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Prólogo

“Of all the forms of machine learning, reinforcement learning is the closest
to the kind of learning humans and other animals do”

Sutton, barto (2018)

De los paradigmas existentes en Machine Learning, vamos a tratar de aquel que representa la sen-
cilla y potente idea de un sistema de aprendizaje que “quiere” algo, que adapta su comportamiento de
manera que es capaz de maximizar una determinada “señal” proveniente de su entorno.

Reinforcement Learnignes una de las áreas que ha venido recibiendo más atención por parte de los
investigadores en los campos de “machine learning”, inteligencia artificial o redes neuronales, desarro-
llado en disciplinas tan diversas como psicología, teoría de control, inteligencia artificial y neurociencia.
Su avance viene impulsado no solo por la creciente potencia de cálculo de los ordenadores actuales, sino
por los desarrollos tan importantes que se están realizando en los aspectos de teoría y algorítmica. De
todo ello trataremos en este trabajo.

Trabajo que no hubiera sido posible sin la guía y tutela del Doctor Ayesta, que ha dirigido la tesis a
distancia, a causa de la pandemia, con la sobrecarga de trabajo que ello ha conllevado.

Quiero agradecer la oportunidad que nos ofreció el doctor Gorria, director en Bilbao del máster a
que este trabajo pertenece, de poder colaborar con la universidad de Toulouse. Igualmente, al doctor
Alcalá de la universidad de Zaragoza y a todo el cuadro de profesores del máster que nos han conducido
en materias tan diversas y apasionantes.

No puedo menos de citar a mis antiguos profesores, los doctores Alexander Knebe y Gustavo Yepes
de la Universidad Autónoma de Madrid, cuyo apoyo y confianza me han permitido adentrarme en un
campo de tanto interés y futuro como Reinforcement Learning.

Finalmente, mi más sincero agradecimiento a mi familia por su continuo apoyo y paciencia.
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Resumen

Reinforcement Learning is one of the main fields of Machine Learning, alongside Supervised and
Unsupervised Learning. Unlike in the latter two cases, where the objective is the classification of the data
from an already labeled sample (Supervised Learning) or from the data structure itself (Unsupervised
Learning), in Reinforcement Learning the ‘agent’, the algorithm that carries out the learning process,
learns through successive interactions with an ‘environment’, through actions that lead to changes in this
environment and rewards that quantify the effect of these actions. The aim here is therefore to create
strategies or ‘policies’ that optimise the total reward obtained.

Within this field there are numerous challenges, among which the “Restless Multiarmed Bandit
Problem” stands out. In it, multiple agents or ‘bandits’ are considered, which can have two possible
actions: be ‘active’ or ‘passive’. Only a limited number of these bandits can be active at the same time,
and depending on the action performed the change of state and the reward of all these processes can
be different. It is therefore a problem of prioritization between the different stochastic processes, not
only for the next time step, but also for the long-term future. This problem of ‘resource allocation’ has
multiple practical applications such as the management of workload on servers [1] [2], the detection of
channels in communications [3], the management of health systems [4] or in the dynamics of pricing
[5]. However, due to the nature of the problem, a large number of ‘visits’ to each action/state pair are
necessary for each bandit, which makes classical selection methods require very long convergence times
and are ineffective. In this work, we employ a different policy, in which we index each state, thus setting
a priority in activating the bandits: the Whittle index policy. This policy was proposed in 1988 by P.
Whittle [6]. In our approach we proposed a new technique: the calculation of the indexes through two
time scales to obtain convergence conditions under which our algorithm converges to an optimal policy.

In this paper we will start by introducing the basic concepts of Machine Learning such as the diffe-
rent types of learning such as ‘supervised learning’, ‘supervised learning’ and ‘reinforced learning’ and
the differences between them, the Markov chains, the criteria of optimality and the ‘value functions’.
In the chapter 2, we will explain the origin of the ‘index policies’, their use in Reinforcement Learning
and the Q-learning techniques used to model and learn from the problem environment. In the chapter
3, we will study two cases of Reinforcement Learning problems with their own dynamics: the circular
dynamics problem and the restart problem. We will study the calculation of Whittle’s indexes in an
analytical way for these problems, the algorithm that we will use for its numerical calculation and in
the chapter 3.2.1, we will make a scheme of the demonstration of the theoretical convergence of the
algorithm. Finally, we will analyse the results obtained with this algorithm.
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Capítulo 1

Algoritmos de Machine Learning

1.1. Introducción histórica

Machine Learning es uno de los principales campos de Inteligencia Artificial (AI). El principal ob-
jetivo en este campo es la creación de modelos capaces de comprender una estructura de datos. Gracias
a la flexibilidad de aplicaciones que tiene, es usado en multitud de áreas, como en la predicción de
sistemas tales como préstamos bancarios en los que se calcula la probabilidad de un fallo en el pago,
reconocimiento de imágenes o voz, diagnosis médicas, etc.

A pesar de ser un campo de computer science, difiere de los enfoques computacionales tradicio-
nales. En la programación tradicional, los algoritmos son un conjunto de instrucciones explícitamente
programadas y empleadas para el cálculo y solución de problemas. En Machine Learning, sin embargo,
el algoritmo se entrena a partir de un set de datos y emplea un análisis estadístico para obtener estos
valores. He aquí donde reside la fuerza de este rama de computer science: el empleo de instrucciones
relativamente sencillas para automatizar cálculos muy complejos, con modelos no lineales que serían
demasiado complicados de detallar expresamente.

Los orígenes de este campo se remontan a 1958, cuando Frank Roseblatt diseño la primera red neu-
ronal artificial [7], llamada “Perceptrón”, cuyo cometido original era el reconocimiento de patrones y
formas. El año siguiente, Bernard Widrow y Marcian Hoff crearon un nuevo modelo de red neuronal
llamado ADALINE [8] capaz de detectar patrones binarios, y por tanto, en una cadena de bits, predecir
cual sería el valor del siguiente. El siguiente modelo, MADALINE [9], era capaz incluso de eliminar
el eco en las llamadas telefónicas, siendo este la primera aplicación útil de las redes neuronales. En
los años 60, R. J. Solomonoff introdujo los métodos Bayesianos [10] para la inferencia probabilística,
hoy en día fundamental para la teoría básica de Machine Learning. Sin embargo, debido a la carga
computacional necesaria para estas técnicas, se produjo un periodo de inactividad en la investigación
de Machine Learning hasta 1982, cuando John Hopfield sugirió la creación de redes neuronales bidi-
reccionales [11], similar a como funcionan en la realidad las neuronas. Sin embargo, no fue hasta 1990
y el siglo 21 en el que se empezaron a desarrollarse extensivamente, con el origen de los Support Vec-
tor Machines[12] y la popularización de las Recurrent Neural Networks (RNNs), en el que este campo
realmente floreció. Actualmente, el desarrollo de Deep Learning[13] [14] ha permitido la aplicación de
este campo en multitud de áreas.

1.2. Supervised vs Unsupervised vs Reinforcement Learning

Machine Learning puede clasificarse en tres tipos de algoritmos distintos: Supervised Learning, Un-
supervised Learning y Reinforcement Learning, cada uno de ellos con funcionamientos y aplicaciones
distintos.

En el primero de ellos, Supervised Learning, empleamos un set de datos de entrenamiento etique-
tados, es decir, en el que cada muestra viene acompañada con una “variable objetivo”. El objetivo es,

1



2 Capítulo 1. Algoritmos de Machine Learning

por tanto, diseñar un modelo capaz de analizar los datos entrantes y predecir que etiquetas tendrán a
partir de los ejemplos dados en el entrenamiento. Estas variables pueden ser categóricas, en cuyo caso
hablamos de un problema de clasificación como puede ser la clasificación de un email como ‘Spam’ o
‘No Spam’, o continuas, con un problema de regresión, como puede ser la predicción de los valores en
Bolsa [15]. Los tres tipos de algoritmos más populares en este área son:

Neural Network: Se trata de estructuras formadas por “neuronas”. Cada una de ellas toma una
serie de variables de entrada, realiza una combinación lineal sobre estas y es pasada por una
función de activación, como puede ser la función sigmoide. En la actualidad, se diseñan redes
con millones de neuronas [16] [17] distribuidas en “capas”, donde el input de cada capa son los
output de cada una de las neuronas de la capa siguiente.

Figura 1.1: Ejemplo de un esquema de una red neuronal, formada por tres capas distintas: una primera
capa, con las variables de entrada de los datos iniciales, una capa final con el valor a predecir y una capa
intermedia, para aumentar la complejidad y potencia del modelo.

Random Forest: Random Forest es una agrupación de árboles de decisión en el que en cada nodo
se aplican unos criterios de clasificación a los datos. A través de sucesivos nodos, distribuidos en
diferentes árboles de decisión con distintos criterios de clasificación, podemos parametrizar los
datos de entrada en gran detalle.

(a) Ejemplo de distribución de datos clasificados
por color.

(b) Nodo en un árbol de decisiones. En el, se obtie-
ne las dos categorías de clasificación (azul y verde)
en función de los valores de la variable x.

Figura 1.2: Ejemplo del funcionamiento de un árbol de decisiones empleado en Random Forest.
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Support Vector Machines: En un modelo de Support Vector Machines se emplea una repre-
sentación en el espacio de variables de los datos del algoritmo, donde estos datos se encuentran
clasificados en 2 o más categorías. El objetivo de este tipo de algoritmos es por tanto la creación
de un hiperplano en este espacio capaz de separar estas categorías de modo que el margen entre
ellas sea lo más ancho posible.

Figura 1.3: Clasificación de los datos a través de SVM. Cada una de las categorías, A y B, se encuentran
separadas por un plano (línea roja) que maximiza el margen entre ambas clases.

Por otro lado, en Unsupervised Learning los datos no se encuentran etiquetados, de modo que
el algoritmo tiene que encontrar semejanzas entre los datos. Los objetivos de Unsupervised Learning
van desde el reconocimiento de patrones ocultos como el aprendizaje de características, en el que el
algoritmo descubre nuevas representaciones en las que clasificar los datos. Una aplicación tradicional
de este campo es en las transacciones. A partir de un set de datos con las compras que ha hecho un
conjunto de clientes, podemos crear perfiles en los que clasificarlos en función del tipo de compras que
realicen. Existen dos tipos fundamentales de algoritmos de Unsupervised Learning:

Clustering: se denominan problemas de “clustering” aquellos en los que queremos descubrir
agrupaciones inherentes en los datos. Las dos técnicas más comunes para esto son K-means, en la
que agrupamos los datos en centroides intentando maximizar el número de datos en cada clúster.

Reglas de asociación: El objetivo de este tipo de problemas es descubrir reglas que describan el
comportamiento de un determinado conjunto de datos, tales como “la gente que compra X tam-
bién tiende a comprar Y”.

Reinforcement Learning se diferencia de estos otros dos paradigmas en la capacidad del algoritmo
de aprender a través de las reacciones de un entorno. Por lo tanto, debemos distinguir dos elementos
en cualquier problema de Reinforcement Learning: el agente, el cual realiza una acción en función del
estado en el que se encuentre, y el entorno, que engloba a este agente y lo provee de nuevos estados
y recompensas en función de las acciones que realice en el estado en que se encuentre este agente.
Además de estos dos elementos, los algoritmos de Reinforcement Learning están formados por:

Política: Define el comportamiento del agente en un momento dado. Se trata de un mapeo de cada
estado percibido en el entorno con una de las acciones disponibles en ese estado.

Función de recompensa: Cada acción realizada en cada estado por el agente esta recompen-
sada por un valor específico. El objetivo en Reinforcement Learning es maximizar, no solo la
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Figura 1.4: Ejemplo de clasificación a través de K-means: se establecen tres centroides aleatoriamente
(los puntos estrellados) y en cada iteración, se desplazan estos centroides, asignando a los puntos más
cercanos las categorías de estos centroides.

recompensa inmediata obtenida al realizar una acción, sino todas las recompensas futuras. Por
lo tanto, la función de recompensa en un estado concreto cuantifica lo “bueno” que sea realizar
una determinada acción en ese estado, mientras que la recompensa total define la calidad de la
política.

Función de valor: Si la recompensa nos indica lo buena que es una acción en un momento dado,
la función de valor nos indica su efecto a largo plazo. Define, por lo tanto, la calidad de nuestra
política. Definiremos en más detalle este parámetro en la sección 1.3.6

1.3. Introducción a las cadenas de Markov

Antes de introducir las cadenas de Markov, empezaremos con una introducción de algunas nociones
importantes de teoría de probabilidad. Una variable aleatoria X es aquella cuyo valor está definido como
el resultado de un fenómeno aleatorio. Un ejemplo de esto podría ser el resultado de tirar un dado o una
moneda.

Definimos como un proceso aleatorio, también llamado “proceso estocástico”, al conjunto de va-
riables aleatorias indexadas por T , donde T puede ser una variable discreta (como el conjunto de los
números naturales) o continua (el conjunto de números reales). Un ejemplo sería lanzar una moneda
cada día, donde T es aquí el conjunto de días en el que se realiza el lanzamiento. El resultado de cada
variable aleatoria dentro del proceso se puede considerar independientes de cada una, como el lanza-
miento que hemos mencionado antes, o dependientes.

1.3.1. Cadenas de Markov

Existen numerosas familias de procesos estocásticos, como los procesos gaussianos, de Poisson,
cadenas de Markov, etc. Todas las cadenas de Markov comparten una propiedad, la “Propiedad de



Aprendizaje y toma de decisiones bajo incertidumbre - Francisco Robledo 5

Markov”, según la cual la distribución de probabilidad del valor futuro de una variable aleatoria depende
únicamente de su valor en el presente, independientemente de sus valores en el pasado.

P(future|present, past) = P(future|present)

Por lo que, sea una cadena de Markov definida como X = (Xn)n∈N = (X0,X1,X2, . . .), donde en cada
instante de tiempo el proceso toma un valor discreto de un set de estados S tal que Xn ∈ S,∀n ∈ N, se
cumple:

P(Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X2 = x2,X1 = x1) = P(Xn+1 = xn+1|Xn = xn)

Obsérvese en primer lugar que la caracterización completa de un proceso aleatorio de tiempo dis-
creto que no verifique la propiedad de Markov puede ser engorrosa: la distribución de probabilidad en
un momento dado puede depender de uno o varios instantes de tiempo en el pasado y/o el futuro. To-
das estas posibles dependencias temporales hacen que cualquier descripción adecuada del proceso sea
potencialmente difícil.

Sin embargo, gracias a la propiedad Markov, la dinámica de una cadena de Markov es bastante fácil
de definir. De hecho, sólo necesitamos especificar dos cosas: una distribución de probabilidad inicial (es
decir, una distribución de probabilidad para el instante de tiempo T = 0) denotada

P(X0 = s) = q0(s) ∀s ∈ E

y una función de probabilidad de transición, que da las probabilidades de que un estado, en el
momento n+1, suceda a otro, en el momento n, para cualquier par de estados, definida como

P(Xn+1 = sn+1|Xn = sn) = p(sn,sn+1) ∀(sn+1,sn) ∈ ExE

1.3.2. Matrices de probabilidad de transición

A la hora de realizar un cambio de estado, el entorno pasa al agente de un estado S(t) a S(t +1) con
una determinada probabilidad, definida como:

Pss′ = P
[
St+1 = s′|St = s

]
(1.1)

Si consideramos todos los posibles pares ss′ del espacio de estados en el que se desarrolla el proble-
ma, podemos definir una matriz de probabilidad de transición de estados:

P =


p11 p12 p13 · · · p1n

p21 p22 p23 · · · p2n
...

...
...

. . .
...

pn1 pn2 pn3 · · · pnn

 (1.2)

Donde cada fila de la matriz representa la probabilidad de pasar desde el estado inicial al siguiente.
Por lo tanto, la suma de todos los elementos de cada fila es igual a 1.

Las matrices de probabilidad de transición nos permiten calcular las transiciones de un estado a otro
a lo largo de una cadena completa, gracias a la propiedad de Markov: Imaginemos que queremos calcu-
lar la probabilidad de llegar al estado 4 en T = 4 cuando en los tiempos anteriores T = {1,2,3} hemos
estado en los estados 1,2,3 respectivamente. Gracias a la propiedad de Markov podemos desarrollar
esta probabilidad como:

P4 = P [S4 = 4|S3 = 3,S2 = 2,S1 = 1] =

= P [S4 = 4|S3 = 3] ·P [S3 = 3|S2 = 2] ·P [S2 = 2|S1 = 1] =

= p34 · p23 · p12
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Donde en cada momento T , la probabilidad de pasar a un nuevo estado s′ solo depende del estado
presente s y no de los anteriores.

1.3.3. Procesos de recompensa de Markov: MRP

En la sección anterior hemos visto como los sistemas Markovianos están regidos por un conjunto
de estados y una matriz de probabilidad de transición entre estos estados. Sin embargo, como hemos
explicado en la sección 1.2, la recompensa obtenida en cada estado es fundamental para la obtención de
políticas óptimas en Reinforcement Learning. Para ello, introduciremos primero los Procesos de Re-
compensa de Markov (MRP): cadenas de Markov con valores de juicio. En estas cadenas, obtenemos
el valor de la recompensa de cada estado por el que pasa nuestro agente. Estas cadenas están definidas
como:

RS = E [Rt+1|St ] (1.3)

En este proceso Markoviano estamos calculando la recompensa inmediata RS que obtenemos para
un determinado estado St . Estos procesos de recompensa solo tienen en cuenta la recompensa que se
obtendrá en el siguiente paso. Sin embargo, en muchas ocasiones una política óptima implica unas
primeras acciones que, si bien a corto plazo pueden no dar las mejores recompensas, permiten acceder
a otros estados con recompensas que a largo plazo si que convierten a esa política en la mejor.

En función del tamaño de la cadena de Markov, se pueden considerar dos tipos distintos de “tareas”:

Tareas episódicas: Son problemas con un estado inicial y final bien definidos y que, por tanto,
tienen un número de estados finito antes de que termine el proceso. Un ejemplo de este tipo de
problemas es el de un coche autónomo, cuyo funcionamiento se limita a cada uno de los viajes
que realiza y, por tanto, su estado inicial es el inicio de este viaje y el final es su llegada a su
destinación. Una vez termina este proceso, se reinicia el problema, empezando con un nuevo
estado inicial s0 y sin tener en cuenta las recompensas obtenidas en el proceso anterior.

Tareas continuas: No existe una condición definida bajo la cual termine el proceso estocástico
y por lo tanto, si bien existe un estado inicial s0, no existe un estado final. El número de estados
puede ser, por lo tanto infinito. Un ejemplo de este tipo de problemas sería un termostato automá-
tico, capaz de regular la temperatura de la habitación con la finalidad de evitar que se tenga que
regular manualmente. No existe una condición bajo la cual este proceso termine y por lo tanto
puede seguir de forma indefinida un número indeterminado de estados.

En las tareas episódicas es sencillo considerar la recompensa total de cada estado de la cadena hasta
llegar al estado final, ya que ésta es finita. Sin embargo, en las tareas continuas las cadenas no son finitas.
Esto plantea varios problemas: ¿Cómo calculamos el retorno, la suma total de recompensas, como una
cantidad finita en un proceso infinito? ¿Qué peso debería tener una recompensa que se pueda obtener en
un futuro muy lejano en la toma de una acción en el presente? En la sección 1.3.4 estudiaremos métodos
para responder a estas preguntas.

1.3.4. Criterios de optimalidad

Antes de introducir formalmente las funciones de valor, es necesario discutir el concepto de opti-
malidad en Reinforcement Learning. Tal y como introdujimos en la sección 1.2, una política define la
actuación de un agente y, formalmente, es el mapeo de cada estado a la probabilidad de tomar cada
acción. Si un agente sigue una política π en un tiempo t, entonces π(a|s) es la probabilidad de que ese
agente realice la acción a en el estado s en ese instante. El objetivo en Reinforcement Learning es la
búsqueda de políticas que maximicen la recompensa obtenida por el agente a largo plazo, cantidad co-
nocida como retorno. Este retorno se define, por tanto, como la suma de las recompensas que obtiene un
agente al seguir una política π desde un estado inicial s0. En [18] proponen tres criterios de optimalidad:
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el criterio de horizonte finito, horizonte infinito descontado y recompensa promedio.

El criterio de horizonte finito (1.4) consideramos el valor esperado de la suma de todas las recom-
pensas de una cadena. Todas estas recompensas están evaluadas con el mismo peso, de modo que una
recompensa r tiene el mismo peso en el momento t que en un tiempo futuro t+ i. Este tipo de criterios es
empleado en las tareas episódicas, con un número determinado de transiciones T , donde la suma de un
conjunto de recompensas finitas produce una recompensa finita. Sin embargo, este tipo de optimalidad
no se puede aplicar en las cadenas continuas, ya que, aunque todas las recompensas sean finitas, la suma
de estas es infinita.

E

[
T

∑
t=0

rt

]
(1.4)

El criterio de horizonte infinito descontado (1.5) considera el efecto de todas las recompensas de la
cadena, incluso de las cadenas infinitas de las tareas continuas, empleando un término de descuento γ tal
que 0≤ γ < 1. Este término se denomina factor de descuento y modela el hecho de que nuestro proceso
estocástico no está seguro de si en la siguiente decisión el proceso puede o no terminar. Un ejemplo
de esto sería que nuestro problema de “decision making” fuese un robot, y por lo tanto, el factor de
descuento representa aquí la probabilidad de que el robot se desconecte en el instante siguiente. Este
término a su vez regula el peso del valor de las recompensas a largo plazo: una misma recompensa,
obtenida t iteraciones más tarde, tendrá un valor γ t más pequeño que si sucede en el presente.

E

[
∞

∑
t=0

γ
trt

]
(1.5)

Esta expresión nos permite calcular el retorno total de una cadena de Markov incluso cuando esta
es infinita. La demostración de esta convergencia es sencilla: Consideremos un Rmáx ≥ rt ∀s(t) ∈ S tal
que Rmáx < ∞:

∞

∑
t=1

γ
trt ≤

∞

∑
t=1

γ
tRmáx =

γ

1− γ
Rmáx < ∞

Lo cual se cumple siempre que 0 ≤ γ < 1. En las tareas episódicas, la condición γ < 1 no es necesaria
para la convergencia, aunque emplear γ = 1 sería equivalente a utilizar el criterio de horizonte finito
en este caso. Si empleamos γ = 0, nuestro agente es miope, es decir, solo considera las recompensas
inmediatas e ignora las recompensas futuras que pueda conseguir.

Este tipo de criterio de optimalidad es uno de los más empleados [18] y es el que emplearemos en
este trabajo.

El último tipo de criterio de optimalidad que veremos es la recompensa promedio (1.6). Este tipo
de criterio maximiza la recompensa promediada a largo plazo. En el caso anterior, cuando γ tiende a 1,
el resultado converge al de este tipo de criterio. El principal problema que conlleva este criterio es que
para cadenas infinitas, no podemos distinguir entre dos políticas en las que una reciba muchas recom-
pensas en las fases iniciales y en la otra no. Esta diferencia inicial se encuentra oculta por el promediado.

lı́m
T→∞

E

[
1
T

T

∑
t=0

rt

]
(1.6)

Como hemos visto previamente, la decisión de que tipo de criterio elegir depende especialmente del
tipo de problema a resolver: si se trata de una tarea episódica, el modelo de horizonte finito es el más
conveniente, mientras que para una tarea continua, el modelo de horizonte infinito descontado es mejor,
gracias a que asegura la existencia de, al menos, una política óptima estcionaria y determinsta, mientras
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que en los otros casos las políticas óptimas generalmente dependen del instante temporal, de modo que
no son estacionarias [19].

1.3.5. Procesos de decisión de Markov

En las secciones anteriores hemos introducido el papel de las recompensas en las cadenas de Markov
y como calcular el retorno total incluso en cadenas infinitas. Sin embargo, para poder definir una política
dada, es necesario que el agente sea capaz de decidir una acción en cada nuevo estado en el que se
encuentre. Estas acciones entran en el marco de los procesos de Markov en la forma de Procesos de
Decisión de Markov o MDP: procesos de recompensas de Markov como los descritos en la sección
1.3.3 en los que se realizan acciones. Estas acciones pueden afectar la recompensa y al estado al que
avanza el agente. Bajo este paradigma, las matrices de transición y las funciones de recompensa reciben
una nueva dependencia con la variable de acción:

Pa
ss′ = E

[
St+1 = s′|St = s,At = a

]
Ra

S = E [Rt+1 = R|St = s,At = a]

Bajo estas nuevas dependencias, la matriz de transición y la recompensa puede variar en función de
la acción a que se tome. Por otro lado, siempre podemos recuperar un proceso de Markov o una MRP a
partir de un proceso de decisión de Markov: Sea un MDP formado por la tupla (S,A,P,R) y una política
π , la secuencia de estados S1,S2, . . . es un proceso de Markov (S,P) bajo una política determinada π .
De la misma forma, la secuencia (S1,R1),(S2,R2), . . . es una MRP formada por la tupla (S,P,R) cuya
matriz de transición de estados es

Pπ

ss′ = ∑
a∈A

π(a|s)Pa
ss′

Las distintas acciones que se realiza en MDP en función de los estados definen las políticas π

de estos procesos. En la siguiente sección, discutiremos como evaluar estas políticas y definiremos la
política óptima: la política con el mayor retorno posible.

1.3.6. Funciones de valor y ecuación de Bellman

En la sección 1.2 introdujimos el concepto de “función de valor”: se trata de una estimación de la
“bondad” de un agente dado en función de su política a largo plazo, en función del conjunto de recom-
pensas que consigue al realizar varias acciones en varios estados. Sin embargo, aquí debemos realizar la
distinción de dos tipos de funciones de valor: la función V , que estima la bondad de estar en un estado,
y la función Q, referida comúnmente como Q-value, que estima la bondad de realizar una acción en
un estado. De esta manera, la función V será solo función del estado en el que nos encontremos, V (s),
mientras que la función Q dependerá tanto del estado como de la acción, Q(s,a).

El valor de un estado s bajo una política π , denotada V π(s), es el retorno esperado, partiendo de
un estado s y siguiendo una política π . Empleando el criterio del horizonte infinito descontado (1.5),
podemos expresar esta función como:

V π(s) = Eπ

{
∞

∑
k=0

γ
krt+k|st = s

}
(1.7)

Por otro lado, la función de valor acción-estado está definida como el retorno obtenido al empezar
desde un estado s, efectuando una acción a y continuando con una política π:

Qπ(s,a) = Eπ

{
∞

∑
k=0

γ
krt+k|st = s,at = a

}
(1.8)
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La principal característica de este tipo de funciones es su capacidad de escribirse de forma recursiva
[20]:

V π(s) = Eπ

{
rt + γrt+1 + γ

2rt+2 + · · · |st = s
}

= Eπ {rt + γV π(st+1)|st = s}
= ∑

a
π(a|s)∑

s′
Pπ(s,s′)

[
r+ γV π(s′)

] (1.9)

Donde Pπ(s,s′) es la probabilidad de transición de un estado s a un estado s′ bajo la política π , tal y
como hemos discutido en la sección 1.3.5 y R(s,a,s′) es la recompensa obtenida al realizar la acción a
para pasar de un estado s a un estado s′.

El objetivo para cualquier cadena de Markov en Reinforcement Learning es realizar la mejor polí-
tica π , es decir, aquella que maximice la recompensa bajo un criterio de optimalidad dado. Se define
política óptima π∗ a aquella cuya función de valor V π∗(s) ≥ V π(s) para todos los estado s del espacio
de estados S y para todas las políticas π . La expresión óptima de la ecuación (1.9) satisface:

V π∗ = máx
a∈A

∑
s′∈S

Pa(s,s′)
(

R(s,a,s′)+ γV π∗(s′)
)

(1.10)

Esta ecuación, llamada Ecuación de optimalidad de Bellman, expresa la relación entre el valor de
un estado y los valores de los estados siguientes y establece que el valor de un estado bajo una política
óptima debe ser igual al retorno esperado para la mejor acción en ese estado. Por lo tanto, una acción
óptima, dada una función de valor óptima V ∗ =V π∗ es:

π
∗(s) = argmax

a
∑
s′∈S

Pa(s,s′)
(
R(s,a,s′)+ γV ∗(s′)

)
(1.11)

Mientras que una acción greedy elige solamente aquella acción que maximiza la recompensa a un
solo paso, es decir, que maximiza P(s,s′)R(s,a,s′) en una única transición s→ s′, la política óptima π∗

maximiza el conjunto de todas las futuras decisiones.
De forma análoga, para la función acción-estado Q, tenemos:

Q∗(s,a) = ∑
s′

Pa(s,s′)
(

R(s,a,s′)+ γ máx
a′

Q∗(s′,a′)
)

(1.12)

A partir de las definiciones de las funciones Q(s,a) y V (s), podemos ver una relación entre ambas:
La función de valor Q(s,a) establece de forma explícita el parámetro de acción a en la función V (s). Es
por ello que, siguiendo una política π , la relación entre Qπ y V π es:

V π(s) = ∑
a∈A

π(a|s) ·Qπ(s,a) (1.13)

Es decir, sumamos los valores de los pares acción-estado por la probabilidad de tomar una acción a
en un determinado estado s, a partir de la política π .

Los diagramas de la imagen 1.5 muestran los tramos de los futuros estados y acciones consideradas
para las ecuaciones de Bellman (1.10) (a la izquierda) y (1.12) (a la derecha). Cada circulo blanco re-
presenta un estado y cada círculo negro representa un par acción-estado. En el diagrama de la izquierda,
partiendo del estado s, el agente evalúa cada una de las acciones y toma la óptima a partir de su política
π . A partir de esta acción, el entorno puede responder con varios nuevos estados s′ con una recompensa
r definida para cada estado, en función de la dinámica del problema. Por otro lado, en el diagrama de la
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Figura 1.5: Diagramas para las funciones V ∗ y Q∗.

derecha, a partir del par acción-estado, pasa a un nuevo estado s′ con recompensa r, desde el cual elige,
a partir de su política π , la acción óptima a′.

Para las cadenas de Markov finitas, la ecuación de Bellman para V ∗ (1.10) tiene una solución única.
La ecuación de optimización de Bellman es en realidad un sistema de ecuaciones, una para cada estado,
de modo que si hay n estados, entonces existen n ecuaciones con n incógnitas. Si se conoce la dinámica
del entorno, se puede resolver este sistema de ecuaciones para V ∗ utilizando cualquiera de los diversos
métodos para resolver sistemas de ecuaciones no lineales. Una vez calculado V ∗, es sencillo determinar
la política óptima: para cada estado s siempre habrá una o mas acciones a que maximicen la ecuación
de optimalidad de Bellman, de modo que cualquier política que asigne una probabilidad no nula solo
a estas acciones es una política óptima. De esta forma, partiendo de la función de valor óptima V ∗, la
mejor acción en el siguiente paso será la acción óptima. Este tipo de políticas se denominan greedy, ya
que seleccionan acciones basadas en consideraciones inmediatas, sin tener en cuenta la posibilidad de
que esa acción no permita acceder a recompensas mejores en el futuro.

Por otro lado, elegir acciones óptimas con Q∗ es mucho más eficaz: en este caso, el agente no
realiza una búsqueda en el paso temporal siguiente, como ocurre con V ∗, sino que para cada estado s,
simplemente busca la acción que maximice Q∗(s,a). Esta función de valor no solo nos da el resultado
óptimo para el siguiente paso temporal, sino para todas las futuras transiciones, ya que provee con el
retorno óptimo esperado en cada par acción-estado.



Capítulo 2

Política de índices en Reinforcement
Learning

2.1. Introducción al índice de Gittins e índice de Whittle

Dentro de las familias de problemas de Decisión Markovianos, existen dos de especial interés en
Reinforcement Learning: el “Multi-Armed Bandit Problem” (MABP) y “Restless Multi-Armed Bandit
Problem” (RMABP). En estos problemas el Bandido es un término genérico para referirse a un solo
proceso de Markov, con un espacio de estados S y de acciones A. De esta forma, este tipo de problemas
plantea un nuevo paradigma con respecto al introducido en el capítulo 1: la gestión de múltiples procesos
estocásticos, o bandidos, simultáneamente.

En el “Multi-Armed Bandit Problem”, consideramos N procesos de Markov simultáneos en los que
se pueden considerar dos posibles acciones: activar el proceso (a = 1) o mantenerlo pasivo (a = 0).
En este caso, de los N procesos, solo uno puede establecerse como activo en cada momento mientras
que el resto deben mantenerse pasivos. A su vez, solamente el proceso activo puede cambiar de estado
y obtener una recompensa por ello, mientras que los estados pasivos se mantienen “congelados”, sin
cambios de estado ni recompensas. Este tipo de problema se puede considerar como un problema de
“asignación”. Uno de los primeros trabajos en intentar plantear una solución para este problema surgió
en 1960 [21] con el objetivo de diseñar modelos matemáticos que definieran “políticas de parada”, es
decir, sistemas que se mantuviesen “activos” hasta que estarlo dejara de ser rentable. Sin embargo, no
fue hasta los años 70 en el que Gittins y sus colaboradores obtuviesen la solución óptima para este
problema [22]. En ella, plantean una nueva variable, el índice de Gittins λ (s) ∈ R,∀s ∈ S, tal que la
política óptima para el problema de asignación es elegir el bandido i tal que

it = argmax
i∈{1,...,n}

{λi(si)}

Es decir, en cada momento t, activar el bandido i tal que el índice λ de ese bandido en el estado s fuese
el mayor con respecto al resto de bandidos. Gittins partió del concepto de tiempo de parada, similar al
planteado en [21] para diseñar los índices:

λi(si) = sup
τ>0

E
[
∑

τ−1
t=0 γ tri(si(t))|si(0) = si

]
E
[
∑

τ−1
t=0 γ t |si(0) = si

] (2.1)

Donte τ es el tiempo de parada del proceso de Markov, es decir, el momento en el que este proceso pa-
saría de ser “activo” a “pasivo” y en el numerador tenemos la recompensa descontada hasta el momento
τ , empleando el criterio de optimalidad de “horizonte infinito descontado” introducido en la sección
1.3.4 y en el denominador el tiempo descontado hasta el momento τ . Por lo tanto, λi(si) es la máxima
recompensa por unidad de tiempo, la “densidad de recompensa”.

11
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Por otro lado, en el segundo problema, el “Restless Multi-Armed Bandit Problem”, plantea una
generalización de los MABP: en este caso, consideramos que podemos activar en cada momento K < N
bandidos de modo que estos bandidos activos cambian de estado y obtienen recompensas acorde. La
diferencia con respecto al primer caso, además del generalizar el número de bandidos que podemos
activar, es el hecho de que aquellos bandidos que se encuentran “pasivos” también pueden cambiar
de estado, con una dinámica distinta a la de los bandidos “activos” y con una función de recompensa
distinta. Si bien el problema del Multi-Armed Bandit es un caso particular del Restless Multi-armed
Bandit Problem, no fue hasta 1988 en el que Whittle [6] desarrolló una política de índices similar a la
de Gittins capaz de gestionar este problema. Este cálculo requiere del conocimiento total de las matrices
de transición del sistema y, por tanto, de la dinámica del problema. Para la mayoría de las aplicaciones
prácticas, tales como la gestión de la programación de tareas en cloud computing [2], detección de
canales en comunicaciones [3], sistemas de salud [4] o en la dinámica de la fijación de precios [5], esta
situación no se suele dar por parte de los controladores de los sistemas.

Q-learning, desarrollado por Watkins en 1989[23], es uno de los métodos “model free” clásicos
más empleados en el campo de Reinforcement Learning. Se trata de un algoritmo capaz de generar una
política que pueda de gestionar cambios de estados y recompensas, en la que se controlan las acciones
que toma un agente. Tal y como demuestran en [24], Q-learning es apto de alcanzar una política óptima
maximizando la recompensa descontada en el horizonte infinito. Emplearemos este técnica para obtener
un análisis del comportamiento del sistema con el que calcular los índices.

En la siguiente sección, analizaremos en detalle esta política y su implementación en nuestro trabajo.

2.2. Índices de Whittle para familias de cadenas de Markov

Sea una cadena de Markov en un espacio de estados finito S = {1,2, . . . ,d}, con un espacio de
acciones definido como A = {0,1} y unas probabilidades de transición p(i,a, j) que representen la
probabilidad de transición del estado i al estado j realizando la acción a, con i, j ∈ S y a ∈ A. Dado
que estas cadenas son cerradas, desde cualquier estado i la suma de las probabilidades de transición a
todos los posibles estados j suman 1, satisfaciendo entonces ∑ j p(i,a, j) = 1. Este espacio de acciones
es binario y tiene la interpretación de activar o dejar pasivo ese proceso estocástico.

Consideremos ahora N procesos estocásticos, todos ellos con el mismo espacio de estados S y con
las matrices de transición P1,P0 ∈ [0,1]|S|×|S| en función de si tomamos una acción “activa” (a = 1)
o “pasiva” (a = 0). Dado que tenemos N procesos estocásticos distintos sucediendo al mismo tiempo,
definiremos S(t) = (sn(t) : n ∈ [N]) y A(t) = (an(t) : n ∈ [N]) como el vector de estados y acciones que
realizan los N bandidos en un momento determinado t.

En cada instante t, activamos siempre K ≤ N proyectos de modo que

∑
n∈[N]

A(t) = K (2.2)

Es decir, dado que an(·) = 1 indica que el bandido n está activo, mientras que los bandidos pasivos
están representados como an(·) = 0, se cumple que para cada instante t, la suma de todos los valores del
vector A(t) es igual al número de bandidos activos K.

Sin embargo, la condición (2.2) es demasiado restrictiva como para que pueda resolverse este proble-
ma fácilmente. La propuesta de Whittle [6] para resolver esto fue una versión relajada de esta condición,
sustituyendo la necesidad de que se cumpla ‘en cada instante de tiempo’ a solo ‘en promedio’:

lı́minf
n↑∞

1
n
E

[
n−1

∑
m=0

Am

]
= M (2.3)

Bajo esta condición más relajada, el problema puede resolverse siempre y cuando cumpla la con-
dición de indexabilidad [6] [25]. Para explicar esta condición, consideremos primero un proceso de
Markov de un solo bandido, con unas probabilidades de transmisión Pa,b. En cada instante de tiempo,
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se pueden realizar dos acciones posibles a ∈ {0(pasivo),1(activo)}. Bajo este sistema, consideraremos
un subsidio por pasividad, donde las recompensas de las acciones pasivas cuentan con un añadido λ , es
decir:

R(s) =

{
R1(x) a = 1 activo
R0(x)+λ a = 0 pasivo

Bajo este nuevo sistema, la función de valor de la ecuación (1.10) pasaría a ser:

V (s) = máx

(
R1(s)+ γ ·∑

j
p(k,1, j)V ( j), R0(s)+λ + γ ·∑

j
p(k,0, j)V ( j)

)
(2.4)

= máx
a∈{0,1}

[
u

(
R1(s)+ γ ·∑

j
p(k,1, j)V ( j)

)
+(1−u)

(
R0(s)+λ + γ ·∑

j
p(k,0, j)V ( j)

)]
(2.5)

De esta forma, la acción activa es óptima cuando R1(s)+γ ·∑ j p(k,1, j)V ( j) es el máximo mientras
que la acción pasiva será óptima si R0(s)+λ + γ ·∑ j p(k,0, j)V ( j) es máximo.

A partir de la relación entre las funciones de valor de estado V (s) y de acción-estado Q(s,a) definida
en (1.13), podemos calcular los Q-value de la función de acción-estado Q(s,a) como:

Q(s,a) = a

(
R1(s)+ γ ·∑

j
p(k,1, j)V ( j)

)
+(1−a)

(
R0(s)+λ + γ ·∑

j
p(k,0, j)V ( j)

)
(2.6)

Sea Π(λ ) el subconjunto de estados s ∈ S en los que la acción pasiva es óptima bajo el subsidio λ ,
es decir

Π(λ ) =

{
s ∈ S : R0(s)+λ + γ ·∑

j
p(k,0, j)V ( j)≥ R1(s)+ γ ·∑

j
p(k,1, j)V ( j)≥V ( j)

}

Un bandido formado por la tupla (S,A,P,R,γ) es indexable si Π(λ ) es creciente en λ , es decir

λ1 ≥ λ2⇒Π(W1)⊇Π(W2) (2.7)

Por lo tanto, un bandido es indexable si a medida que aumentamos el nivel de subsidio pasivo, también
lo hace el número de estados para el cual esa acción es óptima.

Por otro lado, sea un bandido (S,P1,P0,R1,R0,γ) indexable, su índice de Whittle g : S→ R está
definido como:

g(s) = ı́nf{λ : s ∈Π(λ )},s ∈ S (2.8)

Es decir, de todos los posibles subsidios λ que se podrían aplicar al estado s para que este pasara a
formar parte del conjunto Π(λ ), el índice de Whittle g(s) es el valor mínimo de λ capaz de hacer esto.

Por lo tanto, para un valor de λ determinado, la recompensa obtenida por activar o no ese bandido
es exactamente la misma. Con valores de λ mayores, la política óptima sería dejarlo pasivo, ya que sería
la acción con mayor recompensa según la ecuación (2.4), mientras que para valores menores, la acción
óptima sería activar el bandido. Es por ello que el valor g(s), que delimita la rentabilidad entre ambas
acciones, actúa como un índice para cada estado, definiendo así su prioridad a la hora de activar ese
bandido o no. Para el caso frontera entre ambas acciones, este valor λ = g(si) actúa como la diferencia
de rentabilidad entre ambas acciones, es decir:

g(s) =

(
R1(s)+ γ ·∑

j
p(k,1, j)V ( j)

)
−

(
R0(s)+ γ ·∑

j
p(k,0, j)V ( j)

)
= Q(s,1)−Q(s,0) (2.9)
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A través de la heurística del índice de Whittle, si un restless bandit es indexable con gi : Si→ R
el índice de Whittle para el bandido i,1 ≤ i ≤ N opera de tal manera que en cada iteración aplicamos
la acción activa a los K bandidos con el mayor índice Wi(si(t)) y la acción pasiva a los N−K bandidos
restantes.

Bajo la condición relajada (2.3), Whittle [6] demostró que esta heurística era óptima. Esta aproxima-
ción, sin embargo, en el problema original con (2.2) es cuasióptima, es decir, si bien es una política con
un retorno muy alto, no es óptimo como en el caso de Q-learning. Sin embargo, la gran ventaja de esta
heurística es la capacidad de reducir la complejidad del problema de ser exponencial con N a ser solo
lineal con este [6]. Empleando la heurística original de Q-learning, a partir de un número relativamente
pequeño de bandidos, incluso con un espacio de estados limitado, el problema se vuelve demasiado exi-
gente computacionalmente. Es aquí donde radica la potencia de estas políticas de índices: la capacidad
de subdividir el espacio de estados de un MDP que crece exponencialmente con el número de bandidos
en múltiples cadenas individuales de Markov, donde el espacio de estados total crece linealmente con
este numero de bandidos, evitando así la “maldición de la dimensionalidad” presente en el primer caso.

En nuestro trabajo, calcularemos los términos Q(s,a) y g(s) para obtener una política óptima. Como
podemos ver en las ecuaciones (2.6) y (2.9), los términos Q(s,a) y g(s) se encuentran acoplados, de tal
manera que para calcular uno necesitamos los valores del otro. Con el fin de desacoplar este sistema y
poder calcular fácilmente estos índices, a la vez que introducir unas condiciones de convergencia para el
cálculo numérico de éstos, emplearemos una aproximación adiabática, donde el cálculo del índice g(s)
se realiza en una escala más lenta que la de Q(s,a). Este tipo de aproximaciones son comunes en física
y química molecular [26] [27] [28], donde se pretende desacoplar sistemas de ecuaciones diferenciales,
en estos casos referidos a la dinámica de los electrones y los núcleos de los átomos. De la misma forma
que para los electrones el movimiento del núcleo de los átomos es tan lento que se considera estático
[29], de cara a la variable Q(s,a), el índice g(s) será cuasi-estático.

2.3. Q-learning

2.3.1. Cálculo iterativo de los Q-values iterativo

Como hemos visto en la sección 1.3.6, la principal característica de la función de valor acción-
estado, también llamado Q-value, es la capacidad de evaluar no solamente la “bondad” del siguiente
paso temporal, como ocurre con la función V (s) que sigue una política greedy, sino que es capaz, en
cada estado, de evaluar los futuros estados siguiendo una misma política π . Para hacer esto, el algoritmo
no necesita saber de antemano la dinámica del sistema y las matrices de transición, sino a partir de la
interacción con el entorno. Este método fue introducido en 1989 por Watkins [23] a través de la siguiente
fórmula:

Q(st ,at)← Q(st ,at)+α

[
Rt+1 + γ máx

a
Q(st+1,a)−Q(st ,at)

]
(2.10)

En este caso, la función aprende el Q-value del par acción-estado st ,at de forma iterativa, empleando
un tamaño de paso 0 < α < 1. En este modelo de aprendizaje, no necesitamos conocer explícitamente
la política π , sino solamente simular el cambio de estado al realizar una acción a desde el estado s.
A través de este método, se ha demostrado [30] la convergencia del Q-value Q(s,a) a su valor óptimo
Q∗(s,a).

En este esquema introducimos el concepto de política de control ε-greedy. Analizaremos este con-
cepto en detalle en la sección 3.2. Por ahora, nos basta con aclarar que se trata de una política empleada
para elegir que acciones realizar para cada estado S del entrenamiento que asegura una cierta diversidad,
de modo que tengamos experiencia suficiente sobre todos los pares acción-estado.

Una de las principales condiciones de convergencia [31] que debe cumplir Q-learning está relacio-
nado con el tamaño de los pasos α . Para garantizar la convergencia, {α} debe decrecer con respecto al
número de pasos n como ∑

∞
n α(n) = ∞ y ∑

∞
n α(n)2 < ∞. Detallaremos la demostración completa de la

convergencia al valor óptimo en la sección 3.2.1



Aprendizaje y toma de decisiones bajo incertidumbre - Francisco Robledo 15

P a r á m e t r o s d e l a l g o r i t m o : tamaño de paso 0 < α ≤ 1 , ε pequeño
I n i c i a l i z a m o s Q( s , a ) p a r a t o d o s l o s s ∈ S y a ∈ A a r b i t r a r i a m e n t e

Bucle p a r a cada e p i s o d i o :
I n i c i a l i z a m o s S
Bucle p a r a cada paso en e l e p i s o d i o :

E l e g i r a c c i ó n A p a r a e l e s t a d o S a p a r t i r de una p o l í t i c a de c o n t r o l
( ε− gr ee dy )

R e a l i z a r a c c i ó n A, o b t e n e r recompensa R y nuevo e s t a d o S ’
Q(S,A)← Q(S,A)+α [R+ γ máxa Q(S′,a)−Q(S,A)]
S← S′

R e p e t i r h a s t a que S s e a e l ú l t i m o e s t a d o d e l e p i s o d i o

Figura 2.1: Esquema de aprendizaje por Q-learning

2.3.2. Q-learning con política de índices

En la sección anterior hemos visto el algoritmo general para el cálculo iterativo de los Q-values
a través de la interacción con el entorno. A continuación, introduciremos las nociones de políticas de
índices planteadas en la sección 2.2 para generar una nueva expresión combinando las ecuaciones (2.6)
y (2.10).

En la ecuación (2.10) actualizamos el valor de cada Q-value para cada par acción-estado como una
combinación lineal entre el valor original y un nuevo término Rt+1+γ máxa Q(st+1,a). En nuestro nuevo
algoritmo, introducimos la posibilidad de obtener o no un subsidio extra en forma del índice de Whittle
g(st) en función de si la acción a que realizamos es pasiva o activa:

Qx
n+1(st ,at)← Qx

n(st ,at)+α(n)
[
(1−at)(R0(st)+gn(x))+atR1(st)+ γ máx

v∈{0,1}
Qx

n(st+1,v)−Qx
n(st ,at)

]
(2.11)

En esta expresión, calculamos el Q-value del par acción/estado at ,st en la iteración n+ 1 a partir
de su valor en la iteración n, su recompensa, sea esta R1(st) si la acción es activa o R0(st)+gn(x) si es
pasiva y el mayor Q-value de entre las dos acciones posibles para el siguiente estado.

En la ecuación (2.11) introducimos el índice de Whittle gn(x) para el estado x ∈ S, donde ser activo
o pasivo es igualmente deseable. En nuestro proceso de Q-learning utilizamos dos variables de estado:
por un lado, st representa el estado siendo visitado por el agente que es el bandido en cada iteración,
mientras que x es una “prospección” a todos los posibles estados del conjunto S. Para el valor actual de
st , calculamos Qx

n+1(st ,ut) para todos los posibles valores de x.

En la ecuación (2.11) introducimos el uso del índice de Whittle gn(x). Este índice se debe actua-
lizar a lo largo de las n iteraciones en las que se entrena nuestro algoritmo simulando nuevos estados
y recompensas a través del proceso de Q-learning. Sin embargo, debido al acoplamiento entre los Q-
value y estos índices, es difícil garantizar la convergencia actualizando ambos al mismo tiempo. Para
ello, implementamos una segunda escala de tiempo en la cual calculamos estos índices. Esta escala de
tiempo irá más lenta que la escala normal, en la que actualizamos los valores de los Q-values con (2.11),
de tal manera que en el cálculo de los Q-value, los índices de Whittle se considerarán cuasi-estáticos
ya que estos se actualizan mucho menos a menudo. Para esto, introducimos otra secuencia de tamaños
de paso {β (n)} que, al igual que con {α(n)}, satisface ∑

∞
n β (n) = ∞ y ∑

∞
n β (n)2 < ∞. Combinando las

actualizaciones iterativas de (2.10) con la fórmula de los índices (2.9), obtenemos la siguiente expresión:

gn+1(x) = gn(x)+β (n)(Qx
n(x,1)−Qx

n(x,0)) (2.12)
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Los tamaños de paso α(n) y β (n) tienen ambos que cumplir las condiciones de convergencia que
hemos descrito antes, y al mismo tiempo permitir que el índice g(x) se actualice en una escala de
tiempo más lenta que la del cálculo de Qx(st ,ut). Trabajos previos [31] han dado como resultado el
empleo de las siguientes secuencias de tamaños de paso, con características vitales para la convergencia
del algoritmo que discutiremos en detalle en el capítulo 3.2.1:

α(n) =
1
d n

500e
(2.13a)

β (n) =
1

1+ dn logn
500 e

I{n(modN)≡ 0} (2.13b)

Donde β (n) 6= 0 solamente en aquellas iteraciones n que sean múltiplo del número de bandidos
presentes en el problema, N. Por lo tanto, cuanto mayor sea el número de bandidos empleados, mayor
diferencia habrá entre ambas escalas de tiempo.



Capítulo 3

Cálculo de los índices de Whittle

3.1. Valor teórico de los índices de Whittle

Antes de proceder a realizar el cálculo numérico de los índices de Whittle, primero calcularemos
el valor teórico de estos índices para dos casos distintos. Primero, consideraremos uno de “dinámica
circular”, en el que los bandidos se mueven a través de una cadena de estados en la que al llegar a un
extremo, pasan a estar en el extremo opuesto. El segundo problema que exploraremos es el “problema
con reinicio”, donde los bandidos pueden avanzar un estado o volver al primer estado de la cadena.

3.1.1. Dinámica circular

En el caso de la dinámica circular, consideraremos un espacio de estados S = {1,2,3,4} donde las
matrices de transición de estados para la acción activa (u = 1) y pasiva (u = 0) son:

P0 =


1/2 0 0 1/2
1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

 P1 =


1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2



Es decir, tomando una acción pasiva en un estado s, el bandido tiene 50% de probabilidades de
permanecer en ese estado y un 50% de retroceder al estado s−1. Si ese estado es el estado 1, retroceder
supondría pasar al estado 4. Análogamente, tomando una acción activa, el bandido tendría un 50% de
probabilidades de permanecer en ese estado y un 50% de avanzar al estado siguiente, donde, en caso de
estar en el estado 4, pasaría al estado 1.

Figura 3.1: Visualización de la dinámica de los bandidos en el problema de la dinámica circular, para la
acción activa (a) y pasiva (b)

La recompensa en este modelo no depende de la acción que tomen los bandidos, sino únicamente del
estado en el que esté, y está definida como R(1) = −1,R(2) = 0,R(3) = 0,R(4) = 1. Estudios previos

17



18 Capítulo 3. Cálculo de los índices de Whittle

[32], empleando el criterio de recompensa media en el horizonte infinito (ecuación (1.6)), demostraron
que los índices de Whittle convergían a los valores g(1) =−1/2,g(2) = 1/2,g(3) = 1 y g(4) =−1: El
algoritmo prioriza activar aquellos bandidos que se encuentren en el estado 3 por encima de cualquier
otro, ya que en caso de avanzar a un estado, pasaría al 4 con recompensa R(4) = 1. Por otro lado, el
último bandido que activaría sería aquel en el estado 4 ya que, de hacerlo, este podría pasar al estado 1
con recompensa R(1) =−1.

Estos valores exactos de los índices dependen del criterio de “optimalidad” empleado. En nuestro
caso, con el criterio de recompensa descontada en el horizonte infinito de tiempo, el valor de estos
índices dependerá del parámetro de descuento γ empleado. Sin embargo, en el límite γ → 1, nuestros
valores deberían converger a los aquí citados previamente. Lo que debería permanecer igual, en cual-
quier caso, es el orden de estos índices, es decir: primero activar el estado 3, luego 2, el 1 y por último el
4. Siguiendo con esa intuición, podemos calcular los índices de Whittle para el criterio de recompensa
descontada enpleando las ecuaciones (2.4) y (2.9), activando secuencialmente los estados en el mismo
orden que el citado previamente.

Estado 3: Empezamos con todos los estados pasivos. En la ecuación (2.4) todos los valores de
V (s) utilizarán el valor pasivo con el índice λ . El sistema de ecuaciones es:

λ (3) = R1(3)+ γ

(
1
2

V (3)+
1
2

V (4)
)
−R0(3)− γ

(
1
2

V (3)+
1
2

V (2)
)
=

γ

2
(V (4)−V (2))

V (1) = R0(1)+λ + γ

[
1
2

V (1)+
1
2

V (4)
]

V (2) = R0(2)+λ + γ

[
1
2

V (2)+
1
2

V (1)
]

V (3) = R0(3)+λ + γ

[
1
2

V (3)+
1
2

V (2)
]

V (4) = R0(4)+λ + γ

[
1
2

V (4)+
1
2

V (3)
]

(3.1)

Este sistema de ecuaciones se puede resolver fácilmente expresándolo como una ecuación matri-
cial de la forma: 

V 1
V 2
V 3
V 4

=


γ/2 0 0 γ/2
γ/2 γ/2 0 0
0 γ/2 γ/2 0
0 0 γ/2 γ/2




V 1
V 2
V 3
V 4

+


−1+λ

λ

λ

1+λ




1−λ

−λ

−λ

−1−λ

=


γ/2−1 0 0 γ/2

γ/2 γ/2−1 0 0
0 γ/2 γ/2−1 0
0 0 γ/2 γ/2−1




V 1
V 2
V 3
V 4


(3.2)

Resolviendo para V 1,V 2,V 3 y V 4, y despejando en el término λ (3) de la ecuación (3.1) obtene-
mos el valor del índice de Whittle para el estado 3 en función del término de descuento γ:

λ (3) =
γ

γ2−2γ +2
= g(3) (3.3)

Estado 2: Ahora el estado 3 se encuentra activo, mientras que el resto de estados siguen pasivos.
El sistema de ecuaciones de nuestro sistema es ahora:
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λ (2) = R1(2)+ γ

(
1
2

V (2)+
1
2

V (3)
)
−R0(2)− γ

(
1
2

V (2)+
1
2

V (1)
)
=

γ

2
(V (3)−V (1))

V (1) = R0(1)+λ + γ

[
1
2

V (1)+
1
2

V (4)
]

V (2) = R0(2)+λ + γ

[
1
2

V (2)+
1
2

V (1)
]

V (3) = R1(3)+ γ

[
1
2

V (3)+
1
2

V (4)
]

V (4) = R0(4)+λ + γ

[
1
2

V (4)+
1
2

V (3)
]

(3.4)

Al igual que en el caso anterior, resolviendo este sistema de ecuaciones nos da el valor del índice
de Whittle del estado 2 en función del descuento γ:

λ (2) =
γ

2
= g(2) (3.5)

Estado 1: Ahora se encuentran activos los estados 2 y 3, mientras que siguen pasivos los estados
1 y 4. El sistema de ecuaciones es:

λ (1) = R1(1)+ γ

(
1
2

V (1)+
1
2

V (2)
)
−R0(1)− γ

(
1
2

V (1)− 1
2

V (4)
)
=

γ

2
(V (2)−V (4))

V (1) = R0(1)+λ + γ

[
1
2

V (1)+
1
2

V (4)
]

V (2) = R1(2)+ γ

[
1
2

V (2)+
1
2

V (3)
]

V (3) = R1(3)+ γ

[
1
2

V (3)+
1
2

V (4)
]

V (4) = R0(4)+λ + γ

[
1
2

V (4)+
1
2

V (3)
]

(3.6)

Resolviendo para los valores de V 1,V 2,V 3 y V 4 y despejando en λ (1), obtenemos:

λ (1) =
−γ

2
= g(1) (3.7)

Estado 4: Todos los estados se encuentran activos menos el estado 4. El sistema de ecuaciones
que describe este sistema es:
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λ (4) = R1(4)+ γ

(
1
2

V (4)+
1
2

V (1)
)
−R0(4)− γ

(
1
2

V (4)+
1
2

V (3)
)
=

γ

2
(V (1)−V (3))

V (1) = R1(1)+ γ

[
1
2

V (1)+
1
2

V (2)
]

V (2) = R1(2)+ γ

[
1
2

V (2)+
1
2

V (3)
]

V (3) = R1(3)+ γ

[
1
2

V (3)+
1
2

V (4)
]

V (4) = R0(4)+λ + γ

[
1
2

V (4)+
1
2

V (3)
]

(3.8)

Resolviendo este sistema de ecuaciones, obtenemos el índice del estado 4 en función del factor
de descuento γ:

λ (4) =
−γ

γ2−2γ +2
= g(4) (3.9)

Si realizamos el límite de los índices para γ → ∞, vemos como todos estos convergen a los valores
calculados en [32].

Figura 3.2: Valor de los índices de Whittle para el modelo de dinámica circular en función del factor de
descuento γ

3.1.2. Problema con reinicio

Para el siguiente caso, consideraremos un espacio de estados S = {1,2,3,4,5} con dos posibles
acciones: pasivo (u = 0), donde el bandido tendrá un 90% de probabilidades de avanzar un estado y
un 10% de permanecer en el mismo y activo (u = 1), donde el bandido vuelve al estado inicial con
probabilidad 1. Las matrices de transición de estos procesos son:
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P0 =


1/10 9/10 0 0 0
1/10 0 9/10 0 0
1/10 0 0 9/10 0
1/10 0 0 0 9/10
1/10 0 0 0 9/10

 P1 =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0



Figura 3.3: Visualización de la dinámica de los bandidos en el problema del reinicio, para la acción
activa (a) y pasiva (b)

A diferencia del caso anterior, consideraremos recompensas diferentes en función de la acción que
tomemos. De esta forma, si un bandido pasa a estar activo, su recompensa siempre será 0, mientras que
si es pasivo su recompensa será R0(k) = ak, con k el número del estado, y donde tomaremos a = 0,9.
Este problema tiene un especial interés ya que los estados más elevados son mucho menos visitados
durante el entrenamiento del algoritmo, lo cual dificulta el proceso de aprendizaje.
Los índices de Whittle de este sistema, empleando el criterio de recompensa media en el horizonte infini-
to (ecuación (1.6)) han sido estudiados previamente en [33], obteniendo los valores g(1) =−0,9,g(2) =
−0,73,g(3) =−0,5,g(4) =−0,26 y g(5) =−0,01 . Con nuestro criterio de “optimalidad”, los valores
de los índices dependerán del factor de descuento γ , aunque el orden de activación de los estados será
el mismo. Por lo tanto, igual que en el apartado 3.1.1, calcularemos el valor teórico de estos índices
empleando las ecuaciones (2.4) y (2.9) activando los bandidos en el orden 5→ 4→ 3→ 2→ 1.

Estado 5: Todos los estados se encuentran pasivos. El sistema de ecuaciones de este caso es:

λ (5) = R1(5)+ γV (1)−R0(5)− γ

(
9
10

V (5)+
1

10
V (1)

)
=−(0,9)5 +

9
10

γ (V (1)−V (5))

V (1) = R0(1)+λ + γ

[
9
10

V (2)+
1

10
V (1)

]
V (2) = R0(2)+λ + γ

[
9
10

V (3)+
1

10
V (1)

]
V (3) = R0(3)+λ + γ

[
9
10

V (4)+
1

10
V (1)

]
V (4) = R0(4)+λ + γ

[
9
10

V (5)+
1

10
V (1)

]
V (5) = R0(5)+λ + γ

[
9
10

V (5)+
1

10
V (1)

]
(3.10)

Al igual que en la sección 3.1.1, este problema se puede resolver planteándolo como un sistema
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matricial, en el que calcularemos los valores V 1,V 2,V 3,V 4 y V 5 y los despejaremos en el tér-
mino λ (5) de la ecuación anterior:

V (1)
V (2)
V (3)
V (4)
V (5)

=


γ/10 9γ/10 0 0 0
γ/10 0 9γ/10 0 0
γ/10 0 0 9γ/10 0
γ/10 0 0 0 9γ/10
γ/10 0 0 0 9γ/10




V (1)
V (2)
V (3)
V (4)
V (5)

+


R0(1)+λ

R0(2)+λ

R0(3)+λ

R0(4)+λ

R0(5)+λ



−R0(1)−λ

−R0(2)−λ

−R0(3)−λ

−R0(4)−λ

−R0(5)−λ

=


γ/10−1 9γ/10 0 0 0

γ/10 −1 9γ/10 0 0
γ/10 0 −1 9γ/10 0
γ/10 0 0 −1 9γ/10
γ/10 0 0 0 9γ/10−1




V (1)
V (2)
V (3)
V (4)
V (5)


(3.11)

El índice para el estado 5 en función del factor de descuento γ es:

λ (5) =
43046721γ4

1000000000
+

10097379γ3

100000000
+

1778031γ2

10000000
+

278559γ

1000000
− 59049

100000
= g(5) (3.12)

Estado 4: Todos los estados menos el 5 se encuentran pasivos. El sistema de ecuaciones ahora es:

λ (4) = R1(4)+ γV (1)−R0(4)− γ

(
9
10

V (5)− 1
10

V (1)
)
=−(0,9)4 +

9
10

γ (V (1)−V (5))

V (1) = R0(1)+λ + γ

[
9
10

V (2)+
1

10
V (1)

]
V (2) = R0(2)+λ + γ

[
9
10

V (3)+
1

10
V (1)

]
V (3) = R0(3)+λ + γ

[
9
10

V (4)+
1

10
V (1)

]
V (4) = R0(4)+λ + γ

[
9
10

V (5)+
1

10
V (1)

]
V (5) = R1(5)+ γV (1)

(3.13)

Resolviendo para los V 1,V 2,V 3,V 4 y V 5 y despejando en λ (4) obtenemos el valor del índice de
Whittle para el estado 4 en función del factor de descuento γ:

λ (4) =
81
(
6561γ3 +15390γ2 +27100γ−81000

)
10000000

= g(4) (3.14)

Estado 3: Los estados 4 y 5 se encuentran activos mientras que los estados 1, 2 y 3 se mantienen
pasivos. El sistema de ecuaciones es:
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λ (3) = R1(3)+ γV (1)−R0(3)− γ

(
9
10

V (4)− 1
10

V (1)
)
=−(0,9)3 +

9
10

γ (V (1)−V (4))

V (1) = R0(1)+λ + γ

[
9
10

V (2)+
1

10
V (1)

]
V (2) = R0(2)+λ + γ

[
9
10

V (3)+
1

10
V (1)

]
V (3) = R0(3)+λ + γ

[
9
10

V (4)+
1

10
V (1)

]
V (4) = R1(4)+ γV (1)

V (5) = R1(5)+ γV (1)
(3.15)

Resolviendo este sistema de ecuaciones, obtenemos el índice del tercer estado en función de γ:

λ (3) =
6561γ2

100000
+

1539γ

10000
− 729

1000
= g(3) (3.16)

Estado 2: Todos los estados menos el 1 y el 2 están activos. El sistema de ecuaciones es:

λ (2) = R1(2)+ γV (1)−R0(2)− γ

(
9
10

V (3)− 1
10

V (1)
)
=−(0,9)2 +

9
10

γ (V (1)−V (3))

V (1) = R0(1)+λ + γ

[
9
10

V (2)+
1

10
V (1)

]
V (2) = R0(2)+λ + γ

[
9
10

V (3)+
1

10
V (1)

]
V (3) = R1(3)+ γV (1)

V (4) = R1(4)+ γV (1)

V (5) = R1(5)+ γV (1)
(3.17)

Cuyo índice de Whittle en función de γ es:

λ (2) =
81γ

1000
− 81

100
= g(2) (3.18)

Estado 1: Por último, nos encontramos con el caso de que todos los estados menos el 1 estén
activos. el sistema de ecuaciones ahora es:
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λ (1) = R1(1)+ γV (1)−R0(1)− γ

(
9
10

V (2)− 1
10

V (1)
)
=−0,9+

9
10

γ (V (1)−V (2))

V (1) = R0(1)+λ + γ

[
9
10

V (2)+
1

10
V (1)

]
V (2) = R1(2)+ γV (1)

V (3) = R1(3)+ γV (1)

V (4) = R1(4)+ γV (1)

V (5) = R1(5)+ γV (1)

(3.19)

En este caso, el índice de Whittle para este estado es constante y por lo tanto no depende del
factor de descuento γ:

λ (1) =− 9
10

= g(1) (3.20)

Igual que antes, nuestros resultados convergen con los de [33] en el límite γ → 1.

Figura 3.4: Valor de los índices de Whittle para el problema con reinicio en función del factor de des-
cuento γ

Una vez que hemos visto los valores teóricos a los que tienen que converger los índices de Whittle
para el problema de la dinámica circular (sección 3.1.1) y el problema con reinicio (sección 3.1.2), va-
mos a pasar a discutir el desarrollo del algoritmo a partir del cual realizaremos el proceso de Q-learning
y el cálculo de los índices de Whittle en escalas de tiempo separadas.



Aprendizaje y toma de decisiones bajo incertidumbre - Francisco Robledo 25

3.2. Esquema del algoritmo

Una vez hemos visto los valores teóricos de los índices de Whittle para los casos de dinámica circu-
lar y el problema de reinicio, vamos a pasar a estudiar la estructura del algoritmo y como el proceso de
Q-learning expuesto en la sección 2.3.2.

Para el cálculo de los índices, consideraremos en ambos casos N = 100 bandidos distintos, de los
cuales solo están activos en todo momento K = 20 bandidos. En ambos problemas, inicializaremos la
Q-table como un conjunto de tablas, una para cada bandido, de dimesión S×A×S, donde S es el número
de estados y A el número de acciones posibles (en este caso, siempre será 2). El primer término S hace
referencia a los estados x en los que el índice g(x) hace que estar pasivo o activo sea igualmente deseable,
mientras que el segundo término S hace referencia al estado visitado por el proceso de Q-learning, st .
Al empezar el algoritmo, los índices de Whittle para cada estado están inicializados a 0.

La secuencia de control está definida a través del algoritmo de “Epsilon-greedy”: Sea ε un paráme-
tro de valor 0 < ε < 1, tomamos con probabilidad 1− ε los K bandidos con el índice g(x) más alto y
los definimos como activos, mientras que el resto se mantienen pasivos, es decir, tomamos una política
greedy en la que elegimos la opción más eficiente: explotamos nuestro conocimiento sobre el problema.
Por otro lado, con probabilidad ε , se seleccionan K bandidos al azar para establecerlos como activos.
Este tipo de acciones pueden ser menos eficaces que aquellas de la política greedy, pero también pue-
den dar lugar al descubrimiento de políticas más óptimas que las anteriores: exploramos la dinámica
de este problema, aumentando nuestro conocimiento sobre el mismo. Este tipo de secuencia de control
permite un buen balance entre exploración y explotación de la información del problema. En nuestro
caso, utilizaremos ε = 0,1, de modo que un 10% de las veces exploraremos al azar para obtener nueva
información sobre el problema mientras que el 90% de las veces tomaremos una decisión acorde a la
política que estamos construyendo.

Bucle p a r a cada i t e r a c i ó n n :
S e l e c c i o n a r a t r a v é s d e l a l g o r i t m o ε− gr ee d y l o s b a n d i d o s a a c t i v a r
S i m u l a r l o s nuevos e s t a d o s p a r a t o d o s l o s b a n d i d o s en f u n c i ó n de l a

d i n á m i c a d e l prob lema
C a l c u l a r l a recompensa de e s t o s e s t a d o s
C a l c u l a r l o s nuevos tamaños de paso α(n) y β (n) :

α(n) = 1
d n

500 e
β (n) = 1

1+d n logn
500 e

I{n(modN)≡ 0}
C a l c u l a r l o s Q− v a l u e s de l a Q− t a b l e de cada band ido :

Qx
n+1(st ,at)←

Qx
n(st ,at)+α(n)

[
(1−at)(R0(st)+gn(x))+atR1(st)+ γ máxv∈{0,1}Qx

n(st+1,v)−Qx
n(st ,at)

]
C a l c u l a r l o s nuevos í n d i c e s de W h i t t l e :

gn+1(x) = gn(x)+β (n)(Qx
n(x,1)−Qx

n(x,0))
A c t u a l i z a r l o s v a l o r e s de l o s e s t a d o s

Figura 3.5: Esquema del algoritmo de aprendizaje

Donde los valores α y β están definidos en (2.13) y el cálculo de los Q-values y los índices son los
descritos en (2.11) y (2.12) respectivamente.

En la definición de β de (2.13b) empleamos el término I{n(modN) ≡ 0}. Esto implica que β es
distinto de 0 solo si el número de la iteración n es un múltiplo del número de bandidos N. En la figura
3.5, en cada iteración actualizamos los índices de Whittle (2.12), al igual que los Q-values (2.11). Sin
embargo, solo cuando n es múltiplo de N hay un cambio real en el valor de los índices de Whittle, ya
que en el resto de casos gn+1(x) = gn(x). Es así que, aunque actualicemos ambos términos en todas las
iteraciones, solo los Q-values cambian en todas ellas. De este modo, obtenemos el efecto de las dos
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escalas de tiempo, en el que los Q-values se actualizan más a menudo que los índices.

3.2.1. Demostración de la convergencia

Nuestro algoritmo se apoya en la convergencia, por un lado, del modelo de Q-learning clásico in-
troducido en 1.3.6, y por otro del esquema de dos escalas temporales planteados en [34] y [35]. A
continuación, mostraremos un boceto de la demostración de la convergencia de ambos sistemas.

Convergencia de Q-learning

Para la demostración de la convergencia del algoritmo de Q-learning, consideremos un Proceso de
Decisión de Markov con la tupla (S,A,P,R) donde S es el espacio finito de estados de la cadena, A es
el espacio finito de acciones, P son las probabilidades de transmisión y R es la función de recompensa.
Denotaremos los elementos de S como x e y y los elementos de A como a y b. La función de recompensa
por tanto esta definida a través del triplete (x,a,y):

r : S×A×S→ R

Donde obtenemos una recompensa R(x,a,y) por cada transición del estado x al estado y al realizar una
acción a.

Partiendo del criterio de optimalidad de horizonte infinito descontado con el que hemos estado
empleando, la función de valor acción-estado, bajo una secuencia de controles {At} es

Q(x,{At}) = E

[
∞

∑
t=0

γ
tR(Xt ,At)|X0 = x

]

Por lo tanto, para cada estado x ∈ S, la función de valor de estado óptima está definida como:

V ∗(x) = máx
At

Q(x,{At})

La cual verifica

V ∗(x) = máx
a∈A

∑
y∈X

Pa(x,a) [R(x,a,y)+ γV ∗(y)]

Y por lo tanto, la función de valor acción-estado óptima es

Q∗(x,a) = ∑
y∈X

Pa(x,y) [R(x,a,y)+ γV ∗(y)]

Esta función de valor óptima es un punto fijo del operador de contracción H definido para una
función genérica q : S×A→ R como:

(Hq)(x,a) = ∑
y∈S

Pa(x,y)
[

R(x,a,y)+ γ máx
b∈A

q(y,b)
]

(3.21)

Este operador es una contracción en la norma uniforme, es decir,

‖Hq1−Hq2‖∞ ≤ γ‖q1−q2‖∞ (3.22)

Delimitando así el valor de la función genérica q. La demostración de esta desigualdad se puede obtener
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desarrollando la ecuación anterior con la definición (3.21):

‖Hq1−Hq2‖∞ = máx
x,a

∣∣∣∣∣∑y∈X
Pa(x,y)

[
R(x,a,y)+ γ máx

b∈A
q1(y,b)−R(x,a,y)− γ máx

b∈A
q2(y,b)

]∣∣∣∣∣=
= máx

x,a
γ

∣∣∣∣∣∑y∈S
Pa(x,y)

[
máx
b∈A

q1(y,b)−máx
b∈A

q2(y,b)
]∣∣∣∣∣≤

≤máx
x,a

γ ∑
y∈S

Pa(x,y)
∣∣∣∣máx

b∈A
q1(y,b)−máx

b∈A
q2(y,b)

∣∣∣∣≤
≤máx

x,a
γ ∑

y∈S
Pa(x,y)máx

z,b
|q1(z,b)−q2(z,b)|=

= máx
x,a

γ ∑
y∈S

Pa(x,y)‖q1−q2‖∞ = γ‖q1−q2‖∞

El algoritmo de Q-learning determina la función óptima de valor empleando distintas muestras
durante el aprendizaje. Consideremos una política aleatoria π tal que la probabilidad de realizar una
acción a bajo un estado x sea no nula, es decir

Pπ [At = a|Xt = x]> 0

para cualquier par estado-acción (x,a). Sea {xt} la secuencia de estados obtenida siguiendo la política
π , {at} la secuencia de acciones realizadas y {Rt} las recompensas obtenidas, para cualquier estimación
inicial Q0, el algoritmo de actualización de Q-learning es

Qt+1(xt ,at) = Qt(xt ,at)+αt(xt ,at)

[
Rt + γ máx

b∈A
Qt(xt+1,b)−Qt(xt ,at)

]
Donde αt(xt ,at) es el tamaño empleado en la iteración t para el par de estado-acción (xt ,at), el cual

verifica 0≤ αt(x,a)≤ 1. Estas actualizaciones son asíncronas, es decir, en cada iteración no actualiza-
mos todos los valores de Q(x,a) para todos x ∈ S y a ∈ A, sino solamente la tupla (xt ,at). Esto nos lleva
a los siguientes teoremas.

Teorema 1. Dado una MDP finita definida por la tupla (S,A,T,R), el algoritmo de Q-learning
dado por

Qt+1(xt ,at) = Qt(xt ,at)+αt(xt ,at)

[
Rt + γ máx

b∈A
Qt(xt+1,b)−Qt(xt ,at)

]
(3.23)

Converge al valor óptimo de la función de valor Q siempre y cuando

∑
t

αt(x,a) = ∞ ∑
t

α
2
t (x,a)< ∞

Para todos los (x,a)∈ S×A. Debido a que el valor de α está delimitado a 0≤ αt(x,a)≤ 1, la con-
dición anterior requiere que todos los pares de estado-acción sean visitados. Antes de demostrar
este teorema, debemos presentar un resultado auxiliar de la teoría de aproximación estocástica.

Teorema 2. Sea un proceso aleatorio {∆t} que tome valores en Rn y esté definido como

∆t+1(x) = (1−αt(x))∆t(x)+α(x)Ft(x)

Este converge a 0 bajo las siguientes condiciones

• 0≤ αt ≤ 1,∑t αt(x) = ∞ y ∑t α2
t (x)< ∞



28 Capítulo 3. Cálculo de los índices de Whittle

• ‖E [Ft(x)|Ft ]‖W ≤ γ‖∆t‖W , con γ < 1

• var [Ft(x)|Ft ]≤C(1+‖∆t‖2
W ), para C > 0.

La demostración de este segundo teorema se encuentra en [36].

Demostración del Teorema 1. Empezaremos reescribiendo la ecuación (3.23) como

Qt+1(xt ,at) = (1−αt(xt ,at))Qt(xt ,at)+αt(xt ,at)

[
Rt + γ máx

b∈A
Qt(xt+1,b)

]
Restando a ambos lados de la ecuación Q∗(xt ,at) y definiendo ∆t(x,a) = Qt(x,a)−Q∗(x,a),
tenemos

∆t(xt ,at) = (1−αt(xt ,at))∆t(xt ,at))+αt(x,a)
[

Rt + γ máx
b∈A

Qt(xt+1,b)−Q∗(xt ,at)

]
Definiendo Ft(x,a) = R(x,a,X(x,a))+γ máxb∈a Qt(y,b)−Q∗(x,a), donde X(x,a) es una muestra
aleatoria obtenida de la cadena de Markov con espacio de estado S y probabilidad de transmisión
Ta, tenemos

E [Ft(x,a)|Ft ] = ∑
y∈S

Ta(x,y)
[

R(x,a,y)+ γ máx
b∈A

Qt(y,b)−Q∗(x,a)
]
=

= (HQt)(x,a)−Q∗(x,a)

De tal manera que, empleando la definición de Q∗ = HQ∗,

E [Ft(x,a)|Ft ] = (HQt)(x,a)− (HQ∗)(x,a)

Empleando la definición de H en (3.22)

‖E [Ft(x,a)|Ft ]‖∞ ≤ γ‖Qt −Q∗‖∞ = γ‖∆t‖∞

Por último

var [Ft(x)|Ft ] =

= E

[(
R(x,a,X(x,a))+ γ máx

b∈A
Qt(y,b)−Q∗(x,a)− (HQt)(x,a)+Q∗(x,a)

)2
]
=

= E

[(
R(x,a,X(x,a))+ γ máx

b∈A
Qt(y,b)− (HQt)(x,a)

)2
]
=

= var
[

R(x,a,X(x,a))+ γ máx
b∈A

Qt(y,b)|Ft

]

Dado que la función de recompensa R está delimitada, el resultado anterior verifica

var [Ft(x)|Ft ]≤C(1+‖∆t‖2
W )

Para una constante C. A través del Teorema 2, ∆t converge a cero y por lo tanto Qt converge al
valor óptimo, Q∗.
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Convergencia de las dos escalas de tiempo

Para la demostración de la estabilidad de nuestro sistema con dos escalas de tiempo, seguiremos la
demostración propuesta en [34] y [35]. Primero, generalizaremos las expresiones (2.11) y (2.12) para el
cálculo de los Q-value y los índices de Whittle en las siguientes expresiones:

xn+1 = xn +a(n)
[
h(xn,yn)+M(1)

n+1

]
(3.24a)

yn+1 = yn +b(n)
[
g(xn,yn)+M(2)

n+1

]
(3.24b)

Donde (3.24a) es la escala rápida, que representa el cálculo del Q-value (2.11) y (3.24b) es la escala
lenta, que representa los índices de Whittle en la ecuación (2.12). En estas ecuaciones, h y g son fun-
ciones Lipschitz (continuas), Mn son secuencias de diferencias Martingale, que representan términos de
ruido, y a(n) y b(n) son términos de tamaño de paso que disminuyen tal que b(n)

a(n) → 0 cuando n→∞. yn

dicta el comportamiento del agente, definiendo su política, mientras que xn es un valor acumulado que
ayudará a definir yn. Nuestro objetivo es demostrar que yn→ y∗ y xn→ x∗, donde y∗ y x∗ son aquellos
para los cuales se obtiene esta política óptima. En esta demostración, es importante asegurar que tanto
xn como yn son estables, es decir, supn ||xn||< ∞ y supn ||yn||< ∞. Aunque podríamos realizar una pro-
yección de xn e yn en un subconjunto C que los haga estables, esto podría excluir los términos x∗,y∗ de
C; de ahí la importancia de asegurar esta estabilidad en los valores originales.

Primero, definiremos Fλ
su (Ψ( j,b)) y Mn+1(s,u) tal que:

Fλ
su (Ψ( j,b)) = (1−u)(R0(s)+λ )+uR1(s)+ γ ∑

j
p( j|i,u) máx

v∈{0,1}
Ψ( j,v)

Mn+1(s,u) = (1−u)(R0(s)+λn(x))+uR1(s)+ máx
v∈{0,1}

Qn(xn+1,v)−Fλn(x)
su (Qn)

A partir de estos términos, podemos reescribir la ecuación (2.11) como:

Qx
n+1(s,u) = Qx

n(i,u)+α(n)
[
Fλn(x)

su (Qn)−Qn +Mn+1(s,u)
]

(3.25)

Si comparamos las ecuaciones (3.25) y (3.24a), vemos como a(n) = α(n), h(xn,yn) = Fλn(x)
su (Qn)−

Qn donde xn = Qn e yn = gn son el Q-value y el índice de Whittle respectivamente y Mn+1(s,u) es la
secuencia diferencial Martingale M(1)

n+1.
Por otro lado, comparando las ecuaciones (2.12) y (3.24b), vemos como b(n) = β (n), g(xn,yn) =

Qx
n(x,1)−Qx

n(x,0) y la secuencia Martingale M(2)
n+1 = 0.

En [35] citan 3 condiciones necesarias para que las ecuaciones (3.24) puedan ser estables y conver-
ger

A1 h y g deben ser funciones Lipschitz continuas.

A2 {M(1)
n } y {M(2)

n } son secuencias diferenciales Martingale.

A3 {a(n)} y {b(n)} satisfacen:

• a(n)> 0,b(n)> 0

• ∑n a(n) = ∑n b(n) = ∞, ∑n
(
a(n)2 +b(n)2

)
< ∞

• b(n)
a(n) → ∞
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La demostración de la condición A1 se encuentra detallada en la página 687 de [37]. En nuestra
notación, Mn+1(s,u) y 0 son respectivamente las secuencias de diferencias Martingale M(1)

n+1 y M(2)
n+1,

cumpliendo así la condición A2. A3 también está verificada a partir de la definción de α(n) y β (n) en
(2.13a) y (2.13b).

En la demostración de la convergencia del índice λ al índice de Whittle gn, vamos a considerar
primero que las ecuaciones (2.11) y (2.12) están delimitadas. Más tarde demostraremos esta condición.

Primero, reescribiremos la ecuación para el cálculo de los índices de Whittle (2.12) como:

gn+1(x) = gn(x)+α(n)
(

β (n)
α(n)

)
(Qx

n(x,1)−Qx
n(x,0)) (3.26)

Sea τ(n) = ∑
n
m=0 α(n), definimos la interpolación:

Q̄(t) = Q(n)+
(

t− τ(n)
τ(n+1)− τ(n)

)
(Q(n+1)−Q(n)) (3.27a)

ḡ(t) = g(n)+
(

t− τ(n)
τ(n+1)− τ(n)

)
(g(n+1)−g(n)) (3.27b)

t ∈ [τ(n),τ(n+1)]

Estas trayectorias siguen el comportamiento de las ODE’s delimitadas

Q̇(t) = h(Q(t),g(t)), ġ(t) = 0

Donde ġ(t) = 0 debido a que β (n)
α(n) → 0 a medida que n→∞. Desde el sistema de referencia de Q(t),

g es constante, con valor g′. Gracias a esto, la primera ODE pasa a ser Q̇ = h(Q(t),g′), la cual al estar
bien definida y delimitada, posee un equilibrio asintóticamente estable en Q∗

λ
(teorema 3.4 en la página

689, [37]). Esto implica que, a medida que aumentemos n, Qx
n−Q∗

λn
→ 0. Por otro lado, el caso de g(t),

consideramos una segunda trayectoria, en otra escala temporal tal que:

g̃(t) = g(n)+
(

t− τ ′(n)
τ ′(n+1)− tau′(n)

)
(g(n+1)−g(n)) ,

t ∈ [τ(n),τ ′(n+1)], τ
′(n) =

n

∑
m=0

β (m),n≥ 0

(3.28)

Esta trayectoria seguirá la ODE

Λ̇(t) = Q∗
Λ(t)(x,1)−Q∗

Λ(t)(x,0)

Si Λ(t) es mayor que el índice de Whittle óptimo para un estado dado, g∗(x), tendremos un exceso
de subsidio, en el que se preferirá la acción pasiva a la activa y Λ̇(t)< 0, de modo que Λ(t) decrecerá.
De la misma manera, si Λ(t) < g∗(x), quiere decir que no estamos considerando suficiente subsidio, y
siempre se preferirá la acción activa, de modo que Λ̇(t)> 0 y Λ(t) crecerá: la trayectoria de Λ(t) queda
así delimitada. Igual que en el caso anterior, al ser una ODE bien definida y delimitada, existe un punto
de equilibrio asintóticamente estable al que converge, en el que Λ satisface Q∗

Λ
(x,1) = Q∗

Λ
(x,0) y ambas

políticas son igualmente deseables, es decir, Λ es el índice de Whittle g(x).
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3.3. Resultados numéricos

En la sección 3.1 planteamos dos problemas con dinámicas distintas: por un lado, un sistema con
dinámica circular, donde el último elemento de una cadena de estados conecta con el primero, con unas
matrices de transmisión

P0 =


1/2 0 0 1/2
1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

 P1 =


1/2 1/2 0 0

0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2


Por otro, un problema con reinicio, en el que una acción pasiva hace avanzar un estado en la cadena
de Markov (con una probabilidad del 90%), mientras que una acción activa hace volver al inicio de la
cadena, con matrices de transmisión

P0 =


1/10 9/10 0 0 0
1/10 0 9/10 0 0
1/10 0 0 9/10 0
1/10 0 0 0 9/10
1/10 0 0 0 9/10

 P1 =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0



Ambos sistemas tienen espacios de estados distintos, 4 y 5 estados para cada problema respecti-
vamente, y recompensas diferentes. A su vez, ambos problemas se pueden modificar fácilmente para
contemplar más estados y distintos tipos de recompensas.

3.3.1. Dinámica circular

Tal y como hemos descrito en la sección 3.1.1, planteamos un sistema de 4 estados en los que las
recompensas no dependen de la acción tomada en cada uno de ellos, y vienen definidas como R(1) =
−1,R(2) = 0,R(3) = 0,R(4) = 1. Los valores teóricos de los índices de Whittle de estos estados son:

g(1) =
−γ

2
(3.29a)

g(2) =
γ

2
(3.29b)

g(3) =
γ

γ2−2γ +2
(3.29c)

g(4) =
−γ

γ2−2γ +2
(3.29d)

Como podemos ver en la gráfica 3.2, cuanto menor es el valor de γ , más parecidos son los índices
entre sí, hasta acabar convergiendo en el origen. En nuestro estudio, hemos entrenado el algoritmo
descrito en la sección 3.2 con 100000 iteraciones para distintos valores de γ entre 0.05 y 0.90. Para
cada valor del parámetro de descuento, hemos comparado el error numérico del índice con respecto a
su valor teórico en la ecuación (3.29). Los valores absolutos de estos errores para cada estado, junto
con un promedio, se encuentran en la tabla 3.1 y la gráfica 3.6. A medida que aumentamos el valor del
parámetro γ y nos acercamos a 1, el error numérico aumenta cada vez más. Este tipo de errores es común
en el criterio de optimalidad de horizonte infinito descontado [38] [39], donde al aumentar el valor de
γ y acercarlo a 1, la suma en la ecuación (1.5) diverge. Incluso con un factor de descuento ligeramente
menor que 1, el aprendizaje de los Q-values lleva a la propagación de errores e inestabilidades [39].
Para minimizar el error numérico en los índices de Whittle y al mismo tiempo darle peso a los estados
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en futuros en el cálculo de los Q-values, emplearemos γ = 0,3 que, como podemos ver en la gráfica
3.6, tiene uno de los errores promedio más bajos. Emplearemos este valor para discutir el resto de los
resultados para este problema.

γ Estado 1 Estado 2 Estado 3 Estado 4 Promedio
0,05 3,19E-03 9,79E-04 1,97E-03 3,51E-02 1,03E-02
0,1 1,75E-04 1,94E-03 2,45E-03 1,80E-02 5,65E-03

0,15 3,44E-03 2,40E-03 3,77E-03 3,48E-03 3,27E-03
0,2 6,01E-03 2,03E-03 7,26E-03 6,14E-03 5,36E-03

0,25 7,45E-03 1,60E-03 7,97E-03 9,89E-03 6,73E-03
0,3 4,76E-03 6,38E-04 1,12E-02 5,20E-03 5,44E-03

0,35 8,93E-03 3,17E-03 1,17E-02 3,07E-03 6,73E-03
0,4 7,51E-05 4,60E-03 1,36E-02 1,40E-02 8,09E-03

0,45 6,44E-03 9,77E-03 1,30E-02 1,08E-02 9,99E-03
0,5 6,51E-03 1,00E-02 1,32E-02 2,63E-02 1,40E-02

0,55 1,41E-02 1,59E-02 2,12E-02 4,46E-02 2,40E-02
0,6 1,71E-02 1,19E-02 1,85E-02 4,57E-02 2,33E-02

0,65 8,26E-03 3,12E-02 2,46E-02 4,95E-02 2,84E-02
0,7 1,19E-02 3,58E-02 3,35E-02 7,61E-02 3,93E-02

0,75 3,83E-02 2,27E-02 3,24E-02 8,26E-02 4,40E-02
0,8 2,92E-03 7,95E-02 4,53E-02 1,17E-01 6,12E-02

0,85 2,59E-01 1,65E+00 2,54E-02 1,11E-01 5,12E-01
0,9 1,95E-01 1,18E+01 7,93E-02 1,45E-01 3,06E+00

Cuadro 3.1: Error numérico del índice de Whittle en cada estado con respecto a su valor teórico para
cada valor de γ en el problema de dinámica circular.

Figura 3.6: Error numérico de los índices de Whittle para cada estado en función del parámetro γ para
el problema de dinámica circular.

Al utilizar γ = 0,3 obtenemos, a partir de la ecuación (3.29), los índices teóricos g(1)=−0,15,g(2)=
0,15,g(3) = 0,2013,g(4) =−0,2013. En la gráfica 3.7 vemos como los valores numéricos de los índices
convergen asintóticamente a los valores teóricos.

Por otro lado, en la gráfica 3.8 comparamos la recompensa de las primeras 4000 iteraciones durante
el entrenamiento del algoritmo frente a las recompensas empleando los valores teóricos de los índices
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Figura 3.7: Índices de Whittle para el problema con dinámica circular para γ = 0,3

Figura 3.8: Problema con dinámica circular: Comparación entre las recompensas durante el entrena-
miento, empleando ε = 0,1, frente a la recompensa obtenida con la política definida desde el principio.

desde el principio. Una vez se ha definido la política en el entrenamiento, la diferencia de rendimiento
frente a emplear la recompensa óptima desde el principio proviene del uso del algoritmo “Epsilon-
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Figura 3.9: Problema con dinámica circular: Comparación entre las recompensas durante el entrena-
miento, empleando ε = 0,01, frente a la recompensa obtenida con la política definida desde el principio.

greedy”: En la gráfica 3.8 empleamos un valor de ε = 0,1, de modo que un 10% de las veces tomamos
una acción que no es necesariamente óptima. En la gráfica 3.9 tomamos ε = 0,01, de modo que solo un
1% de las veces realizamos exploración frente a explotación de la información. En este caso, no solo
el algoritmo define antes su política, sino que la recompensa que obtiene es mucho más cercana a la
recompensa óptima.

3.3.2. Problema con reinicio

En el problema del reinicio, empleamos 5 estados distintos, donde la recompensa sí depende de la
acción que tomamos en cada estado: si la acción es positiva, volvemos al primer estado de la cadena con
probabilidad 1, pero la recompensa es 0, mientras que una acción pasiva implica avanzar con probabi-
lidad 9/10 (a menos de que estemos en el último estado de la cadena, en cuyo caso nos mantenemos
en ese estado) o volvemos al primer estado con probabilidad 1/10. La recompensa de cada estado con
acción pasiva es R0(k) = 0,9k, donde k es el número del estado. En la sección 3.1.2 vimos como los
valores teóricos de los índices de Whittle para este problema eran:

g(1) =− 9
10

(3.30a)

g(2) =
81γ

1000
− 81

100
(3.30b)

g(3) =
6561γ2

100000
+

1539γ

10000
− 729

1000
(3.30c)

g(4) =
81
(
6561γ3 +15390γ2 +27100γ−81000

)
10000000

(3.30d)

g(5) =
43046721γ4

1000000000
+

10097379γ3

100000000
+

1778031γ2

10000000
+

278559γ

1000000
− 59049

100000
(3.30e)
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En la tabla 3.2 y la gráfica 3.10 representamos el error numérico del cálculo del índice de Whittle tras
un entrenamiento de 100000 iteraciones, para distintos valores de γ . Al igual que en el caso de dinámica
circular, cuanto mayor es el valor del parámetro de descuento, mayor es el error numérico, llegándose
a disparar a partir de γ = 0,75. Debido al rápido crecimiento de los errores numéricos con el parámetro
de descuento, emplearemos en el análisis de este caso γ = 0,1, el cual, si bien relega muy poco peso en
las recompensas de los pasos futuros, garantiza un cálculo óptimo de los índices de Whittle.

γ Estado 1 Estado 2 Estado 3 Estado 4 Estado 5 Promedio
0,05 1,22E-02 1,21E-02 1,21E-02 1,46E-02 2,82E-02 1,58E-02
0,1 1,43E-02 1,29E-02 1,12E-02 1,45E-02 1,54E-02 1,37E-02
0,15 1,59E-02 1,48E-02 1,56E-02 1,70E-02 5,17E-02 2,30E-02
0,2 1,75E-02 1,94E-02 2,65E-02 2,92E-02 1,40E-01 4,64E-02
0,25 1,92E-02 2,28E-02 2,86E-02 4,96E-02 1,45E-01 5,31E-02
0,3 2,08E-02 2,21E-02 2,29E-02 4,74E-02 4,74E-02 3,21E-02
0,35 2,05E-02 2,27E-02 3,83E-02 8,79E-02 1,81E-01 7,02E-02
0,4 2,42E-02 2,43E-02 1,71E-02 6,92E-02 1,99E-01 6,68E-02
0,45 2,37E-02 2,40E-02 1,09E-02 7,00E-02 2,15E-01 6,87E-02
0,5 2,95E-02 2,35E-02 2,66E-02 2,03E-01 3,08E-01 1,18E-01
0,55 3,16E-02 2,49E-02 2,19E-02 2,66E-01 5,18E-01 1,72E-01
0,6 2,34E-02 1,35E-02 1,17E-01 7,35E-01 5,79E-01 2,94E-01
0,65 2,09E-02 1,01E-02 1,33E-01 1,25E+00 4,52E-01 3,74E-01
0,7 1,26E-02 3,77E-03 5,23E-01 3,31E+00 3,72E-01 8,43E-01
0,75 3,16E-02 2,38E-02 2,33E+00 6,00E+00 1,97E+00 2,07E+00
0,8 2,61E-02 1,31E-02 1,88E+01 1,36E+01 2,48E-01 6,54E+00
0,85 1,50E-02 5,40E-03 8,75E+01 1,96E+02 3,83E+00 5,74E+01
0,9 2,37E-02 8,87E-03 3,49E+03 2,62E+02 1,33E+02 7,76E+02

Cuadro 3.2: Error numérico del índice de Whittle en cada estado con respecto a su valor teórico para
cada valor de γ en el problema de reinicio.

Figura 3.10: Error numérico de los índices de Whittle para cada estado en función del parámetro γ para
el problema de reinicio
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Con un valor de γ = 0,1, los índices de Whittle en (3.30) pasan a ser g(1)=−0,9,g(2)=−0,8019,g(3)=
−0,713,g(4) =−0,6328,g(5) =−0,5608. En la gráfica 3.11, vemos como los índices numéricos de los
5 estados convergen a los valores teóricos de los índices de Whittle. Este problema tiene especial interés
debido a que, dada su dinámica, los últimos estados son mucho menos visitados que los primeros, y por
lo tanto, reciben menos visitas durante el entrenamiento.

Figura 3.11: Índices de Whittle para el problema con reinicio para γ = 0,1

En la gráfica 3.12 comparamos la “running time average reward” obtenida por el algoritmo durante
las primeras 900 iteraciones durante el entrenamiento frente al obtenido utilizando una política óptima
desde el primer momento. Una vez definida la política durante el entrenamiento, la diferencia en ren-
dimiento entre ambos se debe, al igual que en el problema de dinámica circular, al uso del algoritmo
“Epsilon-greedy”. Al emplear un valor ε = 0,01 en lugar de 0,1 en la gráfica 3.13 reducimos el margen
de rendimiento entre el algoritmo durante el entrenamiento y el algoritmo empleando la política óptima
desde el principio.
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Figura 3.12: Problema con restart: Comparación entre las recompensas durante el entrenamiento, em-
pleando ε = 0,1, frente a la recompensa obtenida con la política definida desde el principio.

Figura 3.13: Problema con reinicio: Comparación entre las recompensas durante el entrenamiento,
empleando ε = 0,01, frente a la recompensa obtenida con la política definida desde el principio.
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Capítulo 4

Conclusiones finales

En los anteriores capítulos, hemos planteado un algoritmo para el cálculo de los índices de Whittle
para dos problemas con dinámicas y recompensas distintas: uno con una dinámica “circular” en el que
el último estado de la cadena de Markov conecta con el primero y otro problema con “reinicio”, en el
que una de las acciones transporta instantáneamente al primer estado de la cadena. En ambos casos,
hemos obtenido los valores teóricos de los índices de Whittle para cada estado en función del factor
de descuento γ para el criterio de “optimalidad” de recompensa descontada en el horizonte infinito de
tiempo (ecuaciones (3.29) y (3.30)).

Para crear unas condiciones de convergencia favorables para nuestro algoritmo, hemos empleado
dos escalas de tiempo en el cálculo de los índices de Whittle: por un lado, una escala “rápida”, equiva-
lente a una actualización por iteración para el cálculo de los Q-values, para determinar el valor de cada
acción en cada estado, y una escala “lenta”, equivalente a una actualización por cada múltiplo del nú-
mero de bandidos (ecuación (2.13b)), para el cálculo de los índices de Whittle a partir de los Q-values,
y evaluar así cada estado. Debido al uso de los índices de Whittle para el cálculo de los Q-values (2.11),
ambos sistemas de ecuaciones se encuentran acoplados. El sistema de dos escalas de tiempo nos permite
desacoplar estas ecuaciones y obtener las condiciones de convergencia expuestas en la sección 3.2.1.

En la sección 3.3 hemos llevado a cabo este algoritmo para los casos de dinámica circular y el
problema con reinicio, empleando para cada uno de ellos un factor γ = 0,3 y 0,1 respectivamente.
En ambos casos, se ha estudiado la convergencia a los valores teóricos de sus índices de Whittle,
calculados en el capítulo 3, con valores g(1) = −0,15,g(2) = 0,15,g(3) = 0,2013,g(4) = −0,2013
y g(1) =−0,9,g(2) =−0,8019,g(3) =−0,713,g(4) =−0,6328,g(5) =−0,5608 para cada problema.
Como se puede observar en las gráficas 3.7 y 3.11, a medida que aumentamos el número de iteracio-
nes, y por lo tanto el tiempo de aprendizaje, nos acercamos más a los valores teóricos óptimos de estos
índices.

Por otro lado, las gráficas 3.6 y 3.10 nos muestran un aspecto importante del comportamiento de
nuestor algoritmo: la dependencia en la convergencia de los índices en función de γ . En los dos casos
que hemos discutido en este trabajo, el error numérico en los índices de Whittle aumenta al acercarnos
al valor de γ = 1. Como podemos ver en la ecuación (2.11), este término regula el peso del Q-value
del siguiente estado en el cálculo del Q-value del estado actual. Debido a que los Q-values están funda-
mentados por las recompensas de los estados (ecuación (2.10)) una explicación de este comportamiento
es la acumulación de recompensas futuras a medida que aumentamos el valor de γ , provocando ines-
tabilidades en el cálculo de los índices de Whittle (ecuación (2.12)). En los dos problemas que hemos
planteado en este trabajo, hemos empleado dos funciones de recompensas distintos:

En el problema de dinámica circular (sección 3.1.1) empleamos una función de recompensa

R(1) =−1,R(2) = 0,R(3) = 0,R(4) = 1

Para los 4 estados que componen la cadena de Markov de ese sistema.
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En el problema de reinicio (sección 3.1.2) empleamos una función de recompensa

R0(k) = 0,9k

R1(k) = 0

Para los 5 estados de la cadena de Markov.

Si observamos la evolución de los errores numéricos en las gráficas 3.6 y 3.10, vemos como el error en
el caso del problema de dinámica circular es consistentemente más pequeño que en el de reinicio, ya que
siempre tiene más bandidos con recompensas de valor nulo que en el segundo problema. Esta menor
densidad de recompensas hace que el valor acumulado de los Q-values sea más pequeño en el problema
de dinámica circular, y se pueda emplear valores de γ más altos antes de que aparezcan inestabilidades.
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