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Resumen

Hemos estudiado, mediante técnicas computacionales, la implementación de puertas

lógicas cuánticas sobre nanoimanes moleculares. En concreto, hemos trabajado sobre un

modelo para el sistema experimental descrito en [Jenkins et al., Phys. Rev. B 95, 064423

(2017)]. Se trata de un sistema de 8 niveles, que puede ser considerado equivalente a

un sistema de 3 q-bits acoplados. Sobre este sistema, hemos analizado las transiciones

a niveles vecinos utilizando el método habitual (pulsos-π), y la mejora que sobre ese

método supone el uso de pulsos obtenidos mediante técnicas de control óptimo. De esta

manera, se pueden obtener pulsos más cortos y de mayor fidelidad. Finalmente, también

utilizando estas técnicas de control óptimo, se han obtenido los pulsos necesarios para que

el proceso resultante, pasado un tiempo caracteŕıstico menor que el tiempo de coherencia,

sea equivalente a la aplicación de una puerta lógica cuántica. En concreto, se ha obtenido

la puerta de Toffoli, universal para sistemas de 3 bits en computación clásica, y una serie

de puertas de Deutsch, que generalizan el concepto de la puerta de Toffoli, y que son

universales en computación cuántica.
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1. Introducción: breve resumen de teoŕıa de computación cuántica

Comenzamos con una breve introducción a los conceptos de la teoŕıa de información cuántica

que han sido necesarios para la elaboración de este trabajo – una introducción completa al tema

puede consultarse en la Ref. [1].

La computación clásica se basa en la manipulación de la unidad mı́nima de información, el bit,

que solo puede tomar dos valores, por ejemplo, 0 o 1. La computación cuántica utiliza el concepto

de q-bit (quantum bit). Un q-bit puede entenderse como un sistema cuántico de dos estados, que

denotaremos como |0〉 y |1〉. La diferencia principal entre los bits y los q-bits es el hecho de que los

q-bits pueden estar en cualquier combinación lineal de |0〉 o |1〉. Aśı, una forma general de escribir

cualquier posible estado de un q-bit es la siguiente:

|ψ〉 = α |0〉+ β |1〉 ∀ α, β ∈ C t.q. |α|2 + |β|2 = 1 (1.1)

El estado del q-bit está determinado por lo tanto por ψ, la denominada función de onda. A esta

posibilidad de combinación lineal de estados también se la llama normalmente superposición. Al

usar q-bits en lugar de bits, nos adentramos en el mundo cuántico y por lo tanto nos enfrentamos

a los problemas que este mundo puede presentar. Aśı, por ejemplo, a diferencia de los bits, cuyo

estado puede determinarse directamente, los sistemas f́ısicos cuánticos, y por tanto los q-bits, están

afectados por el llamado problema de la medida. Este problema consiste en el hecho de que el proceso

de medición altera inevitablemente la evolución del sistema de forma que la función de onda tras la

medida es distinta a la que era en el instante anterior a la medida. De esta forma, si partimos del

estado que aparece en la ecuación (1.1), las leyes de la mecánica cuántica nos dicen que tendremos

una probabilidad |α|2 de medir el sistema en el estado |0〉 y una probabilidad |β|2 de medirlo en el

estado |1〉 (es por ello que se impone la condición de normalización, pues la probabilidad total no

debe superar la unidad). Una vez hecha la medida, el sistema colapsa al estado que se ha observado

en la medición. Aśı pues, el estado final tras la medida siempre va a ser uno de los dos posibles

estados |0〉 o |1〉 discriminados por nuestro aparato de medición (solo antes de que se realice dicha

medida el sistema está en una superposición cuántica de esos estados).

La mayor libertad que presentan los q-bits frente a los bits clásicos permite que algunos algo-

ritmos clásicos cuyo tiempo de cálculo crece exponencialmente con el número de bits de entrada,

pasen a tener tiempos de cálculo que crecen solo potencialmente. Un ejemplo es el algoritmo de

Deutch-Jotzsa[2].

La manipulación de la información en computación clásica se realiza mediante las llamadas

puertas lógicas, que toman un número de bits de entrada, y producen unos bits de salida de acuerdo

con reglas predefinidas. Análogamente, existen puertas lógicas cuánticas que toman el estado de

uno o varios q-bits y los alteran de cierta forma, siendo las puertas más sencillas aquellas que tienen

un único q-bit de entrada.

Tomemos por ejemplo una de las puertas más sencillas que existe en computación clásica: la

puerta NOT. Esta puerta viene definida como aquella que para un bit en el estado 0 le asocia

un valor 1 y viceversa. Uno puede preguntarse si existe una puerta análoga a la puerta NOT en

computación cuántica. Es decir, aquella que tome el estado |0〉 y lo lleve al estado |1〉 y que al estado
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|1〉 lo lleve al estado |0〉. La respuesta es que, efectivamente, esta puerta existe, y se denomina puerta

σX (o bit-flip). Podemos compilar el comportamiento de cualquier puerta lógica de un 1 q-bit como

una matriz 2x2 unitaria definida sobre la base ortonormal {|0〉 , |1〉}, a veces denominada base

computacional, tal que:

|0〉 −→ |1〉
|1〉 −→ |0〉

UσX =

(
0 1

1 0

)
,

donde hemos incluido también el śımbolo que suele utilizarse en la representación de circuitos lógicos.

Viendo la representación matricial de esta puerta cobra sentido su nombre pues, más formalmente,

aplica la matriz de Pauli σX al estado inicial. De la misma forma existen las puertas σY y σZ .

Lo más relevante de esta definición de puerta cuántica como operador linear unitario es que, a

diferencia de las puertas lógicas clásicas, las cuánticas no solo actúan sobre los estados base |0〉 o |1〉,
sino que pueden actuar sobre cualquier estado superposición. Aśı, por ejemplo, si introducimos como

estado de entrada |ϕ1〉 = |0〉−i |1〉 tendremos que se obtendrá como estado final UσX |ϕ1〉 = |1〉−i |0〉.
Esto implica que, a diferencia del caso clásico, donde solo existe una puerta lógica no trivial con un

único q-bit de entrada, en el caso cuántico toda matriz unitaria 2x2 puede definir una transformación

válida para ser considerada una puerta lógica cuántica – independientemente de si representa alguna

operación útil en el tratamiento de la información cuántica, o si es realizable desde el punto de vista

experimental.

Otra puerta muy utilizada es la puerta de Hadamard que, aplicada a los estados de la base,

devuelve una superposición de estados:

|0〉 −→ 1√
2

(|0〉+ |1〉)

|1〉 −→ 1√
2

(|0〉 − |1〉)
UHadamard =

1√
2

(
1 1

1 −1

)
.

Para poder construir circuitos cuánticos útiles, sin embargo, uno debe poder trabajar con sis-

temas de más de un q-bit. En el caso clásico, un sistema de dos bits clásicos tiene 22 = 4 posibles

estados: 00, 01, 10, 11. De la misma forma, para describir un sistema de 2 q-bits necesitamos un

espacio de Hilbert de cuatro dimensiones. Este espacio de Hilbert es el producto tensorial de los

dos espacios de Hilbert bidimensionales asociados a los q-bits iniciales, H1 y H2: H = H1⊗H2. Por

definición, y para simplificar la notación, tomamos:

|ij〉 = |i〉1 ⊗ |j〉2 . (1.2)

El sub́ındice en los kets es el indicador del q-bit al que se refiere el estado. De esta forma, el primer q-

bit del sistema se define sobre la base de H1 ({|0〉1 , |1〉1}) y el segundo sobre la de H2 ({|0〉2 , |1〉2}).
Aśı, automáticamente hemos definido una base ortonormal del espacio H1 ⊗H2 (la llamada “base

computacional[1]). Cualquier estado de un sistema de 2 q-bits se puede expresar como combinación
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lineal de estos cuatro posibles estados:

|ψ〉 = k1 |00〉+ k2 |01〉+ k3 |10〉+ k4 |11〉 . (1.3)

Es por ello que se dice que este sistema es equivalente a un sistema cuántico de cuatro niveles

y, a veces, para simplificar aún más la notación suele reescribirse la base como {|0〉 , |1〉 , |2〉 , |3〉}.
Generalmente se trabaja con estados normalizados,

∑4
i=1 |ki|2 = 1.

En un sistema de varios q-bits podemos elegir medir sobre observables que afectan a todos los

q-bits, o individualmente sobre uno de ellos. Si, por ejemplo, medimos solo sobre el primer q-bit y

obtenemos que está en el estado |1〉1, el estado que al que el sistema colapsa tras la medida será:

|ψ′〉 =
k3 |10〉+ k4 |11〉√
|k3|2 + |k4|2

. (1.4)

En esta ecuación hemos impuesto la renormalización de la función de onda. Como no hemos medido

todos los q-bits del sistema, el estado resultante sigue siendo una superposición de varios estados

de la base completa.

De la misma forma que hemos hecho antes, podemos construir puertas lógicas cuánticas pero

esta vez con dos q-bits de entrada. Una puerta especialmente relevante de dos q-bits es la puerta

CNOT (“Controlled” NOT), que actúa de la siguiente forma: si el primer q-bit está en estado |0〉1
no realiza ningún cambio en ningún q-bit, pero si está en |1〉1, aplica σX al segundo q-bit. Aśı:

|0〉 = |00〉 −→ |00〉 = |0〉
|1〉 = |01〉 −→ |01〉 = |1〉
|2〉 = |10〉 −→ |11〉 = |3〉
|3〉 = |11〉 −→ |10〉 = |2〉

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Donde se ha incluido, de nuevo, el śımbolo que suele utilizarse en la representación de circuitos

lógicos cuánticos. La puerta aśı definida cumple la condición de unitariedad (U †CNOTUCNOT = I).
Otra forma de generar puertas de dos q-bits es a partir de puertas de un q-bit. Por ejemplo, podemos

preguntarnos como es la representación matricial de la siguiente puerta:

q1

q2 H

Es decir, aquella que deja invariante el primer q-bit, y aplica la puerta de Hadamard al segundo.

Un método directo consiste en construir la tabla de verdad y escribir a mano la matriz asociada

a ésta. Otra forma, más sencilla y elegante, consiste en entender que esta puerta consiste en el

producto de dos puertas que actuan independientemente sobre cada uno de los q-bits (la identidad

sobre el primero, y la puerta de Hadamard sobre el segundo). Por lo tanto, la puerta resultante es
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el producto tensorial de las mismas:

U = I1 ⊗ UHadamard, 2 =
1√
2

(
1 0

0 1

)
⊗

(
1 1

1 −1

)
=

1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 . (1.5)

Uno puede comprobar que, efectivamente, esta representación es correcta pues:

|0〉 = |00〉 −→ |0〉1 ⊗
1√
2

(|0〉2 + |1〉2) =
1√
2

(|00〉+ |01〉) =
1√
2

(|0〉+ |1〉)

|1〉 = |01〉 −→ |0〉1 ⊗
1√
2

(|0〉2 − |1〉2) =
1√
2

(|00〉 − |01〉) =
1√
2

(|0〉 − |1〉)

|2〉 = |10〉 −→ |1〉1 ⊗
1√
2

(|0〉2 + |1〉2) =
1√
2

(|10〉+ |11〉) =
1√
2

(|2〉+ |3〉)

|3〉 = |11〉 −→ |1〉1 ⊗
1√
2

(|0〉2 − |1〉2) =
1√
2

(|10〉 − |11〉) =
1√
2

(|2〉 − |3〉)

(1.6)

Si aplicamos sucesivamente dos puertas lógicas distintas, podemos calcular la representación

matricial de la operación resultante mediante la multiplicación estándar de matrices. Una sucesión de

puertas cuánticas es lo que se denomina un circuito. Se puede llegar al mismo circuito final acoplando

distintas puertas: es decir, combinando distintas puertas lógicas podemos encontrar circuitos que

son equivalentes entre si o equivalentes a otra puerta ya conocida.

La existencia de estas equivalencias nos lleva a preguntarnos si existen conjutos de puertas

que puedan considerarse universales, es decir, puertas con cuya composición pueda construirse

cualquier circuito. En computación clásica existe el concepto análogo: se dice que un conjunto de

puertas lógicas clásicas es universal si puede construirse cualquier función que actúa sobre los bits

utilizando únicamente combinaciones de dichas puerta. Este es el ejemplo de la puerta NAND

por si sola, pues cualquier otra puerta (NOT, AND, OR, XOR, NOR, XNOR) puede construirse

con distintas combinaciones de puertas NAND (y, por tanto, se puede construir cualquier circuito

lógico únicamente con puertas NAND). Esto mismo ocurre en la computación cuántica. se dice que

un conjunto de puertas lógicas es universal si es posible reproducir cualquier operación unitaria a

una exactitud arbitraria mediante un circuito lógico cuántico que utilice únicamente las puertas de

dicho conjunto. El conjunto de puertas {Hadamard, phase, CNOT, π/8}[2], por ejemplo, presenta

este tipo de universalidad. Esto es aśı porque, con combinaciones de este tipo de puertas, es posible

construir cualquier tipo de operación unitaria en un espacio de n q-bits. Además, cualquier matriz

unitaria arbitraria en un espacio de Hilbert de cualquier dimensión puede escribirse como producto

de matrices unitarias de dos niveles (es decir, matrices que solo actúan de forma no trivial sobre

dos de los vectores componente).

Una puerta importante, que utilizaremos más adelante, es la puerta de Toffoli, con tres q-

bits de entrada (y tres de salida). Se puede comprobar que la versión clásica de esta puerta es

universal. Es decir, cualquier operación puede construirse mediante alguna combinación de puertas

de Toffli. Como la puerta de Toffoli es reversible puede ser implementada mediante computación

cuántica (este hecho implica el importante resultado teórico de que un ordenador cuántico puede
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implementar cualquier posible operación clásica). Ahora bien, la puerta de Toffoli no es universal

para las operaciones de computación cuántica; únicamente podemos construir un conjunto universal

añadiendo alguna puerta extra (por ejemplo, la puerta de Hadamard).

Si queremos construir puertas lógicas en las que intervengan un mayor número de q-bits podemos

usar procedimientos similares a los anteriores para obtener la representación matricial, teniendo en

cuenta que el tamaño de la matriz crece exponencialmente con el número de q-bits (como 2n). Aśı, si

queremos trabajar con más q-bits y sus representaciones matriciales necesitamos definir claramente

una generalización de la base para un sistema de N niveles. Al igual que hicimos para el caso de

dos q-bits, para un sistema de n q-bits primero definimos una base para cada uno de los q-bits

individuales, sobre su espacio de Hilbert, de forma que la base del sistema completo vendrá dada

como el producto tensorial de los elementos que forman cada una de las bases individuales. La base

resultante se denomina base computacional e incluye todas las posibles combinaciones de estados

de cada q-bit. Como se ha dicho anteriormente, para simplificar la notación, denominaremos al ket

que representa cada estado de la base con el número que representa en base decimal. Aśı, cada uno

de los estados de la base puede escribirse como:

|aN 〉N ⊗ |aN−1〉N−1 ⊗ · · · ⊗ |a1〉1 = |aNaN−1 · · · a1〉 = |c〉 , (1.7)

donde c = aN2N−1 +aN−12N−2 + · · ·+a1. Aśı, la base (ortonormal) se expresará como {|0〉 , |1〉 , · · · ,
|2N − 1〉} y cualquier estado se podrá formar mediante una combinación lineal de los kets que la

forman.

Formalmente, como ya hemos visto, una puerta cuántica no es más que un operador unitario

U . En las realizaciones f́ısicas de los sistemas de computación cuántica, estas puertas no son más

que operadores evolución temporal, U(T, 0): son los operadores que generan la transformación del

estado del sistema desde el tiempo t = 0 hasta t = T , transformación que está gobernada por

la ecuación de Schrödinger. Los sistemas cuánticos, sin embargo, están sujetos a perturbaciones

externas incontrolables, ya que en la práctica no podemos aislarlos totalmente de su entorno. Esto

implica que el comportamiento coherente determinado por la ecuación de Schrödinger, se deteriora

con el tiempo. Para que podamos asumir un comportamiento coherente, es necesario que los tiempos

de decoherencia t́ıpicos del sistema sean lo más largos posibles, o alternativamente, que los tiempos

de operación T sean cortos. El objetivo de este trabajo es, de hecho, estudiar la forma de reducir

estos tiempos de actuación, buscando maneras óptimas de diseñar las puertas cuánticas. Para ello

utilizamos la teoŕıa de control óptimo cuántico (QOCT).

La motivación de este trabajo nace en el proyecto SUMO (“Scaling Up quantum computation

with MOlecular spins”), dirigido por el investigador F. Luis, en el Instituto de Ciencia de Materiales

de Aragón (ICMA). En este proyecto se realiza un montaje experimental que trata de crear puertas

cuánticas con moléculas magnéticas. Se enfrenta precisamente al problema de los cortos tiempos de

decoherencia, y es por ello que una solución puede ser la aplicación de la QOCT para acelerar las

puertas cuánticas.

En la sección 2 resumimos los objetivos del trabajo. La sección 3 presenta el sistema f́ısico sobre

el que hemos trabajado, aśı como el modelo que hemos usado para realizar las simulaciones. La

sección 4 está dedicada a las ecuaciones fundamentales de la teoŕıa de control óptimo cuántico, que
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hemos utilizado para buscar los pulsos de control. Las secciones 5 y 6 presentan los resultados: las

optimizaciones de las transiciones estado a estado, y el diseño mediante control óptimo de puertas

cuánticas. Finalmente, en la sección 7 están las conclusiones del trabajo. En todo este trabajo se

utilizará el sistema de unidades atómicas de Hartree, tal que me = e = ~ = 1, es decir, tomamos la

masa del electrón, su carga, y la constante de Planck reducida, como la unidad.

2. Objetivos

La implementación de una puerta cuántica en un sistema f́ısico susceptible de ser interpretado

como un sistema de q-bits consiste en la aplicación de un operador perturbativo externo que se añade

al Hamiltoniano no perturbado que describe el sistema. El operador evolución resultante debe ser

igual (o equivalente) al operador que define la puerta cuántica. En este trabajo, hemos puesto

nuestra atención en el sistema experimental descrito en la Ref. [3], que está siendo desarrollado por

el grupo del investigador Fernando Luis en el Instituto de Ciencia de Materiales de Aragón. Este

sistema se describirá brevemente en la sección 3.

Las puertas cuánticas tradicionalmente se diseñan concatenando pulsos sencillos, monocromáti-

cos, que realizan transiciones entre estados utilizando las frecuencias de resonancia. Esta forma de

diseñar pulsos puede implicar tiempos largos, mayores que los caracteŕısticos de la decoherencia del

sistema. Es por ello que nuestro objetivo es tratar de encontrar pulsos más complejos, mediante

la teoŕıa de control óptimo cuántico (QOCT), que hagan el mismo trabajo en menos tiempo. For-

malmente se trata de expresar la perturbación en función de una serie de parámetros, y encontrar,

computacionalmente, los parámetros óptimos que generan ese comportamiento deseado.

En suma, los principales objetivos de este trabajo han sido:

1. Entender las propiedades que debe poseer un sistema cuántico para poder realizar computación

cuántica sobre él.

2. Implementar un código que realice los cálculos de QOCT para el tipo de sistema y perturbación

con el que nos enfrentamos.

3. Comprobar los beneficios que suponen el uso de pulsos generados mediante QOCT, en lugar

de los métodos habituales (pulsos-π).

4. Ejecutar cálculos de optimización para la implementación de puertas lógicas de 3 q-bits (Toffoli

y Deutsch).

3. Descripción del sistema

En computación cuántica, para trabajar con un único q-bit nos bastaŕıa con el esṕın de un

electrón o el estado de polarización de un fotón (cualquier sistema de dos niveles). Sin embargo,

los sistemas verdaderamente útiles consisten en más de un q-bit. Para conseguir sistemas de este

tipo, se pueden acoplar varios q-bits, o alternativamente, trabajar con un sistema de 2n niveles,

reinterpretándolo como un sistema de n q-bits acoplados. A continuación describiremos el sistema
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molecular experimental concreto que se ha utilizado para este trabajo. Se trata de un sistema de

ocho niveles, que puede reinterpretarse como un sistema de tres q-bits. Asimismo, describiremos el

modelo teórico que hemos empleado para simular su comportamiento. Este sistema está detallado

en las Refs. [3] y [4].

3.1. Sistema experimental

Unos sistemas que se están proponiendo recientemente como sistemas de q-bits son los denomina-

dos molecular nanomagnets o nanoimanes moleculares. Se trata de un tipo de moléculas artificiales

que, básicamente, consisten en uno o varios núcleos magnéticos rodeados de ligandos no magnéticos.

La estructura de niveles de esṕın de este tipo de moléculas puede utilizarse como sistema cuántico

sobre el que realizar los cálculos de computación cuántica.

El principal problema es encontrar un núcleo magnético apropiado. Existen muchas opciones,

porque aunque la propuesta de uso de los nanoimanes moleculares es reciente en el contexto de la

computación cuántica, se llevan utilizando durante varias décadas para la investigación de fenómenos

magneto-cuánticos como el spin tunneling [5] o el spin entanglement [6]. Por ejemplo, una molécula

muy utilizada, y por tanto, muy conocida, es el Mn12, representada en la Fig. 3.1a. En su estado

fundamental tiene un esṕın de S = 10. Sin embargo, suele presentar tiempos de coherencia muy

cortos y, en determinadas condiciones, no es posible separar cada una de las transiciones entre śı.

Otra posibilidad seŕıa utilizar nanoimanes basados en un único ion lantánido (single-ion mag-

nets), que presentan tiempos de coherencia más largos. Ahora bien, la interacción con el resto de

átomos del cristal suele producir una separación de niveles a campo nulo que, a veces, puede ser lo

suficientemente grande como para que solo los dobletes electrónicos más bajos sean experimental-

mente accesibles. Un ion que no presenta este problema es el ion de gadolinio (Gd3+). Su estructura

electrónica es 4f7, cuenta con un momento angular orbital L nulo, pero con el mayor esṕın posible

(S = 7/2) para un único átomo. Esto implica que el esṕın electrónico del Gd3+ puede entenderse

como un qudit con d = 8 o, como hemos dicho antes, un sistema de tres q-bits.

El ion de Gd3+ no está libre, sino inserto en una estructura más compleja que puede verse en la

Fig. 3.1b. Al conjunto, los autores de esta śıntesis lo abrevian como GdW30 [4]. Para poder construir

puertas cuánticas, se requiere de la existencia de transiciones coherentes capaces de conectar dos

estados cualquiera arbitrarios. Para ello se necesitan anisotroṕıas magnéticas lo suficientemente

grandes como para hacer que cada una de las transiciones posibles sea independiente de las otras,

pero asimismo lo suficientemente débiles como para que las distintas frecuencias de transición sean

accesibles al aparato experimental, que funciona en el rango de microondas.

Las principales fuentes de ruido magnético que provocan la decoherencia en este tipo de sis-

temas, provienen de (1) los acoplos hiperfinos a los espines nucleares; y (2) el acoplo dipolar a

otros espines electrónicos. Es posible minimizar este segundo efecto diluyendo el sistema en una

matriz diamagnética. De hecho, es aśı como se procede para realizar los distintos experimentos de

medida del tiempo de decoherencia y de la estructura de niveles. Se prepara un cristal en el que

el GdW30 está “disuelto” en un matriz de YW30, que, al ser diamagnética, reduce las interaccio-

nes dipolares. La expresión qúımica completa de de la estructura cristalina puede escribirse como

[GdxY1−x(H2O)P5W30O110]12− aunque normalmente se abrevia como Y1−xGdxW30 siendo x muy
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(a) (b)

Figura 3.1: Estructura de distintos nanoimanes magnéticos: (a) Mn12O12(CH3COO)16(H2O)4, abre-
viada Mn12. Los 8 manganesos externos tienen una configuración d4 que aporta un S = 2 cada uno.
Los 4 internos tienen una configuración d4 que aporta un S = 3/2 cada uno. Dada la confiruación
antiferromagnética de la molécula, el estado fundamental del sistema total tiene S = 10. (b) [3]
[Gd(H2O)P5W30O110]12−. El núcleo magnético es el ion Gd3+, con configuracion 4f7, y tiene esṕın
S = 7/2.

pequeño (del orden de 10−2) pues la concentración de los iones de gadolinio debe ser baja.

La medida de los tiempos de coherencia, T2, se realiza utilizando está mezcla con x = 0.01

y mediante la técnica de “esṕın echo”. Este método es uno de los procedimientos habituales de la

técnica de resonancia paramagnética electrónica (EPR) [7]. Esta es una técnica experimental similar

a la resonancia magnética nuclear (NMR), excepto que en lugar de utilizar espines nucleares como

en NMR, se utilizan espines electrónicos. Como el momento magnético es inversamente proporcional

a la masa, las técnicas basadas en EPR utilizan frecuencias varios órdenes de magnitud mayores

que las utilizadas en NMR (del orden de MHz, rango de las radiofrecuencias, pasamos a GHz, rango

de las microondas).

La EPR no solo sirve para comprobar la existencia de los distintos niveles energéticos que pre-

senta el sistema GdW30, ver Ref. [3], sino que, como se ha dicho anteriormente, también permite

medir los tiempos de coherencia de fase usando la técnica del esṕın echo. Esta técnica, usada tam-

bién en NMR, requiere de la aplicación de un campo magnético inicial, que alinea los espines. El

proceso para medir este tiempo de decoherencia se basa en las secuencia de Hahn [8] (en honor a

Erwin Hahn): primero, aplicamos un campo magnético que alinea todos los espines, de forma que

el momento magnético medio es paralelo a la dirección del campo magnético aplicado (por ejemplo,

el eje z). Hecho esto, se apaga el campo magnético y se aplica un pulso de microondas que rota los

momentos magnéticos 90o. Debido a las inhomogeneidades magnéticas de la red, los distintos mo-

mentos magnéticos se van desfasando y el momento magnético medio va disminuyendo. El tiempo

caracteŕıstico en el que ocurre esto se suele denominar T ∗2 . En este momento, se aplica otro pulso de

microondas que rota los momentos 180o, haciendo que las mismas inhomogeneidades que original-
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mente destrúıan la imanación ahora la recompongan, alcanzándose un nuevo máximo ligeramente

menor que al principio del experimento. Esta rotación de 180o puede repetirse varias veces y, en

cada iteración, el nuevo máximo del valor medio de la magnetización será menor. Este decaimiento

ocurre a un ratio de tiempo caracteŕıstico T2, también denominado tiempo de coherencia. Si se

vuelve a aplicar el campo magnético, para que se alineen otra vez los momentos, puede medirse el

tiempo de relajación T1. Tanto T2 como T1 son caracteŕısticos de cada una de las transiciones. Los

resultados obtenidos en [3] muestran que las siete transiciones presentan valores de T2 del orden de

0.5 µs y del orden de 2 µs para T1.

3.2. Modelo teórico

Necesitamos ahora una forma de poder describir el GdW30 mediante un modelo matemático

sobre el que experimentar con las distintas perturbaciones. Este tipo de sistemas se puede describir

con bastante precisión mediante los llamados Hamiltonianos de esṕın. Para el GdW30 en concreto,

usaremos el siguiente Hamiltoniano (ver Ref. [9] y Ref. [10]):

Ĥ = D

[
Ŝ2
z −

1

3
S(S + 1)

]
+ E

(
Ŝ2
x − Ŝ2

y

)
− gµB ~̂S · ~H , (3.1)

siendo D = 1281 MHz y E = 294 MHz. Estas componentes se corresponden con los términos

anisotrópicos de segundo orden y su valor se determina mediante ajuste experimental usando ex-

perimentos de EPR. g = 2 es la razón giromagnética, ~̂S = (Ŝx, Ŝy, Ŝz) es el operador vector de

sṕın, referido a los ejes anisotrópicos, µB el magnetón de Bohr y S = 7/2. El sistema puede estar

sometido a un campo magnético externo ~H.

Tal como se ha dicho antes, para poder asignar a cada transición entre niveles una frecuencia

caracteŕıstica diferente, es necesario que exista esta anisotroṕıa magnética (D 6= E). De lo contrario

aparecen degeneraciones entre niveles, y frecuencias iguales. Esta anisotroṕıa debe ser sin embargo

lo suficientemente débil como para que las transiciones sean accesibles a experimentos de EPR en

banda-X (9.48 GHz). A pesar de la ruptura de la simetŕıa inducida por la anisotroṕıa, en ausencia

del último término en la Eq. (3.1), todav́ıa existen frecuencias degeneradas dos a dos (dobletes). Para

romper la degeneración de estos dobletes se aplica un campo magnético ~H orientado a lo largo del

eje “duro” de la molécula (eje z, perpendicular al plano de la Fig. 3.1b). Escogiendo la intensidad de

este campo magnético externo puede regularse, hasta cierto punto, la distribución de las frecuencias

de transición. Este hecho está representado en la Fig. 3.2, que muestra el espectro de enerǵıas en

función del campo magnético externo. Hemos implementado este modelo de Hamiltoniano de esṕın

sobre el código qutip [11, 12]; la figura 3.2 la hemos obtenido de esta manera, y es una réplica de

la Fig. 3(b) de la Ref. [3]. La situación de estos niveles respecto al montaje experimental puede

ser contrastada mediante la obtención del espectro EPR del sistema. Dado que la interpretación de

estos espectros no es trivial, suele compararse con un espectro obtenido a partir del modelo teórico.

Tal como se muestra en [3] ambos resultados son compatibles.

Otra forma que tenemos de comparar el modelo teórico con los resultados experimentales es

mediante procesos de evolución temporal del sistema sujeto a una perturbación, tomando medidas

de algún observable. Para poder modelar este tipo de procesos, no es suficiente, en general, considerar

9



-60

-40

-20

 0

 20

 40

 60

 80

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

En
er

gí
a 

(G
Hz

)

µ0Hz (T)

|0>
|1>
|2>
|3>
|4>
|5>
|6>
|7>

Figura 3.2: Diagrama Zeeman de los niveles de enerǵıa del sistema GdW30 en función del campo
magnético ~H, que se ha elegido en dirección z.

la ecuación de Schrödinger asociada al Hamiltonian (3.1). En la práctica, el sistema magnético no

está aislado de interacciones externas. Para poder modelizar este tipo de interacciones externas se

utiliza la teoŕıa de sistemas cuánticos abiertos. Esta teoŕıa se basa en el formalismo de la matriz

densidad que resumiremos aqúı brevemente; una introducción completa puede encontrarse en la

Ref. [13].

Cuando nuestro conocimiento del sistema a estudio es completo, podemos asignarle un estado

|ψ〉 que lo describe completamente (salvo una fase global). A estos estados los denominamos estados

puros. Sin embargo, las condiciones experimentales no suelen permitir un conocimiento completo: en

la mayoŕıa de casos, solo sabremos que el sistema puede estar en una determinada mezcla estad́ıstica

de estados {|ψi〉} con probabilidades pi tal que
∑

i pi = 1, es decir, una mezcla de estados puros

normalizados y no necesariamente ortogonales. De esta forma, si más de un pi es distinto de 0, el

estado dejará de ser llamado estado puro y pasará a denominarse estado mezcla. La herramienta

matemática que describe el conocimiento de este tipo de sistemas es el operador densidad (o matriz

densidad), definido como:

ρ =
∑
i

pi |ψi〉 〈ψi| . (3.2)

Las matrices densidad son operadores hermı́ticos de traza unidad y semidefinidas positivas, es decir,

que ∀ |ψ〉, se cumple que 〈ψ|ρ|ψ〉 ≥ 0. Cualquier operador que satisfaga estas dos propiedades puede

considerarse un operador densidad, capaz de describir un sistema cuántico estad́ıstico (también

denominado ensemble). El uso de las matrices densidades fue por primera vez propusto por von

Neumann [14].

Dada la matriz densidad es fácil determinar si se trata de un estado puro o mezcla pues, para un

estado puro, tendremos que Tr[ρ2] = Tr[ρ] = 1. Si Tr[ρ2] < 1 el sistema está en un estado mezcla. La
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cantidad Tr[ρ2] se denomina pureza del estado y satisface que 1
d ≤ Tr[ρ2] ≤ 1, siendo d la dimensión

del espacio de Hilbert. Por último, es fácil demostrar que dado un operador cualquiera, A, el valor

esperado puede calcularse como:

〈A〉 = Tr[Aρ] . (3.3)

Pasemos ahora a tratar la evolución temporal de los estados mezcla. Sabemos que la evolución

de los estados puros en un sistema cerrado, dado un Hamiltoniano Ĥ, viene dada por la ecuación

de Schrödinger:

i
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 . (3.4)

La resolución formal de esta ecuación conduce a la definición del operador evolución, que es lineal y

unitario y, por tanto, preserva la norma de los estados. Utilizando la definición de la matriz densidad

(3.2) y la ecuación de Schrödinger se puede probar que la evolución de los estados mezcla viene dada

por la ecuación de von Neumann (o ecuación Liouville–von Neumann):

ρ̇ = −i[H, ρ] ≡ Lρ , (3.5)

donde se ha utilizado el conmutador, definido como [A,B] = AB−BA, y se ha definido L, denomi-

nado Liouvillian superoperator. Es fácil probar que esta dinámica hamiltoniana conserva la pureza

del sistema.

Ahora bien, como hemos dicho antes, nuestro sistema no está completamente aislado del exterior,

y estas ecuaciones solo son válidas para un sistema aislado. Para describir sistemas abiertos, se

empieza por considerar un nuevo sistema cerrado, formado por el sistema a estudio en el que estamos

interesados y un sistema acoplado a él llamado entorno. De esta forma, el espacio de estados del

sistema completo compuesto se podrá definir como el producto tensorial del espacio de estados

de cada componente, es decir, H = Hsys ⊗ Henv. Nosotros queremos centrarnos en el subsistema

original, asumiendo que la descripción completa es imposible. La herramienta para intentar esta

descripción parcial es la matriz densidad reducida: Sea un sistema compuesto tal que H = Ha⊗Hb,
si el estado completo está definido por una matriz densidad ρ, definimos la matriz densidad reducida

del subsistema a como:

ρa = Trb[ρ] , (3.6)

donde Trb es la traza parcial sobre el subsistema b, definida como:

Trb

∑
i,j,k,l

|ai〉 〈aj | ⊗ |bk〉 〈bl|

 ≡∑
i,j

|ai〉 〈aj |Tr

∑
k,l

|bk〉 〈bl|

 , (3.7)

siendo {|ai〉} y {|bi〉} bases ortonormales de Ha y Hb, respectivamente. Aśı, la matriz densidad

reducida del sistema inicial que interacciona con el entorno será ρsys = Trenv[ρ].

Debe establecerse ahora cuál es la ecuación que describe la evolución de un subsistema que forma

parte de un sistema mayor más grande, es decir, la evolución de esta matriz densidad reducida. Para

ello deben aplicarse una serie de pasos y aproximaciones que no presentaremos aqúı; una posible

solución al problema es la ecuación maestra de Lindblad, o ecuación GKSL (Gorini – Kossakowski
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– Sudarshan – Lindblad) [15, 16]. Esta es la ecuación maestra Markoviana1 más general posible

para la evolución de matrices densidad, de forma que preserve las leyes de la mecánica cuántica, (es

una transformación completamente positiva y conserve la traza independientemente de la condición

inicial). Sendas demostraciones pueden ser encontradas en Ref. [17] y Ref. [18]. Esta ecuación tiene

la siguiente forma:
d

dt
ρ = −i [H, ρ] +

∑
k

Γk

(
LkρL

†
k −

1

2

{
LkL

†
k, ρ
})

, (3.8)

siendo Lk los denominados jump operatos (o Lindblad operators) y Γk un conjunto de constantes

que modulan el ratio de acoplo del sistema con el entorno. Los collapse operators se definen como

Ck =
√

ΓkLk. La ecuación maestra de Lindblad tiene algunas propiedades interesantes que merece la

pena comentar. Por ejemplo, se puede demostrar que la pureza de un sistema que sigue esta dinámica

cumple que d
dt(Tr[ρ2] ≤ 0), es decir, que la pureza del estado siempre disminuye. De esta forma, si

preparamos el sistema inicial en un estado puro acabaremos obteniendo estados mezcla. Además,

la ecuación maestra de Lindblad es invariante bajo transformaciones unitarias de los operadores de

colapso por lo que, sin pérdida de generalidad, siempre es posible encontrar operadores de colapso

de traza nula.

El objetivo de este trabajo es, en realidad, conseguir pulsos lo suficientemente cortos como para

que la evolución del sistema sea coherente. Es decir, trabajar en un régimen en el que la influencia

del entorno es pequeña, de manera que basta con la ecuación de Schrödinger, y no se precisa

de la ecuación de Lindblad o similares. Sin embargo, hemos realizado una simulación a tiempos

largos con está última para valorar si el comportamiento del modelo es consistente con los medidas

experimentales obtenidas por el grupo de F. Luis en el ICMA.

Aśı, utilizando como modelo el Hamiltoniano mostrado en la ecuación (3.1), introducimos una

perturbación sinusoidal dependiente del tiempo. De esta forma, el Hamiltoniano perturbado puede

escribirse como:

Ĥ(t) = Ĥ0 + 2λ cos(ωt)V̂ (3.9)

siendo Ĥ0 el Hamiltoniano (3.1) y

V̂ = −gµB ~̂S · ~Hm . (3.10)

En el Hamiltoniano (3.1) hab́ıamos introducido un campo magnético estático ~H que, en la medida

experimental concreta que queremos aproximadamente simular, se aplica en dirección del eje z con

un valor de 615 mT. En estas condiciones, la primera transición (del estado fundamental al primer

excitado) tiene una frecuencia de resonancia de 9.468 GHz. Ahora, añadimos un campo magnético

variable ~Hm que se aplica en la dirección del eje x. La amplitud de oscilación λ ≈ 0.163 mT también

se ha escogido de forma que corresponde con las condiciones experimentales. Por último ω se elige

de forma que el pulso introducido esté en resonancia con la primera transición del sistema, es decir,

ω = 9.47 GHz.

Usando la ecuación maestra de Lindblad podemos calcular como vaŕıan los valores esperado de

1Decimos que la ecuación es Markoviana porque induce una dinámica Markoviana en el sistema. Esto es, que la
derivada de la matriz densidad depende solo del estado actual, y no de los estados pasados, lo cual es cierto cuando
la dinámica del entorno es lo suficientemente rápida como para que la correlación del sistema con el baño se pierda
también rápidamente.
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Figura 3.3: Valor esperado de Sy y Sz obtenidos usando el modelo dado por las ecuaciones (3.9)
y (3.10), comparándolo con los resultados obtenidos experimentalmente para Sy. Los datos experi-
mentales han sido obtenidos de la Ref. [3], donde también pueden consultarse los resultados para el
resto de transiciones.

los observables de esṕın con el tiempo. Aśı, en la Fig. 3.3 hemos mostrado estos valores esperados

para Sy y Sz. Ahora bien, cabe destacar que los observables se calculan en un marco de referencia

en rotación (rotating frame), dado que esta es la situación que se considera en el experimento: el

sistema está rotando en torno al eje z, a la frecuencia caracteŕıstica de la cavidad ω0, acoplada a la

primera transición del sistema. La transformación necesaria está dada por:

Ŝry(t) = eiω0tŜz Ŝye
−iω0tŜz . (3.11)

Advertir que, bajo esta transformacion, Ŝz permanecerá inalterado.

En la Fig. 3.3 hemos puesto también resultados de una medida experimental. Vemos que hay

una discrepancia entre los resultados experimentales y los valores obtenidos teóricamente. Esto se

debe a que lo que realmente se mide no es exactamente lo que hemos calculado: los cálculos teóricos

se corresponden con la evolución temporal de los observables bajo la actuación de la perturbación

dada por la Eq. (3.9); en el caso experimental, se trata del valor de Sy como función del tiempo

de actuación del primer pulso en un experimento de spin echo. Por desgracia no hemos podido

modelizar exactamente este tipo de experimentos. Sin embargo, la superposición de ambos resul-

tados experimentales y computacionales, si bien inconsistentes, śı que permiten asignar al menos

cualitativamente la magnitud de los efectos de disipación.

Lo más relevante que podemos deducir de estos resultados, por lo tanto, es que el decaimiento

obtenido es del mismo orden que el medido experimentalmente, utilizando para los cálculos teóricos

Ŝ+ = Ŝx + iŜy como jump operator y Γ =
√

0.2 como el valor del parámetro de acoplo con el

entorno. Recordemos que los tiempos de coherencia de las transiciones fundamentales son cercanos

a los 0.5 µs por lo que, si queremos evitar el problema de la decoherencia, tendremos que utilizar

pulsos que actúen en tiempos menores. En concreto, siempre que sea posible, intentaremos trabajar
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con tiempos de propagación de, al menos, uno o dos ordenenes de magnitud menor, de forma que

nos movamos en el rango de unos pocos nanosegundos.

4. Metodoloǵıa

Una vez conocido el sistema y el modelo matemático usado para describirlo, vamos a ver en

qué consisten los cálculos que nos permitirán obtener los pulsos óptimos: aquellos que permiten

inducir una determinada transición, o bien que generan una determinada evolución temporal o

puerta cuántica. Este planteamiento encaja con el tipo de problemas estudiado por la teoŕıa de

control óptimo cuántico (QOCT), y es por ello que dedicamos esta sección a exponer las bases de

la QOCT que hemos necesitado para el desarrollo de este trabajo.

4.1. Introducción a QOCT

Partimos del Hamiltoniano Ĥ0 de un sistema de N niveles. En nuestro caso Ĥ0 será el hamilto-

niano de N = 8 niveles, descrito en la ecuación (3.1). Los cálculos de computación cuántica se harán

sobre los niveles de enerǵıa de este hamiltoniano, aśı que trabajaremos en la base de autoestados

de Ĥ0, de forma que su representación matricial sea diagonal. Al Hamiltonian Ĥ0 le añadimos una

perturbación dependiente del tiempo, f({ui}, t)V̂ , donde V̂ está definido por la Eq. (3.10), de forma

que la ecuación de Schrödinger que rige la evolución temporal es:

i
d

dt
|c(t)〉 =

[
Ĥ0 + f({ui}, t)V̂

]
|c(t)〉 (4.1a)

|c(0)〉 = |c0〉 . (4.1b)

Los parámetros {ui} controlan la forma de la perturbación, y se denominan parámetros de control

(para simplificar la notación, a partir de ahora escribiremos u = {ui}). V̂ es el operador de acoplo

que conecta distintos niveles del sistema. En general, las componentes predominantes de V̂ son

aquellas que conectan niveles contiguos, siendo el resto de acoplos muy pequeños, o nulos. La forma

anaĺıtica de f(u, t) puede ser completamente arbitraria aunque, obviamente, habrá elecciones más

adecuadas que otras. Más adelante se explicitará la utilizada en este trabajo.

La ecuación de Schrödinger implica una transformación lineal |c(0)〉 → |c(t)〉, que puede expre-

sarse también definiendo el operador evolución:

|c(t)〉 = Û(t, t′) |c(t′)〉 . (4.2)

Para simplificar la notación podemos tomar el tiempo inicial de la propagación como t = 0, de

forma que Û(t, 0) = Û(t) y siendo Û(0) = I. La ecuación que determina la evolución del propio

operador evolución es:

i
d

dt
Û(t) =

[
Ĥ0 + f(u, t)V̂

]
Û(t) (4.3a)

Û(0) = I . (4.3b)

14



Hay no obstante una manera alternativa de escribir estas ecuaciones: la representación de inter-

acción [frente a la representación de Schrödinger, que es la usada en las Eqs. (4.1) y (4.3)]. En la

representación de interacción se atribuye dependencia temporal tanto a las funciones de onda como

a los operadores, definiendo las transformaciones:

ˆ̃O(t) = eitĤ0Ôe−itĤ0 (4.4a)

|c̃(t)〉 = eitĤ0 |c(t)〉 . (4.4b)

Podemos definir también un operador evolución en la representación de interacción:

|c̃(t)〉 = ˆ̃U(t, t′) |c̃(t′)〉 . (4.5)

Las Eqs. (4.1) y (4.3) se transforman en:

i
d

dt
|c̃(t)〉 = f(u, t) ˆ̃V (t) |c̃(t)〉 (4.6a)

|c̃(0)〉 = |c̃0〉 (4.6b)

y

i
d

dt
ˆ̃U(t) = f(u, t) ˆ̃V (t) ˆ̃U(t) (4.7a)

ˆ̃U(0) = I . (4.7b)

Numéricamente, con lo que realmente trabajaremos será con las coordenadas de |c(t)〉, que

denominaremos c(t), y las representaciones matriciales de Ĥ0, V̂ y Û(t), que escribiremos como

H0, V y U(t), y no con los estados y operadores en abstracto. Hemos utilizado siempre la base de

autoestados de Ĥ0.

Independientemente de si propagamos la función de onda o el operador evolución, son los paráme-

tros de control los que dictan la evolución del sistema, por lo que podemos escribir tanto la matriz

que representa el operador evolución, como las coordenadas de la función de onda, como función de

estos parámetros: c(t) = c[u](t) y U(t) = U[u](t). Aśı, nuestro objetivo será buscar el valor de los

parámetros de control tal que o bien la función de onda o bien el operador evolución, para un tiempo

caracteŕıstico, T , tenga un comportamiento óptimo. Por ejemplo, podŕıamos querer que la función

de onda al final del proceso sea una superposición de estados concreta, o que el operador evolución

generado sea equivalente a la representación matricial de una puerta lógica. Por lo general, este

tiempo caracteŕıstico T nos interesará que sea lo más pequeño posible, para que el proceso no se

vea afectado por la decoherencia cuántica.

La búsqueda del valor óptimo de los parámetros de control se llevará a cabo mediante la teoŕıa

de control óptimo[19]. Esta es la aplicación al mundo cuántico de la teoŕıa de control óptimo más

general, aplicable, en principio, a cualquier tipo de sistema y proceso[20]. Antes de continuar debemos
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distinguir entre dos problemas diferentes: (1) la optimización del comportamiento del sistema, es

decir, el control de la función de onda dado un estado inicial particular; y (2) la optimización

del operador evolución completo, sea cual sea el estado inicial. Las expresiones resultantes son

ligeramente diferentes en función del objetivo deseado. Veamos cada uno de los casos.

Función de onda

En primer lugar, es necesario codificar cuál es el objetivo que queremos que cumpla el sistema,

definiendo una función del mismo cuya maximización implique el cumplimiento de ese objetivo.

Aśı, por ejemplo, podemos pretender la maximización de un determinado observable al final de la

propagación:

J1(c) = c†(T )Oc(T ) , (4.8)

donde O y c(T ) son las representaciones del observable y de la función de onda en la base escogida.

Es posible que sea conveniente añadir una función opcional que penaliza determinadas regiones

del espacio de parámetros, J2(u), de forma que tome valores bajos para pulsos que no sean ex-

perimentalmente convenientes o posibles. Por ejemplo, se pueden evitar amplitudes muy grandes

definiendo:

J2(u) = −α
∫ T

0
f2(u, t)dt , (4.9)

para un cierto α > 0.

Dado que la evolución del sistema está determinada por los parámetros u, el problema finalmente

se reduce a la maximización de una función:

G(u) = J1(c[u]) + J2(u) (4.10)

En los casos que veremos más adelante, el objetivo será la población de un estado final objetivo,

de forma que O es la representación matricial de la matriz densidad asociada a ese estado. De esta

forma, J1 toma su valor máximo, 1, cuando el estado final del sistema y el estado objetivo son

equivalentes (solo difieren en una fase constante global).

Lo único que falta es un algoritmo de optimización que, como mı́nimo, necesitará un procedimiento

para calcular G(u) y, en algunos casos, una forma de calcular el gradiente de G(u) en función de los

parámetros de control pues su uso permite acelerar la eficiencia de la optimización. La QOCT nos

proporciona la siguiente expresión[19],[21] para el gradiente:

∂G(u)

∂um
= 2Im

[∫ T

0
dt
∂f(u, t)

∂um
d[u](t)Vc[u](t)

]
+
∂J2(u)

∂um
. (4.11)

En esta ecuación se utiliza el denominado coestado d[u](t), que está definido mediante las siguientes

ecuaciones del movimiento:

i
d

dt
d[u](t) = H†(u, t)d[u](t) (4.12a)

d[u](T ) =
∂J1

∂c†[u](T )
. (4.12b)
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H(u, t) es la representación matricial del hamiltoniano total. Estas ecuaciones tienen similitud con

las mostradas en la expresión (4.1): se trata de una ecuación de Schrödinger en la que la condición

inicial, en lugar de darse a tiempo 0 se da a tiempo T , el tiempo total de propagación. Dada la

definición de J1 [Eq. (4.8)], esta condición final está dada por:

d[u](T ) = Oc[u](T ) . (4.13)

Esta expresión depende de las coordenadas del estado final en el tiempo T .

Dadas estas ecuaciones, para poder calcular el gradiente, tendrán que realizarse dos propagaciones;

la primera para obtener como vaŕıan las coordenadas del estado del sistema a lo largo del tiempo, y

su valor en T , y una segunda propagación hacia atrás para obtener las del coestado. Hecho esto, es

posible computar el gradiente y, mediante un algoritmo de optimización, modificar los parámetros

de control de forma que nos acerquemos al valor óptimo.

Operador evolución

Si lo que se pretende es optimizar el comportamiento del operador evolución, el proceso es bastante

similar al ya visto en el caso anterior. Partimos sin embargo de la definición de una función objetivo

J1 que dependerá de U y no de c. Por ejemplo, en nuestro caso prentendemos que U[u](T ) sea

equivalente a un cierto operador predefinido – la puerta cuántica buscada Utarget. Para conseguirlo,

definimos esta función como el módulo al cuadrado del producto de Fröbenius entre U[u](T ) y el

operador objetivo, donde el producto de Fröbenius entre dos operadores A y B viene definido como:

A ·B =
1

d
Tr[A†B] , (4.14)

siendo d la dimensión de las correspondientes representaciones matriciales. De esta forma:

J1(U[u]) = |U[u](T ) ·Utarget|2 . (4.15)

Para operadores unitarios, este producto no puede tomar valores mayores que uno, y valdrá uno

cuando los operadores sean equivalentes, es decir, que se diferencien únicamente en un factor de fase

global, e. g.: U[u](T ) = eiθUtarget:

|U[u](T ) ·Utarget|2 = |e−iθU†target ·Utarget|2 =
|e−iθ|2

d2
Tr[I]2 = 1 . (4.16)

El problema se reduce nuevamente a la optimización de una función G(u) = J1(U[u]) + J2(u). En

este caso, la expresión del gradiente está dada por:

∂G(u)

∂um
= 2Im

[∫ T

0
dt
∂f(u, t)

∂um
B[u](t) · (VU[u](t))

]
+
∂J2(u)

∂um
. (4.17)

Ahora, es B[u](t) a lo que llamaremos coestado, y está determinado por las siguientes ecuaciones
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del movimiento:

i
d

dt
B[u](t) = H†(u, t)B[u](t) (4.18a)

B[u](T ) =
∂J1

∂U†[u](T )
. (4.18b)

De nuevo, esta ecuación es similar a la Eq. (4.3), salvo que, igual que ocurŕıa para la ecuación

análoga de control óptimo para funciones de onda, la condición inicial es en realidad final, se da

para t = T . Dada la definición de J1 en (4.15), el estado final del coestado está dado por:

B[u](T ) = (Utarget(T ) ·U[u](T ))Utarget(T ) (4.19)

Este mismo proceso puede realizarse partiendo de las ecuaciones del movimiento en la repre-

sentación de interacción en lugar de en la representación de Schrödinger. De hecho, se obtienen

ecuaciones análogas, sustituyendo las expresiones matriciales de los operadores en la representación

de Schrödinger por las correspondientes en la representación de interacción . La única excepción

son las ecuaciones del movimiento de los coestados, pues ahora partimos de (4.6) y (4.7) en vez de

(4.1) y (4.3). Aśı, las ecuaciones del coestado en la representación de interacción serán:

i
d

dt
d̃[u](t) = f(u, t)Ṽ

†
(t)d̃[u](t) (4.20a)

d̃[u](T ) =
∂J1

∂c̃†[u](T )
(4.20b)

para el caso de la función de onda y

i
d

dt
B̃[u](t) = f(u, t)Ṽ

†
(t)B̃[u](t) (4.21a)

B̃[u](T ) =
∂J1

∂Ũ
†
[u](T )

. (4.21b)

para el operador evolución. Para la realización de los cálculos numéricos puede utilizarse cualquiera

de las dos representaciones, aunque normalmente la representación de interacción es más convenien-

te, ya que desaparecen las frecuencias naturales del sistema.

En cualquier caso, independientemente de si trabajamos con operadores o con funciones de

onda hemos reducido el problema a la búsqueda del máximo de una función. Para el proceso de

optimización hemos utilizado la libreŕıa Nlopt[22], que incluye diversos algoritmos de optimización,

tanto globales como locales. En general es preferible utilizar un algoritmo basado en el gradiente

pues convergen más rápido en espacios de optimización de alta dimensión. Por ello, para la mayoŕıa

de los cálculos que se presentan a continuación se ha utilizado el algoritmo SLSQP (Sequential Least

Squares Programming)[23], un algoritmo de optimización local basado en el gradiente. Cabe destacar

que se ha escogido este algoritmo en concreto por ser el único de todos los incluidos en NLopt que se

basa en el cálculo del gradiente y que, al mismo tiempo, permite el uso de restricciones arbitrarias

en la función a optimizar. Más adelante veremos por qué esto es importante. Este algoritmo se basa
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en un método iterativo donde el problema pasa a tratarse como la optimización de una secuencia

de subproblemas en los que se linealizan las restricciones. Cada uno de estos problemas se resuelve

mediante el algoritmo BFGS (Broyden-Fletcher-Goldfarb-Shanno)[24], también local y basado en el

gradiente.

4.2. Parametrización del pulso

Hasta aqúı, hemos presentado la función que describe la forma temporal del pulso, f(u, t),

como una función genérica. Describimos aqúı la forma concreta que hemos utilizado, y cómo está

parametrizada en función de u. Utilizaremos pulsos basados en la transformada de Fourier, aunque

adaptados para facilitar su realización experimental. Aśı, podemos escribir un pulso genérico que se

aplica un tiempo T de la siguiente forma:

f(u, t) =
1√
T
u0 +

2√
T

M∑
k=1

u2k cosωkt+
2√
T

M∑
k=1

u2k+1 sinωkt . (4.22)

Vemos que, efectivamente, no es otra cosa que la expansión en serie de Fourier, por lo que, por

definición ωk = 2πk/T , siendo T el tiempo de propagación de la perturbación. Aśı, el número total

de parámetros de control dependerá del valor máximo M que escojamos para k (cutoff ). En general

debemos elegir el valor del cutoff de manera que incluyamos todas las frecuencias relevantes, que

estarán en el rango de las frecuencias caracteŕısticas del sistema.

Esta parametrización también permite calcular de forma sencilla la derivada del pulso en función

de los parámetros de control:
∂f(u, t)

∂um
= f(em, t) , (4.23)

donde em es el conjunto de parámetros de control donde todos tienen valor nulo excepto el parámetro

m-ésimo, que valdrá 1.

En la práctica, debemos asegurarnos de que el pulso empieza y termina en cero, f(u, 0) =

f(u, T ) = 0. La libreŕıa Nlopt, utilizada para los cálculos de optimización, permite incluir restric-

ciones: aśı, podemos exigir que el valor del pulso en 0 y T sea nulo. Más concretamente, partiendo

de la expresión (4.22), como sabemos que sin(ωn0) = sin(ωnT )) = 0 y cos(ωn0) = cos(ωnT )) = 1,

se exige que:

u0 + 2
M∑
k=1

u2k = 0 . (4.24)

Asimismo, forzando que u0 = 0 imponemos el hecho de que la amplitud media,
∫ T

0 f(u, t)dt, también

sea nula. En resumen, añadimos al proceso de optimización las siguientes restricciones:

g1(u) =

M∑
k=1

u2k , (4.25a)

g2(u) = u0 , (4.25b)

de forma que el proceso de optimización intentará que tanto g1(u) como g2(u) sean nulas (con una

19



determinada tolerancia).

No podemos tampoco admitir soluciones que tengan una amplitud muy alta, no realizable ex-

perimentalmente. Es por ello que definimos finalmente una serie de restricciones en forma de de-

sigualdad:

g[k](u) = u2
k − κ2 ≤ 0. (4.26)

con κ = umax
√
T/2. Esta restricción limita el espacio de soluciones a aquellas que no contengan

parámetros de control que hayan tomado valores superiores a umax, limitando de esta manera la

amplitud del pulso final.

5. Transiciones entre estados vecinos

Aunque el objetivo del trabajo es el diseño de pulsos capaces de generar puertas cuánticas, en

esta sección vamos a comenzar por estudiar un problema más sencillo: transiciones entre estados.

Comenzaremos por realizar estas transiciones mediante pulsos simples monocromáticos, los llama-

dos pulsos-π. Las puertas cuánticas tradicionalmente se generan concatenado este tipo de pulsos

monocromáticos. La limitación de esta técnica es que para que estos pulsos realizen las transiciones

buscadas con fidelidad alta, deben ser lentos. En esta sección mostraremos como la QOCT permite

acelerar estas transiciones.

5.1. Transiciones con pulsos-π

Los pulsos-π son un tipo de perturbación que permite manipular la ocupación de los diferentes

estados. Por ejemplo, si partimos de un sistema de dos niveles (equivalente a un 1 q-bit), y los

niveles no están degenerados, el sistema puede pasar del estado fundamental al estado excitado, de

mayor enerǵıa, si aplicamos una perturbación resonante, por ejemplo, fotones con esa frecuencia

espećıfica. Eventualmente, el sistema volverá al estado fundamental, donde podrá reabsorber otro

fotón y volver al estado excitado, reiniciando el ciclo. Este ciclo, denominado ciclo de Rabi, muestra

oscilaciones en la probabilidad de encontrar el estado en el nivel excitado.

Más concretamente, consideremos el Hamiltoniano de un sistema de dos niveles ({|0〉, |1〉}), tipo

H0 = −ω0σZ/2, en el que introducimos una perturbación oscilante µ0 cos(ωt+ ψ)σX siendo

σZ =

(
1 0

0 −1

)
σX =

(
0 1

1 0

)
. (5.1)

Es posible demostrar que, bajo cierta aproximación que comentaremos más adelante, la probabilidad

de encontrar el sistema en el estado excitado, |1〉, (suponiendo que inicialmente parte del estado

fundamental, |0〉), viene dada como:

P0→1(t) =

(
µ0

µ

)
sin2

(
µt

2

)
siendo µ =

√
(ω − ω0)2 + µ2

0. (5.2)

Esta expresión se denomina fórmula de Rabi[25] y a µ se le denomina, por tanto, frecuencia de Rabi.

Aśı, vemos como, efectivamente, aparece una oscilación en la probabilidad de encontrar el sistema
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en el nivel excitado.

La transición perfecta con probabilidad 1 solo puede ocurrir si µ = µ0 que, a su vez, solo se

cumple si ω = ω0. Esto se denomina condición de resonancia e implica que la frecuencia de la

perturbación coincide con la frecuencia caracteŕıstica del sistema (diferencia de enerǵıa entre los

dos niveles). De esta forma, periódicamente, se logrará invertir la ocupación inicial. La primera vez

que ocurre esta inversión es en t = tπ = π
µ0

(de ah́ı el nombre de pulso π). Aśı, si detenemos la

aplicación del pulso en tπ diremos que la perturbación resultante es un pulso-π que habrá invertido

la población inicial (equivale a una rotación de π en la esfera de Bloch). De hecho, esta es una forma

sencilla de generar la puerta σX mencionada en la introducción, pues la representación matricial en

base de autoestados de H0 del operador evolución en t = tπ, es equivalente a la matriz σX .

No obstante, para llegar a este resultado debe asumirse la llamada rotating wave approxima-

tion [25] (o RWA), que solo es válida cuando el campo que estamos aplicando está cerca de la

resonancia y la amplitud µ0 es baja. Este hecho implica que para que las transiciones realmente

sean completas se necesiten largos tiempos de propagación. Esto resulta inconveniente, pues in-

teresa realizar estas transiciones en los tiempos más pequeños posibles pues, de otra forma, nos

arriesgamos a acercarnos demasiado al tiempo de coherencia. Aśı, debemos encontrar un equilibrio

entre la amplitud (tiempo de aplicación) del pulso y la fidelidad de la transición: si intentamos una

transición rápida mediante una amplitud grande, la fidelidad de la transición (ocupación del estado

objetivo), será menor.

Hemos asumido sistemas de dos niveles, pero el concepto de pulso-π puede extenderse a sistemas

más grandes, con más niveles, siempre que cada transición esté caracterizada por una frecuencia

distinta. Esta propiedad la cumple el sistema de ocho niveles que hemos descrito en el apartado

3.2, cuyo Hamiltoniano aparece en la expresión (3.1). Aśı, si introducimos un pulso-π en el sistema,

podemos definir un nuevo hamiltoniano perturbado dependiente del tiempo como:

Ĥ(t) = Ĥ0 + fπ(t)V̂ , (5.3)

siendo Ĥ0 el hamiltoniano (3.1). En los cálculos descritos a continuación, el campo estático ~H se

aplica en el eje x, con un valor de 150 mT, y V̂ es el operador que conecta distintos niveles del

sistema, dado por la expresión (3.10). Este campo oscilante ~Hm se aplicará en el eje y, por ello en

ocasiones nos referiremos a el como Hy. En la base de autoestados de Ĥ0, V̂ conecta principalmente

niveles vecinos, siendo el resto de términos de menor orden. Por último, fπ(t) se trata de un pulso-π:

fπ(t) =

A sin(ωi,i+1t) si t0 ≤ t ≤ tf = t0 + π
A|µi,i+1|

0 en otro caso
, (5.4)

donde ωi,i+1 es la frecuencia de transición entre el nivel i y el i+ 1, A la amplitud del pulso, µi,i+1

la amplitud de interacción debido a V̂ (que no tiene porque coincidir para distintas transiciones) y

t0 el tiempo inicial de aplicación que, por lo general, se tomará como t0 = 0.

Hemos aplicado sistemáticamente este tipo de pulsos para todas las transiciones del sistema, con

el objeto de estudiar como vaŕıa la fidelidad de las distintas transiciones en función de la amplitud (y

en consecuencia, del tiempo total de aplicación) del pulso-π. Los resultados obtenidos se muestran
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Figura 5.1: Representación gráfica de la fidelidad en función de distintos parámetros del pulso-π, en
concreto: (a) 1−Fidelidad frente a la amplitud y (b) 1−Fidelidad frente al tiempo de propagación.
En esta última se incluye un ajuste lineal en escala logaŕıtmica para bajas amplitudes (tiempos de
propagación largos).

en la Fig. 5.1, donde la fidelidad se ha calculado como la probabilidad de medir el sistema en el

estado |i+ 1〉: | 〈i+ 1|ψ(T )〉 |2, partiendo inicialmente de |i〉. La Fig. 5.1a muestra esta fidelidad en

función de la amplitud del pulso-π y la Fig. 5.1b en función del tiempo de propagación. Como es de

esperar, la fidelidad aumenta según se reduce la amplitud, o equivalentemente se aumenta el tiempo

de propagación, ya que son las condiciones necesarias para que la RWA sea buena.

Viendo estas gráficas, se aprecia una dependencia lineal para amplitudes pequeñas. Por ello,

en la Fig. 5.1b hemos marcado también un ajuste lineal, encontrando una pendiente de valor 2: se

puede concluir que el error de la RWA es de orden dos en el valor de la amplitud del pulso. Estos

resultados muestran cómo, para obtener una determinada fidelidad en las transiciones utilizando

un pulso-π, es necesario un tiempo de propagación correspondiente. Cabe preguntarse entonces si

es posible realizar transiciones más rápidas utilizando QOCT.

5.2. Transiciones calculadas con QOCT

Partamos de las soluciones obtenidas con pulsos-π. Usando el ajuste lineal anteriormente co-

mentado, podemos calcular el tiempo de propagación necesario para que un pulso-π provoque la

transición buscada con una fidelidad de, al menos, 0.999. Estos valores se muestran en la tabla

5.1. En esta sección nos preguntamos si es posible, mediante QOCT, obtener un pulso que logre la

misma fidelidad (o mayor), en un tiempo por ejemplo 10 veces menor.

Para ello utilizaremos la parametrización del pulso incluida en la expresión (4.22), usando las

restricciones no lineales ya comentadas para limitar la amplitud inicial y final, y las ecuaciones de

optimal control para funciones de onda, expresiones (4.8), (4.11) y (4.12), fijando los tiempos totales

de propagación a 1/10 de los tiempos necesarios para obtener fidelidad de 0.999 con los pulso-π. Los

resultados se resumen en la tabla 5.2. En esa tabla se muestran las fidelidades obtenidas con pulsos

π, y con pulsos obtenidos mediante QOCT. Vemos que para todos los casos es posible, mediante
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Transición Frecuencia [MHz] Tiempo [ns] Amplitud [mT] (1− Fidelidad) · 10−3

|0〉 −→ |1〉 4093 6.48 1.349 1.17
|1〉 −→ |2〉 5394 31.35 0.273 0.63
|2〉 −→ |3〉 5723 346.73 0.025 0.85
|3〉 −→ |4〉 5693 413.23 0.023 3.12
|4〉 −→ |5〉 5185 43.13 0.263 1.63
|5〉 −→ |6〉 4963 63.44 0.221 5.29
|6〉 −→ |7〉 1848 5.45 5.813 1.58

Tabla 5.1: Fidelidad de las transiciones a nivel superior del sistema GdW30 usando pulsos-π

Transición Tiempo [ns] 1− Fidelidad (pulso-π) 1− Fidelidad (QOCT)

|0〉 −→ |1〉 0.65 0.120 5.50 · 10−5

|1〉 −→ |2〉 3.13 0.059 5.30 · 10−6

|2〉 −→ |3〉 34.67 0.051 1.26 · 10−3

|3〉 −→ |4〉 41.32 0.046 1.16 · 10−2

|4〉 −→ |5〉 4.31 0.055 1.20 · 10−4

|5〉 −→ |6〉 6.34 0.061 4.37 · 10−4

|6〉 −→ |7〉 0.54 0.067 1.95 · 10−4

Tabla 5.2: Fidelidad de las transiciones a nivel superior del sistema GdW30 usando pulsos-π con
tiempos de aplicación 10 veces menor que el necesario para obtener una fidelidad de, al menos, 0.999
y usando pulsos generados con QOCT para el mismo tiempo.

QOCT, obtener pulsos que den lugar a transiciones con una fidelidad bastante mayor que la obtenida

con pulsos-π de igual tiempo total de aplicación, tal y como queŕıamos comprobar.

Los pulsos espećıficos obtenidos, aśı como su transformada de Fourier, pueden verse en la Fig.

5.2. De la misma forma, la Fig. 7.1, incluida en el Anexo, muestra la ocupación de cada estado en

función del tiempo para cada una de estas transiciones utilizando los pulsos correspondientes. Cabe

destacar que, dado que los tiempos de propagación son bastante menores, la amplitud de los pulsos

obtenidos es mayor: cuanto más corto es el pulso, necesariamente la amplitud debe ser mayor para

que pueda ejecutar la transición requerida. Es por ello que es necesario fijar, como hemos hecho,

restricciones a las amplitudes en el algoritmo de optimización.

6. Realización de puertas lógicas cuánticas con pulsos no mono-

cromáticos

Para terminar, describimos los resultados que constituyen el objetivo último de este trabajo:

el uso de QOCT para el diseño de puertas lógicas cuánticas. Para ello, pasaremos a utilizar las

ecuaciones de optimal control correspondientes a operadores, expresiones (4.15), (4.17) y (4.18), pero

manteniendo la misma parametrización del pulso usada en el estudio de las transciones mostrado

en la sección anterior. A continuación mostramos los resultados obtenidos para distintos tipos de

puertas de tres q-bits.
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Figura 5.2: Pulsos óptimos obtenidos para cada una de las transiciones fundamentales del sistema
GdW30 aśı como la correspondiente transformada de Fourier. Los tiempos de transición empleados
para cada transición son los mostrados en la tabla 5.2. Aśı, (a) y (b) se corresponden con la primera
transición, (c) y (d) a la segunda, etcétera.

6.1. Puerta de Toffoli

La primera puerta que generaremos es la puerta de Toffoli, También llamada puerta CCNOT

o CCX. Esta puerta, como mencionamos en la introducción, es importante en sistemas de tres q-

bits, pues permite, mediante combinaciones de la misma, construir cualquier operación clásica en

un ordenador cuántico. La representación matricial asociada al operador de esta puerta en la base

computacional, aśı como el śımbolo usado en circuitos lógicos se muestran en la Fig. 6.1.

A efectos prácticos, esta puerta aplica la puerta σX al último q-bit si el primero y el segundo

están en el estado |1〉. En caso contrario no cambia el estado de ningún q-bit.

El tiempo de propagación T se ha elegido como el tiempo que requiere un pulso-π en este sistema

para producir la última transición (|6〉 −→ |7〉), pues es, al fin y al cabo, la transición que manipula

UToffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(a)

(b)

Figura 6.1: (a) Representación matricial de la puerta de Toffoli en la base computacional. (b)
Śımbolo utilizado para la representación de la Puerta de Toffoli en circuitos lógicos.
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Figura 6.2: Pulso en el dominio temporal (a) y frecuencial (b) necesario para generar una puerta de
Toffoli en el sistema GdW30. En rojo aparecen las frecuencias caracteŕısticas del sistema. El valor
de 1− Fidelidad obtenida para la puerta, usando este pulso, es de 2.39 · 10−4.

esta puerta. Eligiendo el cutoff de frecuencias en 8 GHz, tenemos que encontrar el valor óptimo de

87 parámetros de control. A diferencia de lo que ocurŕıa en la optimización de transiciones, donde

pod́ıamos tomar los parámetros de control iniciales como aquellos que más se aproximaran al pulso-

π, en este caso vamos completamente a ciegas por lo que los parámetros de control iniciales se han

generado aleatoriamente. El programa ha requerido de 226 iteraciones del proceso de optimización,

llevadas a cabo a lo largo de unas 8 horas en un ordenador doméstico.

El pulso obtenido necesario para que el operador evolución en T sea equivalente a la puerta de

Toffoli, aśı como su transformada de Fourier se muestran en la Fig. 6.2.

6.2. Puerta de Deutsch

La puerta de Deutsch (o Dθ) es un tipo de puerta de tres q-bits cuya representación es la

siguiente:

Dθ =

(
I6 0

0 D0(θ)

)
con D0(θ) =

(
i cos θ sin θ

sin θ i cos θ

)
, (6.1)

siendo I6 la matriz identidad de dimensión 6. De esta forma, la puerta de Deutsch actúa de forma

similar a la puerta de Toffoli, en el sentido de que es una puerta controlada: es decir, solo aplica

la transformación D0(θ) al tercer q-bit si los dos primeros están en el estado |1〉. De hecho, para

θ = π/2, la puerta de Deutsch coincide con la puerta de Toffoli. Hemos decidido trabajar con las

puertas de Deutsch, pues cumplen la propiedad de que son un conjunto de puertas universales para

sistemas de tres q-bits: una vez se tiene un método para generar puertas de Deutsch, se puede

construir cualquier circuito.

Igual que en el caso de la puerta de Toffoli, hemos tomado T como el tiempo usado en la última

transición del sistema por pulsos-π. Tampoco se ha cambiado el valor del cutoff en frecuencias.

Ahora bien, el valor inicial de los parámetros de control se ha tomado como los obtenidos para
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generar la puerta de Toffoli, pues estos dos tipos de puertas actúan de forma similar. Los tiempos

de cálculo requeridos para obtener los pulsos óptimos vaŕıan en función del valor de θ, siendo de 12

horas y media (171 iteraciones) en el mejor de los casos y de 18 horas (300 iteraciones) en el peor.

Realizadas también en un ordenador doméstico.

En la figura Fig. 6.3 se incluyen los pulsos obtenidos, aśı como sus transformadas de Fourier, para

obtener la puerta de Deutsch con distintos valores de θ. También se incluye el valor de 1−Fidelidad

obtenido para cada una de ellas. Vemos que las amplitudes de los pulsos son bastante altas; en

la sección anterior también vimos cómo los pulsos obtenidos mediantes QOCT teńıan amplitudes

significativamente mayores que los pulsos-π que usábamos de referencia. Seŕıa posible obtener pulsos

de menor amplitud aumentando el tiempo de propagación.

7. Conclusiones

A lo largo de este documento hemos conseguido mostrar que la teoŕıa de control óptimo nos

permite obtener la forma de la perturbación que debemos introducir en un sistema de 8 niveles

(GdW30) tal que el operador evolución resultante, pasado un tiempo T , sea equivalente al operador

que define una puerta lógica. De esta forma, hemos obtenido, con valores de fidelidad considerable-

mente altos, las perturbaciones necesarias para generar la puerta de Toffoli y distintas puertas de

Deutsch. La duración de esta perturbación es de 5.45 ns, considerablemente menor que el tiempo

de coherencia de las transiciones caracteŕısticas del sistema (∼ 0.5µs ). Esto permite ignorar los

grados de libertad del sistema que interactúan con el exterior, considerando simplemente la evo-

lución temporal dada por la ecuación de Schrödinger. Concluimos, por lo tanto, que este sistema

cumple con las condiciones necesarias para poder realizar cálculos de computación cuántica: en pri-

mer lugar, cada transición tiene una frecuencia caracteŕıstica única; en segundo lugar, los tiempo

de decoherencia son lo suficientemente largos como para permitir que las puertas se ejecuten sin

que se deteriore el sistema por los efectos del entorno.

En una primera fase del trabajo, hemos abordado el problema de generar transiciones entre

estados. Hemos visto que los pulsos obtenidos mediante optimal control permiten obtener estas

transiciones con una fidelidad mayor que la obtenida mediante pulsos-π y en tiempos significativa-

mente menores. A cambio, la amplitud de los pulsos tiende a ser mayor que la que necesitaŕıamos

con los métodos habituales.

En la segunda parte del trabajo, hemos pasado al estudio de las puertas cuánticas. Se han

logrado obtener puertas de 3 q-bits: puertas de Toffoli y de Deustch. Hemos elegido esta familia

de puertas porque constituyen un conjunto universal (cualquier circuito de computación cuántica

puede construirse concatenando puertas de esta familia). Los resultados obtenidos, de nuevo, son

satisfactorios, pues se han obtenido fidelidades cercanas a la unidad en tiempos relativamente cortos.

Sin embargo, igual que ocurŕıa con las transiciones de estado, la amplitud de los pulsos necesarios

para replicar las puertas buscadas son elevadas, y podŕıa llegar a suponer un problema experimental.

En ese caso, debe aumentarse el tiempo T de aplicación del pulso, garantizándose que existen

soluciones con buena fidelidad para tiempos superiores, pero teniendo cuidado de no acercarnos

demasiado a los tiempos de coherencia de las transiciones.
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Figura 6.3: Pulsos necesarios para generar puertas de Deutsch con distintos valores de θ. En concreto,
(a) y (b) muestran el pulso en el dominio temporal y frecuencial para una puerta de Deutsch con
θ = π/4, siendo el valor de 1 − Fidelidad de 2.27 · 10−4. (c) y (d) muestran esto mismo para
θ = 3π/4 con una fidelidad de 3.12 · 10−4. Por último, tenemos (e) y (f) para θ = π y una fidelidad
de 5.14 · 10−4.
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El código desarrollado y utilizado para la realización de los cálculos puede encontrarse en

https://gitlab.com/acbarrigon/qoct-gates.git.
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[18] Mark M Wilde. Quantum information theory. Cambridge University Press, 2013.

[19] Constantin Brif, Raj Chakrabarti y Herschel Rabitz. “Control of quantum phenomena: past

present and future”. En: New Journal of Physics 12.7 (2010), pág. 075008.

[20] Donald E. Kirk. Optimal Control Theory. An Introduction. New York: Dover Publications,

Inc., 1998.

[21] A. Castro. “Optimal Control Theory for Electronic Structure Methods”. En: Handbook of

Materials Modeling (2018).

[22] Jelmer Ypma, Hans W.Borchers y Dirk Eddelbuettel. “R interface to NLopt”. En: Journal of

unreproducible Results (2018).

[23] Dieter Kraft. “A software package for sequential quadratic programming”. En: Forschungsbericht-

Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (1988).

[24] J. Nocedal. “Updating quasi-Newton matrices with limited storage”. En: Math. Comput. 35,

773-782 (1980).

[25] C. Cohen-Tannoudji, B. Diu y F. Laloë. Quantum mechanics. 1973.
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Anexo: Ocupación de cada nivel en las transiciones fundamentales

usando QOCT

En las gráficas que se muestran a continuación aparece la variación de la ocupación de cada nivel

en función del tiempo durante la aplicaciones de pulsos obtenidos mediante QOCT. En concreto,

estos pulsos son los que aparecen en la Fig. 5.2. Cada uno de ellos induce la transición de un nivel

determinado del sistema al nivel superior. Esto lo hace en tiempos diez veces menores a los que

seŕıan necesarios si utilizáramos pulsos-π pero de forma que no afecta a la fidelidad.
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Figura 7.1: Variación en la ocupación de cada uno de los estados durante la aplicación de cada uno
de los pulsos mostrados en la Fig. 5.2. Siendo (a) la variación de la ocupación en la transición del
estado |0〉 al |1〉, (b) del |1〉 al |2〉, etcétera.
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