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Preface

In the present work we see how advanced set-theoretic methods apply to the study of
infinite abelian groups. It has been written under the supervision of Prof. Dr. Fer-
nando Montaner Frutos, from the University of Zaragoza, and Prof. Dr. Joan Bagaria
i Pigrau, from the University of Barcelona, and it has been partially supported by the
IUMA (Instituto Universitario de Matematicas y Aplicaciones de la Universidad de
Zaragoza) under grant PEX-17-007.

The first chapter is a brief collection of preliminary results needed for the remaining
chapters. Most of the proofs are omitted but can be easily found in any standard
textbook in the topic. In the second chapter, we see a few examples in which some in-
stances of large cardinals such as measurable, strongly compact and d-strongly compact
cardinals naturally arise when dealing with infinte abelian groups. In particular, we see
Eda’s Theorem and some results regarding the Dugas-Gobel cardinal. The third and
last chapter focuses on the Whitehead’s Problem, which asks whether every Whitehead
group is free. Although its restriction to groups of countable cardinality has a positive
solution in ZF'C, the general problem is undecidable. Indeed, both a positive and a
negative answer for groups of size Xy are consistent with ZF'C. An Appendix at the end
intends to be a short and intuitive introduction to the technique of forcing, including
the iteration of forcing used by Martin and Solovay to prove the consistency of Martin’s

Axiom.






Introduction

Most of mathematics can be done within ordinary set theory (that is, ZFC') or even
smaller fragments of it. In fact, the working mathematician rarely needs to explicitly
mention the axioms that he or she uses, with the possible exception of the Axiom of
Choice. However, it might happen that a given proposition neither can be proved nor
disproved in ZF'C'. Indeed, after Gédel’s Incompleteness Theorems we know that every
recursive axiomatic system powerful enough to formalize arithmetic, and ZFC is one
of them, is either consistent or complete. Of course, mathematicians believe that ZFC
is consistent. But assuming that ZFC is consistent implies accepting its incomplete-
ness, that is, the existence of mathematical assertions which neither can be proved nor
disproved in ZF'C. This motivates a rich debate which is still on going on the necessity
of new axioms for mathematics (see [FFMS]), being the most popular position among
set-theorists that new axioms are needed. For instance, although ZFC' is not able to
decide the Continuum Hypothesis, mathematicians could eventually agree on the new
axioms to be added to ZFC so that ZFC plus those new axioms is still consistent and
powerful enough to decide whether the Continuum Hypothesis does or doesn’t hold.
The purpose of this work, however, is not to convince the reader to embrace this po-
sition. Less ambitious, we will just focus on how different set-theoretic methods like
large cardinal axioms, forcing and ultrapowers apply to the study of infinite abelian

groups.

It usually happens that if we restrict ourselves to the study of mathematical objects of
countable size, things are provable in ZFC. This does not mean that one cannot deal
with objects of uncountable size in ZFC. Indeed, as we shall see, Specker’s Lemma,
which shows that the additive group Z is slender, can be generalized to the product of
uncountable-many copies of Z. More precisely, for any uncountable cardinal x and any
homomorphism h : Z" — 7Z, then h(e,) = 0 for all but finitely many «, where e, is the
function e, : Kk — {0, 1} such that e,(5) = 1 if and only if & = 5. However, although
it is a theorem of ZFC that Hom(Z* /Z<*,Z), where the classes in Z* /Z<“ consists

of the vectors in Z* differing in just finitely many coordinates, is the trivial group, it

vii



viii Introduction

is independent of ZFC whether the same holds for the group Hom(Z" /7<%, Z) with
k uncountable. Indeed, Eda’s Theorem shows that Hom(Z"/Z<*,7Z) is not the trivial
group if and only if there exists a measurable cardinal. As we shall see, the existence of
measurable cardinals cannot be proved in ZFC (assuming ZFC' is consistent). There-
fore, the question of whether Hom(Z" /7<%, 7Z) with k uncountable is the trivial group

is independent of ZFC.

Throughout the second chapter we shall see some other examples of independent state-
ments regarding infinite abelian groups apart from Eda’s result. For instance, the
so-called Dugas-Gobel cardinal of a strongly cotorsion-free group is, if it exists, greater
than or equal to the first measurable cardinal. Some other large cardinal notions such
as strongly compact and J-strongly compact will appear. As it happens for measurable
cardinals, strongly compact and §-strongly compact cardinals can be defined in terms
of complete filters which can be extended to complete ultrafilters. To provide a more
practical characterization of the weaker -strongly compact cardinals dealing with ul-
trapowers and Lo$’ results is necessary. This characterization of d-strongly compact
cardinals will be useful to prove Dugas-Eda-Abe’s Theorem, which states that if « is a
0-strongly compact cardinal, then Rx = R for every group of size less than ¢, from
which it follows that Rz = Ry, if and only if & is w;-strongly compact. Again, since the
existence of wi-strongly compact cardinals cannot be proved in ZFC' (provided ZFC
is consistent), knowing whether Z satisfies the cardinal condition for some cardinal x
is another example of a mathematical proposition that cannot be decided in ZFC for

it follows from the existence of a large cardinal.

In the third chapter we will just focus on the Whitehead’s problem. The Whitehead’s
problem asks whether every W-group (an abelian group is said to be a W-group if
every homomorphism onto A whose kernel is isomorphic to Z splits) is free. Although
in 1951 Stein answered this question in the positive for groups of countable cardinality,
the question remained open for groups of arbitrary cardinality until Saharon Shelah
proved in 1974 that, restricted to groups of size N1, both a negative and a positive an-
swer are consistent with ZFC'. To be precise, Shelah showed that in the constructible
universe L every W-group of size Ny is free and that under the assumption of Mar-
tin’s Axiom one can always find a W-group of cardinality ¥; which is not free. Since
both the Axiom of Constructibility and Martin’s Axiom are consistent with ZF'C, the
undecidability of the Whitehead’s problem follows. Godel proved the consistency of
the Axiom of Constructibility in the late 30’s by constructing the universe L, an inner

model of ZF where he showed that the Axiom of Choice and the Continuum Hypoth-



Set-theoretic methods in infinite abelian group theory - Fernando Barrera ix

esis hold. To prove the consistency of Martin’s Axiom, Martin and Solovay, based on
Solovay and Tennenbaum’s work on the consistency of the Suslin’s Hypothesis, built a
model of ZFC in which M A holds. To follow the proof some background in forcing is
required. In the Appendix the reader will find a short exposition of forcing, Solovay-

Tennenbaum’s iterated forcing and Solovay-Martin’s proof.






Chapter 1

Preliminaries

In this chapter we review the set-theoretic and algebraic background which is needed
for the next chapters. We assume that the reader is familiar with the basic notions
of first-order logic, the logical machinery we use to build statements and conditions of
sets. If any doubt, we suggest the reader to consult [Men97]. In order to avoid this
chapter to be unnecessary long, we omit most of the proofs. Nevertheless, everything
here can be easily found in any standard book on the topic. For questions related to
the set-theoretic part, we refer to [Kunl3], specifically 1.7-11 and 1.13; and [Jech03],
Chapters 2 and 3; and for those related to the algebraic part, we refer to [Lan02], I,
I11.2, and XX; [EMO02], IT; and [Kap69].

1.1 Set-theoretic background

The language of set theory consists of the following symbols:

(1) the variables, which run exclusively over sets;
(2) the logical symbols:
(i) the logical connectives —,\,V,—, <>, to be read as not, and, or, if and if
and only if, respectively;

(ii) the quantifiers V,3, to be read as for all and there exists;

(iii) the identity symbol =;
(3) A relation symbol € which is the membership relation.

Moreover, we will use some auziliary symbols like parentheses, square brackets, etc.

The atomic formulas are strings of symbols of the form x € y or x = y for any pair of
variables x,y. The remaining formulas are recursively built from the atomic formulas

applying the following rules:
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(1) If ¢ is a formula, then -y is a formula.

(2) If ¢ and 9 are formulas, then ¢ x1) is a formula as well, where * might be A, V, —

or <.

(3) If ¢ is a formula and z is a variable, so are Vze and Jze.

The occurrences of variables under the scope of a quantifier are said to be bound.
Otherwise, they are said to be free. A formula with no free variables is called sentence.
A formula ¢ in which one variable occurs free expresses a property. If a is a set and x
occurs free in ¢(x), we say that a satisfies the property ¢ if ¢(a) holds.

1.1.1 The axioms of ZFC

We will work in the Zermelo-Fraenkel with the Axiom of Choice axiom system, simply
denoted by ZFC. We assume that ZFC is consistent with no further comment. The
theorems of ZFC are the sentences which logically follow from the axioms according
to any logical calculi for first-order logic with equality. The axioms of ZFC are the

following:

Existence. There is at least one set:

Extensionality. Sets with exactly the same elements are equal:
Vavb[Va(z € a <> x € b) — a =b).
Pair. If a,b are sets, there exists a set containing both a and b as elements.
Vavb[3z(a € x AN b € x)].

Union. If a is a set, there exists a set whose elements are the elements of the elements
of a.

Va[3xVy € aVz € y(z € a)].

Power Set. If a is a set, there exists a set whose elements are the subsets of a, that

is, the sets whose elements are elements of a.
Va[F2Vy(Vz € y(z € a) —» y € x)].

We will denote by P(a) the power set of a.

Infinity. There exists an inductive set.

Jx(Fy(y € ) ANVy € 23z € z(y € 2)).
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Foundation. Every non-empty set contains and €-minimal element.
Va[Jy(y € a) — Ty € aVz € a(z ¢ y)].

Separation Schema. For every set a and every property ¢ there is a set whose

elements are exactly the elements in a satisfying the property .
Va[3z3y(y € x <» y € a N p(y))],

for every ¢(y) where x does not occur. Note that since this happens for every formula

©, this is a list of infinite-many axioms.

Replacement Schema For every definable function on a set a, there is a set whose

elements are the values of this function.
Va[Vx € aTlyp(x,y) — 2V € ady € 2¥(x,y)].

A function f is said to be definable in a if there exists a formula ¢(z,y) such that for
every x € a there exists a unique y (3y) such that ¢(x,y) holds. Again, this is a list

of infinite-many axioms, one for each definable function.

Axiom of Choice (AC) For every set a of pairwise disjoint non-empty sets, there is

a set that contains exactly one element from each set in a.

In ZF, AC is equivalent to Zermelo’s Well-ordering Principle: for every set a there
exists a well-ordering in a, that is, a linear ordering in which every non-empty set has

a least element. AC is equivalent to Zorn’s Lemma, modulo ZF, too.

Remark. The objects of ZFC are sets. However, we shall consider collections of objects
that are not sets. We call proper class to any collection of sets which is not a set. For
instance, the collection V' of all sets, determined by the formula x = =z, is a proper
class. It cannot be a set because it doesn’t satisfy the axiom of Foundation. A class is

a collection of sets and it can be either a proper class or a set.

1.1.2 Ordinals and cardinals

Definition 1.1. A class a is said to be transitive if for every y € x € a, then y € a. An
ordinal number is a transitive set well ordered with respect to the memership relation

€.

This definition can be expressed as the following proposition shows:
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Proposition 1.2. A set a is an ordinal if and only if a is transitive, Vz,y € a(x €

yVe=yVyex), andVr Calz #0 — Jy € z(yna =10)).
We denote by OR the class of ordinals.
Proposition 1.3.

(1) Any transitive set of ordinals is an ordinal and any element of an ordinal is an

ordinal.

(2) If X is a set of ordinals, |J X is an ordinal. If o is an ordinal, | Ja = a.

Comnsequently, OR is a proper class. Moreover, the empty set is an ordinal and if «
is an ordinal, so is o U {a}. We usually write 0 and « 4 1 instead of () and a U {a},
respectively. Also, if a is a set of ordinals, we might write | Ja = sup a, that is, the least
ordinal which is greater than or equal to any ordinal in a. Analogously, we might write

(la = mina.

Definition 1.4. If « is an ordinal, « 4+ 1 is the successor of a. If a isn’t a successor

ordinal, it is said to be a limit ordinal.
The class of ordinals can be well ordered by <, where a < b if and only if a € b. Indeed:
Proposition 1.5. For any ordinals o, 3:

(1) a € B if and only if o C B.

(2) Either o € B or f € a or o € B.

An ordinal is said to be countable if it is finite or bijectable with w. Otherwise, it
is uncountable. The first uncountable ordinal, denoted by wi is the set of countable
ordinals; wy is the next ordinal which is not bijectable with any of its predecessors.
Analogously, we define the ordinals w,. At the limit stages we let w, to be the union

of its predecessors.
The Axiom of Choice is equivalent, modulo ZF, to Zermelo’s Well-Ordering Principle,
which states that every set can be well-ordered.

Theorem 1.6 (The Enumeration Theorem). Every well-ordered set is isomorphic with

an ordinal.

Therefore we might define for every well-ordered set a its order type, denoted ot(a),

which is the unique ordinal with which a is isomorphic.
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Theorem 1.7 (Transfinite Recursion). If G is a class function on V', then there is a
unique class function F' on the ordinals such that for each ordinal o, F(a)) = G(F | ).
The function F is defined as F(«) = x if and only if there is a function f with domain
a such that for every B < o, f(B) =G(f | B) and x = G(f | a).

In OR we can define the operations of addition:

a+0=aqa,

a+(B+1) = (a+p)+1,

a+ f=sup{a+: €< B}if Bis a limit;
multiplication:

a-0=0,

a-(f+1)=(a-B)+1,

a-f=sup{a-£: £ < B}if Bis a limit;
and exponentiation:

o’ = q,

aBt) = (af) - q,

o =sup{af : £ < B} if B is a limit,
for all ordinals «, 5.

Remark. Ordinal addition and ordinal multiplication are not commutative. For in-

stance, l tw=wH#w+land2 - w=w#w-2.

Definition 1.8. A cardinal number is an ordinal which is not bijectable with any

predecessor.

Therefore, if k and A\ are cardinals and there exists a bijection between them, x = A.
All finite ordinals are cardinals and so are the ordinals of the form w, w1, ..., wy,....

Note that every cardinal is a limit ordinal.
Proposition 1.9 (AC). FEvery set is bijectable with a unique cardinal.

We denote by |a| the cardinality of a, that is, the unique cardinal which a is bijectable
with.

Remark. The assertion in Proposition 1.9. is actually equivalent to the Axiom of

Choice.

The least cardinal greater than a cardinal k is the set of ordinals bijectable to a cardinal

smaller or equal to k. We denote it by ™.
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Definition 1.10. We say that ™ is the successor cardinal of k. If k is not a successor

cardinal, it is said to be a limit cardinal.
Proposition 1.11.

(1) If K is a limit cardinal, then for all A < K, AT < k.
(2) For every cardinal k there is a limit cardinal X such that k < \.

(3) If X is a set of cardinals, so is \|JX. If k is a cardinal, |k = k.

It follows from (3) that the class of cardinals, which we will denote by CARD, is proper.
We will denote the transfinite sequence of cardinals as follows: Ng, Ry, ... N, ..., Ny, .. ..

We note that N,, = w,, for every n < w. Indeed:
Definition 1.12.

(1) Ro = w,

(2> Nq = NL

(3) Ny =sup{XNg: f < a}if a is a limit ordinal.

Of course, for every a, a <N, and, if 8 < a then Rg <X,

For every pair of cardinals k, A we define k + A as |(k x {0}) U (A x {1})|; the product

is defined as s - A = |k x A| and the exponentiation as x* = [TTq<y5|.

Proposition 1.13. Let k and \ be cardinals. The union of every family of at most A

sets of cardinality at most k has cardinality at most X - k.
Proposition 1.14. If k and A are infinite cardinals, k + XA = k- A = max{k, A}.

In particular, the addition and multiplication of cardinals is commutative. Although
the sum and multiplication of infinite cardinals are easy to work with, exponentiation

isn’t trivial at all. For instance, 28 is undecidable in ZFC.

Definition 1.15. The Continuum Hypothesis CH is the assertion that 28 = X;. The

Generalized Continuum Hypothesis asserts that 2% = R, for every a € OR.

CH is independent of ZFC, thus so is GCH.

1.1.3 Cofinality

Let a be a limit ordinal. A subset b of « is said to be unbounded in « if and only if
supb = «, or, equivalently, if for all § < « there is some vy € b such that § < ~. We
say that an ordinal 8 is cofinal in « if and only if there i a strictly increasing function

f: B —> «a whose range is unbounded in «.
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Definition 1.16. The cofinality of « is the least ordinal which is cofinal in a. We
denote it by cf(«).

Proposition 1.17.

(1) If a and B are limit ordinals and « is cofinal in B, cf(«) is cofinal in cf(B).
(2) If a is a limit ordinal, cf(a) = cf(Rq).

Note that for every «, cf(a) < a.

Definition 1.18. A limit ordinal « is regular if cf(a) = a. Otherwise, we say that «

is singular.
Proposition 1.19.

(1) If a is a limit ordinal, cf(«) is a regular cardinal.

(2) If k is an infinite cardinal, cf(k) is the least cardinal X such that k is the union

of a family of A-many sets of cardinality less than k.
(3) Ewery infinite successor cardinal is regular.

(4) In general, for every infinite cardinal k, k < k). If2 < X, k < cf(A\F).

Theorem 1.20. An infinite cardinal k is regular if and only if the union of every family
of less than k-many seats each of cardinality less than k is a set of cardinality less than

K.
Proposition 1.21. If GCH holds, for all infinite cardinals k and A:

AT ifA>k
KY=1Q kT ifef(k) <A<k

Kk if A < cf(k)

1.1.4 Models of Set Theory

We assume that ZFC is consistent. Then, there exist models of ZFC. A model of ZFC
is a pair (M, R) where M is a non-empty class and R is a binary relation on M such
that (M, R) satisfies the axioms of ZFC. We can define analogously what a model of
a fragment of ZFC is. The relation R on a class M is said to be well-founded if it is
set-like in the sense that for every € M the class {y € M : yRx} is a set and there
is no infinite descending R-chain. We say that a subset x € M is R-transitive if for
every zRyRx, then zRx. The transfinite recursion on well-founded relations holds. We
say that a model (M, R) is standard if R is the membership relation on M, that is, if
R =€ N(M x M). A submodel (N,€n) of (M,€) is a model such that N C M and
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en=€ N(N x N). If N C M is a submodel of M of ZFC and N F ZFC, N is said
to be an inner model of M. Whenever the context is clear, we will denote any model

(M, €) simply by M.

Theorem 1.22 (Downward Lowenheim-Skolem-Tarski Theorem). (ZFC minus Power
Set) Let M be an L-structure and let k be a cardinal such that maz(|L|,Rg) < k < | M|
and fix S C B with |S| < k. Then, there is an elementary substructure N of M, that

is, an substructure satisfying the same L-sentences, such that S C N and |[N| = k.

The Downward Lowenheim-Skolem-Tarski theorem tell us that for every model of set

theory there is always a countable elementary submodel.

Theorem 1.23 (Mostowski Collapse). If (M, R) is a well-founded model of the axiom of
Ezxtensionality, then there is a unique transitive model (N, €) and a unique isomorphism

m: (M,R)y — (N, €).

We call (N, €) the Mostowski or transitive collapse of (M, R); the isomorphism 7 is
called the collapse mapping. It is clear that if (M, €) and (N, €) are isomorphic, then
M = N.

In ZFC the universe of all sets forms a cumulative hierarchy. Then, € V if and only

if there exists some ordinal o such that = € V,,, where the V,, are defined as follows:
Definition 1.24.

Vo =0,

Va1 =P(Va),

Vo =Ug<a Vs, if a is a limit.
Then, V = J,cor Va-

V E ZFC'. For every set a € V, the rank of a, denoted by rk(a), is the least ordinal «
such that a € V,. V, is transitive for every o € OR. If a < 3, then V,, € V3. For every
ordinal o, & C V,, but a ¢ V.

Lemma 1.25. Every transitive class satisfies Extensionality and Foundation.

Proof. Let a be a transitive class and let x, y € a which are seen in a to be equal. Since
a is transitive, it contains all elements of z and y, so they have the same elements so,
by Extensionality, they are equal. To see Foundation, let a be a class and suppose that
b € a is non-empty. Then a N b is non-empty and, by Foundation, a N b contains an

€-minimal element. |
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Proposition 1.26.

1) V, satisfies Foundation, Extensionality, Union, Separation for every ordinal c.

3) If a > w, then V,, satisfies Infinity.

(1)
(2) If a is a limit ordinal, then V,, satisfies Pairing, Power Set and AC.
(3)
(4)

If o = w, then V,, satisfies Replacement.

Proof. Let « € ORD. By the previous lemma, since V,, is transitive, it satisfies Exten-
sionality and Foundation. For Union, we proceed by transfinite induction. The limit
case being clear, let « = 4+ 1. If a € V,, then a C V3. Since [ Ja = {b € V3 : § € a},
then (Ja C Vs, hence |Ja € V,. For Separation we go analogously. Let ¢ be an
arbitrary formula in the language of set theory and let a € V,. Then a C Vg, so
{b€a: b} C Vs Therefore, {b € a: p(b)} € V,. This proves (1). To see (2),
let a,b € V,, with « a limit. Since V, = Uﬁ<a V3, let B be the least ordinal such that
a,b € Vg. Then {a,b} C Vg, so {a,b} € Vgy;. Since f+1 < «, {a,b} € V,, which
proves Pairing. For Power Set let a € V,, with « a limit and let 8 < « be the least
ordinal such that a € Vg, then P(a) € Vgio. Since f+2 < «a, P(a) € V,. Now,
let a € V,, and let f be a choice function for a. Then f(b) € b for every non-empty
bea,so f={({f(b):b€ab+#0} Thatis, f is a set of ordered pairs of the form
{{b},{b, f(b)}}. But b € a and f(b) € bso if 8 is an ordinal below « such that a € V3,2,
then a C Vg4, hence b € Vg1, so b C Vi and f(b) € V. Therefore, b, f(b) € V. Since
V,, satisfies Pairing, {{b},{b, f(b)}} €4 for every b € a, so f € V,, and V,, satisfies AC.
To see that (3) holds just note that w € V,, for every uncountable a. Since w is an
inductive set, if a is uncountable, then V,, satisfies Infinity. For (4), let f € V,, be a
definable function with domain a, i.e., a function for which there is a formula ¢(z,y)
such that f(b) = cif and only if p(b,c) and p(z,y) A(z,y) = x = z. Let rg(f) be the
range of f. Since a is a finite set, rg(f) is finite as well. Note that for each b € rg(f),
rk(b) < w, so let v = sup{rk(b) : b € rg(f)}. Then, rg(f) C V,, hence rg(f) € Vi41,
so in rg(f) € V,,, which finishes the proof. [ |

The following is a very useful result. The proof, which we omit, goes by induction on

the complexity of the formula. See [Jech03], Theorem 12.14, p. 168.

Theorem 1.27 (Reflection Theorem. Levy, 1960). Let ¢(z1,...,2,) be a formula
of the language of set theory. Let (A, : a € OR) be a cumulative hierarchy and let
A = Unpcor Aa- Then there is a closed proper class C' of ordinals 3 such that for all
ai,...,ap € Ag,

AEg(al,...,an) if and only if AgE ¢(ai,...,a,).
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For any infinite cardinal x we denote by H, the set of all sets whose transitive closure
has cardinality less than k. The transitive closure of a set a, denoted by tc(a) is the
smallest transitive set containing a. For every k, H, C V, and H, = V,,. The Hy
form a cumulative hierarchy: if A < k then Hy C H,, and if k is a limit cardinal then
Hy = Uye, Hx. Then, V = U,.ccarp Hr- There is a closed proper class of cardinals
C such that Vi, = H, for every k € C. Actually, for every uncountable cardinal &,
H, =V, if and only if 3,, = k, where 3 is the beth function (see [[Kunl3], Definition
1.13.24). H, in general satisfies every axiom but Infinity, Replacement and Power Set.
It satisfies Infinity if and only if x > Ng, it satisfies Replacement if and only if k is
regular, and it satisfies Power Set if and only if x is a strong limit. Therefore only if «

is inaccessible, H, E ZFC.

1.1.5 Inaccessible cardinals

Definition 1.28. A cardinal is weakly inaccessible if is a regular, uncountable limit
cardinal. Equivalently, a cardinal k is weakly inaccessible if and only if « is regular and
N, = k. A strong limit cardinal is an infinite cardinal & such that 2* < & for every

cardinal A < k. An inaccessible cardinal is a regular uncountable strong limit cardinal.
Theorem 1.29. If x is inaccessible, then V, E ZFC.

Proof. Since k is an uncountable cardinal, so a limit ordinal, V satisfies ZFC minus
possibly Replacement. So let us show that if  is inaccessible, then Vj; satisfies Replace-
ment. Let f be a definable function with domain a with a € V. It is a well-known fact
that if x is inaccessible, then |V, | = k so, since |a| < &, then |rg(f)| < k, so there is

some « < k such that rg(f) C V,, hence rg(f) € Vj. [ |

As a consequence, since ZFC is a recursive axiom system in which arithmetic can be
formalized, Godel’s Second Incompleteness Theorem applies. Therefore, if the existence
of inaccessibles was provable from ZFC, ZFC would prove its own consistency, which is
not possible. In general, we call large cardinals to those cardinals whose existence must
be taken as an axiom for it cannot be proven inside ZFC. Inaccessible cardinals are an
example of those. As seen in Theorem 1.26, for every uncountable limit ordinal «, V,
satisfies ZF'C' except possibly Replacement. From the assumption of the existence of
an inaccessible cardinal & it can be proved the existence of many cardinals A < k such

that all axioms of ZFC hold in V).
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1.2 Algebraic background

We assume some familiarity with the basic concepts of the theory of abelian groups and
category theory. If any doubt, we refer the reader to [Lan02], I.11. Some of the concepts
in this section can be studied in the more general context of homological algebra. Might
the reader be interested, see [Lan02], XX. The material introduced in this section will

be needed to show important features of W-groups in Chapter 2.

1.2.1 Free abelian groups

Throughout the text, although otherwise specified, group will mean abelian group.
Most of the notions introduced here will be used in Chapter 3. Recall that if {A4; : i € I}
is a family of abelian groups, their direct sum A = @, ; A; is the subgroup of the
product [[;c 4 consisting of the families (a;);c; where a; € A; for every i € I and a; =0
for all but finitely many ¢ € I. We say that a family {x; : ¢ € I} of elements of A is a
basis for A if it is non-empty and if every element a of A has a unique expression as a

linear combination a = Y. ; riz; with r; € Z and almost all r; = 0.

el
Definition 1.30. A group A is said to be free if it has a basis.

Equivalently, a free group is a direct sum of infinite cyclic groups. It is then clear that
free groups are isomorphic to the direct sum of copies of Z. Therefore, the additive
group 7 is a trivial example of a free group while the additive group R is an example

of a non-free group.
Theorem 1.31 (See [Lan02], Theorem 7.3, p. 41). A subgroup of a free group is free.

Since abelian groups are Z-modules, most of the notions and results in this section can
be generalized to the more general theory of modules. For an approximation to the
topic from this perspective, use [Kap69]. Theorem 1.31 can be also found in [[Kap69],

Lemma 15.

Definition 1.32. A surjective homomorphism of groups 7 : B — A splits if there is
a homomorphism p : A — B such that o p = id4, where id4 denotes the identity on

A. The mapping p is sometimes called the splitting function for .
Free groups can be characterized in terms of splitting homomorphisms.
Theorem 1.33. A group A is free if and only if every homomorphism onto A splits.

Proof. Suppose first that A is free and let 7 : B —> A be a epimorphism, with B
arbitrary. Let S = {s; : i € I} be a basis of A and let b; € B such that m(s;) = b; for

each ¢ € I. Since S is a basis of A, there exists a unique homomorphism p: A — B
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such that p(s;) = b; for each i € I. Tt is easy to see that p is a splitting function for .
Conversely, let F' be the free group generated by S ={s,:a € A} andlet 7: F — A
be the unique homomorphism such that 7 (s,) = a for all a € A. Since 7 is surjective,
by assumption there is a splitting homomorphism p : A — F for 7. But p is injective,

so A is isomorphic to a subgroup of F'. Then, by Theorem 1.31, A is free. ]

Corollary 1.34. If B be a subgroup of A such that B and A/B are both free, then A

is free. Moreover, any basis of B extends to a basis of A.

Proof. We sketch the proof. Let m : A — A/B be the canonical projection. By
assumption, since A/B is free there is a splitting homomorphism p : A/B — A for
7. The unique presentation of any a € A as a sum of element of p(A/B) and B is
a=p(n(a))+ (a — p(n(a)), so A= p(A/B) @ B. Since p is injective, if S is a basis of
A/B, then p(Y) is a basis of p(A/B). Therefore, if R is a basis of B then p(S) U R is

a basis of A and we are done. [ |

An ascending chain of sets Ag € 41 C ... A, C ... with u < a is called a smooth chain
if for every limit ordinal A < «, Ay = Uu <x Ay Tt is said to be strictly increasing if
for every pn < a; A, # Apqr. A family {A, : p < a} is a chain of groups if for every

p < o, A, is a group which is a subgroup of A4, 1.

Theorem 1.35. If {A, : p < a} is a smooth chain of groups such that Ag is free
and A,41/A, is free for every p < o, then A = Uu<a A, is free. Moreover, for every

p<a, A/A, is free.

Proof. Ag is assumed to be free, so let Sy be a basis of it. By transfinite induction we
construct a smooth chain of sets Sp € 57 C ... C S, C ... for 4 < « such that each
S, is a basis of A,. Suppose we have already defined the chain up to some ordinal
B < a. If Bis a limit, let Sg = U#<5 Sg. Then, Sg is a basis of Uu<ﬁ A, = A, So
suppose 3 is a successor ordinal, say 5 = d + 1. Asi1/As is free by hypothesis, so by
Corollary 1.34, Ss extends to a basis S511 to Asi1. Then, S = U“<a S, is a basis of A

and {s+ A, :s€ X\ X,} is a basis of A/A,,. [ |

Recall that a group A is said to be torsion if all its elements are of finite order and is

said to be torsion-free if all its elements are of infinite order.

Theorem 1.36 (See [Lan02], Theorem 8.4, p. 45). Every finitely-generated torsion-free

group is free.

Consequently, since every subgroup of a torsion-free group is torsion-free, every finitely-

generated subgroup of a torsion-free group is free.
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1.2.2 Basics of homological algebra

An open complex of groups is a sequence of groups and homomorphisms {(A?, f*)}
. i—1 . 7 .
A4 L g

where i ranges over all integers, f* maps A’ into A" and f?o fi=! =0 for all i. We
say that the open complex is eract whenever Ker(f') = Im(f*~!) for every i. One can

consider finite sequences of homomorphism
Al . A"

but this can be made into a complex sequence by inserting the trivial groups at each
end with the corresponding zero homomorphisms. These kind of complexes are called

short or finite sequences.

Hom(A, B) denotes the set of homomorphisms A — B for any two groups A, B. To-
gether with the addition defined by (f1 + f2)(z) = fi(x) + fa(z), the set Hom(A, B)
has a group structure. For every group C, Hom(-,C) is a contravariant functor (that
is, a reversing arrow functor) from the category of abelian groups to the category of
group homomorphisms into C, as every group homomorphism f : A — B induces
a homomorphism f’ : Hom(B,C) — Hom(A,C) given by f'(g9) = go f for every
g € Hom(B,C). Actually, from every sequence A" — A — A” we get the induced
sequence Hom(A”, B) — Hom(A, B) — Hom(A’, B). Moreover, the sequence A" —
A — A" — 0 is exact if and only if 0 — Hom(A”, B) — Hom(A, B) — Hom(A', B)
is exact (equivalently, 0 — A" — A — A” is exact if and only if Hom(A”, B) —
Hom(A,B) — Hom(A',B) — 0 is exact; see [Lan02], Propositions 2.1 and 2.2, pp.
122, 123). Fixing the other coordinate, note that if 0 — B’ — B — B” is a exact
sequence, so is the sequence 0 — Hom(A, B') — Hom(A, B) — Hom(A, B").

Definition 1.37. A short exact sequence 0 — A’ ENY Ny splits if the surjective

homomorphism g splits.

It is easy to see that if 0 — A’ EN N N splits, A is the direct sum of Ker(f)
and I'm(p), where p stands for the splitting function p : A” — A. Conversely, if Ker(f)

is a direct summand of M, the short exact sequence splits.

Proposition 1.38 (See [Lan02], Proposition 3.2, p. 132). Let 0 — A’ ENY NN

be an exact sequence, the following are equivalent:

(1) There exists a homomorphism ¢ : A” — A such that go ¢ = id4.

(2) There exists a homomorphism 1) : A — A’ such that Yo f =ida.
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The following fact would also work if we took R-modules for any ring R. The satisfaction
of these equivalent properties defines what a projective module is. We will simply talk

about projective groups.

Proposition 1.39 (See [Lan02], p. 137). Let A be a group. The following are equiva-

lent.
(1) Given a homomorphism f: A — M" and a surjective homomorphism g : M —
M", there exists a homomorphism h : A — M such that goh = f.
2) FEvery ezact sequence 0 — M' — M" — A — 0 splits.
( Y q p
(3) A is a direct summand of a free group.

Definition 1.40. A short exact sequence 0 — Fo F1 A — 0, where F7 is free is

called a free resolution.

Note that since a free resolution is exact, fp is injective because Ker(f1) = Im(0) = 0.

Therefore, Fy is a subgroup of F; so, by Theorem 1.31, is a free group.

Definition 1.41. Let 0 — FO F1 A — 0 be a free resolution. For any group C

we define

Ext(A,C) = Hom(Fy, C)/Im(fo),
where f) denotes the induced homomorphism f} : Hom(Fy,C) — Hom(Fy,C).

In Chapter 3, Ext will be shown to be very a useful tool to define Whitehead groups.
We finish with the following result.

Theorem 1.42 (See [Lan02], Lemma 8.3, p. 809). Let 0 — Fj P I A0 bea
free resolution (it is enough if it is exact) and let C be an arbitrary group. Then, there

s an exact sequence

0 — Hom(A,QC) TN Hom/(Fy,C) Jo, Hom(Fy,C) —
— Ext(A,C) — Ext(Fy,C) — Ext(Fy,C) — 0

where f{ and f denote the induced homomorphisms by f1 and fa, respectively.



Chapter 2

Large cardinals and infinite

abelian groups

Large cardinals axioms arise naturally in several contexts of the theory of infinite abelian
groups. In this chapter we will see a characterization of the existence of measurable
cardinals in terms of the group of homomorphisms from Z"/Z<“ into Z discovered
by Katsuya Eda in 1982. More precisely, Eda’s theorem shows that there exists a
cardinal k such that Hom(Z"/Z<",7Z) is not the trivial group if and only if there
exists a measurable cardinal. Since the existence of measurable cardinals cannot be
proved in ZFC, the question of whether Hom(Z"/Z.<",7.) is the trivial group or not
is independent of ZFC. In further sections we shall see how the so-called Dugas-
Gobel cardinal relate to some large cardinals like measurables, strongly compact and
d-strongly compact cardinals. Throughout this chapter we will make use of highly

useful techniques and results such as ultrapowers and the Wald-Los’s Lemma.

2.1 Filters, ultrafilters and measurable cardinals

Definition 2.1. Let A be a non-empty set. The set F is a filter on A if F C P(A)

and

(1) Ac Fand 0 ¢ F,
(2) XNY € F whenever X,Y € F,

(3) Forevery X € Fand Y € P(A),if X CY, then Y € F.

Note that filters on a set A formalize the idea of being a "big” subset of A. Indeed, (1)
confirms the intuition that A is a big subset of A and excludes the empty set; (2) tells
that two subsets of A are big only when their intersection is also big; (3) tells that if a

subset X of A is big, so must be every set containing X.

15
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Example. Clearly, {A} is a filter on A, which we call the trivial filter. If a € P(A)
is a non-empty set, then F = {X € P :a C X} is a filter as well. If x is an infinite
cardinal, the Fréchet filter on kis F = {X C k: |k — X| < K}.

Definition 2.2. A filter F on A is said to be principal if there exists some non-empty

Y C A such that X € F if and only if Y C X.

It is easy to see that every filter on a finite set A is principal. Indeed, if A is finite, so
is F, hence (| F € F. Then, if F was non-principal, [ F = (). The Fréchet filter on x

is non-principal for every k.

Definition 2.3. We say that a filter F on A is mazimal if there is no proper filter on

A containing F. A filter F on a set A is an ultrafilter if it is maximal.

Note that if F is an ultrafilter and X is an arbitrary subset of A, then either X or
its complement in A is a member of F. Indeed, if there exists a subset X of A such
that neither X nor A\ X were in F, then X NY # (0 for every Y € F. Otherwise,
ifXNY =0,Y CX\A, soX\A e F, which contradicts our assumption. Then,
since X NY # () for every Y € F, the intersection of any finite collection of members
of FU{X} is non-empty. And it is easy to see that every collection of sets with this
property can be extended to a filter. So let G be that filter. Of course, F C G, which
contradicts the maximality of F. Conversely, if for every X € P(A) either X € F or
A\ X € F, F is clearly maximal, hence an ultrafilter. This proves the following:

Proposition 2.4. A filter F is an ultrafilter on A if and only if for every X € P(A),
either X € F or A— X € F.

Theorem 2.5 (Tarksi). Every filter can be extended to an ultrafilter.

Proof. Let F be an arbitrary filter on A. We can partially order, with respect to the
inclusion relation, the set P of filters on A containing F. Take C' to be an arbitrary
chain in P. Then [JC is a filter on A and an upper bound of C. By Zorn’s Lemma, P

has a maximal element, that is, an ultrafilter. |
As next lemma shows, principal ultrafilters are easily characterizable.

Lemma 2.6. An ultrafilter F on a is principal if and only if there exists some a € A

such that F ={X CA:a € X}.

Proof. The implication to the right is straightforward. Let F be a principal ultrafilter
on a and let Y be a non-empty set such that Y C X for all X € F. Since F is an
ultrafilter, if a € Y, then A — {a} ¢ F because Y ¢ A — {a}, so {a} € F. Then
Y={a},so F={XCA:ae X} |
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Clearly, if F is principal, the intersection of any arbitrary large collection of elements

in F belongs to F. This motivates the following definition.

Definition 2.7. Let x be an infinite cardinal. A filter F on A is said to be k-complete

if the intersection of any family of less than k-many members from F remains in F.

+

Lemma 2.8. If k is singular, every k-complete filter on k is k™ -complete.

Proof. Let k be singular and let F be a x-complete filter on k. It is enough to prove
that the intersection of k-many elements of F belongs F. Let {X, : o < k} C F and
let S = {p:p <cf(k)} be a cofinal sequence on k. For every p, let Y, = (,., Xa-
Since F is k-complete and p < cf(k) < K, Y, € F for every p < cf(k). Also,
since S is cofinal, for every a < k there is some u € S such that a < u. Therefore,
p<ef(x) Y, € F. Thus

No<r Xa € F and F is £1-complete. |

Nu<ers) Yo = Na<y Xa- Again by the x-completeness of F, ()

We can now introduce measurable cardinals, which will play an important role through-

out this chapter.

Definition 2.9. A cardinal k is measurable if it is uncountable and it has a k-complete

non-principal ultrafilter.

Measurable cardinals are large cardinals. Indeed, their existence implies the existence

of inaccessible cardinals which, as we have already seen, cannot be proved in ZFC.
Theorem 2.10. Measurable cardinals are inaccessible.

Proof. From Definition 1.21, an inaccessible cardinal is a regular uncountable strong
limit cardinal. Let x be measurable. We already have that it is uncountable. Let us
see that it is regular. By Proposition 1.19 (2), & = ¢f(k) if and only if £ cannot be
partitioned into less than x-many sets of cardinality less than x. Since x is measurable,

there exists a x-complete non-principal ultrafilter F on k.

Lemma 2.11. Let s, A be infinite cardinals with A < k. If an ultrafilter F on k s
A-complete, then for every partition {X, : o < u} of kK with u < X there exists an «
such that X, € F.

Proof of the lemma. For the sake of contradiction, suppose that there is no X, € F.
Since F is an ultrafilter, k — X, € F for every a < u. By A-completeness, ) =
Na<pt — Xa € F. |

Lemma 2.12. Every set of a k-complete non-principal ultrafilter on k is of cardinality

K.
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Proof of the lemma: Assume on the contrary that X € F is of cardinality less than
k. JF is non-principal, so for every o € X there is some X, € F such that o ¢ X,,.
Otherwise, a € (| F. Since | X| < k and F is k-complete, [[{X, : o < |X|} € F. But
X NM{Xa: a<|X|} =0, which is a contradiction. |

If follows from Lemma 2.11 that every partition of x has an element X in F. By Lemma
2.12, X has cardinality k. Therefore, there is no partition of  in less than k-many sets

of cardinality less than k, hence k is regular.

Let us see that x is a strong limit. Suppose the contrary, that is, assume that there
exists some A < & such that x < 2*. Then there is a set {f, : @ < s} of k-many
functions f, : A — {0,1}. Let F be a k-complete non-principal ultrafilter. Then, for
each 8 < X and each o < A, either {a : fo(8) =0} € F or {a: fo(B8) =1} € F so
let Xg be the one in F and let eg = 0 if {a : fo(8) = 0} € F, eg = 1 otherwise. By
r-completeness, (5., Xp € F. Note that the only element in (5 Xp is actually the
ordinal a such that f,(5) = €3. By Lemma 2.6, F is principal, which is a contradiction.

We conclude that x is a strong limit, hence inaccessible. ]

Remark. The converse of Lemma 2.11 also holds. We can prove it by induction on
A. By definition, every filter is Ng-complete, so assume that F is A-complete. We show
that F is AT-complete. Let {X, : @« < A} C F and define the sequence {Y, : a < A}

as follows:

}/0 = X07

Ya+1 = Ya N XaJrl

Yo =<y Yp if B is a limit.
Note that (),c) Ya = [Naer Xa. Since F is A-complete, Y, € F for every a < A.
Let Zo = Yo — Yoq1. It follows that {k — Xo} U{Zs : & < A} U{per Yo} is a
partition of k. Now, since F is an ultrafilter and Xo € F, kK — Xo ¢ F. Also, since
k—Zo =k—Ya—Yat1) = (k—Ya)UYqyq1 € F, then Z, ¢ F for any o < . Therefore,
since for every partition of x in less than A-many sets there must be at least one set in

F, it must be (), .\ Ya € F, that is, (<) Xa € F. Thus, F is AT-complete. For A a

limit cardinal the result follows trivially.

Remark. If F is an ultrafilter on x all whose elements have cardinality «, F is said to
be uniform. Lemma 2.12 then says that every k-complete non-principal ultrafilter on

Kk 1s uniform.

The following proposition will be useful in the next section.
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Proposition 2.13. If k is the least cardinal for which there exists a non-principal

w1-complete ultrafilter F on k, then F is k-complete.

Proof. Let F be a wi-complete ultrafilter on x. Assume that F is not x-complete. By
the Remark, there exists a partition {X, : a < A} of k with A < k and X, ¢ F for
all @ < A\. Let f: k — X be a surjective mapping given by f(a) = § if and only if
o € Xz for each o € k. Then, the set D = {X € P(A\): f~1(X) € F} is a non-principal
ultrafilter on . Indeed, since f~!(\) = k, which is in F, A € D. Also, § = f~1(0)
is not in in D. If X,Y € D, then f~4(X), f~1(Y) € F, hence f~1(X)n f~1(Y) € F.
But f7}(X)Nn YY) = fFA(XNY),s0 XNY € U. And, if f}(X) € F and
X CY C A then f71(X) C f71(Y), so Y € D. This proves that D is a filter. To
see that it is maximal just take an arbitrary X C A. F is assumed to be an ultrafilter,
so either f~1(X) € F or k — f71(X) € F. If the former, X € D; if the latter, since
k—fYX) = 1) - fYX) = f7Y(A = X), then A — X € D. By Lemma 2.6,
to see that D is non-principal it is just enough to see that there is no 8 € A such
that 3 € X for all {3} € D. Suppose the opposite. If {8} € D, then f~1({8}) € F.
But f71(B8) = {a: f(a) = 8} = {a: a € X} = Xz which, by assumption, isn’t in
F, so we have a contradiction. It remains to show that D is wi-complete. For this,
let {Y,, : n < w} be a partition of \. If ¥,, ¢ D for any n, then f~1(Y,) ¢ F for
any n < w. But |J, ., f~'(Yn) = k, which contradicts that F is wi-complete. We
conclude that in A there is a wi-complete non-principal ultrafilter, contradicting that x
was the least cardinal with that property. This is a contradiction. We therefore have
that every partition of x in less than x-many parts has an element in F, that is, F is

k-complete. ]

2.2 Eda’s Theorem

For each n < w, e, will denote the function e, : w — {0,1} such that e,(m) = 1 if
and only if m = 1. Recall that for every two sets A, B, the set of functions f : B —
A is denoted by AB. The Baer-Specker group is Z* together with addition defined

componentwise.

Lemma 2.14 (Specker, 1949). If h : Z* — 7Z is a homomorphism, then h(e,) = 0
for all but finitely many n.

Proof. We prove it by contradiction. Suppose that h(e,) # 0 for infinitely many n. We
may assume that h(e,) # 0 for all n. Define a sequence (ky, : n < w) by letting kg = 1
and taking kp41 > kp!lh(ey)]; and let X = {>  zpe, € 29 : Vn(z, = OV, = k1) }. We
have that |X| = 2%, Then, since the function h takes values in Z and |Z| = R, there
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exist > xpe, and Y ype, such that > xpe, # > yne, and A xnen) = h(O ynen).
Since > zpen # Y ynen there must be a least m such that x,, # ym,. Then, h((z,, —
Ym)em) = —h(> =, (xi — yi)ei), as h is a homomorphism. Since for all n < w, either
Tn = 0 or x, = k,! and x,, # ym, either z,, = 0 and y,, = k! or the contrary, so
Tm — Ym = . Therefore, h((zy — Ym)em) = km!h(en). Since k1 > kpllh(en)|, it
cannot happen that h(e,,) = kyq1c for an arbitrary ¢ € Z, so kp,+1 does not divide
h((Zm — Ym)em). But kyy1 divides h(Y .o, (z; — yi)e;) because for every i > m, if
x; —y; # 0, then x; —y; = k;!, to which k,,11 divides. This is a contradiction, so we

are done. ]

Definition 2.15. A group G is slender if every homomorphism A from the Baer-Specker
group into G is such that h(e,) = 0 for all but finitely many n.

Specker’s Lemma then shows that Z is a slender group. Specker’s Lemma can be easily
extended to homomorphisms from Z* into Z, with k¥ uncountable. This provides a first

example of a situation in which one can naturally jump to uncountable groups.

Corollary 2.16. Let k be an uncountable cardinal. If h : Z% — 7. is a homomorphism,

then h(eqs) = 0 for all but finitely many o < k.

Proof. Suppose the opposite. Let A be a set of the form {«,, : h(eq, ) # 0,n < w}. The
restriction h | Z4 : Z4 — 7Z is still a homomorphism. Since A is isomorphic to Z, so

are Z4 and Z*. This contradicts Lemma 2.14. [ |

[1,,<., Z simply denotes the set of w-sequences of integers. We will denote by [],,~,, Z

the set of w-sequences of integers whose first m elements are 0.

Lemma 2.17. For every homomorphism h : 2% — 7., there exists some m < w such

that h[[T,sm Z) = {0}

Proof. Towards a contradiction, for each m take an element a € II,,>,, with h(a) # 0.

For each 7 € [[,,., Z, let 2(r) = (3_,,<p Tm@m)n<w € [l Z. Clearly, z(r) € 1L« Z.
Now, let the function f : Z¥ — Z given by f(r) = h(z(r)). Note that f is an
homomorphism and that for all n < w, f(e,) = h(a,) # 0, which contradicts Lemma

2.14. |

Recall that the direct sum @;.; A; is the subgroup of [[;.; A; consisting of all I-
sequences (a;);er with a; € A; for all ¢ € I and a; = 0 for all but finitely many i € I.

Corollary 2.18. Hom([[,,..,%Z,Z) =P, . 7Z

n<w n<w :

Proof. The mapping 0 : Hom([[, ., Z,Z) — D,,.,Z given by 6(h) = >

with 7, = h(e,) and m such that h[[[,,, Z] = {0} is clearly an isomorphism. |

Tn€n

n<w n<m
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The group Z<¥ of finite sequences of integers is isomorphic to the subgroup A of Z¥
of sequences of integers with all but finitely-many coordinates being 0, whenever the
context is clear we will identify A with Z<% with no further comment. The equiva-
lence classes of the quotient Z*/Z<“ consists of vectors differing in just finitely many

coordinates. Later on we will see that we are just simply dealing with ultrapowers.
Corollary 2.19. Hom(Z*/7~%,7Z) = {0}.

Proof. Let h € Hom(Z*]Z<*,Z) and let h' be the function given by h'(>_ rpe,) =
R[> rnen)), where [Y rpe,] is the equivalence class of > rpe,. Clearly, b is an element
in Hom(Z*,Z), so let m € w such that A'[[],-,, Z] = {0}. Then, A([3 rmen]) =
R[> Tnen]) + h([Zan Tnen]) = 0, because h([Y_, ., Tnen]) = h([0]) and

R[> psm Tnenl) = W (32,5 m Tnen) = 0. [ |

According to Corollary 2.19, the only possible homomorphism between Z* /Z<“ and Z
is the trivial one. We now wonder if this would still remain true if instead of considering
the quotient of a product of countable-many copies of Z we consider the product of
uncountable-many copies. The following result is due to Katsuya Eda and lies on results

of Jerzy Los.

Theorem 2.20 (Eda, 1982). Hom(Z*/Z<%,7Z) # {0} if and only if there exists an

w1-complete non-principal ultrafilter on k.

Proof. We first prove the right to left implication. Let F be an wi-complete non-
principal ultrafilter on x and let the mapping h : Z* /7<% — Z with h([}_ ., Tata]) =
n if and only if {av: ro, = n} € F. We see that f is well-defined. Since F is wi-complete
ultrafilter and {{o : r, = n} : n € w} is a partition of £ in w-many pieces, there is
some n € w such that {a : 1o = n} € F, so f is defined on every class [} _, ra€al-
Let now Y .. Sa€a € [D_qck Talal, 50 both differ in just finitely many coordinates,
so since {a : 7 = n} € F and F is non-principal, then {a : s, = n} € F. In-
deed, if F was principal, since it is an ultrafilter, there would be some S € k such
that 5 € X for every X € F. Then, {a : rq = n} — {8} ¢ F. To see that f is an
homomorphism just let two different classes [} . Ta€a] and [} ., sa€a]. First note
that [>° . Ta€al + [Doack Satal = Doger(Ta + 5a)eal. Let n, = {a : 14 = n,} and
ns = {a: so = ns} and assume that n,,ns € F. Then, {a : 14 = n, and s, = ns} =
nyNng € F. But ngNny C{a:ry+ sq =nr +ns}, so {a:rq+ sq =n, +ns} € F.
Therefore, f([>°,c.(Ta+ 5a)ea)) = nr + 15 = f([Dopcr Tatal) + F([Doack Satal). Note

also that since for every n € Z, f(n)_ ,_,. eqa) =n, f is surjective.

a<k
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For the converse suppose f : Z* /7<% — Z is a non-zero homomorphism. For every
Y C k we denote by Z" | Y the set of k-sequences of integers whose non-zero coor-
dinates are indexed by elements in Y. Let S’ = {Y C « : f[Z" | Y/Z~*] # 0}. By
assumption, f is a non-zero homomorphism. Then xk € S, as Z* | k = Z" and for

every Z CY with Y € &', either Z € S’ or Y \ Z € S’ or both.

Claim. Every set of pairwise disjoint elements of S’ is finite.

Proof of the claim. Towards a contradiction, let {Y,, : n € w} C S’ with Y, NY,, =0
whenever n # m. For each n € w, let a(™ € Z* | Y, with f([a(™]) # 0. Such an ("
always exists. Let the function h : Z* —s Z given by h(r) = f([>2, ., 7ma™]). Then,
h(en) = f([a™]) # 0 for all n € w, contradicting Specker’s Lemma. ]

new

Let S ={Y € 8" :VZ C Y (either Z € S’ or Y \ Z € S’ but not both)}. Equivalently,
S might be seen as the set {Y € S : VZ C Y(f[Z" | Z/Z<*] = {0} Vv f[Z" |
(Y\ Z)/Z<“] = {0})}. Note that S is not empty. Assume otherwise that S = ). Then,
for every Y € S’ there is some Z C Y such that both Z and Y\ Z belong to S’. Then,
since k € S’ we take Yy C k such that both Yy and x — Y belong to S’. Then, let
Y1 € k — Yy with Y7, (k — Yy) — Y7 € S” and so on. This way we build a family of
w-many pairwise-disjoint elements of S’, which contradicts the claim above. Now, let

D={XCk:XNY €5} for an arbitrary ¥ € S.

Claim. D is an wi-complete non-principal ultrafilter on k.

Proof of the claim. We first check that D is a filter. It is clear that ) ¢ D and that D
is upwards closed. Let X, X7 € D and assume that Xo N X; ¢ D. Since D is upwards
closed we might assume with no loss of generality that Xy, X; C Y. Then, Xy € 5,
so fIZF | Xo/Z<] £ {0}. Since [([ZF | Xo/Z<]) = F(ZF | (Xo 0 X1)/Z<“]) +
f([ZF T (Xo \ X1)/Z=*]) and, by assumption, f([Z" [ (Xo N X1)/Z~*]) = {0}, we
have that f([Z" | (Xo \ X1)/Z<*]) # {0}. Analogously, we can prove that f([Z" |
(X1 \ X0)/Z<“]) # {0}, which implies that f([Z" | ¥\ (Xo\ X1)/Z<]) # {0} as
X1\ Xo CY\ (Xo\ X1). But this contradicts that Y € S because Xy \ X7 C Y and
both X\ X1 and Y\ (Xo \ X1) belong to S’

To see that D is an ultrafilter, let X C k and suppose that X ¢ D. Since f[Z" |
Y/Z<) £ {0} and f[ZF | Y/Z<] = f[ZF | (X OY)/Z<] + f[ZF | (Y \ X)/Z<] =
flzF 1 (Y \ X)/Z=%], then Y \ X € D.

Now, let {X,, : n € w} C D and assume, for the sake of a contradiction, that (.., Xn ¢
D. Without loss of generality we might assume that X,,;1 C X,, CY forall n € w
and (e, Xn = 0. Since for each n € w, X,, € D, f[Z" | X,/Z<*] # {0}. Let o™ €
7F | X, with f([a"™]) # 0 and let h : Z¥ — Z be as in the previous claim, which is
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X, = 0. Then h(e,) = f([a™]) # 0 for

a well-defined homomorphism because (1,
each n € w, which contradicts Specker’s Lemma. This shows that D is wi-complete.
To see that D is non-principal, note {a} ¢ D for any « € k because for every a € Z" |

{a}, then [a] = [0], so f[Z" | {a}] = {0}. [ |

Consequently, if there is a non-zero homomorphism f : Z" /7<% — 7., there exists an

wi-complete non-principal ultrafilter on . |

Consequently, if x is the least cardinal with Hom(Z"/Z<“,7Z) # {0}, then & is the
least cardinal having an w;-complete non-principal ultrafilter. By Proposition 2.13,

this ultrafilter is xk-complete, so k is measurable. That is:

Corollary 2.21. There exists a cardinal k such that Hom(ZF 7<%, 7) # {0} if and
only if there exists a measurable cardinal. The least measurable cardinal is the least

cardinal K for which Hom(Z" |Z<%,Z) # {0} holds.

In particular, the question of whether there exists a cardinal x such that the group
Hom(ZF]Z<%,7) # {0} is independent of ZFC. Eda’s Theorem can be extended to

homomorphisms from 7" /Z<" into Z.

Theorem 2.22. Hom(Z"|7<%,7.) # {0} if and only if there exists an wy-complete

uniform ultrafilter on k.

Proof. The same proof of Eda’s Theorem works, although small changes are required.
For the right to left implication we define the function f : Z"/Z<" — 7 given by
J(DoackTatal) = n if and only if {a : ro, = n} € F. However, for f to be well-
defined F we need F to be uniform instead of non-principal. For the claims we can just
consider families of k-many pairwise-disjoint sets and define the function h : Z% — Z
analogously. Contradictions will still arise as Specker’s Lemma still holds for those

functions, as showed in Corollary 2.16. ]

By Lemma 2.12 every set of a k-complete non-principal ultrafilter on & is of cardinality
k. It is also clear that k-complete implies wi-complete. Therefore, if k is measurable,

Hom(Z"]7Z<",7Z) # {0} and the least cardinal for which that holds is measurable.
Corollary 2.23. Hom(Z" /Z<",7Z) = {0} for all k below the first measurable.
We finish this section with a generalization of Lemma 2.17 and Corollary 2.18.

Lemma 2.24. For every homomorphism h : 7" — 7. there is a finite subset I of
k such that h|Z | (k\ I)] = {0} if and only if there is no wi-complete non-principal

ultrafilter on k.
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Proof. By contraposition, if F is a wi-complete non-principal ultrafilter on «, the func-

tion h : Z% — Z given by h(>_,_,.Ta€a) = n if and only if {ao : 7, = n} € Fisa

a<k
non-zero homomorphism as for every I C k, h[Z" | (k\ I)] = Z. Conversely, let h be a
mapping from Z* to Z such that there is no finite subset I of k with h[Z [ (k\I)] = {0}.
Let S ={Y Ck: f][ZF Y] #0}and S={Y € &' :VZ C Y (either Z€ S"or Y\ Z €
S’ but not both)}. Now, fix Y € Sandlet D={X Cr: X #0AXNe S} Disan

wi-complete ultrafilter. Since all cofinite sets are in D, it is non-principal. [ |

Corollary 2.25. If there is no wi-complete non-principal ultrafilter on k, then the
wew L,Z) is isomorphic to @
then Hom([[,c. Z,7Z) % D c,. Z-

Proof. Let 0 : Hom([[,c. Z,Z) — @,c, Z given by 0(h) = > c;Ta€a With 74 =
h(eq) and I C k such that h[Z | (k\ I)] = {0}. 0 is an isomorphism. [

group Hom([] Z.. In particular, if k is measurable,

ack

2.3 Strongly compact and /-strongly compact cardinals

Definition 2.26. An uncountable cardinal  is said to be strongly compact if for any

set S, every k-complete filter on S can be extended to a k-complete ultrafilter on S.

The given characterization of strongly compact cardinals is due to Keisler and Tarski.
As we shall see, strongly compact cardinals are measurable cardinals, hence its existence

cannot be proven from ZFC. Let us first see some preliminary results.

Definition 2.27. Let s be a cardinal. A k-additive measure on a set S is a function

6 :P(S) — [0,1] such that
(1) 6(5) =1,
(2) 0({z}) =0 for every x € S, and

(3) O(Uper Xa) = Do ner 0(Xa) for every family {X, : o < k} C P(S) of pairwise-

disjoint sets.

Note that if x has a k-complete non-principal ultrafilter F, the function 0 : P(x) —
{0,1} given by (X) = 1 iff X € F is a k-additive measure. Clearly, 6(x) = 1 and
6({x}) = 0 because F is non-principal. To see (3) let {X, : @ < K} C P(k) be a
family of pairwise-disjoint sets. We see that (|, Xa) = > ncp 0(Xa). Clearly, if
X, € F for some o < k (note that, since F is an ultrafilter, this o must be unique),
then J,., Xo € F. Therefore, if 3~ __0(X,) =1, then 0(U,., Xo) = 1. By contra-
position, if 3 _, 6(X4) = 0, there is no a < x such that (X,) = 1. Then k — X, € F
k—Xq € F,50 k —Uper Xa € F, that is,

for every o < k. By k-completeness, )

Ua<r Xa ¢ F and (. Xa) = 0.

a<k
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Remark. If 0 is a k-additive measure, §(X) = 0 for every X of cardinality less than .
Then, every x admitting a k-additive measure is regular. Indeed, let {X, : a« < A} C &
with A < k and | X4 | < & for every o < A. Then |J, ., Xao| < & because (U, Xo) =
0 and f(x) = 1.

Lemma 2.28 (Ulam, 1930). For any X there is a collection of sets {Ag\a <At AE<
A} C P(AT) satisfying:

(1) A5n A% = 0 whenever a < 8 < AT and £ < \; and

(2) AT — Ug<x AL < X for each o < AT

Proof. For each y < AT let f, : A — pu+ 1 be a surjective map and for each v < A"
and € < A let A% = {u < AT : fu(€) = a}. (1) follows immediately from (2). For (2)
note that (AT — U§<)\ Ag) C a. [ ]

The collection of sets {45 : a < AT A& < A} is known as Ulan matriz.

Lemma 2.29 (Ulam, 1930). If there is a k-additive measure on k, then k is weakly

inaccessible.

Proof. From the remark, x is already known to be regular. Let us see that it is a limit
cardinal. Towards a contradiction, assume that x = A™. Consider an Ulam matrix and
let 6 be a k-additive measure on . Then, by (2) above, for each @ < A1 there is a
&a < A such that O(Ag“) > 0, so there must be some £ < A such that £ = &, for many
At-many a’s. Then, by (1) above, there is an uncountable set T whose elements are of
f-measure greater than 0 for which there is no X, Y € T with (X NY) > 0, which is

impossible. ]
Theorem 2.30 (Keisler-Tarski, 1964). Strongly compact cardinals are regular.

Proof. Assume that x is singular. Let F’ be a x-complete ultrafilter on k™ extending
the k-complete Fréchet filter F = {X C x* : |kT — X| < xT}. Note that F is non-
principal and so is F/. By Lemma 2.8, F' is k-complete, so k' is measurable for it
has a non-principal x-complete ultrafilter, hence a x*-additive measure. By 2.29, k™

is weakly inaccessible which is impossible because T is not a limit. ]
Theorem 2.31 (Erdos-Tarski, 1943). Strongly compact cardinals are measurable.

Proof. By the previous, « is regular so {X C k: |k — X| < k} is k-complete. Since it

can be extended to a k-complete ultrafilter, x is measurable. |

Consequently, the existence of strongly compact cardinals is independent of ZFC. We

introduce now a weaker large cardinal notion.
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Definition 2.32 (Bagaria-Magidor, 2013). Let § < x be uncountable cardinals which
might be singular. We say that s is d-strongly compact if for every set S, every k-
complete filter in S can be extended to a d-complete ultrafilter on S. An uncountable
limit cardinal k is almost strongly compact if k is §-strongly compact for every uncount-

able cardinal § < k.

Clearly, if x is k-strongly compact, then it is strongly compact. Note as well that if A
is a cardinal greater than k and « is §-strongly compact, then, since every A-complete
filter is k-complete, A is d-strongly compact as well. Note that if x is a regular wi-
strongly compact cardinal, since {X C k : |k — X| < k} is a kK-complete non-principal
ultrafilter, it extends to a wi-complete non-principal ultrafilter, so, by Proposition 2.13,

there exists a measurable cardinal less than or equal to .

Proposition 2.33. If k is wy-strongly compact and X is the first measurable, then k is

A-strongly compact.

Proof. Assume not. Then there is a A-complete filter on a set I which is not extended
to a wi-complete ultrafilter or, equivalently, no wi-complete ultrafilter extends a A-
complete filter. Let F be a wi-complete ultrafilter. Since it doesn’t extend a A-complete
filter, by Lemma 2.11 there is a partition {X, : a < S} of I with 8 < A such that
Xo ¢ F for any a < . Then, the set Y = {X C B : |{Xo : @« € X} € F} is
non-principal wi-complete ultrafilter on 8. We first see that it is an ultrafilter. Let
Y ¢ U. Then, U,y Xa &€ F, 50 S\ Upey Xa € F, because F is an ultrafilter. Since
{Xa : a < B} is a partition of S, S\ Uyey Xa = Up\y Xa, hence S\Y € U. From
this it easily follows that F is non-principal, because X, ¢ F for any a € [. It
remains to show that U is wi-complete. Let {Y,, : n € w} CU, so that (J,cy, Xo € F
for every n € w. Then, since F is wi-complete, (,,c,(Uqcy, Xa) € F. Note that if
@ € NpewUaey, Xa), then a € U, ey, Xa for every n € w. But then, a € Uyeny, Xas
30 (Nnew(Uaney, Xa) € Uaeny, Xas hence U,eny, Xa € F and (¢, Yn € U. The
existence of a non-principal wi-complete ultrafilter on § with § < A contradicts that A

is the first measurable. [ |

Magidor proved in [Mag76] that it is consistent that the least measurable is wy-strongly
compact. In that case, if k was such a cardinal, K would actually be strongly compact

by Proposition 2.33.

Notation 2.34. Let S be a non-empty set. Pi(S) denotes the set of subsets of S with
cardinality less than k, that is, P(S) = {z C S : |z| < k}. By X, we denote the set
{z € Pu(S) :a € x}.



Set-theoretic methods in infinite abelian group theory - Fernando Barrera 27

Let S be a non-empty set and let x be a regular d-strongly compact. Then, since & is
regular, the family of sets {X, : a € S} generates a k-complete filter F on P,(S) by
closing upwards and under intersection of k-many elements. Indeed, by closing under
intersection of k-many elements, we first get from the collection of sets {X, : a € S} a
family of sets of the form X4 = {z € P.(S) : 3A € P.(S)(A C z)}. Then, by closing
upwards we get F = {Y C Pr(S) : JA € P.(5)(Xa CY)}. Clearly, F is k-complete.
Then, since & is d-strongly compact, F can be extended to a J-complete ultrafilter U

on Py (9).

Definition 2.35. A d-complete ultrafilter F on P, (S) containing the sets X, for each
a € S is called a d-complete fine measure on P.(S). The fineness condition is that

X,eFforalla€eS.
Then, by the previous we have the following.

Proposition 2.36. If k is a reqular §-strongly compact cardinal, then for every set

there is a d-complete fine measure on Py (S).

The converse also holds. In fact, the result is still true if we drop the condition of s
being regular. This is a particular case of Theorem 2.42, which provides a nice charac-
terization of d-strongly compact. To go into detail we first need to introduce the useful

notion of ultraproducts and ultrapowers and some important results.

Let F be an ultrafilter over a set I and let {X; : ¢ € I} be a collection of first-order
structures. By [[,c; Xi we denote the set of functions f with domain I such that

f(i) € X; for every i € I. Define the relation
fr~rgifandonlyif {i e I: f(i)=g(i)} € F,

which is easily seen to be an equivalence relation whose equivalence classes are denoted
by [f]F for each f € [[;c;Xi. We construct a first-order structure with universe

[Lic; Xi/F in the language of the structures {X; : i € I'} by interpreting
RlLer X/ Z([fi] 7, ..., [falF) if and only if {i € I : RXi(f1(i),..., fa(i))} € F for

every relation symbol R,

FlLiet X5/ (1] 7, ..., [fa)F) = fr with f£(i) = FXi(f1(i),..., fa(i)) for alli € I

for every function symbol F', and
clier Xi/7 — [f]7 where f(i) = ¢¥i for all i € I, for every constant symbol c.

Definition 2.37. Let F be a filter on I and let {X; : i € I'} be a collection of classes.
The reduced product of {X; : i € I} by F is the quotient [[;.; X;/ ~, which we denote
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by [lic; Xi/F. If F is an ultratilfer, the reduced product of {X; : i € i} is instead
called the wiltraproduct of {X; : i € i} by F. If X; = X for every i € I, we denote
[Lic; X by X I and the ultraproduct, which i this case we call ultrapower of X by F,
by Ultz(X).

Next theorem shows how important ultraproducts are.

Theorem 2.38 (Los, 1955). Let F be an ultrafilter on a set I and let {X; :i € I} be a

collection of first-order structures in the language L. Let ¢(x1,...,xy) be a L-formula

and let f1,..., fn € [[;c; Xi. Then,

() [ X/ FE([flr - [fal ) if and only if {i € T : Xi E o(f1(),.. ., fa(i))} € F.
el

Proof. We go by induction on the complexity of ¢. We first start with the atomic

formulas:

1 = X9:
[Lic: Xi/F E [f]7 = [9]F if and only if f ~ g if and only if {i € I : f(i) = g(i)} €
Fifandonlyif {i e I: X; F f(i) =g(i)} € F.

For a predicate R(x1,...,Ty):

[Ler Xi/F E R(filF, -, [falF) if and only if RLierX/F([f1]7, ..., [falF) if
and only if {i € I : R%i(f1(i),..., fu(i))} € F if and only if {i € I : X; F
R(f1(0), ... fuli))} € F

Now assume that () holds for ¢ and . Recall that since F is an ultrafilter on I,
X € Fif and only if I\ X ¢ F. Since the logical connectives V,— and <> can be

written in terms of = and A, it is enough proving only those cases.

~¢: [Lies Xi/ F & =p(lAilF, .-, [falF) ifand only if [T, Xi/ F ¥ o([AlF, - ., [fal )
if and only if, by Induction Hypothesis, {i € I : X; # o(f1(7),..., fo(i))} € F.

N Tlic; Xi/ F E oAt ifand only if [[..; Xi/F F ¢ and [[,.; Xi/F F ¢ if and
only if, by Induction Hypothesis, {i € [ : X; Fp} € Fand {iel: X;F¢y} e F
ifandonlyif {iel: X;FpAyY} e F.

For the existencial quantifier it is enough proving that if (%) holds for p(y,z1,...,zy),
it also holds for Jyp. Assume that [[,.; Xi/F F Jye(y, [filF, .., [fa]F). Then, there
exists some g € [[;c; Xi such that [[,c; Xi/F E w(gr, [filF, ..., [falF),so{icl: X;F
©(g(i), f1(@), ..., fn(i))} € F, hence {i € I : yp(y, f1(7),... fn(i))} € F. Conversely,
if {i € I : Jye(y, f1(@),... fu(i)} € F, for each i € I let x; € X; be such that
Xi E p(xg, fi(i),..., fu(i)) if such z; exists and arbitrary otherwise. Let the function
g € [l;e;r Xi be given by g(i) = x;. Then, {i € I : X; F ©(g(i), f1(i),..., fuli))} € F,
hence [[;c x Xi/F B yo(y, [filF, .., [falF). u
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As a consequence, the ultrapower of a model M is elementarily equivalent to M, mean-
ing this that they satisfy the same sentences. Indeed, by Lo§’ Theorem, if ¢ is a sentence
in the language of M, and F is an ultrafilter on I, since M; = M for every ¢ € I, then
{i€l:ME o} is either empty or I, so Ultz(M) F o if and only if M F o.

Definition 2.39. Let M be an L-structure and let F be an ultrafilter on I. The
canonical embedding jr : M — Ultz(M) is the mapping given by j(x) = [f]r where
f I — M is the constant function f(i) = x for all ¢ € I.

Given two L-structures M and N, an elementary embedding is just a mapping f : M —
N such that for every formula ¢(Z), where Z denotes an arbitrary tuple of coordinates,
and every a € M1%, M F ¢(a) if and only if N F ¢(f(a)), where f(@) = (f(ai))icfal-
that is, an elementary embedding is an embedding preserving all formulas. It follows
from Lo$’ Theorem that the canonical embedding j : M — Ultx(M) is an elementary
embedding. Indeed, if z € M, Ultr(M) E ¢(j(x)) if and only if Ultz(M) E ¢([f]F)
(with f the constant function described above) if and only if M F ¢(z).

Defining the ultrapower of the universe V of all sets by an ultrafilter F on a set [
might be a bit more cumbersome. Note that if f € V!, the equivalence class [f]r =
{geVI:{icI:g(i)= f(i)} € F}}is a proper class. To overcome this problem,
we let [f]% = {g € [f]» : Vh(h € [f]r — rk(g) < rk(h)))}, that is, the members of
minimal rank of [f]#. Since [f]% is a set for every f € V!, we can take the domain of
the ultrapower to be the set VI/F = {[f]%: f : S — V} and define the membership
relation €7 by [f]% €7 [g]% if and only if {i € I : f(i) = g(i)} € F.

Definition 2.40. If F is an ultrafilter on a set I, the ultrapower of V' by F is the model
(VI/F,eF).

Lo§” Theorem still applies to this context, so (V!/F,€r) is elementarily equivalent
to V. Moreover, under some extra assumptions on the corresponding ultrafilter, the
ultrapower of V' by an ultrafilter F is isomorphic to an inner model of ZFC'. Indeed,
next result shows that the assumption of F being wi-complete is equivalent to the

relation € r being well-founded.
Proposition 2.41. F is wi-complete if and only if € r is well-founded.

Proof. For the left to right direction, assume there is a countable (hence infinite) de-
creasing € z-sequence {[f,]% : n € w}. Then, [fr41]% €F [fn]% for every n € w, hence
{i €l: fuy1(i) € fn} € F for every n € w. Since F is an wi-complete ultrafilter on I,
Mhewli € 11 fag1(i) € fuli)} € F, so it is non-empty. This leads to a infinite descend-

ing €-sequence, which is not possible. Conversely, assume that F is not wi-complete
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and let {X,, : n € w} C F such that |, X, ¢ F. For each k € w we define the func-
X))\ Xy, and n >k or gi(i) =0

otherwise. It is easy to see that {7 € I : gx+1(i) € gx(9)} 2 Ny Xm — Npew X1 € F

new
tion g, : S — V given by g.(i) =n—kifi € (<,
for k € w, hence {[gn]gr :n € w} is a infinite descending € r-sequence, contradicting our

assumption. [ ]

By the previous and the Mostowski Collapse, Theorem 1.23, if F is wi-complete, the
ultrapower (V!/F,€7) of V by F is isomorphic to a unique transitive model (M, €).
Therefore, for every [f]%, (g% € (VI/F, €x), [f]° €7 [g)° if and only if 7 ([f]) € 7([g]),
where 7 stands for the collapsing map. We will denote each [f]° simply by [f]. Similarly,
to simplify notation we will denote m([f]) by [f] and Ult (V') will denote the ultrapower
of V by F. By an abuse of notation we will sometimes denote Ultz(V') to the transitive
class M to which it is isomorphic whenever F is wi-complete. Since the canonical
embedding is an elementary embedding, so is the mapping j = jrom : V — Ult (V) =
M, with M a transitive class. Therefore, if « is an ordinal, so is j(«) and if o < f3,
then j(a) < j(B). Consequently, @ < j(«) for every ordinal . Moreover, again
by elementarity, j(a + 1) = j(a) + 1. It is also clear that j(n) = n for every natural
number. It is an easy consequence of F being w;-complete that j(w) = w, for if [f] < w,
that is, if f(z) < w for almost all z € S, then there would be some n € w such that
f(x) = n for almost all z € S. Using a similar argument, one can prove that if F
is k-complete, then j(§) = 0 for every § < k. The following theorem, the last of this
section, characterizes d-strongly compact cardinals in terms of §-complete fine measures
and elementary embeddings. Recall that the critical point of an elementary embedding

is the first ordinal which does not map to itself.

Theorem 2.42 (Bagaria-Magidor, 2013). The following are equivalent for any un-

countable cardinals 6 < k:

(1) K is d-strongly compact.

(2) For every « greater than or equal to k there exists a definable elementary embed-
ding j : V — M, with M transitive, and a critical point greater than or equal to
0, such that j is definable in V', and there exists D € M such that j"a C D and
M E?|D| < j(k)”, where j"a ={j(8) : B € a}.

(3) For every set I there exists a §-complete fine measure on Py(I).

Proof. (1)=-(2): Let s be d-strongly compact and let & > k. Suppose that there is a 6-
complete fine measure F on Py (a). Let jr : V — M be the corresponding ultrapower
embedding. By Proposition 2.41, Ult (V') is well-founded, hence isomorphic to a tran-
sitive class M. Let m : Ultz(V) — M be the collapsing map and let j = m o jr. We
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show that j satisfies the conditions in (2). Define D := 7([h]£), where h : Pg(a) — V'
is given by h(a) = a for all a € Py(a). Since X, = {z € Py(a) : a € z} € F,
j"a = {j(B) : B € a} € D. Indeed, if x € j”a, then x = j(B) for some 8 € «.
Since j(8) = w(jr(B)), j(B) € w([h]F) if and only if jz(8) €x h. This in turn hap-
pens if and only if {x € Pg(a) : jr(zx) € h(x)} = {z € Pu(a) : p € z} € F. But
{z € Pu(a) : B € z} = Xp, so j(B) € n([h]F), hence j”a C D. Also, note that for
every z € Py(a), |h(x)| = |z| < K, so, by Lo§" Theorem, Ultr(V) E |[h]#| < jr(k),
hence M E |D| < j(k).

The existence of d-complete fine measure on P, (a) for every o > k under the assump-
tion that x is regular has been proved already, so we show that it always exists such a
fine measure for k singular. Note that if kK < 8 < « and F is a -complete fine measure
on Py(a), then {X CPy(B): {Y € P.: Y NG € X} € F}is ad-complete fine measure
on Py (B), so fix & > k and assume, with no loss of generality, that « is regular. The suc-
cessor kT is regular and it is clearly J-strongly compact as well, so there is a J-complete
fine measure F* on P,.+(«). Let j. = n*0jr-, where jr+ : V. — Ultz« (V) is the corre-
sponding ultrapower embedding and 7* : Ultz« (V') — N the corresponding collapsing
map. The critical point of j, is greater than or equal to . Define D* := 7*([h*]x+)
with h* : Po+(a) — V is given by h*(a) = a for all a € P.+(a). Again, one can
show that D* € N, j’a C D*, and N £ |D| < j(k"). Since j(k") = j(x)* by elemen-
tarity, N F |D| < j(k)*. Now, if 8 = sup(j”a), then 8N D* is cofinal in B'. Since
N E|D| < j(k)T. By elementarity, since & is singular, so is j(k). Then, cf(8) < j().
Let C be a club of 8 such that ot(C) = c¢f(8). Note that j7a contains all limit points
of B of cofinality w. Since c¢f(3) is uncountable, C'N j”« is unbounded in 8. Therefore,
the set I = {y € a : j(v) € C} is unbounded in «, so it has cardinality o. Now let
U={X CP.):j(I)NC € j(X)}, which is a d-complete fine measure on P, (I).

Since |I| = «, U induces a d-complete fine measure on P, («), and we are done.

(2)=(3): Let us assume, with no loss of generality, that I is an ordinal « greater than
or equal to k. Let j : V. — M and D be as defined before and let F = {X C P (a) :
D € j(X)}, which is a d-complete fine measure on P, («). Since M E |D| < j(k), F is
well-defined.

(3)=(1): Let F be a k-complete filter over a set I. Again, we assume with no loss
of generality that F is a x-complete filter over @ = |I|. By assumption, there exists
a d-complete fine measure U on P, (F). Let j : V — Ulty (V') be the corresponding
ultrapower embedding and let 7w : Ulty (V) — M be the collapsing map, with M a

' A subset A of an ordinal « is said to be cofinal in « if sup(A4) = c.



32 Chapter 2. Large cardinals and infinite abelian groups

transitive model. Define D as before. Again, jF C D and M E |D| < j(k). By
elementarity, F is j(x)-complete in M, so ((j(F)ND) #0. Let V={X Ca:a €
Jj(X)}, where a is a fixed element in ((j(F) N D). The set V is a J-complete non-
principal ultrafilter on « and it contains F, because if X € F, then j(X) € D N j(F),
so a € j(F). [ |

2.4 The Dugas-Gobel cardinal

Let A be the category of abelian groups. A functor T : A — A is said to be a radical
if for every G € A, then T(G/T(G)) = 0, where 0 is the trivial group.

Definition 2.43. Let X € A. The radical singly generated by X, denoted by Rx, is
the functor Rx : A — A given by Rx(G) = ({Ker(f): f € Hom(G,X)}.

Since the intersection of subgroups is a subgroup, Rx(G) is a subgroup of G for every
X,G. Note also that Ry is indeed a radical as Rx(G/Rx(G)) = 0 for all X,G.
To see this it is enough to show that if « € Rx(G/Rx(G)), then a = 0. So let
a € Rx(G/Rx(G)). Then, there is some g € G such that a = g+ Rx(G) and f(a) =0
for all f € Hom(G/Rx(G),X). Let h € Hom(G, X). Note that if 7 : G — G/Rx(G)
is the canonical projection, then there exists a unique f € Hom(G/Rx(G),X) such
that h(g) = f(m(g)). By assumption f(m(g)) = f(a) = 0. Since h was arbitrary,
g € Rx(G), hence a = 0.

Definition 2.44. A group X is said to be torsionless if and only if the canonical
homomorphism X — X** given by z — (y — y(z)), with y € Hom(X*,7Z) is

injective.

We will denote the canonical homomorphism above by ox. The following result shows
that the radical singly generated by Z is a useful tool to determine whether a given

group G is torsionless.

Proposition 2.45. G is torsionless if and only if Rz(G) = 0. Then, for any group G,
G/Ryz(Q) is torsionless.

Proof. If G is torsionless, the mapping o¢ is injective. Let z € G, then og(x) :
Hom(G,Z)) — Z such that f — f(x) for every f € Hom(G,Z). Since o¢ is injective,
og(x) = 0 if and only if z = 0. But then, (\{Ker(f) : f € Hom(G,Z)} = {0}, so
Rz = 0. Conversely, if Rz(G) = 0 and z,y € G are such that og(z) = o¢(y), then
for every f € Hom(G,Z), f(x) = f(y) so f(xr —y) =0 and = — y = 0 by assumption,
so x = y, hence o¢ is injective. The rest follows immediately by the fact that Rx is a

radical functor for every X. [ ]
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Proposition 2.46. Hom(A, X) = {0} if and only if Rx(A) = A. In particular,
Rz (ZF]Z<") = ZF 7= for all k smaller than the first measurable.

Proof. Assume that Hom(A, X) = {0}. Since Rx(A) C A for every A, let a € A. Note
that Rx(A) = ({Ker(f) : f € Hom(A, X)}. Therefore, by assumption, since the only
homomorpshim from A into X is the zero-function, a € Rx(A). On the other way
around, if Rx(A) = A then f(a) = 0 for every f € Hom(A, X) and every a € A, hence
f = 0. The rest follows by 2.23. [ |

A group X is said to be strongly cotorsion-free if and only if Rx (2" /Z<") = 7" | Z<" for
all uncountable regular cardinal k up to the first measurable. Proposition 2.46 tells us
that Z is strongly cotorsion-free. One then naturally wonders whether Ry (Z"/Z<") =
ZF 7<% for k greater than or equal to the first measurable. The following answers this

in the negative.

Proposition 2.47. If k is greater than or equal to the first measurable cardinal X\, then

Ry(ZF /<> = 0.

Proof. Let [a] € ZF/Z<* different to [0]. Then, there is some X C r of cardinality
A such that a, # 0 for all « € X. Since X is of cardinality A, the first measurable,
there is an wj-complete non-principal ultrafilter on X. Let F be this filter. Define the
homomorphism f : Z*/Z<* as in the proof of Eda’s Theorem, that is, f([>_, . Ta€a]) =
n if and only if {a : 1o = n} € F. Clearly, [a] ¢ Ker(f). |

Definition 2.48. Let s be a cardinal and X € A, then
RY(A)=> {Rx(B): BC A,|B| < x}.

That is, R (A) is the group generated by the set of generators consisting of all elements
in Rx(B) with B C A and |B| < k. It is easy to see that Rx(B) C Rx(A) whenever
B C A. Consequently, for every A we have R (A) C Rx(A). Also, if A is of cardinality
less than k, it is clear that R% (A) = Rx(A). This motivates the following definition.

Definition 2.49. Let X be a group. The Dugas-Gébel cardinal for X is the least
cardinal x such that Rx = R%. We say that Rx satisfies the cardinal condition

whenever there exists such a cardinal.

It may happen that for some group X the Dugas-Gobel cardinal doesn’t exist. Indeed,
in ZFC the singly generated radical of non-zero strongly cotorsion-free groups does not

satisfy the cardinal condition. More precisely:

Theorem 2.50. If there are no measurable cardinals then Rx does not satisfy the

cardinal condition for every mon-zero strongly cotorsion-free X .
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Before proving Theorem 2.50, let us see the following important lemma. Recall that in
the previous section we have defined the reduced product of a family of structures of the
same language. Of course, this applies to the situation in which the family of structures
consists of (abelian) groups, so let I be an infinite set and {X; : i € I} be a family of
I-many (abelian) groups. Recall that if = € [[,c; X;, then supp(z) = {i € I : x; # 0}.
Let F be a filter on I. Then, Xr = {2 € [[;c; Xi : I \ supp(x) € F} is a subgroup
of [[;e; Xi. To see this, note that € X if and only if {i € I : x; = 0} € F. Then,
if z,y € Xr, since [ \supp(z +y)={i €l :z;+y;=0}2D{iel:z;=0ANy =
0}={iel:z;=0tn{iel:y, =0} =)\ supp(x))N(I\ supp(y)), it follows that
I\ supp(z+y) € F,s0x+y € Xr. Similarly, z € Xz if and only if —z € F. Then, the
reduced product of {X; : i € I} with respect to F is the quotient group [[,.; Xi/XF.
We denote it by [[;c; Xi/F .

Lemma 2.51 (Wald-Lo$ Lemma). Let I be an infinite set, {X; : i € I} a family of
I-many non-trivial groups and F a A-complete filter over I for some infinite cardinal

A. Then, every subgroup Y of [[;c; Xi/F with |Y| < X is embeddable into [[;.; X;.

Proof. Let Y be a subgroup of [ [, ; X;/F of size less than A and let  be a representative
of each y € Y. For every two a,b € Y, we let the sets Yo, = {i € [ : @; +b; = ml}
Note that Y, € F for all a,b € Y. Now, since F is A-complete and |Y| < A, then
Z =Nupey Yap € F. Then, the function f : Y — [[,.; X; given by f(a); =@, ifi € Z,

f(a); = 0 otherwise, is well defined and it is easy to see that f is an embedding. [ |

The Wald-Lo$ Lemma holds in a more general context. Namely, it also holds for fami-
lies {M; : i € I} of R-modules, generalizing the particular case we have taken. Recall

that abelian groups are Z-modules. The proof goes the same way, although Z must be

defined as [, pey Yoo N Naeyrerli € L1 1a; = ari}.

Recall that if X; = X for all i € I we denote [[;c; X; by XT. Note that Z<F = {x €
ZF : |supp(x)| < Kk} can be seen as Z% = {x € Z" : k \ supp(z) € F} where F is the
filter consisting of the subsets A C Z* whose complement has cardinality less than k.
In this case, we will keep the notation Z"/Z<" for the reduced product, as we have
done in section 2.2. Note as well that if  is regular, since F is non-principal, F is also

k-complete.

Proof of Theorem 2.50. Suppose the contrary and let A such that Rﬁ‘( = Rx for a non-
zero strongly cotorsion-free group X. Let x > A be a regular cardinal. By assumption
on X, Hom(Z")Z,X) = {0}, that is, Rx(Z"/Z) = Z" ] Z. Note that Z" is torsionless.

To see this, assume that oz« (z) = oz~ (y) and consider the projections from each factor
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to Z. By Proposition 2.45, Rz(Z") = 0. Every B C Z*/Z with |B| < X is embeddable
into Z" by the Wald-Lo$ Lemma. Therefore, Rz(B) = 0 and R)(Z"/Z<") = 0. But
Ryz(Z"]Z.<%) # 0 as seen in Proposition 2.46; contradiction. [ |

Corollary 2.52. If it exist, the Dugas-Gdbel cardinal of a strongly cotorsion-free group

X is greater than or equal to the first measurable cardinal.

In particular, since Z is strongly cotorsion-free, Rz doesn’t satisfy the cardinal condition
in absence of some large cardinal assumptions. Therefore one can wonder whether
being x measurable, it holds that Rz = R7,. Note that for every group X, if K < A
and R% = Rx, then Rﬁ‘( = Ry as well, so the question is equivalent to asking whether
Rz = R, holds when & is the first measurable. The following result will clarify the

situation.

Theorem 2.53 (Dugas, 1985). If k is a strongly compact cardinal and X is an abelian

group of cardinality smaller than k, then Rx = R .

We see however a different version of this theorem which uses weaker large cardinal
assumptions. It is due to Eda and Abe (see [EA87]) although the proof we provide is
due to Bagaria and Magidor (see [BM13]).

Theorem 2.54 (Dugas-Eda-Abe, 1987). If k is d-strongly compact an X is an abelian
group of cardinality smaller than 6, then Rx = R%. Hence, if k is almost strongly

compact, then Rx = R for every X of cardinality less than k.

Proof. (Bagaria-Magidor, 2013) Let x be a d-strongly compact cardinal and let X
be an abelian group of cardinality smaller than 0. By taking an isomorphic copy of
X if necessary, we may assume that X € Hs. Let A be an arbitrary group. Since
R%(A) € Rx(A), we just have to prove that if a ¢ R%(A), then a ¢ Rx(A), so let
a € A and assume that a ¢ R%(A). For each B € P, (A) with a € (B), the smallest
group containing B, fix a homomorphism fp : (B) — X such that fp(a) # 0. If
a ¢ B, set fp(a) = 0. Since k is a d-strongly compact cardinal, there is a J-complete fine
measure on Py (A). Let F be such d-complete fine measure and let j : V. — Ult (V') be
the corresponding ultrapower embedding (see Definition 2.36). Since F is d-complete,
Ultz(V) is well-founded and if 7 is its Mostowski collapse, m o j = id‘f/l‘s, that is,
the identity of V on Hs, so j(X) = X. In Ultz(V), the domain of the function
[f] == [{fB + B € Px(A))] is the subgroup [[[pecp, (4)(B)] of j(A) and takes values
in j(X). Now, since F is fine, then {B € P.(A) : b € B} € F for every b € A.
Equivalently, {B € P.(A) : b € (B)} € F for every b € A. Since j(b) = [g] where
g : Px(V) — V is the constant function with value b, that is, a vector of length P (V)
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with all its coordinates equal to b, then for each b € A, j(b) € [[[gep,(4)(B)]- In
particular, j(a) € [[Igep, (a)(B)]- Moreover, [f](j(a)) # 0 because fp(a) # 0 for any
B € Py(A) with a € (B). Let w [ j(X) : j(X) — X be the isomorphism between
J(X) and X, it follows that w [ j(X)o[fl]oj | A: A — X doesn’t take a to 0, so
a ¢ Rx(A). The rest follows immediately. [ |

Corollary 2.55. If k is wi-strongly compact and X is the first measurable, then Rx =

R% for every X with size less than .

Proof. By Proposition 2.33, if k is wy-strongly compact and A is least measurable A

then k is A-strongly compact. Then, the previous applies. ]
There is another important consequence of the previous theorem.
Proposition 2.56. k is wi-strongly compact if and only if Rz, = R7;.

Proof. The left to right direction is immediate, for Z is of countable cardinality. For
the right to left direction let S be an arbitrary set and let F be a x-complete filter
on S. By the Wald-Lo§ Lemma, every subgroup B of Z°/F of cardinality less than
% is embeddable into Z°. By Proposition 2.45 Rz(Z%) = 0, so Rz(B) = 0 for every
subgroup B with |B| < k. Therefore, since Rz = Rf, it follows that Rz(Z°) = 0.
Arguing as in the left to right direction of the proof of Eda’s Theorem, but taking a non-
zero homomorphism f from Z°/F into Z, we get a wj-complete ultrafilter extending

F, showing that k is w;-strongly compact. ]

Then, the question asked before, whether Rz = R7, holds with  the least measurable, is
equivalent to the question whether the first wi-strongly cardinal is the first measurable.
By building a model of ZFC in which the first w;-strongly compact cardinal is singular,
they showed that it is consistent that the first wi-strongly compact cardinal is in between
the the first measurable cardinal and the first strongly compact cardinal. However, the
methods used are highly technical and go far beyond the scope of this work. May the

reader be interested, see [BM13], section 6.



Chapter 3

The Whitehead’s problem

In 1938, Kurt Godel proved that in the constructible universe L the Continuum Hy-
pothesis and the Axiom of Choice hold. Since L is a model of ZF', both CH and AC are
therefore consistent with ZF. Two decades later, Paul J. Cohen developed the method
of forcing with which he constructed a model of ZF where ~C'H and —AC' hold, show-
ing this way that AC' and CH are undecidable in ZF. In this chapter we shall see
another example of undecidability in the context of infinite abelian groups. Namely,
we shall study Shelah’s proof on the undecidability of the Whitehead’s problem. To do
this we will proceed in a similar manner as Goédel and Cohen did. On the one hand, we
will show that the Whitehead’s problem has a positive solution in ZFC' +V = L. On
the other, we will show that its solution is negative in ZFC + M A, where M A stands

for Martin’s Axiom.

3.1 W-groups and Stein’s Theorem

In this section we introduce Whitehead’s problem and see its solution for the countable

case. We also study some features of the Whitehead groups.

Definition 3.1. A group A is said to be a Whitehead-group, W-group for short, if

every homomorphism 7 onto A with Ker(m) = Z splits.

By Theorem 1.33, every homomorphism onto a free group splits. Consequently, every
free group is a W-group. The Whitehead’s Problem asks whether the converse is true.
The countable case was answered in the positive by Stein in 1951. We shall study his
proof, for it will provide a useful guide to find a positive answer for the uncountable
case under the assumption of the Axiom of Constructibility. Some preliminary results
will be needed. Recall that in Definition 1.41 we introduced the Ezt of a free resolution

0 Fy 2% 7 % A = 0, defined by
Ext(A,C) = Hom(Fy, C)/Im(f})

37
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where f} : Hom(Fy,C) — Hom(Fy, C) is the homomorphism induced by fy. Next the-

orem shows that W-groups can be characterized in terms of the vanishing of Ext(-,Z).
Theorem 3.2. A group A is a W-group if and only if Ext(A,Z) = 0.

Proof. Let A be a W-group and let 0 — Fy Jo, P ELN RN 0 be a free resolution.
Let ¢ be an arbitrary function in Hom(Fy,7Z). Let B = (Z @® Fy)/I where I =
{(¢(y), —fo(y)) : y € Fy}. This way we get the following commutative diagram

fo

0 y I Ny LRy 0
b e
0 7z " B2 A 0

where 7w and my are the natural projections on the corresponding coordinates and
g1((x,y) + I) = fi(y) for every (z,y) € B. Note that the bottom line is an exact
sequence. Indeed, to see that m; is injective let © € Ker(m1). Then (z,0) € I so there
exists some y € Fy such that ¢(y) = = and fy(y) = 0. Since fy is injective, y = 0,
hence x = 0. Also, to see that gy is surjective, let x € A. Since fi is surjective, there
is some y € F) such that fi(y) = z. But then g;(m2(y)) = x. To finish, let us see
that Ker(g1) = Im(m). Let (x,y) +1 € Im(m;). Then, there is some a € Z such
that m1(a) = (a,0) + I = (x,y) + I. Then, ¢1((z,y) +I) = g1((a,0) + I) = f1(0) =0,
so (z,y) + I C Ker(g1), which shows that I'm(m;) C Ker(g1). Now let (z,y) +1 €
Ker(g1). Then, fi(y) = g1((z,y) + 1) = 0, hence y € Ker(f1) = Im(fp), so there is
an a € Fj such that fo(a) = y (note that a is unique because fy is injective). Then
(,y) + I = (=, fo(a)) + 1 = (z + ¢(a)) + I. Then my(z + p(a)) = (z,y) + I, so
(z,y) + I € Im(m). It is easy to see that Ker(g;) = Z. Then, since the bottom line
is exact and A is a W-group, there exists a homomorphism p : A — B such that
pogr = 1idy. By Proposition 1.38, there is a homomorphism 7 : B — Z such that
m o7 = idg. If we let ¢ = 7 o mg, then fi(v) = ¢, so Im(f) = Hom(Fy,Z), hence
Ext(A,Z) = 0.

Conversely, suppose Ext(A,Z) = 0 and let the exact sequence 0 — Z B4 Ao0.
Let 0 — Fj f—0> Fi f—1> A — 0 be a free resolution and let m : F1 — B be a surjective
homomorphism such that m o 9 = f; (the homomorphism 7o exists because Fj is a
projective group, see Proposition 1.39). Then there is a homomorphism ¢ : Fy — Z
such that we have a commutative diagram like the one above. By assumption, there
exists some ¢ : F; — Z such that f{j(¢)) = ¥o fy = . Note that if Ker(me) C Ker(¢).
Indeed, if z € Ker(ma), fi(z) = gi(m2(x)) = 0, so x € Ker(fi1) = Im(fy) and there
exists some y € Fy such that fo(y) = . Then, ¥(z) = ¢¥(fo(y)) = ¢(y) = 0. Note that
1 induces a mapping 7 : B — Z such that 7 o m; = idz. So the bottom line splits,

hence A is a W-group. |
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Corollary 3.3.

(1) A subgroup of a W-group is a W-group.
(2) Every W-group is torsion-free.

(3) If By is a subgroup of By such that By is a W-group but By/By is not, then there
exists a homomorphism v : By — Z. which does not extend to a homomorphism

VB — Z.

Proof. For (1) assume A is a W-group and let B be an arbitrary subgroup of A. Then,
the sequence 0 — B LAl A/B — 0, with ¢ the inclusion and 7 the projection, is
exact. Then, by Theorem 1.42, there is an exact sequence Ext(A,Z) — Ext(B,Z) — 0.
Since A is a W-group, then Ext(A,Z) = 0. Therefore, Ext(B,Z) = 0, so B is a W-
group. We prove (2) by contraposition. First note that if 7 : Z — Z/nZ is the
canonical projection, although Ker(w) = Z, m does not split, so Z/nZ is not a W-
group for any n > 0. Now let A be a non-torsion-free group. Then, there is a € A such
that (a) is a non-zero finite cyclic group, hence isomorphic to some Z/nZ, so {a) isn’t
a W-group. Since subgroups of W-groups are W-groups and (a) is a subgroup of A,
A is not a W-group. To see (3) let the exact sequence 0 — By 4B 5 B1/By — 0,
with ¢ the inclusion and 7 the projection. By Theorem 1.42 there is an exact sequence
Hom(B1,7) z Hom(By,Z) — Ext(B1/By,7Z) — Ext(B1,7Z). By assumption and
Theorem 3.2, Ext(B1,Z) = 0 and Ext(B1/Bo,Z) # 0, which implies that ¢’ is not
surjective, which means that there is a homomorphism from By into Z which does not

extend to a homomorphism from Bj into Z. ]

The main result of this section is Stein’s proof for the countable case of Whitehead’s

Problem. Let us first introduce some terminology and a few useful results.

Definition 3.4. A subgroup B of a torsion-free group A is called pure subgroup if the
quotient group A/B is torsion-free. If B is a subgroup of A, the pure closure of B in

A is the subgroup B’ = {a € A : na € B for some n # 0}.

Remark. The actual definition of pure subgroup of A does not need A to be torsion-free

but it is enough for our purposes. For more details see [Kap69], p. 14.

It is clear that the pure closure of a subgroup B of A is a pure subgroup. Note that
if A is free, so is B’ by Theorem 1.31. Also, if B is finitely-generated, since B and B’
have the same dimension, so is B’. As a consequence, if A is free, then every finitely-
generated subgroup B of A is contained in a finitely-generated pure subgroup of A. The

following result shows that the converse also holds for countable torsion-free groups.



40 Chapter 3. The Whitehead’s problem

Pontryagin’s condition: A is a countable torsion-free group such that every

finitely-generated subgroup of A is contained in a finitely-generated pure subgroup

of A.

Theorem 3.5 (Pontryagin’s Criterion). If A satisfies the Pontryagin’s condition, then
A is free.

Proof. Let {a, : n < w} be an enumeration of A. By induction, we define a smooth
chain {B,, : n < w} of finitely-generated pure subgroups of A. We start with By = 0.
If B, has been already defined, we let B,y1 be a finitely-generated subgroup of A

containing B, U {a,}. It is clear that J » = A. Moreover, since B,, is pure in A,

n<w B
By,+1/ By, is torsion-free, and it is finitely-generated because B, is finitely-generated.

Therefore, by Theorem 1.36, B,,+1/B,, is free. By Theorem 1.35, A is free. |

Later on in this chapter we will construct a torsion-free group of cardinality 8; which
satisfies a stronger condition without being free, showing that the Pontryagin’s Criterion

is not true if A is not countable.

Definition 3.6. Let C be a set (or a group) of the form B x Z. By m we will denote
the projection of C' onto the first factor. If B is a group, we define a (B, Z)-group to be
a group C whose underlying set is B x Z such that the projection onto the first factor

7w : C — B is a homomorphism and (0,n) + (0, m) = (0,n + m) for all integers n, m.

An easy example of a (B, Z)-group is B Z. It is easy to see that for any (B, Z)-group,
Ker(m) =2 Z. Therefore, if m does not split, then B is not a W-group.

Lemma 3.7 (See [EkI76], Lemma 4.3). Let By be a subgroup of By such that By is a
W -group but B1/By is not. Let Cy be a (Bo, Z)-group and p a splitting homomorphism
for the projection onto the first factor m : Co — By. Then there is a (B, Z)-group C}
which is an extension of Cy such that p does not extend to a splitting homomorphism

fOT’Tr:Cl —)Bl.

Proof. By the previous remark, w : Cyp — By splits, there is a homomorphism p :
By — Cp such that mop = idg,. Then, p(b) = (b,m) for any b € By and a fixed m € Z,
so the mapping 7 : By ® Z — Cj given by 7(b,z) = p(b) + (0,n) is an isomorphism.
We may assume that Cy = By @ Z and p(b) = (b,0) for every b € By. Let C} = B1QZ
and let ¢ : By — 7Z a homomorphism which does not extend to a homomorphism
¢’ : By — Z, which exists by Corollary 3.3 (3). Let the homomorphism v : Co — C]
given by v(b,n) = (b,n +1(b)). Since ¢ cannot be extended to a homomorphism from
Bj into Z, there is no splitting homomorphism p} : By — Cf for = : ¢/ — B; whose

resitriction to By is v o p for otherwise, by letting ¢ be 7o p;1, for any b € By C By,
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©(b) = ¥(b), contradiction. Now, define the mapping f : C] — By x Z taking each
pair (b,n) to itself if b ¢ By and to (b,n — (b)) otherwise. Note that f is a bijection
such that f o~y is the inclussion of By & Z into By X Z. Now we let C7 be the group
whose underlying set is By x Z with the addition u +v = f(f~!(u) + f~1(v)). Then
(7 is an extension of Cy and there is no splitting homomorphism p} : By — C} for

7 : (1 — B extending p : By — (). [ |

The following is the main theorem of this section and it answers positively the White-

head’s Problem in its countable case.
Theorem 3.8 (Stein, 1951). Every countable W -group is free.

Proof. Let A be a countable W-group. By Corollary 3.3, A is torsion-free. Therefore, it
is just enough that A satisfies Pontryagin’s Criterion. We go by contradiction. Assume
that there is a finitely-generated subgroup By of A which is not contained in a finitely-
generated pure subgroup of A. Let B be the pure closure of By in A, whih is not
finitely-generated by the choice of By. Then, B is the union of a strictly-increasing
chain of finitely-generated groups By C B1 € ... C B, C .... Also, note that since B
is the pure closure of By, B/By is a torsion group. Now, by induction on n we built a
chain Cy C Cy € ... C C), € ... of groups such that C), is a torsion-free (B,,, Z)-group
for every n < w. Before we start with the construction, note that if S is the set of
generators of By and C' is torsion-free, any homomorphism p : B — C' is completely
determined by its values on S. Indeed, let b be an arbitrary element in B, then there
is some n # 0 such that nb € By. Since p is determined by its values on the elements
of S and C is torsion-free, the equation nx = p(nb) has a unique solution in C, which
is z = p(b). We list all set-mappings {g,, : n < w} with g, : S — S X Z such that
mo g =1idg. There are countable-many of them as S is finite and Z is countable. Let
Cy = By ®Z and suppose that C), has been already defined. If g, extends to a splitting
homomorphism p for 7, : C,, — B, we let C,,+1 be an extension of C,, such that p dos
not extend to a splitting homomorphism for 7,41 : Cp41 —> Bp41. Since By11/B,, is
torsion, it is not a W-group by Corollary 3.3 (2), hence Lemma 3.7 applies, and such
Cr+1 exists. If the first case does not hold, we just let p be any splitting homomorphism
for m, : C,, — B, and define C, 11 in the same way as before. Since B, is finitely
generated and torsion-free, it is free by Theorem 1.36, so such p exists. This finishes the

construction of the chain, so let C' = C,,. Clearly, C is a torsion-free (B, Z)-group.

n<w
Now assume for the sake of contradiction that 7 : C' — B splits and let p: B — C
be a splitting homomorphism for w. Then, p [ S = g, for some n < w. Then, by
construction, p [ B, is a splitting homomorphism for 7, : C,, — B, which extends

gn and extends, in turn, to a splitting homomorphism for 7,1 : Crh41 —> Bpy1, but
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this contradicts the construction of C,11. Therefore, 7 : C — B does not split. As
noticed before Definition 3.6, Ker(r) = Z. Since B is a subgroup of a W-group, it is a
W-group, by Corollary 3.3 (1). But 7 : C — B does not split, which is a contradiction.
We conclude that A is free. [ |

3.2 Ny-free groups and the Chase’s condition

Stein answers Whitehead’s problem in the positive in its countable case. However,
the same reasoning cannot work for the uncountable case for Stein’s proof lies on
Pontryagin’s Criterion, which just applies to countable (torsion-free) groups. Moreover,
the recursive constructions of B and C' run over w. In this section we generalize some

of the previous notions and results.

Definition 3.9. A group A is said to be N;-free if all of its countable subgroups are

free.

There are examples of Ni-groups which are not free. For instance, Baer and Specker
proved that the direct product of an infinite set of infinite cyclic groups is Ny-group but
not free (see [Fuc70], Theorem 19.2). The following is an easy consequence of Stein’s

theorem.
Proposition 3.10. Fvery W-group is Ni-free.

Proof. Let A be a W-group. By Corollary 3.3 (1), every subgroup of A is a W-group.
In particular, every countable subgroup of A is a W-group. Then, by Stein’s Theorem,

every countable subgroup of A is free. [ |

Proposition 3.11. If A is an Ni-free group, then it is torsion-free and every finite

subset of A is contained in a finitely-generated pure subgroup.

Proof. 1t is clear that A is torsion-free, for otherwise there would exist a finite torsion
group, hence a countable non-free group. Now let S be a finite subset of A and let (5)
be the group generated by S. Let (S). be the pure closure of (S) and assume for the
sake of contradiction that it is not finitely-generated. Then, there exists a countably
generated subgroup N of (S), which is not finitely-generated. Recall that the rank
of an abelian group is the cardinality of a maximal linearly independent subset. We
prove that the rank of IV is finite. This, together with the fact that it is countably
generated, would imply that N is not free, contradicting that A is Ni-free. So let T" be
a linearly independent set in N, since N is a subgroup of (S),, for every t € T there

exists some n € IN such that nt € (S), so every t € T' can be written as the linear
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combination of elements in S. Therefore, every linearly independent subset of N has
cardinality less than or equal to |S|, thus N has finite rank. We conclude that (S), is
finitely-generated. |

The converse of Proposition 1.34 also holds (see [EM02], 2.3 Theorem, p. 98). We notice
that Ni-free groups may be seen as a generalization of torsion-free groups. Indeed, by
Theorem 1.36, every finitely-generated subgroup of a torsion-free group is free. In
this case, being an Ni-free group implies that not only finitely-generated but countable

subgroups are free. The following is a generalization of pure subgroups.

Definition 3.12. A subgroup of an Ri-free group A is called Ny -pure subgroup if A/B

is Ny-free.

As said above, Pontryagin’s condition just applies to countable torsion-free groups. We

generalize it to this more general context.

Chase’s condition: A is an Nj-free group such that every countable subgroup

of A is contained in a countable N;-pure subgroup of A.

Chase’s condition can be expressed in terms of ascending chains, as next lemma shows.

Lemma 3.13. If A is a group of cardinality N1, A satisfies the Chase’s condition if
and only if A is the union of a smooth chain of countable free groups {Ay : @ < wi}

such that Ag = 0 and for each o < w1, Agy1 is Ni-pure in A.

Proof. The right to left direction is easy, for if A is the union of a smooth chain of
countable free subgroups as in the statement, then for any countable subgroup B of A
there is some o < wy such that B C A,41. For the other direction, assume that A is a
group of cardinality N; which satisfies the Chase’s condition. We list all the elements
of A in a sequence of length w; so that A = {a, : @ < wi1}. We define each A, by
induction. Let Ag = 0. Suppose that Ag has been already defined for all 8 < o we
consider two cases. If « is a limit, we just let A, = J 50 Ap, which is still countable for
it is the union of countable-many countable sets. If « = 5+ 1 let A, be a countable

N;-pure subgroup of A containing AgU{ag}, which exists by the assumption on A. W

Note that for every group it is always possible to build a smooth chain of groups
without further requirements about the properties they should exhibit. If A is a group
of cardinality Ny, we will denote by E4 the set of all ordinals o < wy such that A, is
not Nj-pure in A, where {A, : @ < w1} is the smooth chain of countable free groups of
the previous lemma. Next theorem shows that free groups can be characterized by the

stationarity of this set. To prove it we first need the following new concepts.
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Definition 3.14. A subset C' of an infinite limit ordinal « is said to be unbounded if
for every 8 < a there is some v € C' such that § < . We say that it is closed if and
only if for every limit ordinal 8 < «, if C' N B is unbounded in 8, then g € C. If C' is
a closed and unbounded subset of an ordinal «, we say that C' is a club. A subset S of

an ordinal « is said to be stationary if it intersects all club subsets of .

A function f : w; — wy is said to be normal if it is an strictly increasing function such
that for any limit ordinal « in the domain, f(«) = sup{f(5) : 8 < a}. Note that, since
the image of every normal function is a club, every stationary subset S of w; intersects
it.

Theorem 3.15 (Chase’s Criterion). A group A of cardinality Xy is free if and only if

E 4 is not a stationary subset of w.

Proof. Assume first that F4 is not a stationary subset of wy. Then there is a club
subset C of wy such that E4 NC = (). For every club subset C of wy there is a normal
function f : w; — wy such that Im(f) = C. Let f be a normal function on w; such
that Ea N Im(f) = 0 and let A}, = Ap). Since Im(f) is unbounded and for any
limit ordinal « in the domain, f(a) = sup{f(5) : 8 < a}s, {A% : a < wi} is a smooth
chain such that |J,cop A% By the choice of f, Im(f) N E = 0, so A}, is Ry-pure for
every o < wi, thus A} /A7 is free for every a < wi. By Theorem 1.35, A is free.
Conversely, suppose that A is a free group and let S be a basis of A. We define a
smooth chain {S, : @ < wi} of subsets of S and a normal function f : w; — wy
such that for every a < wi, Sy is a basis of Ay,). We let Sp = 0 and f(0) = 0.
Suppose Sg and f(f) have been already defined for every 8 < . If o is a limit, we let
Sa = Upg<a Sp and f(a) = sup{f(B) : B < a}. Since Apn) = Ug, Af(p), it is clear
that S, is a basis of Ay,). If @ = 8+ 1, let S§ be a countable subset of S such that
Sp C Sg (this is possible because S is uncountable) and let o be an ordinal such that
S5 € Agz. Note that f(8) < og. Now, let ST be a countable subset of S such that Ag»
is contained in the group generated by S7. We repeat this argument inductively and
we get a chain of countable subsets Xo C S5 C ST C ... C S;, C ... and a sequence of
ordinals f(8) < oy < ... < o, < ... such that for every n < w, S;; € Ay C (S5, 1)
Then, let Sy = U, S;, and f(a) = sup{o;, : n < w}, so that S, is a basis of Ag().
Then, the sequence built is the smooth chain {S, : @ < wi} of subsets of S and the
normal function f :w; — wy such that for every av < wy, S, is a basis of Ay(,). Note
that F4 is not stationary in w; because for every a < wy, f(a) ¢ Ea because A/Af ()
is isomorphic to the free group generated by X \ X, so A,y is Ny-pure in A. This
finishes the proof. ]

Chase’s Criterion will be used in next section.
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3.3 The undecidability of the Whitehead’s problem

Our aim is to prove that the Whitehead’s problem is undecidable in ZFC'. To do this
we will show that every W-group of size N; is free in the constructible universe L, which
we also study here. Then, we will show that a negative answer for W-groups of size N;
is also consistent with ZF'C'. Indeed, under the assumption of Martin’s Axiom there is

always a W-group of size N; which is not free.

3.3.1 The Axiom of Constructibility

In Definition 1.24 we have seen how V is built by transfinite recursion on the ordinals.
Recall that we start with ¥ = () and for limit ordinals we just let V,, be the union of
all Vg with 8 < . In the successor case, V41 is taken to be the power set of V,,. This
move is rather problematic, in a sense. Indeed, note that |V,,| = Xy. However, by the
well-known Cantor’s Theorem, |V,,41| = [P(V,)| > |V.|, that is, V,,4+1 has uncountable-
many sets. Since there are countable-many formulas of the language of set theory, it
follows that there are uncountable-many sets in V11 that cannot be defined, not even
with parameters. To avoid this situation, instead of taking the power set of V, to get
Va1, one can just let V41 be the set of the subsets of V, that are definable, with or
without parameters, in V. This is the idea of the Constructible Universe, which we
introduce here. We show that (L, €) is a model of ZFC with interesting combinatorial
properties such as the {-principle. We refer the intereted reader to [Jech03], 13, pp.
175-200; and [Kunl3] I1.6 pp. 134-144.

Definition 3.16. A set X is definable over a model (M, €) if there exists a first-
order formula ¢ in the language of set theory and some parameters ai,...,a, € M
such that X = {& € M : (M,€) F ¢o(x,a1,...,a,)}. Welet D(M) = {X C M :
X is definable over (M, €)}

It is easy to see that if X is a transitive set, then X C D(X). Indeed, if x € X then
x C X. The set x can be defined in X asxz ={y € X : y € z}, sox € D(X). Moreover,
if X is transitive, then D(X) is also transitive, for if z € D(X) andy € x C X C D(X),
then y € D(X).

Definition 3.17. The Constructible Universe is the union L = |J,cop La, Where:

LO = ®7
LOHrl = D(La)a

Lo =Ugey Lg, if a is a limit.

As next result show (L, : @ € OR) is a cumulative hierarchy.
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Proposition 3.18. For every o, 5 € OR,
(1) Lg is transitive and if « < 3, then Lo C Lg.
(2) a=L,NOR.

Proof. To prove (1) we see by transfinite induction that L, is transitive for every
« € OR. The basic and limit cases being trivial, we just have to focus on the successor
case. But this follows from the fact that if X is transitive, so is D(X). Indeed, if L,
is transitive, so is D(Ly) = La+1, and we are done. By induction on 5 we prove that
for every a < 8, then L, C Lg. Being again the basic and limit cases trivial, assume
that it holds for 8. Since Lg is transitive, Lg C D(Lg) = Lg4+1. We prove (2) by
transfinite induction as well, being again the basic and limit cases clear. Assume that
LoNOR =a. Then, « = {x € Lo : Ly E ¢(x)} € D(Ly) = Lot1, where p(z) says
that x is an ordinal, which is first-order expressible. Then, a + 1 = Ly41 N OR. |

Theorem 3.19 (Godel, 1938). L E ZFC.

Proof. By Proposition 3.18 (2) it easily follows that L satisfies Infinity because, since
w+1=Ly11NOR, w € Lyy1 C L. By Lemma 1.25, since L is a transitive proper
class, it satisfies Extensionality and Foundation. We first prove that Separation holds
in L. To see this, let ¢ be a formula without y free. The formula ¢ may have x, z free,
along with a vector v of n-many free variables, so let ¢ be written as (z, z,v). Fix
z,v € Landlet y={z € z: LF ¢(x,z,v)}. Fix « € OR such that z,v € L,. Then,
by the Reflection Theorem 1.27 we can take an ordinal 8 > « such that for all a € Lg,
Lg E ¢(a,z,v) if and only if L F p(a,z,v). Then, y = {z € Lg : Lg F ¢(z,z,v)} €
Lgi1 C L where ¢(z,2,v) = ¢(x,z,v) ANz € z. Now that we have that Reflection
holds in L, it is easy to see that Union, Pairing, Power Set and Separation hold in L
as well. Indeed, if z,y € Lo, then Uz = {y € Lo : 3z € 2(y € 2)} € Loy1 C L
so Union holds; {z,y} = {2 € Ly : (z =2V z =1y)} € Loy1 C L so Pairing holds;
P(x) ={y € Lo : 32(z Cx ANz =y)} € Log1 C L so Power Set holds. To see
that L satisfies Replacement, let f be a definable function with domain a € L. Then
rg(f) ={be L:LE3x € ap(x,b)}, where p(z,y) is the defining formula for f. Then
rg(f) € L. It remains to check that L satisfies the Axiom of Choice. We actually
prove something stronger. Namely, we show that there is a definable well-ordering in
L, which implies that every set in L has a choice function, that is, that L satisfies the

Axiom of Choice.

Lemma 3.20. There is a definable well-ordering of L.

Proof of the lemma. We go by induction. Assume we have already defined a well-

ordering <g of Lg for all 8 < « in such a way that <gC<g whenever § < f’. Suppose
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that « = 8+ 1. Note that

D(Lg) = | J (| Dk, Lg,n) U{z : Im > 03(by, ..., bym-1) € LE IR € D(Lg, n + m)

n<w k<w
(Z = {(ao, .. .,an,l) € Lg : (ao, ceeyQp—1,bo, ... ,bmfl) S R})}),

where

(i) D(0,Lg,n) = {Diag(Lg,n,1,j) : i,j < n}U{Triang(Lg,n,t,j) : i,j < n}, where,
in turn, Diag(Lg,n,4,j) = {z € Lj : x; = z;}, Triang(Lg,n,i,j = {z € L :
T € xj};

(if) D(k + 1,Lg,n) = D(k,Lg,n) U{LE\ R : R € D(k,Lg,n)} U{RNS : R,S €
D(k,Lg,n)} U{Proj(R,i): R € D(k,Lg,n),i <n+ 1}, where Proj(R,1) stands
for the projection of the set S € Lj; on its i-th coordinate; and

(iii) {z : Im > 03(bo,...,bm-1) € LF IR € D(Lg,n + m)(z = {(ao,-..,an-1) €
Ly (agy ... an—1,b0,...,b;m—1) € R})} is the set of subsets of L7 defined with

parameters in Lg.

Suppose a = 8 + 1. We define a well-ordering in L,. For each n < w we can well-
order J,,, D(k,Lg,n) in a natural way. We order it first with respect to k. For a
given k+1 we order D(k+1, Lg, n) with respect to the operations of complementation,
intersection and projection using the already defined well-orderings of | J, ., D(k, Lg, n)
for all n < w. We denote by <g, this well-ordering of D(Lg,n). We also order
lexicographically, in acordante with <g, all finite sequences of elements of Lg. We
denote this by <f§x . So now we define a well-ordering of L, given by =z <, y if and
only if

(a) z,y € Lg and = <g y, or
(b) x € Lg and y ¢ Lg, or

(c) z,y ¢ Lg with z and y being x = {x¢ : (20, a0,...,am,—1) € Ry} and y = {zf :

(xp, ag, - - - ,a;nyfl) € Ry}, respectively, where (ao, ..., am, 1) and (ag, . .., a, ;)

are the <lﬁer—least possible, and R, and R, are the <g,,, +1-least possible and the

<B,m,+1-least possible, respectively; and

(@) (ag,.-.,am,—1) <l§x (ag; - @y, 1), or

(b") (ao,.--,am,-1) = (ag, .-, ay,, 1) and Ry <gm,+1 Ry.

Now let <; be the union of the well-orderings defined in each L., that is, <;=
Uacor <a- It remains to show that <z, is a well-ordering for L. We first show that it

is linear. Since <41 is a linear ordering of L,41 such that <,C<,41 for all ordinals
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«, linearity is clear. So let us prove that <y is well-ordered. To see this, let a be a
non-empty set in L. Note that if z <z, y, then p”(z), that is, the least ordinal a such
that # € Lay1, called the rank of z in L, is greater than or equal to p”(y). So let Ay be
the subset of A consisting of all elements of A with minimal rank. If Ay contains only
one element, this is the minimal element of A, so we are done. Otherwise, let x be the
<at1-least element of Ay in Lay1, where pP(x) = a. Then z is the <y-least element

of A. [ |

If x € L, then <[ = is a well-ordering of x, so in L every set has a well-ordering.

Therefore, since L is a model of ZF, AC holds in L, hence L is a model of ZFC. 1

The assumption that the universe of all sets is actually L is known as the Aziom
of Constructibility. Our aim in this section is to prove that Whitehead groups of
cardinality Ny are free under the assumption that V = L. The fact that L satisfies the

Jensen’s diamond principle will play a key role in the proof.

{: There exists a sequence (S, : a < wy) such that S, C « for all @ and such that
for every S C wq, the set {a: SNa = S,} is stationary.

We say that a sequence (S, : @ < wj) satisfying the conditions of { is a {>-sequence.
Theorem 3.21 (Jensen, 1972). LFE .

Proof. We build a {-sequence in L. By induction on o < w; we define sequence of
pairs (Sq, Cy) such that S, C a and C,, is a club subset of a. Let Sy = Cy = 0 and
let So41 = Cqq1 for all a. If « is a limit ordinal, we let (S, Cy) be the <p-least pair
such that S, C «, Cy is a club subset of a and So N # S¢ for all £ € O, if such pair
exists. If it does not exist such a pair, we just let S, = C, = . Let us prove that
the sequence (S, : @ < wi) is a {-sequence. Assume the opposite. Then, there exists
X C wy such that {o : X Na = S,} is not stationary, that is, such that there exists
a club C' C wy such that X Na # S, for all & € C. Let (X,C) be the <p-least pair
satisfying that. Note that since (S, : a < w;) is an wy-sequence of pairs of subsets of
w1, it belongs to L, which is a model of ZFC™ 4+ V = L, that is, a model of ZFC
without Power Set and V = L. The well-order <, is absolute for all transitive models
of ZFC~ +V = L for it requires only ZF~, so the sequence (S, : @ < wy) is, in L,
the <p-least pair such that S, C «a, C, is a club subset of o and S, N & # S¢ for all
¢ € C,, if such pair exists and such that S, = C, = «a, if it does not. Analogously,
(X,C) € Ly, is the <p-least pair with X C w; and C a club of w; such that X N # S,
for all @« € C. By Theorem 1.22, let N be a countable elementary submodel of L, .

Then N satisfies the same sentences than Ly, so (S, : a < wi) and (X,C) are in N,
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for they are definable in L,, with no parameters. It is easy to see that w; N N is an
ordinal. To see this, as every subset of ordinals is an ordinal if it is transitive, we just
have to show that w; N IV is transitive. But since the intersection of transitive sets is
transitive, it is enough to prove that N is transitive. So let a € N and let f be the
<r-least mapping from w; onto a. Since f is definable in L,, from N, f € N. Then
f(a) € N for every a € wq, so a C N. Let us then let § = wy N N. The transitive
collapse of N is L, for some v < wy by the Gédel’s Condensation Lemma (see [Jech03],
Lemma 13.17). Let 7 : N — L, be the collapsing map. We can show by induction on
ORN N that 7(d) = w;. Moreover, for every b C w; which is in N, then 7(b) = bN 4.
Therefore, m7(X) = X NJ, 7(C) =CNJand 7((Sy : @ < wy)) = (Sq : @ < §). We then
have that Ls satisfies that (X Nd,C NJ) is the <p-least pair (Z, D) with (Z, D) such
that Z C 9, D is a club of § and ZN¢& # S¢ for all { € D. By absoluteness this holds in
L,so XNd =S85 Since C' NJ is unbounded in 4 and C is closed, § € C, which would
imply that X N 4§ # S5, which is a contradiction. [ |

It is easy to see that ¢ implies the Continuum Hypothesis. Indeed:
Theorem 3.22.  — CH

Proof. Since N < 2N0, we show that there is a one-to-one function from P(w) to wj.
Let S € P(w), that is, S C w € w;. By ¢ there exists a sequence (S, : a < w;) with
Sa C « for every a such that for every S C wy the set {a: a NS = S,} is stationary.
Therefore, {o : a NS = S,} intersects the tail set C, = {f < wy : f > w}, which is
a club in wy. Let a € C,, such that anS = S,. Since a € wy such that ¢ > w and
SCwthen S CasoS=anS =25, Let S C wsuch that an S = S,. Again,
S’ =8, hence S" = S. Therefore the map f which sends every S € P(w) to the least
element a in C,, such that a NS = S, is a one-to-one function from P(w) into w, so

2N0 = \P(w)| < |(,<}1| = Nj. Thus, QNO = Nl. u

More generally, as Godel proved in 1938, the Generalized Continuum Hypothesis holds
in L.

Theorem 3.23 (Godel, 1938). V =L — GCH.

Proof. It is enough to see that 2% < N,,1. So let a € L be an element in P(w,). By
Reflection, let A be an ordinal big enough to satisfy the conjunction 8 of the finitely-
many axioms of ZFC needed to construct L and such that a € Ly. By Lowenheim-
Skolem-Tarski, let N € L be an elementary substructure of L) of countable cardinality
such that a € N. Let M be its Mostowski collapse. Since it is a transitive set satisfying
0, then M = L, with « = M NOR < wqa1- Since if x € y, then © <p y, a € M = L,
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with & < wa1, hence a € Ly, 41. We conclude that 2% = [P(wa)| < |Lu,,,| = Rat1,
hence 2% = R, for every o € OR, and L E GCH. [ |

The Diamond Principle admits a generalization by changing w; for any other regular
cardinal . Also, if F is a stationary subset of a regular cardinal k, then we have the

following more general principle.

O(E): There exists a sequence (S, : o € E) such that S, C « for all a and such that
for every S C k, the set {a € E: SNa =S5,} is a stationary subset of k.

Theorem 3.21’s proof can be generalized to show that the principle {(E) holds in L
for any cardinal x and any stationary set 2 C k. We notice that, as the Continuum
Hypothesis holds in L, w; is a regular cardinal. The {(FE) principle is stronger than
what we actually need for our purposes. The following, a consequence of the fact that

O(FE) holds in L, shall be enough.

Lemma 3.24 (V=L). Let B be the union of a strictly-increasing smooth chain of
countable sets (By @ o < wy) and let Y C wy. Let E be a stationary subset of wi.
Then there is a sequence of functions (g, : Bo — Ba X Y : a € E) such that for any
function h : B — B x X satisfying that h(By) C By X Y for all a, there is an ordinal
a € E such that h | By = ga.-

Proof. Let Cp, = By X (By xY) and C = Bx (B xY) and let {S, : @« € E} be a
sequence such that S, C C,, for all @ € E and such that for any subset X of C the set of
a € E with XNC, = S, is stationary in w;. Since {(F) holds in L and {C, : @ < w1}
is a strictly increasing smooth chain of countable sets, this sequence exists. As a subset
of By X (Ba X Y), S, could be a function from B, to B, x Y. In that case, call it
Jo- Otherwise, let g, be an arbitrar function from B, to B, x Y. Let h be a function
from B into B x Y, hence a subset of B x (B xY). By ¢(E), hNCy = B,. But since
h(Ba) € By x Y for all a, then hNCy = h | By = ga- [ ]

This is enough to prove that, in L, every W-group of size N; is free.

Theorem 3.25 (Shelah, 1974). ZFC+V = L implies that every W -group of cardinality

Ny is free.

Proof. Let A be a W-group of cardinality 8;. By Corollary 3.10, A is N;-free. We first
see that A satisfies the Chase’s condition. We go by contradiction. Suppose that A does
not satisfy the Chase’s condition, there is a countable subgroup B of A such that for
every countable subgroup C' of A containing B, the quotient group A/C is not N;-free,

or, equivalently, there is a countable subgroup B of A such that for every countable
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subgroup C of A containing B there exists a countable subgroup C’ of A containing
C such that C’/C is not free. Note that there is at least one of such subgroups C
for otherwise there would not be any counterexample. We can construct by transfinite
induction a strictly increasing smooth chain {B, : @ < w1} of countable groups such
that Bo11/Ba is not free for every o < w. We let By = B. Suppose Bg have been
defined for every § < «. If a is a limit we just let B, = Uﬁ<a Bg. If a = B +1,
since, by induction, Bg is a countable subgroup of A containing B, there is a countable
subgroup C” containing Bg such that C”/Bg, so let B, = C”. It is clear that the set

E(B) = {a < wy : Ba+1/By is not free} is a stationary subset of w;.

Lemma 3.26 (V=L). Let B be the union of a strictly increasing smooth chain {B, :
a < wi} of countable free groups such that E(B) is stationary in wi. Then B is not a

W -group.

Proof of the lemma. By induction, we built a smooth chain of groups {Cy : o < w;}
where each Cy is a (Bg,Z)-group and the union C is a (B, Z)-group such that 7 :
C — B does not split. To do this we mimic the construction in Stein’s theorem.
However, in this case we need Lemma 3.24, for it assures that there is a set of functions
{9a : Ba — Ba X Z : o € E(B)} such that for any function h : B — B x Z satisfying
that h(By) C By X Z for all a, there is an ordinal o € E(B) such that h [ By = go. The
construction then goes almost the same way. We start with Cp, which we let to be any
(Bo, Z)-group. Suppose that Cz has been defined for all 5 < . For limit ordinals we
take unions. If o = 3+ 1, we consider two cases. If § € E(B) and g3 : Bg — Bg x Z
is a splitting homomorphism for w3 : Cg — Bg, we let C, to be an extension of Cjg
such that gg does not extend to a splitting field for 7, : Cy — B,, which exists by
Lemma 3.7 because it is not free (because Bgy1/Bgs is not), hence not a W-group.
Otherwise, if § ¢ E(B) or the mapping gg is not a splitting field for 75, we let C, be

any (Bq, Z)-group extending C,. Let C = | C,. As in Stein’s theorem we note

a<wi
that if p : B — C was a splitting homomorphism for 7 : C' — B, there would be some
B € E(B) such that p [ Bz = gg which is impossible by the construction of Cg,1, so ®

does not split and we are done. |

Let B* = J B,. By the lemma, since { B, : o < w1} is a strictly increasing smooth

a<wi
chain of countable free groups and E(B) is stationary in w;, B* is not a W-group. How-
ever, subgroups of W-groups are W-groups, which implies that A is not a W-group.

This is a contradiction, so A satisfies the Chase’s condition.

By Lemma 3.13, A is the union of a smooth chain {4, : @ < w;} of countable free

groups such that A,41 is Ny-pure in A. We prove that the set £ = {u < w; :
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a, is not Ny-pure in A}, is equal to B/ = {p < wy : Auq1/A, is not free}. Since E' C E
is clear we just have to show that E C E’. Suppose that p ¢ E’. Then, by Corollary
1.34 and the Second Homomorphism Theorem, for every & > u, A¢/A,, is free because
(Ae/AL)/(Aps1/Aeq1) = A¢/Aur1. Then A/A, is Ry-free for all its countable sub-
groups are in A¢ /A, for some & > p. Therefore, u ¢ E and E = E’. By the lemma, E’
is not stationary in wy, as A is, by assumption, a W-group. But then, since £ = F’,

the Chase’s Criterion implies that A is free. [ |

We conclude that a positive solution of the Whitehead’s Problem is consistent with

ZFC.

3.3.2 Martin’s Axiom

In this section we prove that assuming Martin’s Axiom there is a W-group of size Ny
which is not free. The consistency of Martin’s Axiom was proved by Donald A. Martin,
based on the work of Robert Solovay and Stanley Tennenbaum on the consistency of
the existence of Suslin trees. The proof, for which the powerful technique of forcing is
used, can be seen in the Appendix. However, the reader who is willing to accept on

faith the consistency of Martin’s Axiom will have no problem to follow this section.

Definition 3.27. A partial ordering is a pair (P,<) such that P # () and < is a

reflexive, antisymmetric and transitive relation on P.

We will normally denoted (P, <) simply by P and call it poset. The elements of P are

sometimes called conditions. If p,q € P and p < q we say that p extends q.

Definition 3.28. Let P be a poset. A subset D C P is dense if for every p € P there
exists ¢ € D such that g < p. It is dense below p if for every ¢ < p there is some r € D
such that » < ¢q. D is said to be open if p € D and g € D for every ¢ € P such that
q=p.

Note that if D is dense below p and ¢ < p, then D is dense below ¢ and that D is dense
if and only if D is dense below p for every p.

Definition 3.29. Two elements p, ¢ € P are compatible if there exists an element r € P

such that r < p,q. If p and g are not compatible, they are incompatible.

Definition 3.30. A subset C C P is a chain if for every p,q € C, either p < ¢ or
p < q. It is an antichain if every two p,q € C' are incompatible. A partial ordering P

is ccc (has the countable chain condition) if all of its antichains are countable.

It is easy to see that if A is a maximal antichain of P, then D = {p: p < ¢ with ¢ € A}

is dense open, and that every dense open subset contains a maximal antichain.
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Definition 3.31. Let P be a poset and let G C P. G is said to be a filter if

(1) G£0,
(2) every two elements of G are compatible, and

(3) if p€ G and p < g, then g € G.

A generic filter with respect to a family of dense subsets of P is a filter whose intersection

with every dense subset of that familiy is non-empty.

The Martin’s Axiom is a generalization of the Baire Category Theorem, which states
that in every compact Hausdorff space the intersection of X;-many dense open sets is

non-empty.

Martin’s Axiom (MA): For every ccc poset P and every family of (D, : o < wy)
of dense subsets of P, there is a filter G C P such that GN D, # 0 for all & < wy.

The Martin’s Axiom statement is always true in ZFC' for families of w-many dense
substes. Further, if P is a poset and {D,, : n < w} is a family of dense subsets of P.
Then, for every p € P there exists a filter G C P such that p € G and G is generic for
{D,, : n < w}. Note as well that the restriction to ccc posets is necessary for otherwise
the axiom would be false. For instance, let P to be the set of functions with domain
a finite set of natural numbers and range a subset of w; ordered by reverse inclusion.
For every n € w, the set D,, of all f such that n € dom(f) is dense, and for every
a € wi, the set E, of all f with a € rg(f). Then, if G were a generic filter for the
family {D,, : n € w} N{Ey : @ € w1}, then |JG would be a function from w onto wy,

which is impossible. By a similar argument one gets the following.

Theorem 3.32 (MA). Let A and B be sets of cardinality less than 280 and let P be a
family of functions from a subset of A into B such that

(1) for every a € A and every f € P, there exists g € P with dom(g) = a extending
f, and

(2) for every uncountable subset P' of P, there exist f1, fo € P’ and f3 € P such that
f1 # fo and fs extends both f1 and fo.

Then there exists a function g : A — B such that for every finite subset F' of A there
exists f in P with F contained in the domain of f andg [ F = f [ F.

Note that (2) above means that P is ccc. We have seen that CH holds in L. The
situation is just the opposite under the assumption of Martin’s Axiom. Actually, in their
proof of th consistency of M A, Solovay and Tennenbaum proved that M A + 2% = g

is consistent with ZF'C for every regular cardinal x greater than N;.
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Theorem 3.33 (Martin-Solovay, 1970). M A — —-CH.

Proof. Tt is enough proving that for any family {f, : & < w1} of functions from w into
2 ={0,1}, there is a function ¢ : w — 2 which is not in the family. To see this, let P
be the partial ordering consisting of the functions p : S — 2 with S a finite subset of
w such that p < ¢ if and only if p extends ¢. First note that P is ccc for it is countable.
Also, p and ¢ are compatible if and only if they agree in dom(p) Ndom(q) for then pUgq
extends p and ¢q. For every n < w let the set D,, = {p € P : n € dom(p)}. It is easy
to see that D,, is dense. Let also E, = {p € P : In € dom(p) such that p(n) # fa},
which is also dense. By M A, there exists a filter G C P such that G N D,, # 0 for all
n <wand GNE, # 0 for all @ < w;y. But then |JG is a function with domain w, as G
meets every D,, and different to f, for all & < w; for G meets every E,. So |JG =g

and we are done. [ |

The following theorem, proved in ZF'C, will be key to answer the Whitehead’s Problem

in the negative.

Theorem 3.34. There is a group A of size X1 which satisfies the Chase’s condition

but is not free.

Proof. By induction, we build a smooth chain {4, : @ < wy} of countable groups A,

such that

(1) A, is free for every o < wy,
(2) Aq/Apy is free for every f < a < wy, and

(3) Ant1/Aq is not free for every limit ordinal .

Let Ap be the trivial group and assume that {A, : a« < §} with § < w; is a smooth
chain satisfying (1), (2) and (3). To define A5 we consider three different cases. If § is
a successor ordinal of a successor ordinal, we let A5 = A, ® Z, which clearly satisfies
(1). It satisfies (2), too. Indeed, since A,/Ags1 is a free subgroup of As/Ag1, and
(As/Apg11)/(Aa/Apt1) = As/Aq is free as well, then (2) holds by Corollary 1.34. If §
is a limit ordinal, we let As = (J .5 Aa- Let {o, : n < w} be an increasing sequence
of ordinals whose limit is é such that o, is a successor ordinal for every n < w. Then,
As = Upew Awns and A, /A5, is free for every n < w. Then, by Theorem 1.35 Aj is
free and so is A;/A,, for every n < w, so (1) holds. By Corollary 1.34, since A, is
contained in A, for some n < w for every pu < 9, (2) holds. And, in the third case, if 0
is the successor ordinal of a limit a, we let {0, : n < w} as above although we require
oo to be 0. By the proof of Theorem 1.35 we know that there is a smooth chain of sets

{X,, : n < w} such that X,, is a basis of A,,. For each n > 1 let x, € X, \ Xp,—1.
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Define Y,, = X, \ {z,} and let B be the subgroup of A, generated by |J,_,, Yn- Let
P = [l,<o{zn) and define Ayy1 to be the subgroup of B & P generated by A, and
{zm : 1 < m < w} where z,, is the element in P of the form z,, = anm %xn The

union | J, _ Y, U{zy : 1 <m < w} is a basis of A,41, hence (1) holds. Now, note that

n<w
for each k£ < w the quotient A, 1/A,, is isomorphic to the subgroup of A, generated
by Ui (Yo \Ye)U{zm : E4+1 < m < w}. Therefore, again by Corollary 1.34, Ay y1/A4,
is free. To see that (3) holds, note that m!z,, —z; € A, for every m > 1, hence z1 + A,
is a non-zero element of A,1/A,, divisible by n for every n < w. Free groups have no
such elements, so (3) holds.

Let A= Ag. Since A is the union of wi-many countable groups, it is of size

a<w]
N;. Note that for every a < wj, the group A,41 is Nyj-pure in A for every countable
group A/Aq41 is in Ag/An41 for a sufficiently large 3. By the construction, Ag/Aq+1
is free and every subgroup of a free group is free. Therefore, A,+1 is WNyi-pure for
every a < wp. By Lemma 3.13, A satisfies the Chase’s condition. By (3), the set

Eq={a <w;: A, is not Nj-pure} is stationary in wy, for it is the set of limit ordinals

of wi. By the Chase’s Criterion A is not free, so we are done. [ |

Our next step is proving that, assuming MA + 2% > Ry, any group of cardinality
N; which satisfies Chase’s condition is a W-group. This would imply, according to
the previous theorem, that there exists a W-group which is not free, answering the

Whitehead’s Problem in the negative.

Theorem 3.35 (Shelah, 1974). ZFC + MA + 2% > ¥y dmplies that any group of
cardinality X1 which satisfies Chase’s condition is a W-group. In particular, ZFC +
MA + 2% > Ry implies that there is a W-group of cardinality Ry which is not free.

Proof. Let A be a group of size Ny satisfying Chase’s condition and let 7 : B — A
be a surjective homomorphism such that Ker(r) = Z. We have to prove that 7 splits.
Let P be the set of all homomorphisms ¢ : S — B such that 7 o ¢ = idg with S a
finitely-generated pure subgroup of A. Note first that P is not empty. Indeed, let S’
be a basis of the pure subgroup S, which is free for it is finitely-generated and A is
torsion-free, as it satisfies Chase’s condition hence it is Ny-free. Let f : S’ — B be the
set-function sending = to some y where 7(y) = x, which exists because 7 is surjective.
Then, f extends in the natural way to a homomorphism ¢y : S — B which satisfies

the required conditions.

Claim. Let ¢ € P and let F be a finite subset of A. There is a function ¢’ € P such
that ¢’ extends ¢ and F C dom(¢’).
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Proof of the claim. Let S be a finitely-generated pure subgroup of A and let ¢ be a
function in P whose domain is S. By Proposition 3.11, since A is Ni-free there is
a finitely-generated pure subgroup S’ containing S U F. Clearly, S’/S is a finitely-
generated torsion free group, so it is free. By Corollary 1.34, there is a basis of S which
extends to a basis of S’. That is, there is a basis of S’ of the form X UY where X is
a basis of S. For each z € X, let ¢/(x) = p(x) and for each y € y let ¢'(y) = b, where
b, is some element in B such that 7(b,) = y. This way, ¢’ € P. |

Claim. If P’ is an uncountable subset of P, then there is a free subgroup A’ of A
which is pure in A and an uncountable subset P” of P’ such that dom(yp) C A’ for
every ¢ € P".

Proof of the claim. Let P = {4 : So — B : a < w1} be an uncountable subset of P.
We may assume by taking an uncountable subset of P’ if necessary that there is an m
such that the basis of each S, is of cardinality m. It is easy to see that there is a pure
subgroup T of A which is maximal with respect to the property that T is contained
in uncountable many S, (which might be the trivial group), so we may assume that
T is contained in S, for all . As in the claim above, let X U Y, be a finite basis of
Sy for each a where X is the basis of T. Now we let the desired free subgroup A’ be
the union of a smooth chain {A, : @ < w;} with Ag = T such that for each a < wy,
A, is a pure subgroup of A and A,41/A, is free. By Theorem 1.35, A’ is free and,
since the union of pure subgroups is pure, A’ is also pure. We construct this chain by
induction on o < wy and, as already said, we let Ag = 7. Assume that {4, : p < a}

has been already defined. If « is a limit ordinal we let A, = | A,. So let us assume

p<a
that @« = 8 + 1 is a successor ordinal and let {0,141 : 4 < a} be a strictly increasing

sequence of ordinals such that Y, ., is a subset of A, 1. Let Cgz be a countable R;-pure

at1
subgroup of A containing Ag, which exists because A satisfies Chase’s condition. Note
that there exists o, > 0,41 for all p < « such that (Y,,) N Cg = 0 for otherwise there
would be an element ¢ € Cz and uncountable many 7 < w; such that ¢ € (Y;), so
the pure closure of T'+ (¢) would contradict the maximality of 7. Let now A, be the
pure closure of Ag + (Y5,). Since (Y5,) NCg = 0, then A, N Cz = Ag, so Ay/Ap is
isomorphic to a countable subgroup of A/Cjs hence it is free, as Cg is Xi-pure in A. Let

P" = {¢g,,, : i < wi}. This is an uncountable subset of P’ such that dom(yp) C A’

for every ¢ € P”, so we are done. [ |

Now, by Theorem 3.32 (here is where MA is needed) there is a function g : A — B
such that for every finite subset F' os A there exists f € P with F' C dom(f) such that
g F=f1F. Clearly, g is an homomorphism such that m o g = id4, hence 7 splits,
hence A is a W-group. |
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The main result of this chapter follows.

Theorem 3.36 (Shelah, 1974). The Whitehead’s Problem is undecidable in ZFC. More
precisely, the Whitehead’s Problem has a positive solution under the assumption of the
Axiom of Constructibility, which is consistent with ZFC; and it has a negative solution
under the assumption of Martin’s Axiom, also consistent with ZFC. Therefore, both a

positive and a negative solution to the Whitehead’s Problem are consistent with ZFC.

We notice that the models used in the proof are such that C'H holds in one of them
while =C'H holds in the other. Shelah’s Theorem left open the question of whether CH
is sufficient to imply that W-groups are free. After trying to interest the set-theoretic
community in the problem by stating a combinatorial analog, he took the problem
by himself. This would result not only in an independence result in 1976 but in the
beginning of the so-called proper forcing, being this an example of how other fields of

mathematics motivate deep advances in set theory as well.






Appendix: Forcing and the

consistency of Martin’s Axiom

We briefly introduce the technique of forcing and prove the consistency of Martin’s
Axiom. Our exposition may lack of the rigour and detail that any standard textbook
on the topic would have. Classical introductions to forcing are [Jech03], (see Chapter
14 (pp. 201-218)) and [Kunl3] (see Chapter IV). For an approach based on admissible
sets, Bagaria’s course notes [Bag19] (see Chapter 4) are also a great introduction. This
appendix is based on them. An introduction to iterated forcing and the proof of the
consistency of M A can also be found in [Jech03] (see Chapter 16, pp. 267-273; the
proof of the consistency of Martin’s Axiom can be seen in [Jech03], Theorem 16.13)
and [Bagl9] (see Chapter 6). There is also a chapter devoted to Iterated Forcing in
[Kunl3] where the consistency of Martin’s Axiom is discussed (see Chapter V). The
following exposition is intended to provide an intuitive yet maybe rudimentary idea of
what forcing is. Nevertheless, it should be enough to convince the reader about the
consistency of M A with ZFC. May the reader be interested in further reading, we

refer him or her to the mentioned references.

1.1 Forcing

The forcing technique was discovered by Paul Cohen, and it was first used to build
a model where CH did not hold, and a model where AC' did not hold neither. This
together with Godel consistency results on the CH and AC would prove the indepen-
dence of both the Continuum Hypothesis and the Axiom of Choice from ZFC.

Given a countable transitive model M of set theory, forcing’s main idea is to extend M
to a larger transitive model N by adding a generic set G which is not in M. The new
model is expected to exhibit some new features which the oringal model doesn’t have.
We refer to this larger transitive model N as the generic extension or forcing extension

of M and denote it by M[G].
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1.1.1 Admissible sets

The method of forcing can be carried out in a weaker theory than ZFC. The Kripke-
Platek set theory, denoted K P, consists of the universal closure of the axioms of Ez-
tensionality, Pairing, Union, Foundation, Ag-Separation and Ag-Collection. By Ag-
Separation we mean the axiom of Separation restricted to Agp-formulas, that is, first-
order formulas all whose quantifiers are bounded. Agp-formulas are absolute for tran-
sitive classes. The axiom of Ag-Collection is the schema Vz € aJyp(z,y) — J2Va €
ady € zp(x,y) for each Ap-formula ¢ where z does not occur free. K P proves Ag-

Replacement.
Definition 1.1. M is an admissible set if it is a transitive model of K P.

Countable admissible models can be extended by means of forcing. We will see later on
why the countable condition is necessary. Note that ZFC cannot prove the existence
of any countable transitive model of ZFC, for it would be proving its own consistency.
By taking a sufficiently big fragment of ZFC we can easily overcome this inconvenient.
Indeed, KP + Infinity + Power Set + AC proves that there exist uncountable many
countable admissible sets. By ZFC* we will denote a fragment of ZFC big enough to
include KP.

Although introduced already in Chapter 3, we recall the following notions. A partial
ordering is a pair (P, <) where P is a non-empty set and < is a partial order on P. The
elements of P are called conditions. We read p < q as p extends ¢. If a partial ordering
P is a set, we call it poset. T'wo conditions p, ¢ € P are compatible if there exists another
condition r € P such that r < p,q. If p, ¢ are not compatible, they are incompatible. A
subset D of a partial ordering P is said to be dense if for every condition p € P there
exists ¢ € D such that ¢ < p. D is dense below a condition p € P if for every ¢ < p
there exists r € D such that » < ¢. D is said to be open if it is downward closed. We
say that a subset A of a partial ordering P is a maximal antichain if all its elements are
incompatible and cannot be extended to a larger antichain subset. Assuming AC, every
dense open subset of P contains a maximal antichain. We say that a partial ordering P
satisfies the countable chain condition, denoted cce, if all its antichains are countable. A
generic filter with respect to a family of dense subsets of P is a filter whose intersection
with every dense open subset of that family is non-empty. Given M a model of ZFC*,
we say that G is generic over M if it is a generic filter over a poset P € M. Note that
if G C P is generic over M, then it contains just one element from each antichain in
P. Clearly, if a € AN G there cannot be any b € A with b # a such that b € G because
then a and b would be compatible, which is not possible. This proves that |[ANG| < 1.



Set-theoretic methods in infinite abelian group theory - Fernando Barrera 61

To see that ANG # (), consider the set D = {p: p < ¢, some q € A}. D is dense open,
hence GN D # (). Now, ifa € DNG, a < p for some p € Asope G, thus GN A # (.
Therefore, the following.

Proposition 1.2. Let M be a model of ZFC*. If G is generic over M, then for every
mazximal antichain A of P that belongs to M, |G N A| = 1.

In order to get a forcing extension M [G] strictly larger than M we need the generic
G C P not to be an element of M. Easy examples show that it is not always the case
that G € M. Indeed, if P = {p} for some p € M or P is a linear order, G is clearly an
element in M. For a generic filter not to be an element of M we need the poset P to

be perfect.

Definition 1.3. A partial ordering P is said to be perfect if for every p € P there exist

g, < p such that ¢ and r are incompatible.

Let P be a perfect poset. Then, every filter G C P generic over M is not in M as an
element. Suppose the contrary. Then, D = {p:p ¢ G} € M as well and G N M # ().
Conversely, if P is not perfect, let G = {q : —g_Lr} where p is an element in P which is
not extended by any compatible conditions. It is easy to see that G is a generic filter.

This proves the following.

Proposition 1.4. A partial ordering P is perfect if and only if G ¢ M for every generic
filter.

We require M to be a countable transitive model of ZFC* because in that case the
family of dense open subsets of any partial ordering P € M is countable as well. Indeed,
since M is countable, so is the collection {D,, : n < w} of all dense open subsets of P
and we can let Dy to be an open dense subset such that p € Dy. Let pg = p. For each
n < w, given py, let pp+1 € Dypyq such that p,41 < pp. Then let G be the upward
closure of {p, : n < w}. Clearly, G is a generic filter over M containing p. We then

have the following.

Proposition 1.5. Let M be a countable admissible model and let P be a partial ordering

in M. For every condition p € P there exists G C P generic over M such that p € G.
The following is an easy example of non-trivial forcing.

Example. Let P be the poset of all partial functions p : n — 2 with n € w ordered
by reversed inclusion. Since P is a perfect poset which belongs to any model of KP +
Infinity, if M is a countable model of K P+ Infinity, then there exists a generic filter
over M. Let f = JG. It is easy to see that f is a function, being G a filter. Now,



62 Appendix

for ever n < w let the set D, = {p € P : n € dom(p)}, which is dense. Then, since
GND #(, dom(f) =w so f is the characteristic function of a subset of w which is not
in M, which we call Cohen generic real. We have that M[G] is a non-trivial forcing

extension of M.

1.1.2 The generic model extension

Given a set A, we can define the class L(A) in the same fashion we defined the con-
structible universe L as the union |J,cop La(A) where Lo(A) = tc(A), that is, the
transitive closure of A; Lo41(A) = D(L4(A)) for every successor ordinal o+ 1 and, for
a a limit, La(A) = Us, Lp(A). Then, L(A) is, informally, the class of all definable
sets allowing parameters from A. Indeed, L(A) is the least transitive model of ZF con-
taining all the ordinals and all elements of A. As in the case of L, for every «, 5 € OR,
Lo(A) is transitive and, if o < 3, then Lo (A) C Lg(A). Since admissible sets correctly
compute L, if M is an admissible set, it correctly computes L(A) whenever A C M.
Actually, if M is an admissible set and A C M, M[A] is the least admissible set such
that M C M[A] and A € M and it is of the form Ly(M U{A}) for some A > ORN M.
Moreover, for every limit ordinal A, Lx(M N{A}) = Uycr La((M U{A}) NV,) satisfies

all axioms of K P with the possible exception of Ag-collection.

If P € M is a poset and G C P is a filter generic over M, we let M[G] = (J,. Lx((MN
Va)U{G}) with A = ORNM. We will see that M [G] is the least admissible set including
M such that G € M. We will see as well that M[G] satisfies all axioms of ZFC which
hold in the ground model M. This, however, is not trivial at all. Indeed, since the truth
value in M[G] of any given formula depends on the sets that belong to M[G], a method
is required in order to determine the formulas in the language of set theory which are
true in M[G]. In particular, a method is required to prove that all axioms which hold
in M also hold in M[G]. This is done by defining a relation |- between conditions p
and formulas ¢ so that p IF ¢, read ”p forces ¢”, if and only if for any generic G of M
containing p, the formula ¢ holds in M[G], that is, M[G] E . Of course, the truth
values of formulas in M[G], particularly those with parameters, do not only depend
on G and the sets in M but also on other sets that are obtained from elements in G
and M. Since a set = belongs to M[G] if and only if x is constructed from G and M
in less than A = OR N M steps, for each o < A we define in M the class of names of
rank < a so that if 7 € M is a name of rank < «, then the set in M[G] named by 7 is

constructed from 7 and G in < o+ 1 many steps.

Definition 1.6. Let M be an admissible set and P a partial ordering in M. We denote
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by M¥ the class of P-names, defined by transfinite induction as follows:

(1) 7 is a P-name of rank 0 if 7 = ().
(2) 7 is a name of rank < «, in symbols 7 € MY if 7 = {(o,p) : p € PAT €
M with 8 < a}.

(3) 7 is a P-name if 7 € M for some A € sup(OR N M).
For instance o = {(0,p)} is a name of rank 1, while {(o,p), (0, ¢)} is a name of rank 2.

Definition 1.7. For every element z € M, & = {(y,p) : p € P Ay € x} is the standard
name of z. The standard name for the generic filter G is G = {(p,p) : p € P}.

If G is a generic filter over M, the interpretation i (7) of a name 7 by G is defined by

induction on the rank 7 as follows:

(1) If 7 € ME, then ig(T) =0,

(2) ia(r) ={ic(o) : (o,p) € T Ap € G}

Note that it might happen that two different names have the same interpretation. If
p € G, then o = {(#,p)} and 7 = {(B,p), (0, q)} are interpreted as {f}. However, if
p¢ Gandqe€QG,ig(o)=0and ig(r) ={0}.

We let N = {ig(7) : 7 € MP}. Since ig(&) = x for every standard name &, it can be
easily seen by induction on the rank that M C N. Moreover, since G = {(p,p) : p € P}

and ig (%) = z for every standard name z, ig(G) = {ig(p) :p€ G} ={p:p € G} =G.

It is easy to see that N satisfies Extensionality, Foundation, Pairing and Union.

1.1.3 The forcing relation

Our aim is to show that the class N = {ig(7) : 7 € M} is M[G], so we have to prove
that N is an admissible set satisfying all axioms of ZFC that M satisfies. To do this,
as already said, we define the forcing relation IFp, which we will simply write as IF if
the context is clear. We shall go recursively starting with Ag-formulas (we can do this

because admissible sets satisfy 3j-recursion, but let us ignore this details).

(1) fr,oe M, plko =7 foreveryp€ P,and pl-o € 7 fornop € P.

(2) Let us assume that the forcing relation involving P-names of rank < a and atomic

formulas is been already defined. Let 7,0 € Mg ar1- Then,

plFoCrifandonlyif {¢g<:q<p' —3(7,p")er(¢<p"NqlF-o' =7}

is dense below p for very (¢/,p') € 0. We define p IF 7 C o analogously.
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plFo=7ifandonlyif plkoc C7and plk7 Co.

(3) Let 0,7 € MY and p € P, pE o € 7 if and only if {q < p : 3(7,p/) € 7(q <
P Aqlko=17")} is dense below p.

(4) For any Ag-formulas ¢, for which |- has already been defined,

plF @ A if and only if p IF ¢ and p IF 9,
p Ik = if and only if for no ¢ < p, q I+ @,
plF 3z € To(x) if and only if the set {¢ < p: (7, p') € 7(q¢ < P'Aq - (7))}

is dense below p.
(5) If ¢, are arbitrary formulas for which IF has been already defined:

plF @ A if and only if p IF ¢ and p IF 9,
p Ik =g if and only if for no ¢ < p, q I+ @,
p IF Jzp(z) if and only if for every ¢ < p there exists some r < ¢ and a

P-name 7 such that r IF ¢(7).

By induction both on the complexity on the formula ¢ and on the rank of the names

01,.-.,0m one can prove the following.

Theorem 1.8 (Forcing Theorem). If G is P-generic over M and N = {ig(t) : 7 €
M?PY, then N E p(ig(a1),...,iq(on)) if and only if 3p € G(M E "plFp (o1, ...,00)")

for all Ag-formula ¢ and every name o1,...,0y,.

Remark. If M also satisfies o,,-Separation and o,-Collection, then Forcing Theorem

applies also to all o,-formulas.

Theorem 1.9 (Generic Model Theorem). If M is admissible, then N = {ig(7T) :
T € MP) is the least admissible set including M and containing G. Moreover: if
M E Infinity, then N E Infinity; if M E X, — Separation + ¥, — Recursion, then
N E X, —Separation; if M E X,,— Collection+3.,, — Recursion, then N F X, — Collection;
if M E Power Set, then N E Power Set; if M = AC, then N E AC.

As a consequence, N = M][G]. Indeed, since N is admissible, for every X € N,
L\(X) € N. Since N includes M U {G}, M[G] = Uycr IA(M NV,) U{G})) € N.

1.2 TIterated forcing

Let P be a forcing notion over a countable transitive model M of ZFC* and let G C P
be a generic filter over M. Let @ be a forcing notion in M[G]. Then, we can forcing

again with @ over M[G], resulting in a new forcing extension M|[G][H], with H C Q
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a generic filter over M|[G]. This iterated process can be done directly from M in just
one step. The forcing notion used is called the iteration of P and () and is denoted by
P % Q. We note that since Q is a forcing notion in M[G], it might happen that it does
not belong to M. To have some control over @ from M, we fix a name Q = (Q, §'Q)
for Q so that some condition p € G forces Q to be a partial ordering in M [G] and
ic(Q) = Q. The conditions of P % Q are pairs (p,q) such that p € P, ¢ € dom(Q)
and p lFp ¢ € Q. For any two (p1,d1), (p2,d42) € P+ Q, (p1,¢1) < (p2, o) if and only
if p1 <p p2 and p IFp "¢1 SQ 2. The set P % Q with the defined order is a partial
ordering in M and if G C P is generic over M and H C @ is generic over M[G], then
GxH = {(p,q) € PxQ:pe G Nig(q) € H} is generic over M. Moreover, since G+ H
can be easily constructed from G and H, M[G * H] C M[G][H] and, since G is the first
projection of G * H, it can be easily seen that G € M[G H] But then, since we have
G and G * H, we easily get H, so M[G][H] € M[G * H] and the following holds.

Theorem 1.10. M[G x H] = M[G][H].

Clearly, if S was a forcing notion in M[G][H] = M[G * H], one could repeat this whole
process, obtaining a forcing extension M |[G|[H][I] with I C S generic over M|[G|[H].

This motivates the following definition.

Definition 1.11. P, ;1 is an iteration of length n + 1 if P41 = Py % Qn where P, is

an iteration of length n such that I-p, "Q, is a poset”.

Therefore, if P11 = (... ((Qo * Ql) * Qg) ...k Qn) and p € P, then p is of the form
(... ((q0,41),42), - -.),qn) where (... ((qo,d1) - Gn-1) € (.. (Qo*Q1)*Q2) *...xQn_1)
and (... ((g0, 1), q2), - - - qn_1) forces (with respect to (... ((Qo* Q1) *Q2) *...*xQn_1),
that ¢,—1 € Q. To simplify this cumbersome notation, we just write (qo, 1, . . . , ¢n) for
any element in P11, where g0 € Qo = Fyand p [ m IFp, pm € Qm for every m < n.

This discussion motivates the following.

Definition 1.12. We say that P, is a forcing iteration with finite support of length
A>0if:

(1) either A =1 and P} is a poset, or

(2) A=a+ 1 with @ > 0 and P, a forcing iteration with finite support of length o
such that Py, = P, * Qa where Qa is the P,-name of a poset, or

(3) Ais a limit ordinal and
(3.1) the elements of Py are A-sequences (p,, : o < A) such that for all but finitely-

many o < @, po, = 1, where 1 is the maximal element in P,,, whose existence

can be assumed without loss of generality,
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(3.2) for every 0 < a < A, the poset P, consisting of the elements p [ a with
p € Py is an iteration with finite support of length «, and
(3.3) the ordering <p, in Py is given by p <p, ¢ if and only if for all 0 < @],

pla<p qloa

It can be checked by induction on A > 0 that if p € Py, then p [ alFp, "pq € Q. for
every 0 < a < \. Note that if P is a forcing iteration with finite support of length A,
then for every o < X we can see each P, as the sub-poset of Py where each (pg: f < \)

is identified with (pj; : B < A) where pjy = pg for very 8 < a and pjy = 1 for every 5 > a.

Recall that a poset P is ccc if all its antichains are of countable size. More generally, a

poset P is k-cc with k a regular cardinal x if every antichain of P is of size less than k.

Theorem 1.13. If k is an uncountable reqular cardinal and Py is a forcing iteration
with finite support of length A such that I-p, "Qq is k-cc” for every o < X, then Py is

K-CC.

The following theorem shows that k-cc posets are useful forcing notions whenever we

do not want to collapse cardinals.

Theorem 1.14. If P is a k-cc poset in M and G C P is generic over M, then all

cardinals greater than or equal to k remain cardinals in M[G].

1.3 Consistency of Martin’s Axiom

Recall that Martin’s Axiom states the following:

For every ccc poset P and every family of (D, : a < wy) of dense subsets of P,

there is a filter G C P such that GN D, # 0 for all o < wy.

To show its consistency, we build a model in which M A holds. Then, pick M to be a
countable transitive model of ZFC*. For each ccc poset P € M, we force over M to add
a generic filter for families of uncountable size of maximal antichains in P. Of course,
we want to do this for every ccc poset, so we should force with all of them. However,
the collection of ccc posets in M is a proper class. Note that if P is a ccc poset and
(Ay @ @ < wy) C P is a family of maximal antichains, by Lowenheim-Skolem-Tarski,
there is an elementary sub-poset @ of size < ¥y such that (A, : @ < wy) C Q. Since P
is cce, each A, is countable, so @) is ccc as well. Also, since @) is isomorphic to a set

whose set of conditions is a subset of w1, we may assume @ to be of this form.

Definition 1.15. If ) is a ccc poset whose set of conditions is a subset of wy, we say

that Q) is a suitable set.
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In Chapter 3 we have proved that GCH is consistent, so we can assume M is a model
of GCH. In this case, there are, up to isomorphism, only Ny many suitable sets. The
idea, is to define the iteration using only suitable sets to get the desired extension in
No-many steps. But first note that if P is a partial ordering and 7 is a P-name for a
subset of some ordinal A, then the set ¢ consisting of all pairs (&g, q¢) where ¢ is an
ordinal and ¢ is an element in a maximal antichain A below p such that ¢ IFp 7/ = @,
for some (7/,p) € 7. Therefore o consists of the pairs of the form (é&,p) with a < A.
Clearly, P forces that ¢ = 7. To this names we call them nice names. It is easy to see
that if P is ccc, then every P-name for a subset of Ny has an equivalent nice name of

size Nl .

To summarize, if each iteration is ccc, no cardinals are collapsed, which mean that
at any stage of the iteration, Ny and Ny remain as in the ground model. Also, if
Pg = <Qa :a < B) is an iteration with finite support with 8 < ws such that for every
a < B, IFpy ”Q, is a suitable partial ordering” we can assume that Q. is a P,-name
of size Ny for all < 3, so by induction on 8 we get that if § < wy, then Pg has size
less than No and P,,, the last stage in our iterated forcing, is of size Ny. Therefore,
there are at most Ng nice Pg-names of cardinality R; for subsets of ¥;, from which the

following holds.

Lemma 1.16. Let M be a transitive model of ZFC* + GCH and let Pg = <Qa :
a < B) be an iteration with finite support with B < wy such tht for every a < (3,

IFpa 7 Qu is a suitable partial ordering’. Then, for every Pg-generic filter Gg over M,
M[Gg) E 2% = Ry,

So let M be a countable transitive model of ZFC* + GCH. Let 7 : wg — (w2 X w3)
be a surjective function such that if w(a) = (8,7), then 8 < « for every av < wy. Let
Py be a suitable partial ordering and let <Q7 : 7 < wg2) be an enumeration of all nice
Py-names for suitable partial orderings. Now, suppose we have defined P, and that for
each < a we have an enumeration (Qg 17 < wy) of all nice Pg-names for suitable
partial orderings. Then, P, = P, % Qié; where 7(a) = (5,7). For the limit ordinals A
just let Py consists of all Ad-sequences (p,, : @ < ) with p, = 1 for all but finitely-many
a<Aandp|ae€ P, forall a < A

Theorem 1.17 (Martin-Solovay, 1970). Let M and P,,, be as defined above and let
G C P, be generic over M. Then MA holds in M|G].

Proof. Let @ be a ccc partial ordering in M[G] and let (A, : @ < wi) be a family of

maximal antichains of (). Since we may assume that () is suitable, there is, as said
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before, a nice P,,-name Q in M of cardinality less than or equal to N;. Also, since
each A, is a subset of w; for each a < wy, they have a nice P,,-name A, of size Ry,
too. Let 3 be an ordinal in wy such that every p in the range of Q which is also in the
range of A, for every o < wy, supp(p) = {& < wa : pa # 1} C B. Let Q | B be the
set {(§ 1 B,p18):(5p) € Q} where each ¥ | 8 is a Pg-name for 7. Let also Ay 1 B
be {(¥ | B,p | B) : (3,p) € Ay} for each a < wy. This way Q | 8 is a Pg-name for a
suitable partial ordering and Ay isa Pg-name for a maximal antichain of Q | B, so there
is some v < ws such that Q | 8 = Qg If (o) = (,7) we may see ij and A, | 3 for
all @ < wy as P,-names. Since G, is a P,-generic filter over M and ig, (Aa [ B) = A,
for all & < wy and ig, (Q2) = Q, then M[Gqay1] is of the form M[G4][H] with H C Q
generic over M[G,]. Therefore, H is generic for the family {A, : @ < w;i}, which also

holds in M[G], so we are done. |

Note that defining an analogous iteration with length any regular cardinal x greater
than x, 2% = k would hold in the generic extension. As a consequence, the following

holds.

Corollary 1.18. If ZFC is consistent, so is ZFC + MA + 280 > Xy,
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