A =
⋃
α<ω1

Aα. Since A is the union of ω1-many countable groups, it is of size

ℵ1. Note that for every α < ω1, the group Aα+1 is ℵ1-pure in A for every countable

group A/Aα+1 is in Aβ/Aα+1 for a sufficiently large β. By the construction, Aβ/Aα+1

is free and every subgroup of a free group is free. Therefore, Aα+1 is ℵ1-pure for

every α < ω1. By Lemma 3.13, A satisfies the Chase’s condition. By (3), the set

EA = {α < ω1 : Aα is not ℵ1-pure} is stationary in ω1, for it is the set of limit ordinals

of ω1. By the Chase’s Criterion A is not free, so we are done. �

Our next step is proving that, assuming MA + 2ℵ0 > ℵ1, any group of cardinality

ℵ1 which satisfies Chase’s condition is a W -group. This would imply, according to

the previous theorem, that there exists a W -group which is not free, answering the

Whitehead’s Problem in the negative.

Theorem 3.35 (Shelah, 1974). ZFC + MA + 2ℵ0 > ℵ1 implies that any group of

cardinality ℵ1 which satisfies Chase’s condition is a W -group. In particular, ZFC +

MA+ 2ℵ0 > ℵ1 implies that there is a W -group of cardinality ℵ1 which is not free.

Proof. Let A be a group of size ℵ1 satisfying Chase’s condition and let π : B −→ A

be a surjective homomorphism such that Ker(π) = Z. We have to prove that π splits.

Let P be the set of all homomorphisms ϕ : S −→ B such that π ◦ ϕ = idS with S a

finitely-generated pure subgroup of A. Note first that P is not empty. Indeed, let S′

be a basis of the pure subgroup S, which is free for it is finitely-generated and A is

torsion-free, as it satisfies Chase’s condition hence it is ℵ1-free. Let f : S′ −→ B be the

set-function sending x to some y where π(y) = x, which exists because π is surjective.

Then, f extends in the natural way to a homomorphism ϕf : S −→ B which satisfies

the required conditions.

Claim. Let ϕ ∈ P and let F be a finite subset of A. There is a function ϕ′ ∈ P such

that ϕ′ extends ϕ and F ⊆ dom(ϕ′).
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Proof of the claim. Let S be a finitely-generated pure subgroup of A and let ϕ be a

function in P whose domain is S. By Proposition 3.11, since A is ℵ1-free there is

a finitely-generated pure subgroup S′ containing S ∪ F . Clearly, S′/S is a finitely-

generated torsion free group, so it is free. By Corollary 1.34, there is a basis of S which

extends to a basis of S′. That is, there is a basis of S′ of the form X ∪ Y where X is

a basis of S. For each x ∈ X, let ϕ′(x) = ϕ(x) and for each y ∈ y let ϕ′(y) = by where

by is some element in B such that π(by) = y. This way, ϕ′ ∈ P . �

Claim. If P ′ is an uncountable subset of P , then there is a free subgroup A′ of A

which is pure in A and an uncountable subset P ′′ of P ′ such that dom(ϕ) ⊆ A′ for

every ϕ ∈ P ′′.

Proof of the claim. Let P ′ = {ϕα : Sα −→ B : α < ω1} be an uncountable subset of P .

We may assume by taking an uncountable subset of P ′ if necessary that there is an m

such that the basis of each Sα is of cardinality m. It is easy to see that there is a pure

subgroup T of A which is maximal with respect to the property that T is contained

in uncountable many Sα (which might be the trivial group), so we may assume that

T is contained in Sα for all α. As in the claim above, let X ∪ Yα be a finite basis of

Sα for each α where X is the basis of T . Now we let the desired free subgroup A′ be

the union of a smooth chain {Aα : α < ω1} with A0 = T such that for each α < ω1,

Aα is a pure subgroup of A and Aα+1/Aα is free. By Theorem 1.35, A′ is free and,

since the union of pure subgroups is pure, A′ is also pure. We construct this chain by

induction on α < ω1 and, as already said, we let A0 = T . Assume that {Aµ : µ < α}

has been already defined. If α is a limit ordinal we let Aα =
⋃
µ<αAα. So let us assume

that α = β + 1 is a successor ordinal and let {σµ+1 : µ < α} be a strictly increasing

sequence of ordinals such that Yσα+1 is a subset of Aµ+1. Let Cβ be a countable ℵ1-pure

subgroup of A containing Aβ, which exists because A satisfies Chase’s condition. Note

that there exists σα > σµ+1 for all µ < α such that 〈Yσα〉 ∩ Cβ = 0 for otherwise there

would be an element c ∈ Cβ and uncountable many τ < ω1 such that c ∈ 〈Yτ 〉, so

the pure closure of T + 〈c〉 would contradict the maximality of T . Let now Aα be the

pure closure of Aβ + 〈Yσα〉. Since (Yσα) ∩ Cβ = 0, then Aα ∩ Cβ = Aβ, so Aα/Aβ is

isomorphic to a countable subgroup of A/Cβ hence it is free, as Cβ is ℵ1-pure in A. Let

P ′′ = {ϕσµ+1 : µ < ω1}. This is an uncountable subset of P ′ such that dom(ϕ) ⊆ A′

for every ϕ ∈ P ′′, so we are done. �

Now, by Theorem 3.32 (here is where MA is needed) there is a function g : A −→ B

such that for every finite subset F os A there exists f ∈ P with F ⊆ dom(f) such that

g � F = f � F . Clearly, g is an homomorphism such that π ◦ g = idA, hence π splits,

hence A is a W -group. �
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The main result of this chapter follows.

Theorem 3.36 (Shelah, 1974). The Whitehead’s Problem is undecidable in ZFC. More

precisely, the Whitehead’s Problem has a positive solution under the assumption of the

Axiom of Constructibility, which is consistent with ZFC; and it has a negative solution

under the assumption of Martin’s Axiom, also consistent with ZFC. Therefore, both a

positive and a negative solution to the Whitehead’s Problem are consistent with ZFC.

We notice that the models used in the proof are such that CH holds in one of them

while ¬CH holds in the other. Shelah’s Theorem left open the question of whether CH

is sufficient to imply that W -groups are free. After trying to interest the set-theoretic

community in the problem by stating a combinatorial analog, he took the problem

by himself. This would result not only in an independence result in 1976 but in the

beginning of the so-called proper forcing, being this an example of how other fields of

mathematics motivate deep advances in set theory as well.





Appendix: Forcing and the

consistency of Martin’s Axiom

We briefly introduce the technique of forcing and prove the consistency of Martin’s

Axiom. Our exposition may lack of the rigour and detail that any standard textbook

on the topic would have. Classical introductions to forcing are [Jech03], (see Chapter

14 (pp. 201-218)) and [Kun13] (see Chapter IV). For an approach based on admissible

sets, Bagaria’s course notes [Bag19] (see Chapter 4) are also a great introduction. This

appendix is based on them. An introduction to iterated forcing and the proof of the

consistency of MA can also be found in [Jech03] (see Chapter 16, pp. 267-273; the

proof of the consistency of Martin’s Axiom can be seen in [Jech03], Theorem 16.13)

and [Bag19] (see Chapter 6). There is also a chapter devoted to Iterated Forcing in

[Kun13] where the consistency of Martin’s Axiom is discussed (see Chapter V). The

following exposition is intended to provide an intuitive yet maybe rudimentary idea of

what forcing is. Nevertheless, it should be enough to convince the reader about the

consistency of MA with ZFC. May the reader be interested in further reading, we

refer him or her to the mentioned references.

1.1 Forcing

The forcing technique was discovered by Paul Cohen, and it was first used to build

a model where CH did not hold, and a model where AC did not hold neither. This

together with Gödel consistency results on the CH and AC would prove the indepen-

dence of both the Continuum Hypothesis and the Axiom of Choice from ZFC.

Given a countable transitive model M of set theory, forcing’s main idea is to extend M

to a larger transitive model N by adding a generic set G which is not in M . The new

model is expected to exhibit some new features which the oringal model doesn’t have.

We refer to this larger transitive model N as the generic extension or forcing extension

of M and denote it by M [G].

59
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1.1.1 Admissible sets

The method of forcing can be carried out in a weaker theory than ZFC. The Kripke-

Platek set theory, denoted KP , consists of the universal closure of the axioms of Ex-

tensionality, Pairing, Union, Foundation, ∆0-Separation and ∆0-Collection. By ∆0-

Separation we mean the axiom of Separation restricted to ∆0-formulas, that is, first-

order formulas all whose quantifiers are bounded. ∆0-formulas are absolute for tran-

sitive classes. The axiom of ∆0-Collection is the schema ∀x ∈ a∃yϕ(x, y) → ∃z∀x ∈

a∃y ∈ zϕ(x, y) for each ∆0-formula ϕ where z does not occur free. KP proves ∆0-

Replacement.

Definition 1.1. M is an admissible set if it is a transitive model of KP .

Countable admissible models can be extended by means of forcing. We will see later on

why the countable condition is necessary. Note that ZFC cannot prove the existence

of any countable transitive model of ZFC, for it would be proving its own consistency.

By taking a sufficiently big fragment of ZFC we can easily overcome this inconvenient.

Indeed, KP + Infinity + Power Set+AC proves that there exist uncountable many

countable admissible sets. By ZFC∗ we will denote a fragment of ZFC big enough to

include KP.

Although introduced already in Chapter 3, we recall the following notions. A partial

ordering is a pair 〈P,≤〉 where P is a non-empty set and ≤ is a partial order on P . The

elements of P are called conditions. We read p ≤ q as p extends q. If a partial ordering

P is a set, we call it poset. Two conditions p, q ∈ P are compatible if there exists another

condition r ∈ P such that r ≤ p, q. If p, q are not compatible, they are incompatible. A

subset D of a partial ordering P is said to be dense if for every condition p ∈ P there

exists q ∈ D such that q ≤ p. D is dense below a condition p ∈ P if for every q ≤ p

there exists r ∈ D such that r ≤ q. D is said to be open if it is downward closed. We

say that a subset A of a partial ordering P is a maximal antichain if all its elements are

incompatible and cannot be extended to a larger antichain subset. Assuming AC, every

dense open subset of P contains a maximal antichain. We say that a partial ordering P

satisfies the countable chain condition, denoted ccc, if all its antichains are countable. A

generic filter with respect to a family of dense subsets of P is a filter whose intersection

with every dense open subset of that family is non-empty. Given M a model of ZFC∗,

we say that G is generic over M if it is a generic filter over a poset P ∈M . Note that

if G ⊆ P is generic over M , then it contains just one element from each antichain in

P . Clearly, if a ∈ A∩G there cannot be any b ∈ A with b 6= a such that b ∈ G because

then a and b would be compatible, which is not possible. This proves that |A∩G| ≤ 1.
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To see that A∩G 6= ∅, consider the set D = {p : p ≤ q, some q ∈ A}. D is dense open,

hence G ∩D 6= ∅. Now, if a ∈ D ∩G, a ≤ p for some p ∈ A so p ∈ G, thus G ∩ A 6= ∅.

Therefore, the following.

Proposition 1.2. Let M be a model of ZFC∗. If G is generic over M , then for every

maximal antichain A of P that belongs to M , |G ∩A| = 1.

In order to get a forcing extension M [G] strictly larger than M we need the generic

G ⊆ P not to be an element of M . Easy examples show that it is not always the case

that G ∈M . Indeed, if P = {p} for some p ∈M or P is a linear order, G is clearly an

element in M . For a generic filter not to be an element of M we need the poset P to

be perfect.

Definition 1.3. A partial ordering P is said to be perfect if for every p ∈ P there exist

q, r ≤ p such that q and r are incompatible.

Let P be a perfect poset. Then, every filter G ⊆ P generic over M is not in M as an

element. Suppose the contrary. Then, D = {p : p /∈ G} ∈ M as well and G ∩M 6= ∅.

Conversely, if P is not perfect, let G = {q : ¬q⊥r} where p is an element in P which is

not extended by any compatible conditions. It is easy to see that G is a generic filter.

This proves the following.

Proposition 1.4. A partial ordering P is perfect if and only if G /∈M for every generic

filter.

We require M to be a countable transitive model of ZFC∗ because in that case the

family of dense open subsets of any partial ordering P ∈M is countable as well. Indeed,

since M is countable, so is the collection {Dn : n < ω} of all dense open subsets of P

and we can let D0 to be an open dense subset such that p ∈ D0. Let p0 = p. For each

n < ω, given pn, let pn+1 ∈ Dn+1 such that pn+1 ≤ pn. Then let G be the upward

closure of {pn : n < ω}. Clearly, G is a generic filter over M containing p. We then

have the following.

Proposition 1.5. Let M be a countable admissible model and let P be a partial ordering

in M . For every condition p ∈ P there exists G ⊆ P generic over M such that p ∈ G.

The following is an easy example of non-trivial forcing.

Example. Let P be the poset of all partial functions p : n −→ 2 with n ∈ ω ordered

by reversed inclusion. Since P is a perfect poset which belongs to any model of KP +

Infinity, if M is a countable model of KP +Infinity, then there exists a generic filter

over M . Let f =
⋃
G. It is easy to see that f is a function, being G a filter. Now,
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for ever n < ω let the set Dn = {p ∈ P : n ∈ dom(p)}, which is dense. Then, since

G∩D 6= ∅, dom(f) = ω so f is the characteristic function of a subset of ω which is not

in M , which we call Cohen generic real. We have that M [G] is a non-trivial forcing

extension of M .

1.1.2 The generic model extension

Given a set A, we can define the class L(A) in the same fashion we defined the con-

structible universe L as the union
⋃
α∈OR Lα(A) where L0(A) = tc(A), that is, the

transitive closure of A; Lα+1(A) = D(Lα(A)) for every successor ordinal α+ 1 and, for

α a limit, Lα(A) =
⋃
β<α Lβ(A). Then, L(A) is, informally, the class of all definable

sets allowing parameters from A. Indeed, L(A) is the least transitive model of ZF con-

taining all the ordinals and all elements of A. As in the case of L, for every α, β ∈ OR,

Lα(A) is transitive and, if α < β, then Lα(A) ⊆ Lβ(A). Since admissible sets correctly

compute L, if M is an admissible set, it correctly computes L(A) whenever A ⊆ M .

Actually, if M is an admissible set and A ⊆ M , M [A] is the least admissible set such

that M ⊆M [A] and A ∈M and it is of the form Lλ(M ∪ {A}) for some λ ≥ OR∩M .

Moreover, for every limit ordinal λ, Lλ(M ∩{A}) =
⋃
α<λ Lλ((M ∪{A})∩Vα) satisfies

all axioms of KP with the possible exception of ∆0-collection.

If P ∈M is a poset and G ⊆ P is a filter generic over M , we let M [G] =
⋃
α<λ Lλ((M ∩

Vα)∪{G}) with λ = OR∩M . We will see that M [G] is the least admissible set including

M such that G ∈M . We will see as well that M [G] satisfies all axioms of ZFC which

hold in the ground model M . This, however, is not trivial at all. Indeed, since the truth

value in M [G] of any given formula depends on the sets that belong to M [G], a method

is required in order to determine the formulas in the language of set theory which are

true in M [G]. In particular, a method is required to prove that all axioms which hold

in M also hold in M [G]. This is done by defining a relation 
 between conditions p

and formulas ϕ so that p 
 ϕ, read ”p forces ϕ”, if and only if for any generic G of M

containing p, the formula ϕ holds in M [G], that is, M [G] � ϕ. Of course, the truth

values of formulas in M [G], particularly those with parameters, do not only depend

on G and the sets in M but also on other sets that are obtained from elements in G

and M . Since a set x belongs to M [G] if and only if x is constructed from G and M

in less than λ = OR ∩M steps, for each α < λ we define in M the class of names of

rank ≤ α so that if τ ∈M is a name of rank ≤ α, then the set in M [G] named by τ is

constructed from τ and G in ≤ α+ 1 many steps.

Definition 1.6. Let M be an admissible set and P a partial ordering in M . We denote
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by MP the class of P -names, defined by transfinite induction as follows:

(1) τ is a P -name of rank 0 if τ = ∅.

(2) τ is a name of rank ≤ α, in symbols τ ∈ MP
α if τ = {(σ, p) : p ∈ P ∧ τ ∈

M
P

β with β < α}.

(3) τ is a P -name if τ ∈MP
α for some λ ∈ sup(OR ∩M).

For instance σ = {(∅, p)} is a name of rank 1, while {(σ, p), (∅, q)} is a name of rank 2.

Definition 1.7. For every element x ∈M , x̌ = {(y̌, p) : p ∈ P ∧ y ∈ x} is the standard

name of x. The standard name for the generic filter G is Ġ = {(p̌, p) : p ∈ P}.

If G is a generic filter over M , the interpretation iG(τ) of a name τ by G is defined by

induction on the rank τ as follows:

(1) If τ ∈MP
0 , then iG(τ) = ∅,

(2) iG(τ) = {iG(σ) : (σ, p) ∈ τ ∧ p ∈ G}.

Note that it might happen that two different names have the same interpretation. If

p ∈ G, then σ = {(∅̌, p)} and τ = {(∅̌, p), (∅̌, q)} are interpreted as {∅}. However, if

p /∈ G and q ∈ G, iG(σ) = ∅ and iG(τ) = {∅}.

We let N = {iG(τ) : τ ∈ MP }. Since iG(x̌) = x for every standard name x̌, it can be

easily seen by induction on the rank that M ⊆ N . Moreover, since Ġ = {(p̌, p) : p ∈ P}

and iG(x̌) = x for every standard name x̌, iG(Ġ) = {iG(p̌) : p ∈ G} = {p : p ∈ G} = G.

It is easy to see that N satisfies Extensionality, Foundation, Pairing and Union.

1.1.3 The forcing relation

Our aim is to show that the class N = {iG(τ) : τ ∈MP } is M [G], so we have to prove

that N is an admissible set satisfying all axioms of ZFC that M satisfies. To do this,

as already said, we define the forcing relation 
P , which we will simply write as 
 if

the context is clear. We shall go recursively starting with ∆0-formulas (we can do this

because admissible sets satisfy Σ1-recursion, but let us ignore this details).

(1) If τ, σ ∈MP
0 , p 
 σ = τ for every p ∈ P , and p 
 σ ∈ τ for no p ∈ P .

(2) Let us assume that the forcing relation involving P -names of rank ≤ α and atomic

formulas is been already defined. Let τ, σ ∈MP
≤α+1. Then,

p 
 σ ⊆ τ if and only if {q ≤: q ≤ p′ → ∃(τ ′, p′′) ∈ τ(q ≤ p′′ ∧ q 
 σ′ = τ ′)}

is dense below p for very (σ′, p′) ∈ σ. We define p 
 τ ⊆ σ analogously.
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p 
 σ = τ if and only if p 
 σ ⊆ τ and p 
 τ ⊆ σ.

(3) Let σ, τ ∈ MP and p ∈ P , p � σ ∈ τ if and only if {q ≤ p : ∃(τ ′, p′) ∈ τ(q ≤

p′ ∧ q 
 σ = τ ′)} is dense below p.

(4) For any ∆0-formulas ϕ,ψ for which 
 has already been defined,

p 
 ϕ ∧ ψ if and only if p 
 ϕ and p 
 ψ,

p 
 ¬ϕ if and only if for no q ≤ p, q 
 ϕ,

p 
 ∃x ∈ τϕ(x) if and only if the set {q ≤ p : ∃(τ ′, p′) ∈ τ(q ≤ p′∧q 
 ϕ(τ ′))}

is dense below p.

(5) If ϕ,ψ are arbitrary formulas for which 
 has been already defined:

p 
 ϕ ∧ ψ if and only if p 
 ϕ and p 
 ψ,

p 
 ¬ϕ if and only if for no q ≤ p, q 
 ϕ,

p 
 ∃xϕ(x) if and only if for every q ≤ p there exists some r ≤ q and a

P -name τ such that r 
 ϕ(τ).

By induction both on the complexity on the formula ϕ and on the rank of the names

σ1, . . . , σm one can prove the following.

Theorem 1.8 (Forcing Theorem). If G is P -generic over M and N = {iG(τ) : τ ∈

MP }, then N � ϕ(iG(σ1), . . . , iG(σn)) if and only if ∃p ∈ G(M � ”p 
P ϕ(σ1, . . . , σn)”)

for all ∆0-formula ϕ and every name σ1, . . . , σn.

Remark. If M also satisfies σn-Separation and σn-Collection, then Forcing Theorem

applies also to all σn-formulas.

Theorem 1.9 (Generic Model Theorem). If M is admissible, then N := {iG(τ) :

τ ∈ MP } is the least admissible set including M and containing G. Moreover: if

M � Infinity, then N � Infinity; if M � Σn − Separation + Σn − Recursion, then

N � Σn−Separation; if M � Σn−Collection+Σn−Recursion, then N � Σn−Collection;

if M � Power Set, then N � Power Set; if M � AC, then N � AC.

As a consequence, N = M [G]. Indeed, since N is admissible, for every X ∈ N ,

Lλ(X) ⊆ N . Since N includes M ∪ {G}, M [G] =
⋃
α<λ Lλ((M ∩ Vα) ∪ {G})) ⊆ N .

1.2 Iterated forcing

Let P be a forcing notion over a countable transitive model M of ZFC∗ and let G ⊆ P

be a generic filter over M . Let Q be a forcing notion in M [G]. Then, we can forcing

again with Q over M [G], resulting in a new forcing extension M [G][H], with H ⊆ Q
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a generic filter over M [G]. This iterated process can be done directly from M in just

one step. The forcing notion used is called the iteration of P and Q and is denoted by

P ∗ Q̇. We note that since Q is a forcing notion in M [G], it might happen that it does

not belong to M . To have some control over Q from M , we fix a name Q̇ = 〈Q̇, ≤̇Q〉

for Q so that some condition p ∈ G forces Q̇ to be a partial ordering in M [G] and

iG(Q̇) = Q. The conditions of P ∗ Q̇ are pairs (p, q̇) such that p ∈ P , q̇ ∈ dom(Q̇)

and p 
P ”q̇ ∈ Q̇. For any two (p1, q̇1), (p2, q̇2) ∈ P ∗ Q̇, (p1, q̇1) ≤ (p2, q̇2) if and only

if p1 ≤P p2 and p 
P ”q̇1 ≤Q̇ q̇2. The set P ∗ Q̇ with the defined order is a partial

ordering in M and if G ⊆ P is generic over M and H ⊆ Q is generic over M [G], then

G ∗ Ḣ = {(p, q̇) ∈ P ∗ Q̇ : p ∈ G∧ iG(q̇) ∈ H} is generic over M . Moreover, since G ∗ Ḣ

can be easily constructed from G and H, M [G∗ Ḣ] ⊆M [G][H] and, since G is the first

projection of G ∗ Ḣ, it can be easily seen that G ∈M [G ∗ Ḣ]. But then, since we have

G and G ∗ Ḣ, we easily get H, so M [G][H] ⊆M [G ∗ Ḣ] and the following holds.

Theorem 1.10. M [G ∗ Ḣ] = M [G][H].

Clearly, if S was a forcing notion in M [G][H] = M [G ∗ Ḣ], one could repeat this whole

process, obtaining a forcing extension M [G][H][I] with I ⊆ S generic over M [G][H].

This motivates the following definition.

Definition 1.11. Pn+1 is an iteration of length n + 1 if Pn+1 = Pn ∗ Q̇n where Pn is

an iteration of length n such that 
Pn ”Q̇n is a poset”.

Therefore, if Pn+1 = (. . . ((Q0 ∗ Q̇1) ∗ Q̇2) ∗ . . . ∗ Q̇n) and p ∈ P , then p is of the form

(. . . ((q0, q̇1), q2), . . .), qn) where (. . . ((q0, q̇1) . . . , qn−1) ∈ (. . . ((Q0∗Q̇1)∗Q̇2)∗. . .∗Q̇n−1)

and (. . . ((q0, q̇1), q2), . . . qn−1) forces (with respect to (. . . ((Q0 ∗ Q̇1) ∗ Q̇2) ∗ . . . ∗ Q̇n−1),

that q̇n−1 ∈ Q̇n. To simplify this cumbersome notation, we just write (q0, q̇1, . . . , q̇n) for

any element in Pn+1, where q0 ∈ Q0 = P0 and p � m 
Pm pm ∈ Q̇m for every m < n.

This discussion motivates the following.

Definition 1.12. We say that Pλ is a forcing iteration with finite support of length

λ > 0 if:

(1) either λ = 1 and Pλ is a poset, or

(2) λ = α + 1 with α > 0 and Pα a forcing iteration with finite support of length α

such that Pλ = Pα ∗ Q̇α where Q̇α is the Pα-name of a poset, or

(3) λ is a limit ordinal and

(3.1) the elements of Pλ are λ-sequences 〈pα : α < λ〉 such that for all but finitely-

many α < α, pα = 1, where 1 is the maximal element in Pα, whose existence

can be assumed without loss of generality,
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(3.2) for every 0 < α < λ, the poset Pα consisting of the elements p � α with

p ∈ Pλ is an iteration with finite support of length α, and

(3.3) the ordering ≤Pλ in Pλ is given by p ≤Pλ q if and only if for all 0 < αλ,

p � α ≤Pα q � α.

It can be checked by induction on λ > 0 that if p ∈ Pλ, then p � α 
Pα ”pα ∈ Q̇α” for

every 0 < α < λ. Note that if Pλ is a forcing iteration with finite support of length λ,

then for every α < λ we can see each Pα as the sub-poset of Pλ where each 〈pβ : β < λ〉

is identified with 〈p′β : β < λ〉 where p′β = pβ for very β < α and p′β = 1 for every β ≥ α.

Recall that a poset P is ccc if all its antichains are of countable size. More generally, a

poset P is κ-cc with κ a regular cardinal κ if every antichain of P is of size less than κ.

Theorem 1.13. If κ is an uncountable regular cardinal and Pλ is a forcing iteration

with finite support of length λ such that 
Pα ”Q̇α is κ-cc” for every α < λ, then Pλ is

κ-cc.

The following theorem shows that κ-cc posets are useful forcing notions whenever we

do not want to collapse cardinals.

Theorem 1.14. If P is a κ-cc poset in M and G ⊆ P is generic over M , then all

cardinals greater than or equal to κ remain cardinals in M [G].

1.3 Consistency of Martin’s Axiom

Recall that Martin’s Axiom states the following:

For every ccc poset P and every family of 〈Dα : α < ω1〉 of dense subsets of P ,

there is a filter G ⊆ P such that G ∩Dα 6= ∅ for all α < ω1.

To show its consistency, we build a model in which MA holds. Then, pick M to be a

countable transitive model of ZFC∗. For each ccc poset P ∈M , we force over M to add

a generic filter for families of uncountable size of maximal antichains in P . Of course,

we want to do this for every ccc poset, so we should force with all of them. However,

the collection of ccc posets in M is a proper class. Note that if P is a ccc poset and

〈Aα : α < ω1〉 ⊆ P is a family of maximal antichains, by Löwenheim-Skolem-Tarski,

there is an elementary sub-poset Q of size ≤ ℵ1 such that 〈Aα : α < ω1〉 ⊆ Q. Since P

is ccc, each Aα is countable, so Q is ccc as well. Also, since Q is isomorphic to a set

whose set of conditions is a subset of ω1, we may assume Q to be of this form.

Definition 1.15. If Q is a ccc poset whose set of conditions is a subset of ω1, we say

that Q is a suitable set.
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In Chapter 3 we have proved that GCH is consistent, so we can assume M is a model

of GCH. In this case, there are, up to isomorphism, only ℵ2 many suitable sets. The

idea, is to define the iteration using only suitable sets to get the desired extension in

ℵ2-many steps. But first note that if P is a partial ordering and τ is a P -name for a

subset of some ordinal λ, then the set σ consisting of all pairs (α̌q, q) where αq is an

ordinal and q is an element in a maximal antichain A below p such that q 
P τ ′ = α̌q

for some (τ ′, p) ∈ τ . Therefore σ consists of the pairs of the form (α̌, p) with α < λ.

Clearly, P forces that σ = τ . To this names we call them nice names. It is easy to see

that if P is ccc, then every P -name for a subset of ℵ1 has an equivalent nice name of

size ℵ1.

To summarize, if each iteration is ccc, no cardinals are collapsed, which mean that

at any stage of the iteration, ℵ1 and ℵ2 remain as in the ground model. Also, if

Pβ = 〈Q̇α : α < β〉 is an iteration with finite support with β ≤ ω2 such that for every

α < β, 
Pα ”Q̇α is a suitable partial ordering” we can assume that Q̇α is a Pα-name

of size ℵ1 for all α < β, so by induction on β we get that if β < ω2, then Pβ has size

less than ℵ2 and Pω2 , the last stage in our iterated forcing, is of size ℵ2. Therefore,

there are at most ℵ2 nice Pβ-names of cardinality ℵ1 for subsets of ℵ1, from which the

following holds.

Lemma 1.16. Let M be a transitive model of ZFC∗ + GCH and let Pβ = 〈Q̇α :

α < β〉 be an iteration with finite support with β ≤ ω2 such tht for every α < β,


Pα ”Q̇α is a suitable partial ordering”. Then, for every Pβ-generic filter Gβ over M ,

M [Gβ] � 2ℵ1 = ℵ2.

So let M be a countable transitive model of ZFC∗ + GCH. Let π : ω2 −→ (ω2 × ω2)

be a surjective function such that if π(α) = (β, γ), then β ≤ α for every α < ω2. Let

P0 be a suitable partial ordering and let 〈Q̇γ : γ < ω2〉 be an enumeration of all nice

P0-names for suitable partial orderings. Now, suppose we have defined Pα and that for

each β ≤ α we have an enumeration 〈Q̇βγ : γ < ω2〉 of all nice Pβ-names for suitable

partial orderings. Then, Pα+1 = Pα ∗ Q̇βγ where π(α) = (β, γ). For the limit ordinals λ

just let Pλ consists of all λ-sequences 〈pα : α < λ〉 with pα = 1 for all but finitely-many

α < λ and p � α ∈ Pα for all α < λ.

Theorem 1.17 (Martin-Solovay, 1970). Let M and Pω2 be as defined above and let

G ⊆ Pω2 be generic over M . Then MA holds in M [G].

Proof. Let Q be a ccc partial ordering in M [G] and let 〈Aα : α < ω1〉 be a family of

maximal antichains of Q. Since we may assume that Q is suitable, there is, as said
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before, a nice Pω2-name Q̇ in M of cardinality less than or equal to ℵ1. Also, since

each Aα is a subset of ω1 for each α < ω1, they have a nice Pω2-name Ȧα of size ℵ1,

too. Let β be an ordinal in ω2 such that every p in the range of Q̇ which is also in the

range of Ȧα for every α < ω1, supp(p) = {α < ω2 : pα 6= 1} ⊆ β. Let Q̇ � β be the

set {(γ̌ � β, p � β) : (γ̌, p) ∈ Q̇} where each γ̌ � β is a Pβ-name for γ. Let also Ȧα � β

be {(γ̌ � β, p � β) : (γ̌, p) ∈ Ȧα} for each α < ω1. This way Q̇ � β is a Pβ-name for a

suitable partial ordering and Ȧα is a Pβ-name for a maximal antichain of Q̇ � β, so there

is some γ < ω2 such that Q̇ � β = Q̇βγ . If π(α) = (β, γ) we may see Q̇βγ and Ȧα � β for

all α < ω1 as Pα-names. Since Gα is a Pα-generic filter over M and iGα(Ȧα � β) = Aα

for all α < ω1 and iGα(Q̇βγ ) = Q, then M [Gα+1] is of the form M [Gα][H] with H ⊆ Q

generic over M [Gα]. Therefore, H is generic for the family {Aα : α < ω1}, which also

holds in M [G], so we are done. �

Note that defining an analogous iteration with length any regular cardinal κ greater

than κ, 2ℵ0 = κ would hold in the generic extension. As a consequence, the following

holds.

Corollary 1.18. If ZFC is consistent, so is ZFC +MA+ 2ℵ0 > ℵ1.
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[Fuc70] László Fuchs. Infinite Abelian Groups. Vol I. Accademic Press, New York,

1970.
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