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Prologo

“Of all the forms of machine learning, reinforcement learning is the closest
to the kind of learning humans and other animals do”

Sutton, barto (2018)

De los paradigmas existentes en Machine Learning, vamos a tratar de aquel que representa la sen-
cilla y potente idea de un sistema de aprendizaje que “quiere” algo, que adapta su comportamiento de
manera que es capaz de maximizar una determinada “sefial” proveniente de su entorno.

Reinforcement Learnignes una de las dreas que ha venido recibiendo més atencién por parte de los
investigadores en los campos de “machine learning”, inteligencia artificial o redes neuronales, desarro-
llado en disciplinas tan diversas como psicologia, teoria de control, inteligencia artificial y neurociencia.
Su avance viene impulsado no solo por la creciente potencia de célculo de los ordenadores actuales, sino
por los desarrollos tan importantes que se estdn realizando en los aspectos de teoria y algoritmica. De
todo ello trataremos en este trabajo.

Trabajo que no hubiera sido posible sin la guia y tutela del Doctor Ayesta, que ha dirigido la tesis a
distancia, a causa de la pandemia, con la sobrecarga de trabajo que ello ha conllevado.

Quiero agradecer la oportunidad que nos ofrecié el doctor Gorria, director en Bilbao del méster a
que este trabajo pertenece, de poder colaborar con la universidad de Toulouse. Igualmente, al doctor
Alcal4 de la universidad de Zaragoza y a todo el cuadro de profesores del master que nos han conducido
en materias tan diversas y apasionantes.

No puedo menos de citar a mis antiguos profesores, los doctores Alexander Knebe y Gustavo Yepes
de la Universidad Auténoma de Madrid, cuyo apoyo y confianza me han permitido adentrarme en un

campo de tanto interés y futuro como Reinforcement Learning.

Finalmente, mi mds sincero agradecimiento a mi familia por su continuo apoyo y paciencia.
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Resumen

Reinforcement Learning is one of the main fields of Machine Learning, alongside Supervised and
Unsupervised Learning. Unlike in the latter two cases, where the objective is the classification of the data
from an already labeled sample (Supervised Learning) or from the data structure itself (Unsupervised
Learning), in Reinforcement Learning the ‘agent’, the algorithm that carries out the learning process,
learns through successive interactions with an ‘environment’, through actions that lead to changes in this
environment and rewards that quantify the effect of these actions. The aim here is therefore to create
strategies or ‘policies’ that optimise the total reward obtained.

Within this field there are numerous challenges, among which the “Restless Multiarmed Bandit
Problem” stands out. In it, multiple agents or ‘bandits’ are considered, which can have two possible
actions: be ‘active’ or ‘passive’. Only a limited number of these bandits can be active at the same time,
and depending on the action performed the change of state and the reward of all these processes can
be different. It is therefore a problem of prioritization between the different stochastic processes, not
only for the next time step, but also for the long-term future. This problem of ‘resource allocation’ has
multiple practical applications such as the management of workload on servers [1] [2], the detection of
channels in communications [3], the management of health systems [4] or in the dynamics of pricing
[5]. However, due to the nature of the problem, a large number of ‘visits’ to each action/state pair are
necessary for each bandit, which makes classical selection methods require very long convergence times
and are ineffective. In this work, we employ a different policy, in which we index each state, thus setting
a priority in activating the bandits: the Whittle index policy. This policy was proposed in 1988 by P.
Whittle [6]. In our approach we proposed a new technique: the calculation of the indexes through two
time scales to obtain convergence conditions under which our algorithm converges to an optimal policy.

In this paper we will start by introducing the basic concepts of Machine Learning such as the diffe-
rent types of learning such as ‘supervised learning’, ‘supervised learning’ and ‘reinforced learning’ and
the differences between them, the Markov chains, the criteria of optimality and the ‘value functions’.
In the chapter 2, we will explain the origin of the ‘index policies’, their use in Reinforcement Learning
and the Q-learning techniques used to model and learn from the problem environment. In the chapter
3, we will study two cases of Reinforcement Learning problems with their own dynamics: the circular
dynamics problem and the restart problem. We will study the calculation of Whittle’s indexes in an
analytical way for these problems, the algorithm that we will use for its numerical calculation and in
the chapter 3.2.1, we will make a scheme of the demonstration of the theoretical convergence of the
algorithm. Finally, we will analyse the results obtained with this algorithm.
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Capitulo 1

Algoritmos de Machine Learning

1.1. Introduccion historica

Machine Learning es uno de los principales campos de Inteligencia Artificial (AI). El principal ob-
jetivo en este campo es la creaciéon de modelos capaces de comprender una estructura de datos. Gracias
a la flexibilidad de aplicaciones que tiene, es usado en multitud de dreas, como en la prediccién de
sistemas tales como préstamos bancarios en los que se calcula la probabilidad de un fallo en el pago,
reconocimiento de imdgenes o voz, diagnosis médicas, etc.

A pesar de ser un campo de computer science, difiere de los enfoques computacionales tradicio-
nales. En la programacién tradicional, los algoritmos son un conjunto de instrucciones explicitamente
programadas y empleadas para el calculo y solucién de problemas. En Machine Learning, sin embargo,
el algoritmo se entrena a partir de un set de datos y emplea un andlisis estadistico para obtener estos
valores. He aqui donde reside la fuerza de este rama de computer science: el empleo de instrucciones
relativamente sencillas para automatizar cdlculos muy complejos, con modelos no lineales que serian
demasiado complicados de detallar expresamente.

Los origenes de este campo se remontan a 1958, cuando Frank Roseblatt disefio la primera red neu-
ronal artificial [7], llamada “Perceptrén”, cuyo cometido original era el reconocimiento de patrones y
formas. El afio siguiente, Bernard Widrow y Marcian Hoff crearon un nuevo modelo de red neuronal
llamado ADALINE [8] capaz de detectar patrones binarios, y por tanto, en una cadena de bits, predecir
cual seria el valor del siguiente. El siguiente modelo, MADALINE [9], era capaz incluso de eliminar
el eco en las llamadas telefénicas, siendo este la primera aplicacion util de las redes neuronales. En
los afios 60, R. J. Solomonoff introdujo los métodos Bayesianos [10] para la inferencia probabilistica,
hoy en dia fundamental para la teoria basica de Machine Learning. Sin embargo, debido a la carga
computacional necesaria para estas técnicas, se produjo un periodo de inactividad en la investigacion
de Machine Learning hasta 1982, cuando John Hopfield sugiri6 la creacion de redes neuronales bidi-
reccionales [11], similar a como funcionan en la realidad las neuronas. Sin embargo, no fue hasta 1990
y el siglo 21 en el que se empezaron a desarrollarse extensivamente, con el origen de los Support Vec-
tor Machines[12] y la popularizacién de las Recurrent Neural Networks (RNNs), en el que este campo
realmente florecid. Actualmente, el desarrollo de Deep Learning[13] [14] ha permitido la aplicacién de
este campo en multitud de dreas.

1.2. Supervised vs Unsupervised vs Reinforcement Learning

Machine Learning puede clasificarse en tres tipos de algoritmos distintos: Supervised Learning, Un-
supervised Learning y Reinforcement Learning, cada uno de ellos con funcionamientos y aplicaciones
distintos.

En el primero de ellos, Supervised Learning, empleamos un set de datos de entrenamiento etigue-
tados, es decir, en el que cada muestra viene acompafiada con una “variable objetivo”. El objetivo es,
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por tanto, disefiar un modelo capaz de analizar los datos entrantes y predecir que etiquetas tendrdn a
partir de los ejemplos dados en el entrenamiento. Estas variables pueden ser categéricas, en cuyo caso
hablamos de un problema de clasificaciéon como puede ser la clasificacion de un email como ‘Spam’ o
‘No Spam’, o continuas, con un problema de regresion, como puede ser la prediccion de los valores en
Bolsa [15]. Los tres tipos de algoritmos mds populares en este drea son:

= Neural Network: Se trata de estructuras formadas por “neuronas”. Cada una de ellas toma una
serie de variables de entrada, realiza una combinacion lineal sobre estas y es pasada por una
funcion de activacion, como puede ser la funcién sigmoide. En la actualidad, se disefian redes
con millones de neuronas [16] [17] distribuidas en “capas”, donde el input de cada capa son los
output de cada una de las neuronas de la capa siguiente.

Input Layer Hidden Layer Output Layer

X1

X2

Figura 1.1: Ejemplo de un esquema de una red neuronal, formada por tres capas distintas: una primera
capa, con las variables de entrada de los datos iniciales, una capa final con el valor a predecir y una capa
intermedia, para aumentar la complejidad y potencia del modelo.

= Random Forest: Random Forest es una agrupacion de arboles de decision en el que en cada nodo
se aplican unos criterios de clasificacién a los datos. A través de sucesivos nodos, distribuidos en
diferentes drboles de decision con distintos criterios de clasificacién, podemos parametrizar los
datos de entrada en gran detalle.

y
3 _ . 0
.
. X<2 Xxz2
2 4
.
™
. 2
1 4
° o Blue Green
.
(b) Nodo en un arbol de decisiones. En el, se obtie-

0 1' ' — X ne las dos categorias de clasificacion (azul y verde)
en funcidn de los valores de la variable x.

(a) Ejemplo de distribucién de datos clasificados
por color.

Figura 1.2: Ejemplo del funcionamiento de un drbol de decisiones empleado en Random Forest.
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= Support Vector Machines: En un modelo de Support Vector Machines se emplea una repre-
sentacion en el espacio de variables de los datos del algoritmo, donde estos datos se encuentran
clasificados en 2 0 més categorias. El objetivo de este tipo de algoritmos es por tanto la creacién
de un hiperplano en este espacio capaz de separar estas categorias de modo que el margen entre
ellas sea lo mds ancho posible.

X,

Figura 1.3: Clasificacién de los datos a través de SVM. Cada una de las categorias, A y B, se encuentran
separadas por un plano (linea roja) que maximiza el margen entre ambas clases.

Por otro lado, en Unsupervised Learning los datos no se encuentran etiquetados, de modo que
el algoritmo tiene que encontrar semejanzas entre los datos. Los objetivos de Unsupervised Learning
van desde el reconocimiento de patrones ocultos como el aprendizaje de caracteristicas, en el que el
algoritmo descubre nuevas representaciones en las que clasificar los datos. Una aplicacion tradicional
de este campo es en las transacciones. A partir de un set de datos con las compras que ha hecho un
conjunto de clientes, podemos crear perfiles en los que clasificarlos en funcién del tipo de compras que
realicen. Existen dos tipos fundamentales de algoritmos de Unsupervised Learning:

= Clustering: se denominan problemas de “clustering” aquellos en los que queremos descubrir
agrupaciones inherentes en los datos. Las dos técnicas mds comunes para esto son K-means, en la
que agrupamos los datos en centroides intentando maximizar el niimero de datos en cada cldster.

= Reglas de asociacion: El objetivo de este tipo de problemas es descubrir reglas que describan el
comportamiento de un determinado conjunto de datos, tales como “la gente que compra X tam-
bién tiende a comprar Y.

Reinforcement Learning se diferencia de estos otros dos paradigmas en la capacidad del algoritmo
de aprender a través de las reacciones de un entorno. Por lo tanto, debemos distinguir dos elementos
en cualquier problema de Reinforcement Learning: el agente, el cual realiza una accién en funcién del
estado en el que se encuentre, y el entorno, que engloba a este agente y lo provee de nuevos estados
y recompensas en funcién de las acciones que realice en el estado en que se encuentre este agente.
Ademas de estos dos elementos, los algoritmos de Reinforcement Learning estdn formados por:

= Politica: Define el comportamiento del agente en un momento dado. Se trata de un mapeo de cada
estado percibido en el entorno con una de las acciones disponibles en ese estado.

= Funcién de recompensa: Cada accion realizada en cada estado por el agente esta recompen-
sada por un valor especifico. El objetivo en Reinforcement Learning es maximizar, no solo la
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Figura 1.4: Ejemplo de clasificacion a través de K-means: se establecen tres centroides aleatoriamente
(los puntos estrellados) y en cada iteracion, se desplazan estos centroides, asignando a los puntos més
cercanos las categorias de estos centroides.

recompensa inmediata obtenida al realizar una accién, sino todas las recompensas futuras. Por
lo tanto, la funcién de recompensa en un estado concreto cuantifica lo “bueno” que sea realizar
una determinada accién en ese estado, mientras que la recompensa total define la calidad de la
politica.

= Funcién de valor: Si la recompensa nos indica lo buena que es una accién en un momento dado,
la funcién de valor nos indica su efecto a largo plazo. Define, por lo tanto, la calidad de nuestra
politica. Definiremos en m4s detalle este pardmetro en la seccién 1.3.6

1.3. Introduccion a las cadenas de Markov

Antes de introducir las cadenas de Markov, empezaremos con una introduccién de algunas nociones
importantes de teoria de probabilidad. Una variable aleatoria X es aquella cuyo valor estd definido como
el resultado de un fendmeno aleatorio. Un ejemplo de esto podria ser el resultado de tirar un dado o una
moneda.

Definimos como un proceso aleatorio, también llamado “proceso estocdstico”, al conjunto de va-
riables aleatorias indexadas por 7', donde T puede ser una variable discreta (como el conjunto de los
nimeros naturales) o continua (el conjunto de niimeros reales). Un ejemplo seria lanzar una moneda
cada dia, donde T es aqui el conjunto de dias en el que se realiza el lanzamiento. El resultado de cada
variable aleatoria dentro del proceso se puede considerar independientes de cada una, como el lanza-
miento que hemos mencionado antes, o dependientes.

1.3.1. Cadenas de Markov

Existen numerosas familias de procesos estocdsticos, como los procesos gaussianos, de Poisson,
cadenas de Markov, etc. Todas las cadenas de Markov comparten una propiedad, la “Propiedad de
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Markov”, segtin la cual la distribucién de probabilidad del valor futuro de una variable aleatoria depende
unicamente de su valor en el presente, independientemente de sus valores en el pasado.

P(future|present, past) = P(future|present)

Por lo que, sea una cadena de Markov definida como X = (X, ),en = (Xo0,X1,X2, ... ), donde en cada
instante de tiempo el proceso toma un valor discreto de un set de estados S tal que X, € S,Vn € N, se
cumple:

P(Xn-H :xn+l|Xn =Xp, Xpn—1 = Xp—1,...,X2 = x2,X] :-xl) :P(Xn+l :xn-‘rl’Xn :xn)

Obsérvese en primer lugar que la caracterizacién completa de un proceso aleatorio de tiempo dis-
creto que no verifique la propiedad de Markov puede ser engorrosa: la distribucién de probabilidad en
un momento dado puede depender de uno o varios instantes de tiempo en el pasado y/o el futuro. To-
das estas posibles dependencias temporales hacen que cualquier descripcién adecuada del proceso sea
potencialmente dificil.

Sin embargo, gracias a la propiedad Markov, la dindmica de una cadena de Markov es bastante facil
de definir. De hecho, sélo necesitamos especificar dos cosas: una distribucion de probabilidad inicial (es
decir, una distribucién de probabilidad para el instante de tiempo 7 = 0) denotada

P(Xo=s5)=qo(s) Vse€E

y una funcién de probabilidad de transicién, que da las probabilidades de que un estado, en el
momento n+1, suceda a otro, en el momento n, para cualquier par de estados, definida como

]P)<Xn+1 = Sn+1 ‘Xn = Sn) = P(snvsn-i—l) v(Sn-‘rl 7sn) € ExE
1.3.2. Matrices de probabilidad de transicion

A la hora de realizar un cambio de estado, el entorno pasa al agente de un estado S(z) a S(r+ 1) con
una determinada probabilidad, definida como:

Py =P [Sp1 =58 =] (1.1)

Si consideramos todos los posibles pares ss” del espacio de estados en el que se desarrolla el proble-
ma, podemos definir una matriz de probabilidad de transicién de estados:

Pt P12 P13 - Pl
p21 P22 p23 - P2

p=|"" " T (1.2)
Pnl Pn2 Pn3 *°° DPmn

Donde cada fila de la matriz representa la probabilidad de pasar desde el estado inicial al siguiente.
Por lo tanto, la suma de todos los elementos de cada fila es igual a 1.

Las matrices de probabilidad de transicion nos permiten calcular las transiciones de un estado a otro
alo largo de una cadena completa, gracias a la propiedad de Markov: Imaginemos que queremos calcu-
lar la probabilidad de llegar al estado 4 en 7' = 4 cuando en los tiempos anteriores 7 = {1,2,3} hemos
estado en los estados 1,2,3 respectivamente. Gracias a la propiedad de Markov podemos desarrollar
esta probabilidad como:

Py=P[S4=4]53=3,5,=2,51=1]=
:}P’[S4:4\S3 :3]-IP’[S3 :3152:2]‘IP’[S2:2]S1 = 1] =
=P34 P23 P12
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Donde en cada momento T, la probabilidad de pasar a un nuevo estado s’ solo depende del estado
presente s y no de los anteriores.

1.3.3. Procesos de recompensa de Markov: MRP

En la seccién anterior hemos visto como los sistemas Markovianos estdn regidos por un conjunto
de estados y una matriz de probabilidad de transicién entre estos estados. Sin embargo, como hemos
explicado en la seccién 1.2, la recompensa obtenida en cada estado es fundamental para la obtencién de
politicas 6ptimas en Reinforcement Learning. Para ello, introduciremos primero los Procesos de Re-
compensa de Markov (MRP): cadenas de Markov con valores de juicio. En estas cadenas, obtenemos
el valor de la recompensa de cada estado por el que pasa nuestro agente. Estas cadenas estdn definidas
como:

Rs =E[R41]S;] (1.3)

En este proceso Markoviano estamos calculando la recompensa inmediata Rg que obtenemos para
un determinado estado S;. Estos procesos de recompensa solo tienen en cuenta la recompensa que se
obtendrd en el siguiente paso. Sin embargo, en muchas ocasiones una politica 6ptima implica unas
primeras acciones que, si bien a corto plazo pueden no dar las mejores recompensas, permiten acceder
a otros estados con recompensas que a largo plazo si que convierten a esa politica en la mejor.

En funcién del tamaiio de la cadena de Markov, se pueden considerar dos tipos distintos de “tareas’:

= Tareas episddicas: Son problemas con un estado inicial y final bien definidos y que, por tanto,
tienen un nimero de estados finito antes de que termine el proceso. Un ejemplo de este tipo de
problemas es el de un coche auténomo, cuyo funcionamiento se limita a cada uno de los viajes
que realiza y, por tanto, su estado inicial es el inicio de este viaje y el final es su llegada a su
destinacién. Una vez termina este proceso, se reinicia el problema, empezando con un nuevo
estado inicial sg y sin tener en cuenta las recompensas obtenidas en el proceso anterior.

= Tareas continuas: No existe una condicién definida bajo la cual termine el proceso estocdstico
y por lo tanto, si bien existe un estado inicial sg, no existe un estado final. El nimero de estados
puede ser, por lo tanto infinito. Un ejemplo de este tipo de problemas seria un termostato automa-
tico, capaz de regular la temperatura de la habitacion con la finalidad de evitar que se tenga que
regular manualmente. No existe una condicién bajo la cual este proceso termine y por lo tanto
puede seguir de forma indefinida un niimero indeterminado de estados.

En las tareas episddicas es sencillo considerar la recompensa total de cada estado de la cadena hasta
llegar al estado final, ya que ésta es finita. Sin embargo, en las tareas continuas las cadenas no son finitas.
Esto plantea varios problemas: ;Como calculamos el retorno, la suma total de recompensas, como una
cantidad finita en un proceso infinito? ; Qué peso deberia tener una recompensa que se pueda obtener en
un futuro muy lejano en la toma de una accién en el presente? En la seccion 1.3.4 estudiaremos métodos
para responder a estas preguntas.

1.3.4. Criterios de optimalidad

Antes de introducir formalmente las funciones de valor, es necesario discutir el concepto de opti-
malidad en Reinforcement Learning. Tal y como introdujimos en la seccién 1.2, una politica define la
actuacién de un agente y, formalmente, es el mapeo de cada estado a la probabilidad de tomar cada
accion. Si un agente sigue una politica 7 en un tiempo 7, entonces 7(a|s) es la probabilidad de que ese
agente realice la accidn a en el estado s en ese instante. El objetivo en Reinforcement Learning es la
busqueda de politicas que maximicen la recompensa obtenida por el agente a largo plazo, cantidad co-
nocida como retorno. Este retorno se define, por tanto, como la suma de las recompensas que obtiene un
agente al seguir una politica & desde un estado inicial sg. En [18] proponen tres criterios de optimalidad:
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el criterio de horizonte finito, horizonte infinito descontado y recompensa promedio.

El criterio de horizonte finito (1.4) consideramos el valor esperado de la suma de todas las recom-
pensas de una cadena. Todas estas recompensas estdn evaluadas con el mismo peso, de modo que una
recompensa r tiene el mismo peso en el momento ¢ que en un tiempo futuro ¢ +i. Este tipo de criterios es
empleado en las tareas episddicas, con un nimero determinado de transiciones 7', donde la suma de un
conjunto de recompensas finitas produce una recompensa finita. Sin embargo, este tipo de optimalidad
no se puede aplicar en las cadenas continuas, ya que, aunque todas las recompensas sean finitas, la suma
de estas es infinita.

T
E|Y n (1.4)
t=0

El criterio de horizonte infinito descontado (1.5) considera el efecto de todas las recompensas de la
cadena, incluso de las cadenas infinitas de las tareas continuas, empleando un término de descuento Y tal
que 0 < y < 1. Este término se denomina factor de descuento y modela el hecho de que nuestro proceso
estocdstico no estd seguro de si en la siguiente decision el proceso puede o no terminar. Un ejemplo
de esto seria que nuestro problema de “decision making” fuese un robot, y por lo tanto, el factor de
descuento representa aqui la probabilidad de que el robot se desconecte en el instante siguiente. Este
término a su vez regula el peso del valor de las recompensas a largo plazo: una misma recompensa,
obtenida 7 iteraciones mds tarde, tendrd un valor ¢ mds pequefio que si sucede en el presente.

oo

E|Y v'n (1.5)
t=0
Esta expresion nos permite calcular el retorno total de una cadena de Markov incluso cuando esta
es infinita. La demostracion de esta convergencia es sencilla: Consideremos un Rpsx > 1, Vs(t) € S tal
que Rpsx < oot

Z'}/rz‘ < Z'thméx = 1 Y Riygx < oo
t=1 t=1 -7

Lo cual se cumple siempre que 0 < y < 1. En las tareas episddicas, la condicién y < 1 no es necesaria
para la convergencia, aunque emplear Yy = 1 serfa equivalente a utilizar el criterio de horizonte finito
en este caso. Si empleamos Yy = 0, nuestro agente es miope, es decir, solo considera las recompensas
inmediatas e ignora las recompensas futuras que pueda conseguir.

Este tipo de criterio de optimalidad es uno de los mds empleados [18] y es el que emplearemos en
este trabajo.

El dltimo tipo de criterio de optimalidad que veremos es la recompensa promedio (1.6). Este tipo
de criterio maximiza la recompensa promediada a largo plazo. En el caso anterior, cuando 7 tiende a 1,
el resultado converge al de este tipo de criterio. El principal problema que conlleva este criterio es que
para cadenas infinitas, no podemos distinguir entre dos politicas en las que una reciba muchas recom-
pensas en las fases iniciales y en la otra no. Esta diferencia inicial se encuentra oculta por el promediado.

1 T
lim E | =) ri (1.6)

T —oo =0

Como hemos visto previamente, la decision de que tipo de criterio elegir depende especialmente del
tipo de problema a resolver: si se trata de una tarea episddica, el modelo de horizonte finito es el mds
conveniente, mientras que para una tarea continua, el modelo de horizonte infinito descontado es mejor,
gracias a que asegura la existencia de, al menos, una politica éptima estcionaria y determinsta, mientras



8 Capitulo 1. Algoritmos de Machine Learning

que en los otros casos las politicas 6ptimas generalmente dependen del instante temporal, de modo que
no son estacionarias [19].

1.3.5. Procesos de decision de Markov

En las secciones anteriores hemos introducido el papel de las recompensas en las cadenas de Markov
y como calcular el retorno total incluso en cadenas infinitas. Sin embargo, para poder definir una politica
dada, es necesario que el agente sea capaz de decidir una accion en cada nuevo estado en el que se
encuentre. Estas acciones entran en el marco de los procesos de Markov en la forma de Procesos de
Decisiéon de Markov o MDP: procesos de recompensas de Markov como los descritos en la seccién
1.3.3 en los que se realizan acciones. Estas acciones pueden afectar la recompensa y al estado al que
avanza el agente. Bajo este paradigma, las matrices de transicion y las funciones de recompensa reciben
una nueva dependencia con la variable de accion:
P, =E [S,+1 =58 =5,A = a}

SS

g = E[R[+] :R’St = S,A[ = Cl]

Bajo estas nuevas dependencias, la matriz de transicién y la recompensa puede variar en funcién de
la accién a que se tome. Por otro lado, siempre podemos recuperar un proceso de Markov o una MRP a
partir de un proceso de decisién de Markov: Sea un MDP formado por la tupla (S, A, P,R) y una politica
7, la secuencia de estados S;,S2,... es un proceso de Markov (S, P) bajo una politica determinada 7.
De la misma forma, la secuencia (S1,R;), (S2,R2),... es una MRP formada por la tupla (S,P,R) cuya
matriz de transicién de estados es

P;E’ = Z 7'[,'((1|S)Rfs/

Las distintas acciones que se realiza en MDP en funcién de los estados definen las politicas 7
de estos procesos. En la siguiente seccidn, discutiremos como evaluar estas politicas y definiremos la
politica éptima: la politica con el mayor retorno posible.

1.3.6. Funciones de valor y ecuaciéon de Bellman

En la seccidén 1.2 introdujimos el concepto de “funcién de valor”: se trata de una estimacion de la
“bondad” de un agente dado en funcidén de su politica a largo plazo, en funcién del conjunto de recom-
pensas que consigue al realizar varias acciones en varios estados. Sin embargo, aqui debemos realizar la
distincién de dos tipos de funciones de valor: la funcién V, que estima la bondad de estar en un estado,
y la funcién Q, referida cominmente como Q-value, que estima la bondad de realizar una accion en
un estado. De esta manera, la funcién V serd solo funcién del estado en el que nos encontremos, V (s),
mientras que la funcién Q dependera tanto del estado como de la accién, Q(s,a).

El valor de un estado s bajo una politica m, denotada V" (s), es el retorno esperado, partiendo de
un estado s y siguiendo una politica 7. Empleando el criterio del horizonte infinito descontado (1.5),
podemos expresar esta funcién como:

V*(s) =Eg Z Yrilsi=s (1.7)
k=0

Por otro lado, la funcion de valor accion-estado esta definida como el retorno obtenido al empezar
desde un estado s, efectuando una accién a y continuando con una politica 7:

oo

0" (s,a) = Eg Z Yrolsi=s,a,=a (1.8)

k=0
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La principal caracteristica de este tipo de funciones es su capacidad de escribirse de forma recursiva
[20]:
V*(s) = Ex {ri +yris1 + Vria+-ls = s}
= Ex {ri+ V" (s111) st = 5} (1.9
=Y w(als)Y P*(s,s") [r+ V(5]
a s/

Donde P"(s,s’) es la probabilidad de transicién de un estado s a un estado s’ bajo la politica 7, tal y
como hemos discutido en la seccién 1.3.5 y R(s,a,s’) es la recompensa obtenida al realizar la accién a
para pasar de un estado s a un estado .

El objetivo para cualquier cadena de Markov en Reinforcement Learning es realizar la mejor poli-
tica m, es decir, aquella que maximice la recompensa bajo un criterio de optimalidad dado. Se define
politica éptima * a aquella cuya funcién de valor V7 (s) > V7 (s) para todos los estado s del espacio
de estados S y para todas las politicas 7. La expresion Optima de la ecuacién (1.9) satisface:

V' = mix Y P(s,s) (R(s,a,s’) N (s’)> (1.10)
acA 4
s'eS
Esta ecuacion, llamada Ecuacion de optimalidad de Bellman, expresa la relacién entre el valor de
un estado y los valores de los estados siguientes y establece que el valor de un estado bajo una politica
Optima debe ser igual al retorno esperado para la mejor accién en ese estado. Por lo tanto, una accién
6ptima, dada una funcién de valor 6ptima V* = V* es:

m*(s) = argmax Y P(s,s") (R(s,a,s') +yV*(s')) (1.11)

a s'es

Mientras que una accidn greedy elige solamente aquella accién que maximiza la recompensa a un
solo paso, es decir, que maximiza P(s,s")R(s,a,s’) en una Gnica transicién s — s, la politica 6ptima 7*
maximiza el conjunto de todas las futuras decisiones.

De forma andloga, para la funcion accién-estado Q, tenemos:

0" (s,a) = Y P(s.) <R<s,a,s'> +yma;le*<s',a'>) (1.12)

A partir de las definiciones de las funciones Q(s,a) y V(s), podemos ver una relacién entre ambas:
La funcién de valor Q(s,a) establece de forma explicita el pardmetro de accién a en la funcién V (s). Es
por ello que, siguiendo una politica 7, la relacion entre Q" y V7 es:

VZ(s) =) m(als)- 0" (s,a) (1.13)
acA
Es decir, sumamos los valores de los pares accién-estado por la probabilidad de tomar una accién a
en un determinado estado s, a partir de la politica 7.

Los diagramas de la imagen 1.5 muestran los tramos de los futuros estados y acciones consideradas
para las ecuaciones de Bellman (1.10) (a la izquierda) y (1.12) (a la derecha). Cada circulo blanco re-
presenta un estado y cada circulo negro representa un par accidon-estado. En el diagrama de la izquierda,
partiendo del estado s, el agente evaliia cada una de las acciones y toma la 6ptima a partir de su politica
7. A partir de esta accion, el entorno puede responder con varios nuevos estados s’ con una recompensa
r definida para cada estado, en funcién de la dindmica del problema. Por otro lado, en el diagrama de la
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{'U*j > (Q’*) 5.4
max, r
a Y
r max
OO OO0 O O*""‘ e e o

Figura 1.5: Diagramas para las funciones V* y O*.

derecha, a partir del par accién-estado, pasa a un nuevo estado s’ con recompensa r, desde el cual elige,
a partir de su politica 7, la accién 6ptima a’.

Para las cadenas de Markov finitas, la ecuacién de Bellman para V* (1.10) tiene una solucién tnica.
La ecuacién de optimizacién de Bellman es en realidad un sistema de ecuaciones, una para cada estado,
de modo que si hay n estados, entonces existen n ecuaciones con n incdgnitas. Si se conoce la dinamica
del entorno, se puede resolver este sistema de ecuaciones para V* utilizando cualquiera de los diversos
métodos para resolver sistemas de ecuaciones no lineales. Una vez calculado V*, es sencillo determinar
la politica ptima: para cada estado s siempre habrd una o mas acciones a que maximicen la ecuacién
de optimalidad de Bellman, de modo que cualquier politica que asigne una probabilidad no nula solo
a estas acciones es una politica 6ptima. De esta forma, partiendo de la funcién de valor 6ptima V*, la
mejor accion en el siguiente paso serd la accién éptima. Este tipo de politicas se denominan greedy, ya
que seleccionan acciones basadas en consideraciones inmediatas, sin tener en cuenta la posibilidad de
que esa accién no permita acceder a recompensas mejores en el futuro.

Por otro lado, elegir acciones 6ptimas con Q* es mucho mas eficaz: en este caso, el agente no
realiza una busqueda en el paso temporal siguiente, como ocurre con V*, sino que para cada estado s,
simplemente busca la accién que maximice Q*(s,a). Esta funcién de valor no solo nos da el resultado
Optimo para el siguiente paso temporal, sino para todas las futuras transiciones, ya que provee con el
retorno Optimo esperado en cada par accién-estado.



Capitulo 2

Politica de indices en Reinforcement
Learning

2.1. Introduccion al indice de Gittins e indice de Whittle

Dentro de las familias de problemas de Decisién Markovianos, existen dos de especial interés en
Reinforcement Learning: el “Multi-Armed Bandit Problem” (MABP) y “Restless Multi-Armed Bandit
Problem” (RMABP). En estos problemas el Bandido es un término genérico para referirse a un solo
proceso de Markov, con un espacio de estados S y de acciones A. De esta forma, este tipo de problemas
plantea un nuevo paradigma con respecto al introducido en el capitulo 1: la gestién de multiples procesos
estocdsticos, o bandidos, simultdneamente.

En el “Multi-Armed Bandit Problem”, consideramos N procesos de Markov simultdneos en los que
se pueden considerar dos posibles acciones: activar el proceso (a = 1) o mantenerlo pasivo (a = 0).
En este caso, de los N procesos, solo uno puede establecerse como activo en cada momento mientras
que el resto deben mantenerse pasivos. A su vez, solamente el proceso activo puede cambiar de estado
y obtener una recompensa por ello, mientras que los estados pasivos se mantienen “congelados”, sin
cambios de estado ni recompensas. Este tipo de problema se puede considerar como un problema de
“asignacion”. Uno de los primeros trabajos en intentar plantear una solucién para este problema surgio
en 1960 [21] con el objetivo de disefiar modelos matemadticos que definieran “politicas de parada”, es
decir, sistemas que se mantuviesen “activos” hasta que estarlo dejara de ser rentable. Sin embargo, no
fue hasta los afios 70 en el que Gittins y sus colaboradores obtuviesen la solucién dptima para este
problema [22]. En ella, plantean una nueva variable, el indice de Gittins A(s) € R,Vs € S, tal que la
politica 6ptima para el problema de asignacion es elegir el bandido i tal que

i, = argmax{A;(s;) }
ie{l,...n}

Es decir, en cada momento 7, activar el bandido i tal que el indice A de ese bandido en el estado s fuese
el mayor con respecto al resto de bandidos. Gittins partié del concepto de tiempo de parada, similar al
planteado en [21] para disefiar los indices:

=Lt (.
Al_(sl_)zsupxa[ztomz(m 0 5] o

>0 [ V‘St ]

Donte 7 es el tiempo de parada del proceso de Markov, es decir, el momento en el que este proceso pa-
saria de ser “activo” a “pasivo” y en el numerador tenemos la recompensa descontada hasta el momento
T, empleando el criterio de optimalidad de “horizonte infinito descontado” introducido en la seccién
1.3.4 y en el denominador el tiempo descontado hasta el momento 7. Por lo tanto, A;(s;) es la maxima
recompensa por unidad de tiempo, la “densidad de recompensa”.

11
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Por otro lado, en el segundo problema, el “Restless Multi-Armed Bandit Problem”, plantea una
generalizacién de los MABP: en este caso, consideramos que podemos activar en cada momento K < N
bandidos de modo que estos bandidos activos cambian de estado y obtienen recompensas acorde. La
diferencia con respecto al primer caso, ademds del generalizar el nimero de bandidos que podemos
activar, es el hecho de que aquellos bandidos que se encuentran “pasivos” también pueden cambiar
de estado, con una dindmica distinta a la de los bandidos “activos” y con una funcién de recompensa
distinta. Si bien el problema del Multi-Armed Bandit es un caso particular del Restless Multi-armed
Bandit Problem, no fue hasta 1988 en el que Whittle [6] desarroll6 una politica de indices similar a la
de Gittins capaz de gestionar este problema. Este cdlculo requiere del conocimiento total de las matrices
de transicidn del sistema y, por tanto, de la dindmica del problema. Para la mayoria de las aplicaciones
practicas, tales como la gestion de la programacion de tareas en cloud computing [2], deteccion de
canales en comunicaciones [3], sistemas de salud [4] o en la dindmica de la fijacién de precios [5], esta
situacién no se suele dar por parte de los controladores de los sistemas.

Q-learning, desarrollado por Watkins en 1989[23], es uno de los métodos “model free” clasicos
mds empleados en el campo de Reinforcement Learning. Se trata de un algoritmo capaz de generar una
politica que pueda de gestionar cambios de estados y recompensas, en la que se controlan las acciones
que toma un agente. Tal y como demuestran en [24], Q-learning es apto de alcanzar una politica 6ptima
maximizando la recompensa descontada en el horizonte infinito. Emplearemos este técnica para obtener
un andlisis del comportamiento del sistema con el que calcular los indices.

En la siguiente seccidn, analizaremos en detalle esta politica y su implementacién en nuestro trabajo.

2.2. Indices de Whittle para familias de cadenas de Markov

Sea una cadena de Markov en un espacio de estados finito S = {1,2,...,d}, con un espacio de
acciones definido como A = {0,1} y unas probabilidades de transicién p(i,a,j) que representen la
probabilidad de transicién del estado i al estado j realizando la accién a, con i,j € Sy a € A. Dado
que estas cadenas son cerradas, desde cualquier estado i la suma de las probabilidades de transicién a
todos los posibles estados j suman 1, satisfaciendo entonces Y ; p(i,a, j) = 1. Este espacio de acciones
es binario y tiene la interpretacion de activar o dejar pasivo ese proceso estocdstico.

Consideremos ahora N procesos estocdsticos, todos ellos con el mismo espacio de estados S y con
las matrices de transicién P!, P° € [0,1]1*I5! en funcién de si tomamos una accién “activa” (a = 1)
0 “pasiva” (a = 0). Dado que tenemos N procesos estocdsticos distintos sucediendo al mismo tiempo,
definiremos S(¢) = (s,(f) : n € [N]) y A(t) = (a,(t) : n € [N]) como el vector de estados y acciones que
realizan los N bandidos en un momento determinado ¢.

En cada instante ¢, activamos siempre K < N proyectos de modo que

Y A() =K (22)
ne[N]

Es decir, dado que a,(-) = 1 indica que el bandido n estd activo, mientras que los bandidos pasivos
estan representados como a,(-) = 0, se cumple que para cada instante 7, la suma de todos los valores del
vector A(t) es igual al nimero de bandidos activos K.

Sin embargo, la condicidn (2.2) es demasiado restrictiva como para que pueda resolverse este proble-
ma facilmente. La propuesta de Whittle [6] para resolver esto fue una version relajada de esta condicion,
sustituyendo la necesidad de que se cumpla ‘en cada instante de tiempo’ a solo ‘en promedio’:

1 n—1
liminf-E | }' A, | =M (2.3)

nfee N m=0
Bajo esta condicién mads relajada, el problema puede resolverse siempre y cuando cumpla la con-
dicion de indexabilidad [6] [25]. Para explicar esta condicion, consideremos primero un proceso de

Markov de un solo bandido, con unas probabilidades de transmision F, ;. En cada instante de tiempo,
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se pueden realizar dos acciones posibles a € {0(pasivo), 1(activo) }. Bajo este sistema, consideraremos
un subsidio por pasividad, donde las recompensas de las acciones pasivas cuentan con un afiadido A, es
decir:
Ry(x a =1 activo
R@5) = M1 |
Ro(x)+A a=0pasivo

Bajo este nuevo sistema, la funcién de valor de la ecuacién (1.10) pasaria a ser:

V(s) = mix <R1 )+ Lk 1L)V(), Ro(s)+A+7-} pk0,j)V (j)) (2.4)

— mix [ <R1 (9)+7- X plk 1,j>v<j>> +(1-u) (Ro(s) FAty- Zp(k,o,j>v<j>>] 25)
as J J
De esta forma, la acci6n activa es 6ptima cuando Ry (s) +7y-¥; p(k, 1, j)V (j) es el maximo mientras
que la acci6n pasiva serd 6ptima si Ro(s) +A +v- ¥, p(k,0, j)V (/) es maximo.
A partir de la relacion entre las funciones de valor de estado V (s) y de accién-estado Q(s,a) definida
en (1.13), podemos calcular los Q-value de la funcién de accién-estado Q(s,a) como:

Q(S,Cl) =a <R1(S) —l—}/Zp(k, 17])‘/(])) + (1 _a) (RO(S) + A —I—}/Zp(k,o,])V(])) (2.6)
J J

Sea IT(A) el subconjunto de estados s € S en los que la accién pasiva es 6ptima bajo el subsidio A,
es decir

Un bandido formado por la tupla (S,A, P,R,7) es indexable si II(A) es creciente en A, es decir
M = A = TI(Wh) 2 TI(W2) (2.7

Por lo tanto, un bandido es indexable si a medida que aumentamos el nivel de subsidio pasivo, también
lo hace el niimero de estados para el cual esa accién es Optima.
Por otro lado, sea un bandido (S,P',P° R',R?,y) indexable, su indice de Whittle g : S — R estd
definido como:
g(s)=mf{A:s€Il(A)},s€S (2.8)

Es decir, de todos los posibles subsidios A que se podrian aplicar al estado s para que este pasara a
formar parte del conjunto IT(A), el indice de Whittle g(s) es el valor minimo de A capaz de hacer esto.

Por lo tanto, para un valor de A determinado, la recompensa obtenida por activar o no ese bandido
es exactamente la misma. Con valores de A mayores, la politica Gptima seria dejarlo pasivo, ya que seria
la accién con mayor recompensa segiin la ecuacién (2.4), mientras que para valores menores, la accioén
Optima serfa activar el bandido. Es por ello que el valor g(s), que delimita la rentabilidad entre ambas
acciones, actia como un indice para cada estado, definiendo asi su prioridad a la hora de activar ese
bandido o no. Para el caso frontera entre ambas acciones, este valor A = g(s;) actiia como la diferencia
de rentabilidad entre ambas acciones, es decir:

g(S) - (Rl (S) +7 Zp(ka 17.])‘/(.])) - (RO(S) +7 Zp(kaoa.])v<.])> = Q(S, 1) - Q(S7O> (29)
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A través de la heuristica del indice de Whittle, si un restless bandit es indexable con g; : §; & R
el indice de Whittle para el bandido i,1 < i < N opera de tal manera que en cada iteracion aplicamos
la accidn activa a los K bandidos con el mayor indice W;(s;(7)) y la accién pasiva a los N — K bandidos
restantes.

Bajo la condicién relajada (2.3), Whittle [6] demostré que esta heuristica era dptima. Esta aproxima-
cién, sin embargo, en el problema original con (2.2) es cuasiOptima, es decir, si bien es una politica con
un retorno muy alto, no es éptimo como en el caso de Q-learning. Sin embargo, la gran ventaja de esta
heuristica es la capacidad de reducir la complejidad del problema de ser exponencial con N a ser solo
lineal con este [6]. Empleando la heuristica original de Q-learning, a partir de un nimero relativamente
pequeiio de bandidos, incluso con un espacio de estados limitado, el problema se vuelve demasiado exi-
gente computacionalmente. Es aqui donde radica la potencia de estas politicas de indices: la capacidad
de subdividir el espacio de estados de un MDP que crece exponencialmente con el nimero de bandidos
en multiples cadenas individuales de Markov, donde el espacio de estados total crece linealmente con
este numero de bandidos, evitando asi la “maldicién de la dimensionalidad” presente en el primer caso.

En nuestro trabajo, calcularemos los términos Q(s,a) y g(s) para obtener una politica Gptima. Como
podemos ver en las ecuaciones (2.6) y (2.9), los términos Q(s,a) y g(s) se encuentran acoplados, de tal
manera que para calcular uno necesitamos los valores del otro. Con el fin de desacoplar este sistema y
poder calcular ficilmente estos indices, a la vez que introducir unas condiciones de convergencia para el
célculo numérico de éstos, emplearemos una aproximacion adiabatica, donde el cdlculo del indice g(s)
se realiza en una escala mds lenta que la de Q(s,a). Este tipo de aproximaciones son comunes en fisica
y quimica molecular [26] [27] [28], donde se pretende desacoplar sistemas de ecuaciones diferenciales,
en estos casos referidos a la dindmica de los electrones y los nicleos de los dtomos. De la misma forma
que para los electrones el movimiento del nicleo de los 4tomos es tan lento que se considera estédtico
[29], de cara a la variable Q(s,a), el indice g(s) serd cuasi-estatico.

2.3. Q-learning

2.3.1. Calculo iterativo de los Q-values iterativo

Como hemos visto en la seccién 1.3.6, la principal caracteristica de la funciéon de valor accién-
estado, también llamado Q-value, es la capacidad de evaluar no solamente la “bondad” del siguiente
paso temporal, como ocurre con la funcién V (s) que sigue una politica greedy, sino que es capaz, en
cada estado, de evaluar los futuros estados siguiendo una misma politica 7. Para hacer esto, el algoritmo
no necesita saber de antemano la dindmica del sistema y las matrices de transicion, sino a partir de la
interaccion con el entorno. Este método fue introducido en 1989 por Watkins [23] a través de la siguiente
férmula:

Olsi, @) « Qsi,ar) + ¢ [Rysy +ymix Qsiy1,a) — Qfsiva) | (2.10)

En este caso, la funcién aprende el Q-value del par accién-estado s;, a; de forma iterativa, empleando
un tamaio de paso 0 < o < 1. En este modelo de aprendizaje, no necesitamos conocer explicitamente
la politica 7, sino solamente simular el cambio de estado al realizar una accioén a desde el estado s.
A través de este método, se ha demostrado [30] la convergencia del Q-value Q(s,a) a su valor 6ptimo
0 (s,a).

En este esquema introducimos el concepto de politica de control e-greedy. Analizaremos este con-
cepto en detalle en la seccién 3.2. Por ahora, nos basta con aclarar que se trata de una politica empleada
para elegir que acciones realizar para cada estado S del entrenamiento que asegura una cierta diversidad,
de modo que tengamos experiencia suficiente sobre todos los pares accién-estado.

Una de las principales condiciones de convergencia [31] que debe cumplir Q-learning est4 relacio-
nado con el tamaifio de los pasos o. Para garantizar la convergencia, {o } debe decrecer con respecto al
ndmero de pasos n como Y7 a(n) = ooy Yo" o (n)? < oo. Detallaremos la demostracién completa de la
convergencia al valor éptimo en la seccién 3.2.1
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Pardmetros del algoritmo: tamafio de paso O<a <1, € pequefio
Inicializamos Q(s,a) para todos los s€S y a€A arbitrariamente

Bucle para cada episodio:

Inicializamos S

Bucle para cada paso en el episodio:
Elegir accién A para el estado S a partir de una politica de control

(e—greedy)

Realizar accién A, obtener recompensa R y nuevo estado S’
O(S,A) < O(S.A) + o [R+ ymiix, O(S',a) — O(S,A)]
S« S

Repetir hasta que S sea el udltimo estado del episodio

Figura 2.1: Esquema de aprendizaje por Q-learning

2.3.2. Q-learning con politica de indices

En la seccion anterior hemos visto el algoritmo general para el cdlculo iterativo de los Q-values
a través de la interaccion con el entorno. A continuacién, introduciremos las nociones de politicas de
indices planteadas en la seccién 2.2 para generar una nueva expresion combinando las ecuaciones (2.6)
y (2.10).

En la ecuacioén (2.10) actualizamos el valor de cada Q-value para cada par accién-estado como una
combinacién lineal entre el valor original y un nuevo término R, + ymax, Q(s;+1,a). En nuestro nuevo
algoritmo, introducimos la posibilidad de obtener o no un subsidio extra en forma del indice de Whittle
g(sy) en funcién de si la accién a que realizamos es pasiva o activa:

Oy (s,ar) <= Oy (s.ar) +a(n) | (1 —a;)(Ro(se) + gn(x)) +aRi (51) + nggf}QZ(st%v) — 0, (s1,a1)
@2.11)

En esta expresion, calculamos el Q-value del par accion/estado a,,s; en la iteracién n+ 1 a partir
de su valor en la iteracion n, su recompensa, sea esta R (s;) si la accidn es activa o Ro(s;) + gn(x) si es
pasiva y el mayor Q-value de entre las dos acciones posibles para el siguiente estado.

En la ecuacion (2.11) introducimos el indice de Whittle g, (x) para el estado x € S, donde ser activo
0 pasivo es igualmente deseable. En nuestro proceso de Q-learning utilizamos dos variables de estado:
por un lado, s; representa el estado siendo visitado por el agente que es el bandido en cada iteracion,
mientras que x es una “prospeccion” a todos los posibles estados del conjunto S. Para el valor actual de
st, calculamos @ (s,u;) para todos los posibles valores de x.

En la ecuacién (2.11) introducimos el uso del indice de Whittle g,(x). Este indice se debe actua-
lizar a lo largo de las n iteraciones en las que se entrena nuestro algoritmo simulando nuevos estados
y recompensas a través del proceso de Q-learning. Sin embargo, debido al acoplamiento entre los Q-
value y estos indices, es dificil garantizar la convergencia actualizando ambos al mismo tiempo. Para
ello, implementamos una segunda escala de tiempo en la cual calculamos estos indices. Esta escala de
tiempo ird mds lenta que la escala normal, en la que actualizamos los valores de los Q-values con (2.11),
de tal manera que en el célculo de los Q-value, los indices de Whittle se considerardan cuasi-estaticos
ya que estos se actualizan mucho menos a menudo. Para esto, introducimos otra secuencia de tamafios
de paso {B(n)} que, al igual que con {a(n)}, satisface ¥'* B(n) = oo y ¥ B(n)? < 0. Combinando las
actualizaciones iterativas de (2.10) con la férmula de los indices (2.9), obtenemos la siguiente expresion:

g1 (x) = a(2) + B(n) (Q3(x, 1) — O3 (x,0)) (2.12)
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Los tamafios de paso at(n) y B(n) tienen ambos que cumplir las condiciones de convergencia que
hemos descrito antes, y al mismo tiempo permitir que el indice g(x) se actualice en una escala de
tiempo mas lenta que la del célculo de O*(s;,u,). Trabajos previos [31] han dado como resultado el
empleo de las siguientes secuencias de tamafios de paso, con caracteristicas vitales para la convergencia
del algoritmo que discutiremos en detalle en el capitulo 3.2.1:

o(n) = ,12 (2.13a)
[ 505 |

1 —
B(n) = Wl{n(modN) =0} (2.13b)

Donde B(n) # 0 solamente en aquellas iteraciones n que sean multiplo del nimero de bandidos
presentes en el problema, N. Por lo tanto, cuanto mayor sea el nimero de bandidos empleados, mayor
diferencia habré entre ambas escalas de tiempo.



Capitulo 3

Calculo de los indices de Whittle

3.1. Valor teorico de los indices de Whittle

Antes de proceder a realizar el cdlculo numérico de los indices de Whittle, primero calcularemos
el valor tedrico de estos indices para dos casos distintos. Primero, consideraremos uno de “dindmica
circular”, en el que los bandidos se mueven a través de una cadena de estados en la que al llegar a un
extremo, pasan a estar en el extremo opuesto. El segundo problema que exploraremos es el “problema
con reinicio”, donde los bandidos pueden avanzar un estado o volver al primer estado de la cadena.

3.1.1. Dinamica circular

En el caso de la dindmica circular, consideraremos un espacio de estados S = {1,2,3,4} donde las
matrices de transicién de estados para la accidn activa (u = 1) y pasiva (u = 0) son:

12 0 0 1/2 1/2 1/2 0 0
1/2 1/2 0 0 |0 1212 0
0 1/2 1/2 0 Ylo o0 12 1)2
0 0 1/2 1)2 12 0 0 1/2

Py =

Es decir, tomando una accidn pasiva en un estado s, el bandido tiene 50% de probabilidades de
permanecer en ese estado y un 50 % de retroceder al estado s — 1. Si ese estado es el estado 1, retroceder
supondria pasar al estado 4. Andlogamente, tomando una accion activa, el bandido tendria un 50 % de
probabilidades de permanecer en ese estado y un 50 % de avanzar al estado siguiente, donde, en caso de
estar en el estado 4, pasaria al estado 1.

(a) (b

)

Figura 3.1: Visualizacion de la dindmica de los bandidos en el problema de la dindmica circular, para la
accion activa (a) y pasiva (b)

La recompensa en este modelo no depende de la accidon que tomen los bandidos, sino Ginicamente del
estado en el que esté, y estd definida como R(1) = —1,R(2) = 0,R(3) = 0,R(4) = 1. Estudios previos

17
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32], empleando el criterio de recompensa media en el horizonte infinito (ecuacién (1.6)), demostraron
que los indices de Whittle convergian a los valores g(1) = —1/2,g(2) =1/2,g(3) =1y g(4) = —1: El
algoritmo prioriza activar aquellos bandidos que se encuentren en el estado 3 por encima de cualquier
otro, ya que en caso de avanzar a un estado, pasaria al 4 con recompensa R(4) = 1. Por otro lado, el
dltimo bandido que activaria seria aquel en el estado 4 ya que, de hacerlo, este podria pasar al estado 1
con recompensa R(1) = —1.

Estos valores exactos de los indices dependen del criterio de “optimalidad” empleado. En nuestro
caso, con el criterio de recompensa descontada en el horizonte infinito de tiempo, el valor de estos
indices dependerd del pardmetro de descuento ¥y empleado. Sin embargo, en el limite Y — 1, nuestros
valores deberian converger a los aqui citados previamente. Lo que deberia permanecer igual, en cual-
quier caso, es el orden de estos indices, es decir: primero activar el estado 3, luego 2, el 1 y por dltimo el
4. Siguiendo con esa intuicién, podemos calcular los indices de Whittle para el criterio de recompensa
descontada enpleando las ecuaciones (2.4) y (2.9), activando secuencialmente los estados en el mismo
orden que el citado previamente.

= Estado 3: Empezamos con todos los estados pasivos. En la ecuacion (2.4) todos los valores de
V() utilizaran el valor pasivo con el indice A. El sistema de ecuaciones es:

A(3)=Ri(3) +}/<;V(3) +;V(4)> —Ro(3) —y<1V(3)+ ;V(2)> ~Yvw-ve)

2
V(1) =Ro(1)+A+y -;V(l) + %v(4)
V(2)=Ro(2)+A+y _;V(Z) + %v(l) (3.1
V(3) =Ro(3)+A+7 _;1/(3) ;V(Z)_
V(4)=Ro(4)+A+y -;V(4) +% (3)_

Este sistema de ecuaciones se puede resolver facilmente expresdndolo como una ecuacién matri-
cial de la forma:

V1 /2 0 0 y/2\ [/VI -1+
V2 y/2 y/2 0 0 V2 A
V3 o y2 y2 o ||va|T| 2
V4 0 0 /2 y/2) \v4 14+ 4 -
1-A y/2—1 0 0 /2 Vi G:2)
—A v/2  y/2—1 0 0 V2
-2 | 0 y/2  y/2—-1 0 V3
—1-2 0 0 y/2  y/2—1) \V4

Resolviendo para V1,V2,V3y V4, y despejando en el término A(3) de la ecuacion (3.1) obtene-
mos el valor del indice de Whittle para el estado 3 en funcién del término de descuento ¥:

A(3) = 1

m =3(3) (3.3)

= Estado 2: Ahora el estado 3 se encuentra activo, mientras que el resto de estados siguen pasivos.
El sistema de ecuaciones de nuestro sistema es ahora:
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A2)=Ri(2) +y<;V(2) —I—;V(3)> ~Ro(2) —y<1V(2)+ 1v<1)> ~Yve v

V(2)=Ro(2)+A+7y SR

SV@)+ 2V(1)]
V3)=Ri(3)+y [;V(Z&) + V(4)}

V(4) = Ro(4) + 2+ va) T ;vo)]

Al igual que en el caso anterior, resolviendo este sistema de ecuaciones nos da el valor del indice
de Whittle del estado 2 en funcién del descuento 7:

A(2)=5=¢g(2) (3.5)

= Estado 1: Ahora se encuentran activos los estados 2 y 3, mientras que siguen pasivos los estados
1 y 4. El sistema de ecuaciones es:

MO =R(+7 (V00 + 57 @) - R -7 (V) - V) = T v v

V) =R+ 2+ 7V + 38

1 1 3.6
V(2)=Ri(2)+7 [ZV(Z) + 2v<3)} G0
1 1
V(3)=Ri(3)+7y [ZV(B) + 2V(4)}
1 1
V(4)=Ro(4)+A+7y [ZV(4) + 2V(3)]
Resolviendo para los valores de V1,V2,V3 y V4 y despejando en A (1), obtenemos:
(1) ==L =g(1) (3.7)

= Estado 4: Todos los estados se encuentran activos menos el estado 4. El sistema de ecuaciones
que describe este sistema es:
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A(4) =Ri(4) +7<2V(4) +;V(1)> —Ro(4) —y(év<4)+ ;V(3)> = %(Wl) ~V(3))
v =ri()+7| v+ vl
V@) =Ri@)+7| 372+ V)] 69
V3)=Ri(3)+7 -fV(3) + ;V(4)-

Resolviendo este sistema de ecuaciones, obtenemos el indice del estado 4 en funcién del factor
de descuento ¥:

_
M) = g =8 (3.9)

Si realizamos el limite de los indices para Y — oo, vemos como todos estos convergen a los valores

calculados en [32].

1.00 ~

0.75 A

0.50 -

0.25 A

0.00 ~

Index Value

—0.25 A

—0.50 A

—0.75

—1.00 -

0.0 0.2 0.4 0.6 0.8 1.0
14

Figura 3.2: Valor de los indices de Whittle para el modelo de dindmica circular en funcién del factor de
descuento y

3.1.2. Problema con reinicio

Para el siguiente caso, consideraremos un espacio de estados S = {1,2,3,4,5} con dos posibles

acciones: pasivo (u = 0), donde el bandido tendrd un 90 % de probabilidades de avanzar un estado y
un 10% de permanecer en el mismo y activo (# = 1), donde el bandido vuelve al estado inicial con
probabilidad 1. Las matrices de transicion de estos procesos son:
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1/10 9/10 0 0 0 1 0 00O
/1o 0 9/10 O 0 1 00 00O
Ph=|1/10 0 0 9/10 O P=11 00 0 O
/10 0 0 0 9/10 1 00 00O
1/10 0 0 0 9/10 1 0 00O
0000000000
A
(a) (b)

Figura 3.3: Visualizacién de la dindmica de los bandidos en el problema del reinicio, para la accién
activa (a) y pasiva (b)

A diferencia del caso anterior, consideraremos recompensas diferentes en funcién de la accién que

tomemos. De esta forma, si un bandido pasa a estar activo, su recompensa siempre serd 0, mientras que
si es pasivo su recompensa serd Ro(k) = a¥, con k el nimero del estado, y donde tomaremos a = 0,9.
Este problema tiene un especial interés ya que los estados més elevados son mucho menos visitados
durante el entrenamiento del algoritmo, lo cual dificulta el proceso de aprendizaje.
Los indices de Whittle de este sistema, empleando el criterio de recompensa media en el horizonte infini-
to (ecuacion (1.6)) han sido estudiados previamente en [33], obteniendo los valores g(1) = —0,9,g(2) =
—0,73,2(3) = —0,5,g(4) = —0,26 y g(5) = —0,01 . Con nuestro criterio de “optimalidad”, los valores
de los indices dependerdn del factor de descuento 7y, aunque el orden de activacién de los estados serd
el mismo. Por lo tanto, igual que en el apartado 3.1.1, calcularemos el valor teérico de estos indices
empleando las ecuaciones (2.4) y (2.9) activando los bandidos enel orden 5 -4 —3 — 2 — 1.

= Estado 5: Todos los estados se encuentran pasivos. El sistema de ecuaciones de este caso es:

A(5) =R1<5>+w<1>—Ro<s>—y(9v<s>+1v<1>> =09+ 2y(V(1) - V(5)

10 10 10
V(1) = Ro(1)+ A +7 _190\/(2)+110v<1)
V(2) = Ro(2) + A +7 :190\/(3) + 110"(1):
V(3) = Ro(3)+ A+ :190\/(4) + 110v<1)_
V(4) = Ro(4)+A+7 :190\/(5) + IIOV(I)_
V(5)=Ro(5)+ A +7 :190\/(5) T 110v<1)_

(3.10)

Al igual que en la seccién 3.1.1, este problema se puede resolver plantedndolo como un sistema
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matricial, en el que calcularemos los valores V1,V2,V3,V4 y V5 y los despejaremos en el tér-
mino A(5) de la ecuacién anterior:

V(1) y/10 9y/10 0 0 0 V(1) Ro(1)+

V(2) y/10 0 9y/10 0 0 V(2) Ry(2)+

V(i3) | =17v/10 0 0 9y/10 0 V(3) |+ | Ro(3)+

V(4) v/10 0 0 0 9v/10 V(4) Ro(4)+

V(5) v/10 0 0 0 9y/10 V(S) Ro(5)+ 3.11)
—Ro(1)—2 y/10—1 9y/10 0 0 V(l) '
—Rp(2)—A Y/10 -1 9y/10 0 V(2)
—Ro(3)—A | = v/10 0 -1 9y/10 V(3)
—Rp(4)—A Y/10 0 0 -1 9)//10 V(4)
—Ro(5)— A v/10 0 0 0 9y/10—1 V(5)

El indice para el estado 5 en funcién del factor de descuento ¥ es:
43046721y*  10097379y®  1778031y*> 278559y 59049
) 1000000000 = 100000000 + 10000000 + 1000000 100000 8B (3.12)

= Estado 4: Todos los estados menos el 5 se encuentran pasivos. El sistema de ecuaciones ahora es:

M) = R+ (1) = Rod) 7 (5V15)~ V(D)) = ~(09 + 1y (V) -V (5)
V(l):R0(1)+l+Y-190V(2)~I—IIOV(I)-
V() =Ry(2)+A+7 190V(3)+ 1101/(1)_
V(3) = Ro(3)+ A+ %v<4)+ 110v<1)_
V(4) = Ro(4) + A +7 -190V(5)+ IOV(I)-

V(5)=Ri(5)+yV(1)
(3.13)

Resolviendo para los V1,V2,V3,V4y V5 y despejando en A(4) obtenemos el valor del indice de
Whittle para el estado 4 en funcién del factor de descuento ¥:

81 (656173 + 1539072 + 27100y — 81000)

A4 = 10000000 =84 3.14)

= Estado 3: Los estados 4 y 5 se encuentran activos mientras que los estados 1, 2 y 3 se mantienen
pasivos. El sistema de ecuaciones es:
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1) =R+ (1)~ Ro(3) -7 ( 15V ) = V(1)) = =09 + 5y V(1) -V (4)
V(1) = Ro(1) + A +7 _190\/(2) +110V(1)-
V(2) = Ro(2)+ A+ :190\/(3) + 110v<1)_
V(3) =Ro(3) + A +7 :190V(4) + 1101/(1):

V(4)=Ri(4)+yV(1)

V(S)=Ri(5)+yV(1)
(3.15)

Resolviendo este sistema de ecuaciones, obtenemos el indice del tercer estado en funcién de ¥:

65617 N 1539y 729

(3)= 100000 ~ 10000 1000 =20) (3.16)

= Estado 2: Todos los estados menos el 1 y el 2 estdn activos. El sistema de ecuaciones es:

M) =R+ (1) =R~ 15V ()= V(1)) = =09+ V(1) ~Vi3)

(3.17)

Cuyo indice de Whittle en funcién de vy es:

A =S 8L o (3.18)

~ 1000 100 %

= Estado 1: Por tltimo, nos encontramos con el caso de que todos los estados menos el 1 estén
activos. el sistema de ecuaciones ahora es:
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9 1 9
A =R(1) 4 (1)~ Ro(1) =7 $5¥12) = gV (1)) = =09+ Spr(V(1) - V()

V(1
10 ( )] (3.19)

V() =Ri(2)+yV(1)
V(3)=Ri(3)+yV(1)
V() =Ri(4)+yV(1)
V(5)=Ri(5)+ V(1)

En este caso, el indice de Whittle para este estado es constante y por lo tanto no depende del
factor de descuento ¥:

A1) =—==g(1) (3.20)

Igual que antes, nuestros resultados convergen con los de [33] en el limite y — 1.

Index Value

—0.8 4

0.0 0.2 0.4 0.6 0.8 1.0
14

Figura 3.4: Valor de los indices de Whittle para el problema con reinicio en funcién del factor de des-
cuento y

Una vez que hemos visto los valores tedricos a los que tienen que converger los indices de Whittle
para el problema de la dindmica circular (seccién 3.1.1) y el problema con reinicio (seccién 3.1.2), va-
mos a pasar a discutir el desarrollo del algoritmo a partir del cual realizaremos el proceso de Q-learning
y el célculo de los indices de Whittle en escalas de tiempo separadas.
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3.2. Esquema del algoritmo

Una vez hemos visto los valores tedricos de los indices de Whittle para los casos de dindmica circu-
lar y el problema de reinicio, vamos a pasar a estudiar la estructura del algoritmo y como el proceso de
Q-learning expuesto en la seccién 2.3.2.

Para el cdlculo de los indices, consideraremos en ambos casos N = 100 bandidos distintos, de los
cuales solo estan activos en todo momento K = 20 bandidos. En ambos problemas, inicializaremos la
Q-table como un conjunto de tablas, una para cada bandido, de dimesién S x A x §, donde S es el nimero
de estados y A el niimero de acciones posibles (en este caso, siempre serd 2). El primer término S hace
referencia a los estados x en los que el indice g(x) hace que estar pasivo o activo sea igualmente deseable,
mientras que el segundo término S hace referencia al estado visitado por el proceso de Q-learning, s;.
Al empezar el algoritmo, los indices de Whittle para cada estado estdn inicializados a 0.

La secuencia de control esta definida a través del algoritmo de “Epsilon-greedy”: Sea € un parame-
tro de valor 0 < € < 1, tomamos con probabilidad 1 — € los K bandidos con el indice g(x) mads alto y
los definimos como activos, mientras que el resto se mantienen pasivos, es decir, tomamos una politica
greedy en la que elegimos la opcién mds eficiente: explotamos nuestro conocimiento sobre el problema.
Por otro lado, con probabilidad €, se seleccionan K bandidos al azar para establecerlos como activos.
Este tipo de acciones pueden ser menos eficaces que aquellas de la politica greedy, pero también pue-
den dar lugar al descubrimiento de politicas mds 6ptimas que las anteriores: exploramos la dindmica
de este problema, aumentando nuestro conocimiento sobre el mismo. Este tipo de secuencia de control
permite un buen balance entre exploracion y explotacion de la informacion del problema. En nuestro
caso, utilizaremos € = 0,1, de modo que un 10 % de las veces exploraremos al azar para obtener nueva
informacion sobre el problema mientras que el 90 % de las veces tomaremos una decisién acorde a la
politica que estamos construyendo.

Bucle para cada iteracién n:
Seleccionar a través del algoritmo é&-greedy los bandidos a activar
Simular los nuevos estados para todos los bandidos en funcién de la
dindmica del problema
Calcular la recompensa de estos estados

Calcular los nuevos tamaifios de paso a(n) y B(n):
1

o(n) = £S5
B(n) = %I{n(modN) =0}
1+ %555- |
Calcular los Q-values de la Q-table de cada bandido:
Qﬁ+1<sl‘7at)P
O (s1,a0) + o (n) [(1—ar) (Ro(se) + 8n(x)) + a:Ri (57) + Yméxyeqo.13 On(s141,v) — Qi (s1,a1)]
Calcular los nuevos indices de Whittle:

8nt1(¥) = gn(x) + B (n) (@5 (x, 1) — 05 (x,0))

Actualizar los valores de los estados

Figura 3.5: Esquema del algoritmo de aprendizaje

Donde los valores o y 8 estdn definidos en (2.13) y el célculo de los Q-values y los indices son los
descritos en (2.11) y (2.12) respectivamente.

En la definicién de 8 de (2.13b) empleamos el término /{n(modN) = 0}. Esto implica que f es
distinto de O solo si el ndmero de la iteracién z es un miltiplo del niimero de bandidos N. En la figura
3.5, en cada iteracion actualizamos los indices de Whittle (2.12), al igual que los Q-values (2.11). Sin
embargo, solo cuando n es multiplo de N hay un cambio real en el valor de los indices de Whittle, ya
que en el resto de casos g,+1(x) = g,(x). Es asi que, aunque actualicemos ambos términos en todas las
iteraciones, solo los Q-values cambian en todas ellas. De este modo, obtenemos el efecto de las dos
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escalas de tiempo, en el que los Q-values se actualizan mds a menudo que los indices.

3.2.1. Demostracion de la convergencia

Nuestro algoritmo se apoya en la convergencia, por un lado, del modelo de Q-learning clasico in-
troducido en 1.3.6, y por otro del esquema de dos escalas temporales planteados en [34] y [35]. A
continuacién, mostraremos un boceto de la demostracién de la convergencia de ambos sistemas.

Convergencia de Q-learning

Para la demostracion de la convergencia del algoritmo de Q-learning, consideremos un Proceso de
Decisién de Markov con la tupla (S,A, P,R) donde S es el espacio finito de estados de la cadena, A es
el espacio finito de acciones, P son las probabilidades de transmision y R es la funcidon de recompensa.
Denotaremos los elementos de S como x e y y los elementos de A como a y b. La funcion de recompensa
por tanto esta definida a través del triplete (x,a,y):

r:SxAxS—R

Donde obtenemos una recompensa R(x,a,y) por cada transicion del estado x al estado y al realizar una
accion a.

Partiendo del criterio de optimalidad de horizonte infinito descontado con el que hemos estado
empleando, la funcién de valor accién-estado, bajo una secuencia de controles {4, } es

O(x {At Z?’rR X, A)|Xo = x

t=0

Por lo tanto, para cada estado x € S, la funcién de valor de estado dptima estd definida como:
Vix) = Hixéx O(x,{A})

La cual verifica

V() = mix Y Pl ) [R(,a,9) + 9" ()]
yeX

Y por lo tanto, la funcién de valor accidén-estado 6ptima es

a) - Z}(Pd(x’y) [R(x,a,y) +YV*<y)]

Esta funcién de valor éptima es un punto fijo del operador de contraccién H definido para una
funcién genérica g : S X A — R como:

(Hg) Pu( ixq(y, b 321
q)(x,a) }% (x,3) |R(x,a,y) + yméxq(y,) (3.21)

Este operador es una contraccién en la norma uniforme, es decir,

[Hg1 — Hga[l < 7llq1 — g2 (3.22)

Delimitando asi el valor de la funcién genérica g. La demostracion de esta desigualdad se puede obtener
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desarrollando la ecuacién anterior con la definicién (3.21):

|IHg) — Hgz || = méx
x,a

Y Pu(ry) [R<x, a,y) + ymix 1 (5, b) — R(x,a,y) — yméxq: <y,b>} _
yex beA beA

= maxy
x,a

<

Pa ) A 7b - A 7b
yGZ:,g (x,¥) [Tg}‘h()’ ) —méxga(y )}

x,a

<méxy Y Pu(x,y) ‘%133“11 (v,b) — rgggm(y,b)‘ <

yeS
<méxy Y Pi(x,y) mix|qi(z,b) — q2(z,b)| =
g yes b

=mixy} Pu(x,y) a1 = aallo = 7lla1 — 42|
' y€S

El algoritmo de Q-learning determina la funcién 6ptima de valor empleando distintas muestras
durante el aprendizaje. Consideremos una politica aleatoria 7 tal que la probabilidad de realizar una
accion a bajo un estado x sea no nula, es decir

Pﬂ- [At :a|X, :x] > O

para cualquier par estado-accion (x,a). Sea {x;} la secuencia de estados obtenida siguiendo la politica
7, {a, } la secuencia de acciones realizadas y {R, } las recompensas obtenidas, para cualquier estimacion
inicial Qy, el algoritmo de actualizacion de Q-learning es

Ql+1(-xl7at) = Qt(xtaat) +at(-xt7at) R, "‘?’filéi(Qt(xtH)b) - Qt(xt,at)

Donde oy (x;,a;) es el tamafio empleado en la iteracion ¢ para el par de estado-accion (x;,a,), el cual
verifica 0 < oy (x,a) < 1. Estas actualizaciones son asincronas, es decir, en cada iteracién no actualiza-
mos todos los valores de Q(x,a) para todos x € Sy a € A, sino solamente la tupla (x;,a,). Esto nos lleva
a los siguientes teoremas.

s Teorema 1. Dado una MDP finita definida por la tupla (S,A,T,R), el algoritmo de Q-learning
dado por

Oi1(x,a0) = Or(xe,a0) + 0y (x4,a) | Ry + '}’fileé-j(Qt (Xr41,0) — O (x4, 1) (3.23)

Converge al valor 6ptimo de la funcién de valor Q siempre y cuando
Zat(x,a):oo Zatz(x,a)<oo
t t

Para todos los (x,a) € S x A. Debido a que el valor de o estd delimitado a 0 < o4 (x,a) < 1,1a con-
dicién anterior requiere que todos los pares de estado-accion sean visitados. Antes de demostrar
este teorema, debemos presentar un resultado auxiliar de la teoria de aproximacion estocdstica.

» Teorema 2. Sea un proceso aleatorio {A; } que tome valores en R” y esté definido como
A1 (x) = (1= 04 (x))As (x) + (%) Fi (x)
Este converge a 0 bajo las siguientes condiciones

c0< 0y < laZtO‘t(x):‘”YZtatz(x)<°°
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o [[E[F )|l w < 7IlAlw, cony <1
e var [F;(x)|.%;] < C(1+ HA,H‘Z,V), para C > 0.

La demostracién de este segundo teorema se encuentra en [36].

Demostracion del Teorema 1. Empezaremos reescribiendo la ecuacion (3.23) como

Orv1(xt,ar) = (1 — 04 (xy,01)) Qs (1, 1) + 04 (X7, ar) [R, + 7111}3} Qt(-xl+17b):|

Restando a ambos lados de la ecuacién Q*(x;,q;) y definiendo A;(x,a) = Q;(x,a) — Q*(x,a),
tenemos

) = (11 0058 3,0)) + 04 ) [+ 708 0 341.6) = € 30|

Definiendo F;(x,a) = R(x,a,X (x,a)) + yméxpc, Qs (y,b) — Q*(x,a), donde X (x,a) es una muestra
aleatoria obtenida de la cadena de Markov con espacio de estado S y probabilidad de transmisién
T,, tenemos

E[F (x,a)|-Z#] yEZ}?T x,Y) [ (x a,y)+y11£1€é}Q,(y,b)—Q*(x,a)] =
= (HQ:)(x,a) — 0" (x,a)
De tal manera que, empleando la definiciéon de Q* = HQ",
E[Fi(x,a)|7] = (HQ,)(x,a) — (HQ")(x,a)
Empleando la definicién de H en (3.22)
IE[F(x,a)|Zi] e < VIQr — Q7| = VIl Al
Por tltimo

var [F; (x)|.%] =

=E

2
<R(x,a,X(x, a))+ }/1}713} O:(y,b) — O*(x,a) — (HQ;)(x,a) + O* (x,a)) ] =

=E

2
(R(x7a7X(x7a)) +yméx O:(y,b) — (HQt)(xva)> ] =

—var |R(x.0. X (1.0)) + i 0,(10)| 7
S
Dado que la funcién de recompensa R esta delimitada, el resultado anterior verifica

var [F,(x)| 7] < C(1+ A3

Para una constante C. A través del Teorema 2, A, converge a cero y por lo tanto Q; converge al
valor 6ptimo, Q*.
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Convergencia de las dos escalas de tiempo

Para la demostracion de la estabilidad de nuestro sistema con dos escalas de tiempo, seguiremos la
demostracioén propuesta en [34] y [35]. Primero, generalizaremos las expresiones (2.11) y (2.12) para el
célculo de los Q-value y los indices de Whittle en las siguientes expresiones:

Xt = Xn+a(n) [h(xn,y,,) +M,E1+)1] (3.242)

Yn+1=Yn +b(n) [g(xnvyn) +Mr(i)1] (3~24b)

Donde (3.24a) es la escala rapida, que representa el calculo del Q-value (2.11) y (3.24b) es la escala
lenta, que representa los indices de Whittle en la ecuacion (2.12). En estas ecuaciones, & y g son fun-
ciones Lipschitz (continuas), M, son secuencias de diferencias Martingale, que representan términos de
ruido, y a(n) y b(n) son términos de tamafio de paso que disminuyen tal que % — 0 cuando n — oo, y,
dicta el comportamiento del agente, definiendo su politica, mientras que x, es un valor acumulado que
ayudara a definir y,. Nuestro objetivo es demostrar que y, — y* y x,, — x*, donde y* y x* son aquellos
para los cuales se obtiene esta politica 6ptima. En esta demostracién, es importante asegurar que tanto
X, como Yy, son estables, es decir, sup,, ||x,|| < ey sup, ||yn|| < eo. Aunque podriamos realizar una pro-
yeccién de x, e y, en un subconjunto C que los haga estables, esto podria excluir los términos x*,y* de
C; de ahi la importancia de asegurar esta estabilidad en los valores originales.

Primero, definiremos F (¥(j,b)) y M, +1(s,u) tal que:

FL (W) = (1) (Rofs) + A) 4 41 () + 7L plJli) mix W(j.»)
, ,

Mn+1(sa ”) = (1 - ”) (RO(S) + A’n(x)) +uR; (S) + méx} Qn(xn+lav) - Fsin(X)(Qn)

ve{0,1

A partir de estos términos, podemos reescribir la ecuacién (2.11) como:

0% 41 (s,10) = QL (i) + au(n) | F™ (Qn) — @+ My (s, 1) (3.25)

Si comparamos las ecuaciones (3.25) y (3.24a), vemos como a(n) = a(n), h(x,,y,) = Fsﬁ”(x) (On) —
0, donde x, = Q, e y, = g, son el Q-value y el indice de Whittle respectivamente y M, (s,u) es la

secuencia diferencial Martingale M}S:L) 1

Por otro lado, comparando las ecuaciones (2.12) y (3.24b), vemos como b(n) = B(n), g(x,,yn) =
. . 2 _
0y (x,1) — 0y (x,0) y la secuencia Martingale M,”/;, = 0.

En [35] citan 3 condiciones necesarias para que las ecuaciones (3.24) puedan ser estables y conver-
ger

Al hy g deben ser funciones Lipschitz continuas.
A2 {M,(,l)} y {M,(,Z) } son secuencias diferenciales Martingale.
A3 {a(n)}y {b(n)} satisfacen:

* a(n) >0,b(n) >0

* Y,a(n) =Y,b(n) =, L, (a(n)*+b(n)?) <

b
a(n) —
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La demostracién de la condicién Al se encuentra detallada en la pagina 687 de [37]. En nuestra
notacién, M, (s,u) y O son respectivamente las secuencias de diferencias Martingale M,(lir)l y M,(li)l,
cumpliendo asi la condicién A2. A3 también estd verificada a partir de la defincién de o(n) y B(n) en
(2.13a) y (2.13b).

En la demostracién de la convergencia del indice A al indice de Whittle g,, vamos a considerar
primero que las ecuaciones (2.11) y (2.12) estan delimitadas. Mds tarde demostraremos esta condicién.

Primero, reescribiremos la ecuacion para el cdlculo de los indices de Whittle (2.12) como:

() = () + o) (1) 03(01) - 03(0) (326)
Sea t(n) =Y _, &t(n), definimos la interpolacion:

00) = 0+ (it ey ) (@ 1) - Q) (3270

20 =+ (s ) elot 1)~ ) (3.270)

t€lt(n),t(n+1)]

Estas trayectorias siguen el comportamiento de las ODE’s delimitadas

Donde g(7) = 0 debido a que g%’;; — 0 a medida que n — 0. Desde el sistema de referencia de Q(r),
g es constante, con valor g’. Gracias a esto, la primera ODE pasa a ser Q = h(Q(t),g’), la cual al estar
bien definida y delimitada, posee un equilibrio asintéticamente estable en Q3 (teorema 3.4 en la pagina
689, [37]). Esto implica que, a medida que aumentemos n, Q) — Qi — 0. Por otro lado, el caso de g(t),

consideramos una segunda trayectoria, en otra escala temporal tal que:

t—1'(n)
n+1)—tau'(n)

20 =g+ (57 ) (st 1) gl

(3.28)
t€(t(n), ' (n+ 1)),  T(n)=} B(m),n=0

Esta trayectoria seguird la ODE
Ar) = Op (%, 1) = Q) (x,0)

Si A(¢) es mayor que el indice de Whittle 6ptimo para un estado dado, g*(x), tendremos un exceso
de subsidio, en el que se preferird la accién pasiva a la activa y A(t) < 0, de modo que A(z) decrecera.
De la misma manera, si A(f) < g*(x), quiere decir que no estamos considerando suficiente subsidio, y
siempre se preferird la accién activa, de modo que A(¢) > 0y A(t) crecera: la trayectoria de A(t) queda
asi delimitada. Igual que en el caso anterior, al ser una ODE bien definida y delimitada, existe un punto
de equilibrio asintéticamente estable al que converge, en el que A satisface Q3 (x, 1) = Q} (x,0) y ambas
politicas son igualmente deseables, es decir, A es el indice de Whittle g(x).
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3.3. Resultados numéricos

En la seccién 3.1 planteamos dos problemas con dindmicas distintas: por un lado, un sistema con
dindmica circular, donde el dltimo elemento de una cadena de estados conecta con el primero, con unas
matrices de transmision

12 0 0 1/2 1/2 12 0 0

1/2 12 0 0 0 1/2 1/2 0
Py= p =

0 1/2 1/2 0 0 0 1/2 1/2

0 0 1/2 1/2 12 0 0 1/2

Por otro, un problema con reinicio, en el que una accioén pasiva hace avanzar un estado en la cadena
de Markov (con una probabilidad del 90 %), mientras que una accién activa hace volver al inicio de la
cadena, con matrices de transmision

1/10 9/10 0 0 0 10000
1/10 0 9/10 0 0 10000
R=|1/10 0 0 9/10 0 p=[10000
/10 0 0 0 9/10 1 0000
/10 0 0 0 9/10 10000

Ambos sistemas tienen espacios de estados distintos, 4 y 5 estados para cada problema respecti-
vamente, y recompensas diferentes. A su vez, ambos problemas se pueden modificar ficilmente para
contemplar mas estados y distintos tipos de recompensas.

3.3.1. Dinamica circular

Tal y como hemos descrito en la seccion 3.1.1, planteamos un sistema de 4 estados en los que las
recompensas no dependen de la accién tomada en cada uno de ellos, y vienen definidas como R(1) =
—1,R(2) =0,R(3) =0,R(4) = 1. Los valores tedricos de los indices de Whittle de estos estados son:

g(1) = %y (3.29a)
g(2)= g (3.29b)
8(3) '}’2—;/'}/-1-2 (3.29¢)
Y
g(4) = 7 2y 12 (3.29d)

Como podemos ver en la grafica 3.2, cuanto menor es el valor de 7y, mas parecidos son los indices
entre si, hasta acabar convergiendo en el origen. En nuestro estudio, hemos entrenado el algoritmo
descrito en la seccién 3.2 con 100000 iteraciones para distintos valores de y entre 0.05 y 0.90. Para
cada valor del pardmetro de descuento, hemos comparado el error numérico del indice con respecto a
su valor tedrico en la ecuacién (3.29). Los valores absolutos de estos errores para cada estado, junto
con un promedio, se encuentran en la tabla 3.1 y la gréfica 3.6. A medida que aumentamos el valor del
pardmetro Yy nos acercamos a 1, el error numérico aumenta cada vez més. Este tipo de errores es comtin
en el criterio de optimalidad de horizonte infinito descontado [38] [39], donde al aumentar el valor de
Yy acercarlo a 1, la suma en la ecuacién (1.5) diverge. Incluso con un factor de descuento ligeramente
menor que 1, el aprendizaje de los Q-values lleva a la propagacién de errores e inestabilidades [39].
Para minimizar el error numérico en los indices de Whittle y al mismo tiempo darle peso a los estados
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en futuros en el cilculo de los Q-values, emplearemos y = 0,3 que, como podemos ver en la gréfica
3.6, tiene uno de los errores promedio mds bajos. Emplearemos este valor para discutir el resto de los
resultados para este problema.

Y | Estadol Estado2 Estado3 Estado4 Promedio
0,05 | 3,19E-03 9,79E-04 1,97E-03 3,51E-02 1,03E-02
0,1 | 1,75E-04 1,94E-03 2,45E-03 1,80E-02 5,65E-03
0,15 | 3,44E-03 240E-03 3,77E-03 3,48E-03 3,27E-03
0,2 | 6,01E-03 2,03E-03 7,26E-03 6,14E-03 5,36E-03
0,25 | 745E-03 1,60E-03 797E-03 9,89E-03 6,73E-03
0,3 | 4,76E-03 6,38E-04 1,12E-02 5,20E-03  5,44E-03
0,35 | 8,93E-03 3,17E-03 1,17E-02 3,07E-03 6,73E-03
04 | 7,51E-05 4,60E-03 1,36E-02 140E-02 8,09E-03
0,45 | 6,44E-03 9,77E-03 1,30E-02 1,08E-02 9,99E-03
0,5 | 6,51E-03 1,00E-02 1,32E-02 2,63E-02 1,40E-02
0,55 | 1,41E-02 1,59E-02 2,12E-02 4,46E-02 2,40E-02
0,6 | 1,71E-02 1,19E-02 1,85E-02 4,57E-02 2,33E-02
0,65 | 8,26E-03 3,12E-02 2,46E-02 4,95E-02 2,84E-02
0,7 | 1,LI9E-02 3,58E-02 3,35E-02 7,61E-02 3,93E-02
0,75 | 3,83E-02 2,27E-02 3,24E-02 8,26E-02 4,40E-02
0,8 | 2,92E-03 7,95E-02 4,53E-02 1,17E-01 6,12E-02
0,85 | 2,59E-01 1,65E+00 2,54E-02 1,11E-01 5,12E-01
0,9 | 1,95E-01 1,18E+01 7,93E-02 1,45E-01 3,06E+00

Cuadro 3.1: Error numérico del indice de Whittle en cada estado con respecto a su valor tedrico para
cada valor de ¥ en el problema de dinamica circular.

Problema circular

1,00E+02
1,00E+01
1,00E+00
1,00E-01
1,00E-02

\
1,00E-03

1,00E-04

1,00E-05
005 01 015 02 025 03 03 04 045 05 05 06 065 07 075 08 08 09
Valor dey

——Estado 1 Estado 2 Estado 3 Estado 4 ——Media

Figura 3.6: Error numérico de los indices de Whittle para cada estado en funcién del pardmetro y para
el problema de dinamica circular.

Al utilizar y= 0,3 obtenemos, a partir de la ecuacion (3.29), los indices tedricos g(1) = —0,15,¢(2) =
0,15,¢(3) =0,2013,g(4) = —0,2013. En la grifica 3.7 vemos como los valores numéricos de los indices
convergen asintéticamente a los valores tedricos.

Por otro lado, en la grafica 3.8 comparamos la recompensa de las primeras 4000 iteraciones durante
el entrenamiento del algoritmo frente a las recompensas empleando los valores tedricos de los indices
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Valor de los indices de Whittle para y=0.3

0.4

0.3

—— Estado 0
A(0) para y=0.3
—— Estado 1
=== A(l) para y=0.3
—— Estado 2
-—- A(2) para y=0.3
Estado 3
=== A(3) para y=0.3

0 20000 40000 60000 80000 100000

Figura 3.7: Indices de Whittle para el problema con dindmica circular para y = 0,3

20 A

15

10

—— PRecompensa durante el entrenamiento
—15 - Recompensa con politica final

T T T T
0 200 400 600 800 1000

Figura 3.8: Problema con dinamica circular: Comparacion entre las recompensas durante el entrena-
miento, empleando € = 0,1, frente a la recompensa obtenida con la politica definida desde el principio.

desde el principio. Una vez se ha definido la politica en el entrenamiento, la diferencia de rendimiento
frente a emplear la recompensa 6ptima desde el principio proviene del uso del algoritmo “Epsilon-
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20

—~15 4 —— Recompensa durante el entrenamiento
Recompensa con politica final

T T T T
0 200 400 600 800 1000

Figura 3.9: Problema con dinamica circular: Comparacion entre las recompensas durante el entrena-
miento, empleando € = 0,01, frente a la recompensa obtenida con la politica definida desde el principio.

greedy”’: En la grafica 3.8 empleamos un valor de € = 0,1, de modo que un 10 % de las veces tomamos
una accién que no es necesariamente éptima. En la grafica 3.9 tomamos € = 0,01, de modo que solo un
1% de las veces realizamos exploracion frente a explotacion de la informacién. En este caso, no solo
el algoritmo define antes su politica, sino que la recompensa que obtiene es mucho mas cercana a la
recompensa éptima.

3.3.2. Problema con reinicio

En el problema del reinicio, empleamos 5 estados distintos, donde la recompensa si depende de la
accion que tomamos en cada estado: si la accidn es positiva, volvemos al primer estado de la cadena con
probabilidad 1, pero la recompensa es 0, mientras que una accién pasiva implica avanzar con probabi-
lidad 9/10 (a menos de que estemos en el dltimo estado de la cadena, en cuyo caso nos mantenemos
en ese estado) o volvemos al primer estado con probabilidad 1/10. La recompensa de cada estado con
accién pasiva es Ro(k) = 0,9, donde k es el ndmero del estado. En la seccién 3.1.2 vimos como los
valores tedricos de los indices de Whittle para este problema eran:

9

[ —— .
g(1) T (3.30a)
8ly 81
N=—+r > 30b
#(2) = 1500 ~ 100 (3.30b)
65617 1539y 729
8(3) = 700000 T 10000 ~ 1000 (3.30¢)
81 (656173 + 1539092 + 271007 — 81000
g(4) = (65617 + v Y ) (3.30d)
10000000
(5) = 43046721y 10097379 N 1778031y N 278559y 59049 (3.300)
£ = 1000000000 T 100000000 | 10000000 ' 1000000 100000 ‘
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Enlatabla 3.2 y la gréfica 3.10 representamos el error numérico del cilculo del indice de Whittle tras
un entrenamiento de 100000 iteraciones, para distintos valores de y. Al igual que en el caso de dindmica
circular, cuanto mayor es el valor del pardmetro de descuento, mayor es el error numérico, llegandose
a disparar a partir de Y = 0,75. Debido al rapido crecimiento de los errores numéricos con el pardmetro
de descuento, emplearemos en el anélisis de este caso ¥ = 0,1, el cual, si bien relega muy poco peso en
las recompensas de los pasos futuros, garantiza un calculo 6ptimo de los indices de Whittle.

v | BEstadol Estado2 Estado3 Estado4 Estado5 Promedio
0,05 | 1,22E-02 1,21E-02 1,21E-02 146E-02 2,82E-02 1,58E-02
0,1 | 1,43E-02 1,29E-02 1,12E-02 145E-02 1,54E-02 1,37E-02
0,15 | 1,59E-02 1,48E-02 1,56E-02 1,70E-02 5,17E-02 2,30E-02
0,2 | 1,75E-02 1,94E-02 2,65E-02 292E-02 1,40E-01 4,64E-02
0,25 | 1,92E-02 2,28E-02 2,86E-02 4,96E-02 1,45E-01 5,31E-02
0,3 | 2,08E-02 2,21E-02 2,29E-02 4,74E-02 4,74E-02 3,21E-02
0,35 | 2,05E-02 2,27E-02 3,83E-02 §,79E-02 1,81E-01 7,02E-02
04 | 2,42E-02 2,43E-02 1,71E-02 6,92E-02 1,99E-01 6,68E-02
045 | 2,37E-02 2,40E-02 1,09E-02 7,00E-02 2,15E-01 6,87E-02
0,5 | 295E-02 2,35E-02 2,66E-02 2,03E-01 3,08E-01 1,18E-01
0,55 | 3,16E-02 2,49E-02 2,19E-02 2,66E-01 5,18E-01 1,72E-01
0,6 | 2,34E-02 1,35E-02 1,17E-01 7,35E-01 5,79E-01 2,94E-01
0,65 | 2,09E-02 1,01E-02 1,33E-01 1,25E+00 4,52E-01 3,74E-01
0,7 | 1,26E-02 3,77E-03 5,23E-01 3,31E+00 3,72E-01 8,43E-01
0,75 | 3,16E-02 2,38E-02 2,33E+00 6,00E+00 1,97E+00 2,07E+00
0,8 | 2,61E-02 1,31E-02 1,88E+01 1,36E+01 248E-01 6,54E+00
0,85 | 1,50E-02 5,40E-03 8,75E+01 1,96E+02 3,83E+00 5,74E+01
0,9 | 2,37E-02 8,87E-03 3,49E+03 2,62E+02 1,33E+02 7,76E+02

Cuadro 3.2: Error numérico del indice de Whittle en cada estado con respecto a su valor tedrico para
cada valor de 7 en el problema de reinicio.

Problema reinicio

1,00E+04

1,00E+03

1,00E+02

1,00E+01

1,00E+00

1,00E-01

— e~ ———

1,00E-02

1,00E-03
005 01 015 02 025 03 035 04 045 05 05 06 065 07 075 08 08 09
Valor dey

=—_Estado 1 Estado 2 Estado 3 Estado 4 =—=Estado5 =—=Media

Figura 3.10: Error numérico de los indices de Whittle para cada estado en funcién del pardmetro y para
el problema de reinicio



36 Capitulo 3. Cdlculo de los indices de Whittle

Con un valor de y=0,1, los indices de Whittle en (3.30) pasanaser g(1) = —0,9,g(2) = —0,8019,¢(3) =
—0,713,g(4) = —0,6328,g(5) = —0,5608. En la grafica 3.11, vemos como los indices numéricos de los
5 estados convergen a los valores tedricos de los indices de Whittle. Este problema tiene especial interés
debido a que, dada su dindmica, los tltimos estados son mucho menos visitados que los primeros, y por
lo tanto, reciben menos visitas durante el entrenamiento.

Valor de los indices de Whittle para y=0.1

0.0

—— Estado 0
A(0) para y=0.1
—— Estado 1
=== A(l) para y=0.1
—— Estado 2
——- A(2) para y=0.1
—0.2 1 Estado 3
=== A(3) para y=0.1
Estado 4
—=- A(4) para y=0.1

0 20000 40000 60000 80000 100000

Figura 3.11: Indices de Whittle para el problema con reinicio para y = 0,1

En la grafica 3.12 comparamos la “running time average reward” obtenida por el algoritmo durante
las primeras 900 iteraciones durante el entrenamiento frente al obtenido utilizando una politica 6ptima
desde el primer momento. Una vez definida la politica durante el entrenamiento, la diferencia en ren-
dimiento entre ambos se debe, al igual que en el problema de dindmica circular, al uso del algoritmo
“Epsilon-greedy”. Al emplear un valor € = 0,01 en lugar de 0,1 en la gréfica 3.13 reducimos el margen
de rendimiento entre el algoritmo durante el entrenamiento y el algoritmo empleando la politica 6ptima
desde el principio.
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Figura 3.12: Problema con restart: Comparacién entre las recompensas durante el entrenamiento, em-
pleando € = 0,1, frente a la recompensa obtenida con la politica definida desde el principio.

—— Recompensa durante el entrenamiento
Recompensa con politica optima

56
T T T T T T T T
0 100 200 300 400 500 600 700 800 900

Figura 3.13: Problema con reinicio: Comparacion entre las recompensas durante el entrenamiento,
empleando € = 0,01, frente a la recompensa obtenida con la politica definida desde el principio.
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Capitulo 4

Conclusiones finales

En los anteriores capitulos, hemos planteado un algoritmo para el cdlculo de los indices de Whittle
para dos problemas con dindmicas y recompensas distintas: uno con una dindmica “circular” en el que
el ultimo estado de la cadena de Markov conecta con el primero y otro problema con “reinicio”, en el
que una de las acciones transporta instantdneamente al primer estado de la cadena. En ambos casos,
hemos obtenido los valores tedricos de los indices de Whittle para cada estado en funcién del factor
de descuento 7 para el criterio de “optimalidad” de recompensa descontada en el horizonte infinito de
tiempo (ecuaciones (3.29) y (3.30)).

Para crear unas condiciones de convergencia favorables para nuestro algoritmo, hemos empleado
dos escalas de tiempo en el calculo de los indices de Whittle: por un lado, una escala “rapida”, equiva-
lente a una actualizacion por iteracion para el cdlculo de los Q-values, para determinar el valor de cada
accion en cada estado, y una escala “lenta”, equivalente a una actualizacion por cada miiltiplo del nii-
mero de bandidos (ecuacion (2.13b)), para el cdlculo de los indices de Whittle a partir de los Q-values,
y evaluar asi cada estado. Debido al uso de los indices de Whittle para el cdlculo de los Q-values (2.11),
ambos sistemas de ecuaciones se encuentran acoplados. El sistema de dos escalas de tiempo nos permite
desacoplar estas ecuaciones y obtener las condiciones de convergencia expuestas en la seccién 3.2.1.

En la seccién 3.3 hemos llevado a cabo este algoritmo para los casos de dindmica circular y el
problema con reinicio, empleando para cada uno de ellos un factor ¥y = 0,3 y 0,1 respectivamente.
En ambos casos, se ha estudiado la convergencia a los valores tedricos de sus indices de Whittle,
calculados en el capitulo 3, con valores g(1) = —0,15,¢(2) = 0,15,g(3) = 0,2013,¢(4) = —0,2013
yg(l)=-0,9,g(2) =—-0,8019,g(3) = —0,713,g(4) = —0,6328,¢(5) = —0,5608 para cada problema.
Como se puede observar en las graficas 3.7 y 3.11, a medida que aumentamos el niimero de iteracio-
nes, y por lo tanto el tiempo de aprendizaje, nos acercamos mas a los valores tedricos éptimos de estos
indices.

Por otro lado, las graficas 3.6 y 3.10 nos muestran un aspecto importante del comportamiento de
nuestor algoritmo: la dependencia en la convergencia de los indices en funcién de y. En los dos casos
que hemos discutido en este trabajo, el error numérico en los indices de Whittle aumenta al acercarnos
al valor de Y = 1. Como podemos ver en la ecuacion (2.11), este término regula el peso del Q-value
del siguiente estado en el calculo del Q-value del estado actual. Debido a que los Q-values estan funda-
mentados por las recompensas de los estados (ecuacién (2.10)) una explicacion de este comportamiento
es la acumulacion de recompensas futuras a medida que aumentamos el valor de ¥, provocando ines-
tabilidades en el cdlculo de los indices de Whittle (ecuacién (2.12)). En los dos problemas que hemos
planteado en este trabajo, hemos empleado dos funciones de recompensas distintos:

= En el problema de dinamica circular (seccién 3.1.1) empleamos una funcién de recompensa
R(1)=-1,R(2)=0,R(3)=0,R(4) =1
Para los 4 estados que componen la cadena de Markov de ese sistema.

39



40 Capitulo 4. Conclusiones finales

= En el problema de reinicio (seccién 3.1.2) empleamos una funcién de recompensa

Para los 5 estados de la cadena de Markov.

Si observamos la evolucién de los errores numéricos en las graficas 3.6 y 3.10, vemos como el error en
el caso del problema de dindmica circular es consistentemente mds pequefio que en el de reinicio, ya que
siempre tiene mas bandidos con recompensas de valor nulo que en el segundo problema. Esta menor
densidad de recompensas hace que el valor acumulado de los Q-values sea mds pequeiio en el problema
de dinamica circular, y se pueda emplear valores de ¥ mds altos antes de que aparezcan inestabilidades.
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