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Resumen

Hemos estudiado, mediante técnicas computacionales, la implementacién de puertas
l6gicas cuanticas sobre nanoimanes moleculares. En concreto, hemos trabajado sobre un
modelo para el sistema experimental descrito en [Jenkins et al., Phys. Rev. B 95, 064423
(2017)]. Se trata de un sistema de 8 niveles, que puede ser considerado equivalente a
un sistema de 3 g-bits acoplados. Sobre este sistema, hemos analizado las transiciones
a niveles vecinos utilizando el método habitual (pulsos-7), y la mejora que sobre ese
método supone el uso de pulsos obtenidos mediante técnicas de control éptimo. De esta
manera, se pueden obtener pulsos mas cortos y de mayor fidelidad. Finalmente, también
utilizando estas técnicas de control 6ptimo, se han obtenido los pulsos necesarios para que
el proceso resultante, pasado un tiempo caracteristico menor que el tiempo de coherencia,
sea equivalente a la aplicacion de una puerta logica cuantica. En concreto, se ha obtenido
la puerta de Toffoli, universal para sistemas de 3 bits en computacién clésica, y una serie
de puertas de Deutsch, que generalizan el concepto de la puerta de Toffoli, y que son

universales en computacién cudntica.
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1. Introduccién: breve resumen de teoria de computacion cuantica

Comenzamos con una breve introduccién a los conceptos de la teoria de informacién cuantica
que han sido necesarios para la elaboracién de este trabajo — una introduccién completa al tema
puede consultarse en la Ref. [1].

La computacién clasica se basa en la manipulacién de la unidad minima de informacién, el bit,
que solo puede tomar dos valores, por ejemplo, 0 o 1. La computacion cuantica utiliza el concepto
de g-bit (quantum bit). Un g-bit puede entenderse como un sistema cudntico de dos estados, que
denotaremos como |0) y |1). La diferencia principal entre los bits y los g-bits es el hecho de que los
g-bits pueden estar en cualquier combinacién lineal de |0) o |1). Asi, una forma general de escribir
cualquier posible estado de un g-bit es la siguiente:

W) =al0)+5[1) Ya,pe C tg |of +]8° =1 (1.1)

El estado del g-bit estd determinado por lo tanto por 1, la denominada funcién de onda. A esta
posibilidad de combinacién lineal de estados también se la llama normalmente superposicion. Al
usar g-bits en lugar de bits, nos adentramos en el mundo cudntico y por lo tanto nos enfrentamos
a los problemas que este mundo puede presentar. Asi, por ejemplo, a diferencia de los bits, cuyo
estado puede determinarse directamente, los sistemas fisicos cudnticos, y por tanto los g-bits, estan
afectados por el llamado problema de la medida. Este problema consiste en el hecho de que el proceso
de medicion altera inevitablemente la evolucion del sistema de forma que la funcién de onda tras la
medida es distinta a la que era en el instante anterior a la medida. De esta forma, si partimos del
estado que aparece en la ecuacién (1.1), las leyes de la mecénica cudntica nos dicen que tendremos
una probabilidad |a|? de medir el sistema en el estado |0) y una probabilidad |3|? de medirlo en el
estado |1) (es por ello que se impone la condicién de normalizacién, pues la probabilidad total no
debe superar la unidad). Una vez hecha la medida, el sistema colapsa al estado que se ha observado
en la medicion. Asi pues, el estado final tras la medida siempre va a ser uno de los dos posibles
estados |0) o |1) discriminados por nuestro aparato de medicién (solo antes de que se realice dicha
medida el sistema estd en una superposicién cudntica de esos estados).

La mayor libertad que presentan los g-bits frente a los bits clasicos permite que algunos algo-
ritmos clasicos cuyo tiempo de calculo crece exponencialmente con el nimero de bits de entrada,
pasen a tener tiempos de cédlculo que crecen solo potencialmente. Un ejemplo es el algoritmo de
Deutch-Jotzsal?.

La manipulaciéon de la informacién en computacion clasica se realiza mediante las llamadas
puertas logicas, que toman un nimero de bits de entrada, y producen unos bits de salida de acuerdo
con reglas predefinidas. Andlogamente, existen puertas légicas cuanticas que toman el estado de
uno o varios g-bits y los alteran de cierta forma, siendo las puertas maés sencillas aquellas que tienen
un unico g-bit de entrada.

Tomemos por ejemplo una de las puertas mas sencillas que existe en computacion clasica: la
puerta NOT. Esta puerta viene definida como aquella que para un bit en el estado 0 le asocia
un valor 1 y viceversa. Uno puede preguntarse si existe una puerta andloga a la puerta NOT en
computacién cudntica. Es decir, aquella que tome el estado |0) y lo lleve al estado |1) y que al estado



|1) 1o lleve al estado |0). La respuesta es que, efectivamente, esta puerta existe, y se denomina puerta
ox (o bit-flip). Podemos compilar el comportamiento de cualquier puerta l6gica de un 1 g-bit como
una matriz 2x2 unitaria definida sobre la base ortonormal {|0),|1)}, a veces denominada base
computacional, tal que:

0) — [1) (o1
1) —> [0) X U”X_<1 0)’

donde hemos incluido también el simbolo que suele utilizarse en la representacién de circuitos 1égicos.
Viendo la representaciéon matricial de esta puerta cobra sentido su nombre pues, méas formalmente,
aplica la matriz de Pauli ox al estado inicial. De la misma forma existen las puertas oy y oz.

Lo mas relevante de esta definicién de puerta cudntica como operador linear unitario es que, a
diferencia de las puertas 16gicas cldsicas, las cudnticas no solo actian sobre los estados base |0) o [1),
sino que pueden actuar sobre cualquier estado superposicion. Asi, por ejemplo, si introducimos como
estado de entrada |p;) = |0)—i|1) tendremos que se obtendra como estado final U, |p1) = |1)—i0).
Esto implica que, a diferencia del caso clasico, donde solo existe una puerta légica no trivial con un
unico g-bit de entrada, en el caso cuantico toda matriz unitaria 2x2 puede definir una transformacion
vélida para ser considerada una puerta légica cuantica — independientemente de si representa alguna
operacion util en el tratamiento de la informacién cudntica, o si es realizable desde el punto de vista
experimental.

Otra puerta muy utilizada es la puerta de Hadamard que, aplicada a los estados de la base,
devuelve una superposicién de estados:

1
0) — —

(10) +11))
NG 1 (1 1
L B l i UHadamard = ﬁ (1 _1> .
1) — ﬁ(|0> 1))

Para poder construir circuitos cudnticos ttiles, sin embargo, uno debe poder trabajar con sis-

temas de mas de un g-bit. En el caso cldsico, un sistema de dos bits cldsicos tiene 22 = 4 posibles
estados: 00, 01, 10, 11. De la misma forma, para describir un sistema de 2 g-bits necesitamos un
espacio de Hilbert de cuatro dimensiones. Este espacio de Hilbert es el producto tensorial de los
dos espacios de Hilbert bidimensionales asociados a los g-bits iniciales, H1 y Ho: H = H1 ® Ho. Por

definicién, y para simplificar la notacién, tomamos:

lig) = i)y @ 15); - (1.2)

El subindice en los kets es el indicador del g-bit al que se refiere el estado. De esta forma, el primer g-
bit del sistema se define sobre la base de H; ({|0);,]1),}) y el segundo sobre la de Ha ({|0)5,[1)5}).
Asi, automaticamente hemos definido una base ortonormal del espacio H; ® Ha (la llamada “base

computacional[l}). Cualquier estado de un sistema de 2 g-bits se puede expresar como combinacién



lineal de estos cuatro posibles estados:
[ty = k1]00) + ko [01) 4 k3 |10) + kg [11) . (1.3)

Es por ello que se dice que este sistema es equivalente a un sistema cudntico de cuatro niveles
y, a veces, para simplificar ain mds la notacién suele reescribirse la base como {|0),|1),|2),|3)}.
Generalmente se trabaja con estados normalizados, Z?Zl |ki? = 1.

En un sistema de varios g-bits podemos elegir medir sobre observables que afectan a todos los
g-bits, o individualmente sobre uno de ellos. Si, por ejemplo, medimos solo sobre el primer g-bit y
obtenemos que estd en el estado |1), el estado que al que el sistema colapsa tras la medida sera:

k3 |10) + kg |11)

VI + ka2

En esta ecuacién hemos impuesto la renormalizacion de la funcién de onda. Como no hemos medido

[4') (1.4)

todos los g-bits del sistema, el estado resultante sigue siendo una superposiciéon de varios estados
de la base completa.

De la misma forma que hemos hecho antes, podemos construir puertas légicas cuanticas pero
esta vez con dos g-bits de entrada. Una puerta especialmente relevante de dos g-bits es la puerta
CNOT (“Controlled” NOT), que actia de la siguiente forma: si el primer g-bit esta en estado |0),
no realiza ningin cambio en ningln g-bit, pero si estd en |1),, aplica ox al segundo g-bit. Asi:

) = 100) ) =10 —@— 100 0
1) =[01) — [01) = |1) o o100
2) = |10) —s [11) = |3 CNOT= 1o 0 0 1
2) = [10) [11) = [3) A
13) = [11) —> [10) = [2) & 0010

Donde se ha incluido, de nuevo, el simbolo que suele utilizarse en la representacion de circuitos
l6gicos cudnticos. La puerta asi definida cumple la condicién de unitariedad (UéNOTUCNOT =1).
Otra forma de generar puertas de dos g-bits es a partir de puertas de un g-bit. Por ejemplo, podemos

preguntarnos como es la representacién matricial de la siguiente puerta:

q1

q2 H

Es decir, aquella que deja invariante el primer g-bit, y aplica la puerta de Hadamard al segundo.
Un método directo consiste en construir la tabla de verdad y escribir a mano la matriz asociada
a ésta. Otra forma, mas sencilla y elegante, consiste en entender que esta puerta consiste en el
producto de dos puertas que actuan independientemente sobre cada uno de los g-bits (la identidad
sobre el primero, y la puerta de Hadamard sobre el segundo). Por lo tanto, la puerta resultante es



el producto tensorial de las mismas:

1 1 0 0
Y 1) KT () EE PR R
0 1 -1
Uno puede comprobar que, efectivamente, esta representacién es correcta pues:
0) = [00) — |0); @ 7(|0> o+ |1)g) = 7(|00>+|01>) ;5(|0>+|1>>
1) =101) —0); @ 7(|0> 1)p) = 7(|00> |01>)=¢1§(|0>—|1>) ",
2) = [10) — |1); @ 7(|0>+\1>2) 7(!10>+I11>) \1[(|2>+|3>> |

3) = 111) — 1), @ —=(0), — [1),) = —=(110) — [11)) = —=(2) ~ 3))

S -
Sl
Sl

Si aplicamos sucesivamente dos puertas logicas distintas, podemos calcular la representacién
matricial de la operacién resultante mediante la multiplicacién estandar de matrices. Una sucesion de
puertas cuanticas es lo que se denomina un circuito. Se puede llegar al mismo circuito final acoplando
distintas puertas: es decir, combinando distintas puertas logicas podemos encontrar circuitos que
son equivalentes entre si o equivalentes a otra puerta ya conocida.

La existencia de estas equivalencias nos lleva a preguntarnos si existen conjutos de puertas
que puedan considerarse universales, es decir, puertas con cuya composicién pueda construirse
cualquier circuito. En computacién clasica existe el concepto andlogo: se dice que un conjunto de
puertas légicas cldsicas es universal si puede construirse cualquier funcién que actia sobre los bits
utilizando Unicamente combinaciones de dichas puerta. Este es el ejemplo de la puerta NAND
por si sola, pues cualquier otra puerta (NOT, AND, OR, XOR, NOR, XNOR) puede construirse
con distintas combinaciones de puertas NAND (y, por tanto, se puede construir cualquier circuito
16gico tnicamente con puertas NAND). Esto mismo ocurre en la computacién cudntica. se dice que
un conjunto de puertas légicas es universal si es posible reproducir cualquier operacién unitaria a
una exactitud arbitraria mediante un circuito légico cuantico que utilice inicamente las puertas de
dicho conjunto. El conjunto de puertas {Hadamard, phase, CNOT, 7/ 8}[2], por ejemplo, presenta
este tipo de universalidad. Esto es asi porque, con combinaciones de este tipo de puertas, es posible
construir cualquier tipo de operacién unitaria en un espacio de n g-bits. Ademés, cualquier matriz
unitaria arbitraria en un espacio de Hilbert de cualquier dimension puede escribirse como producto
de matrices unitarias de dos niveles (es decir, matrices que solo actiian de forma no trivial sobre
dos de los vectores componente).

Una puerta importante, que utilizaremos maés adelante, es la puerta de Toffoli, con tres q-
bits de entrada (y tres de salida). Se puede comprobar que la versién cldsica de esta puerta es
universal. Es decir, cualquier operacién puede construirse mediante alguna combinacién de puertas
de Toffli. Como la puerta de Toffoli es reversible puede ser implementada mediante computacion
cuéantica (este hecho implica el importante resultado tedrico de que un ordenador cuéntico puede



implementar cualquier posible operacién clasica). Ahora bien, la puerta de Toffoli no es universal
para las operaciones de computacion cudntica; inicamente podemos construir un conjunto universal
anadiendo alguna puerta extra (por ejemplo, la puerta de Hadamard).

Si queremos construir puertas logicas en las que intervengan un mayor niimero de g-bits podemos
usar procedimientos similares a los anteriores para obtener la representacion matricial, teniendo en
cuenta que el tamafio de la matriz crece exponencialmente con el nimero de g-bits (como 2"). Asi, si
queremos trabajar con mas g-bits y sus representaciones matriciales necesitamos definir claramente
una generalizacién de la base para un sistema de N niveles. Al igual que hicimos para el caso de
dos g-bits, para un sistema de n g-bits primero definimos una base para cada uno de los g-bits
individuales, sobre su espacio de Hilbert, de forma que la base del sistema completo vendra dada
como el producto tensorial de los elementos que forman cada una de las bases individuales. La base
resultante se denomina base computacional e incluye todas las posibles combinaciones de estados
de cada g-bit. Como se ha dicho anteriormente, para simplificar la notacién, denominaremos al ket
que representa cada estado de la base con el niimero que representa en base decimal. Asi, cada uno

de los estados de la base puede escribirse como:
lan)y @ lan-1) y_1 @+ @ |a1), = |anay_1---a1) = [c) , (1.7)

donde ¢ = any2VN "' 4an_12V "2+ -+a;. Asi, la base (ortonormal) se expresara como {|0), 1), ,
12V — 1)} v cualquier estado se podrs formar mediante una combinacién lineal de los kets que la
forman.

Formalmente, como ya hemos visto, una puerta cuantica no es mas que un operador unitario
U. En las realizaciones fisicas de los sistemas de computacion cudntica, estas puertas no son mas
que operadores evolucién temporal, U(T,0): son los operadores que generan la transformacién del
estado del sistema desde el tiempo ¢t = 0 hasta ¢ = T, transformaciéon que estd gobernada por
la ecuacién de Schrodinger. Los sistemas cudnticos, sin embargo, estan sujetos a perturbaciones
externas incontrolables, ya que en la practica no podemos aislarlos totalmente de su entorno. Esto
implica que el comportamiento coherente determinado por la ecuaciéon de Schrédinger, se deteriora
con el tiempo. Para que podamos asumir un comportamiento coherente, es necesario que los tiempos
de decoherencia tipicos del sistema sean lo méas largos posibles, o alternativamente, que los tiempos
de operacion T sean cortos. El objetivo de este trabajo es, de hecho, estudiar la forma de reducir
estos tiempos de actuacion, buscando maneras dptimas de disenar las puertas cuanticas. Para ello
utilizamos la teoria de control éptimo cuantico (QOCT).

La motivacién de este trabajo nace en el proyecto SUMO (“Scaling Up quantum computation
with MOlecular spins”), dirigido por el investigador F. Luis, en el Instituto de Ciencia de Materiales
de Aragén (ICMA). En este proyecto se realiza un montaje experimental que trata de crear puertas
cuanticas con moléculas magnéticas. Se enfrenta precisamente al problema de los cortos tiempos de
decoherencia, y es por ello que una solucién puede ser la aplicacion de la QOCT para acelerar las
puertas cudanticas.

En la seccién 2 resumimos los objetivos del trabajo. La seccion 3 presenta el sistema fisico sobre
el que hemos trabajado, asi como el modelo que hemos usado para realizar las simulaciones. La

seccion 4 estd dedicada a las ecuaciones fundamentales de la teoria de control éptimo cuantico, que



hemos utilizado para buscar los pulsos de control. Las secciones 5 y 6 presentan los resultados: las
optimizaciones de las transiciones estado a estado, y el diseno mediante control 6ptimo de puertas
cuanticas. Finalmente, en la seccién 7 estan las conclusiones del trabajo. En todo este trabajo se
utilizara el sistema de unidades atomicas de Hartree, tal que m, = e = h = 1, es decir, tomamos la
masa del electréon, su carga, y la constante de Planck reducida, como la unidad.

2. Objetivos

La implementacion de una puerta cuantica en un sistema fisico susceptible de ser interpretado
como un sistema de g-bits consiste en la aplicaciéon de un operador perturbativo externo que se anade
al Hamiltoniano no perturbado que describe el sistema. El operador evolucién resultante debe ser
igual (o equivalente) al operador que define la puerta cudntica. En este trabajo, hemos puesto
nuestra atencién en el sistema experimental descrito en la Ref. [3], que estd siendo desarrollado por
el grupo del investigador Fernando Luis en el Instituto de Ciencia de Materiales de Aragén. Este
sistema se describird brevemente en la seccién 3.

Las puertas cuanticas tradicionalmente se disenan concatenando pulsos sencillos, monocromati-
cos, que realizan transiciones entre estados utilizando las frecuencias de resonancia. Esta forma de
disenar pulsos puede implicar tiempos largos, mayores que los caracteristicos de la decoherencia del
sistema. Es por ello que nuestro objetivo es tratar de encontrar pulsos mas complejos, mediante
la teorfa de control éptimo cudntico (QOCT), que hagan el mismo trabajo en menos tiempo. For-
malmente se trata de expresar la perturbacién en funcién de una serie de pardmetros, y encontrar,
computacionalmente, los parametros éptimos que generan ese comportamiento deseado.

En suma, los principales objetivos de este trabajo han sido:

1. Entender las propiedades que debe poseer un sistema cuantico para poder realizar computacion
cuantica sobre él.

2. Implementar un cédigo que realice los calculos de QOCT para el tipo de sistema y perturbacion

con el que nos enfrentamos.

3. Comprobar los beneficios que suponen el uso de pulsos generados mediante QOCT, en lugar
de los métodos habituales (pulsos-).

4. Ejecutar célculos de optimizacién para la implementacion de puertas légicas de 3 g-bits (Toffoli
y Deutsch).

3. Descripcion del sistema

En computacion cudntica, para trabajar con un tnico g-bit nos bastaria con el espin de un
electrén o el estado de polarizacién de un fotén (cualquier sistema de dos niveles). Sin embargo,
los sistemas verdaderamente tutiles consisten en més de un g-bit. Para conseguir sistemas de este
tipo, se pueden acoplar varios g-bits, o alternativamente, trabajar con un sistema de 2" niveles,

reinterpretandolo como un sistema de n g-bits acoplados. A continuacién describiremos el sistema



molecular experimental concreto que se ha utilizado para este trabajo. Se trata de un sistema de
ocho niveles, que puede reinterpretarse como un sistema de tres g-bits. Asimismo, describiremos el
modelo tedrico que hemos empleado para simular su comportamiento. Este sistema esta detallado
en las Refs. [3] y [4].

3.1. Sistema experimental

Unos sistemas que se estan proponiendo recientemente como sistemas de g-bits son los denomina-
dos molecular nanomagnets o nanoimanes moleculares. Se trata de un tipo de moléculas artificiales
que, basicamente, consisten en uno o varios nticleos magnéticos rodeados de ligandos no magnéticos.
La estructura de niveles de espin de este tipo de moléculas puede utilizarse como sistema cuantico
sobre el que realizar los cdlculos de computacién cudntica.

El principal problema es encontrar un ntcleo magnético apropiado. Existen muchas opciones,
porque aunque la propuesta de uso de los nanoimanes moleculares es reciente en el contexto de la
computacion cuantica, se llevan utilizando durante varias décadas para la investigacion de fenémenos
magneto-cudnticos como el spin tunneling [5] o el spin entanglement [6]. Por ejemplo, una molécula
muy utilizada, y por tanto, muy conocida, es el Mnjo, representada en la Fig. 3.1a. En su estado
fundamental tiene un espin de S = 10. Sin embargo, suele presentar tiempos de coherencia muy
cortos y, en determinadas condiciones, no es posible separar cada una de las transiciones entre si.

Otra posibilidad serfa utilizar nanoimanes basados en un unico ion lantdnido (single-ion mag-
nets), que presentan tiempos de coherencia mas largos. Ahora bien, la interaccién con el resto de
atomos del cristal suele producir una separaciéon de niveles a campo nulo que, a veces, puede ser lo
suficientemente grande como para que solo los dobletes electronicos méas bajos sean experimental-
mente accesibles. Un ion que no presenta este problema es el ion de gadolinio (Gd3T). Su estructura
electrénica es 4f7, cuenta con un momento angular orbital L nulo, pero con el mayor espin posible
(S = 7/2) para un tinico dtomo. Esto implica que el espin electrénico del Gd*>* puede entenderse
como un qudit con d = 8 o, como hemos dicho antes, un sistema de tres g-bits.

El ion de Gd3* no est4 libre, sino inserto en una estructura mas compleja que puede verse en la
Fig. 3.1b. Al conjunto, los autores de esta sintesis lo abrevian como GdW3 [4]. Para poder construir
puertas cuanticas, se requiere de la existencia de transiciones coherentes capaces de conectar dos
estados cualquiera arbitrarios. Para ello se necesitan anisotropias magnéticas lo suficientemente
grandes como para hacer que cada una de las transiciones posibles sea independiente de las otras,
pero asimismo lo suficientemente débiles como para que las distintas frecuencias de transicién sean
accesibles al aparato experimental, que funciona en el rango de microondas.

Las principales fuentes de ruido magnético que provocan la decoherencia en este tipo de sis-
temas, provienen de (1) los acoplos hiperfinos a los espines nucleares; y (2) el acoplo dipolar a
otros espines electrénicos. Es posible minimizar este segundo efecto diluyendo el sistema en una
matriz diamagnética. De hecho, es asi como se procede para realizar los distintos experimentos de
medida del tiempo de decoherencia y de la estructura de niveles. Se prepara un cristal en el que
el GAW3g estd “disuelto” en un matriz de YWasq, que, al ser diamagnética, reduce las interaccio-
nes dipolares. La expresion quimica completa de de la estructura cristalina puede escribirse como
[Gd,Y1_(HoO)P5W300110]!2~ aunque normalmente se abrevia como Y;_,Gd,W3g siendo x muy



Figura 3.1: Estructura de distintos nanoimanes magnéticos: (a) Mn;2012(CH3COO)16(H20)4, abre-
viada Mnjs. Los 8 manganesos externos tienen una configuraciéon d* que aporta un S = 2 cada uno.
Los 4 internos tienen una configuracién d* que aporta un S = 3/2 cada uno. Dada la confiruacién
antiferromagnética de la molécula, el estado fundamental del sistema total tiene S = 10. (b) [3]
[Gd(H20)P5W300110]2~. El niicleo magnético es el ion Gd3*, con configuracion 4f7, y tiene espin
S="17/2.

pequeiio (del orden de 1072) pues la concentracién de los iones de gadolinio debe ser baja.

La medida de los tiempos de coherencia, 15, se realiza utilizando estd mezcla con z = 0.01
y mediante la técnica de “espin echo”. Este método es uno de los procedimientos habituales de la
técnica de resonancia paramagnética electrénica (EPR) [7]. Esta es una técnica experimental similar
a la resonancia magnética nuclear (NMR), excepto que en lugar de utilizar espines nucleares como
en NMR, se utilizan espines electronicos. Como el momento magnético es inversamente proporcional
a la masa, las técnicas basadas en EPR utilizan frecuencias varios 6rdenes de magnitud mayores
que las utilizadas en NMR (del orden de MHz, rango de las radiofrecuencias, pasamos a GHz, rango
de las microondas).

La EPR no solo sirve para comprobar la existencia de los distintos niveles energéticos que pre-
senta el sistema GdW3g, ver Ref. [3], sino que, como se ha dicho anteriormente, también permite
medir los tiempos de coherencia de fase usando la técnica del espin echo. Esta técnica, usada tam-
bién en NMR, requiere de la aplicacién de un campo magnético inicial, que alinea los espines. El
proceso para medir este tiempo de decoherencia se basa en las secuencia de Hahn [8] (en honor a
Erwin Hahn): primero, aplicamos un campo magnético que alinea todos los espines, de forma que
el momento magnético medio es paralelo a la direccién del campo magnético aplicado (por ejemplo,
el eje z). Hecho esto, se apaga el campo magnético y se aplica un pulso de microondas que rota los
momentos magnéticos 90°. Debido a las inhomogeneidades magnéticas de la red, los distintos mo-
mentos magnéticos se van desfasando y el momento magnético medio va disminuyendo. El tiempo
caracteristico en el que ocurre esto se suele denominar 7. En este momento, se aplica otro pulso de
microondas que rota los momentos 180°, haciendo que las mismas inhomogeneidades que original-



mente destruian la imanaciéon ahora la recompongan, alcanzandose un nuevo maximo ligeramente
menor que al principio del experimento. Esta rotacién de 180° puede repetirse varias veces y, en
cada iteracion, el nuevo méximo del valor medio de la magnetizacion serd menor. Este decaimiento
ocurre a un ratio de tiempo caracteristico 75, también denominado tiempo de coherencia. Si se
vuelve a aplicar el campo magnético, para que se alineen otra vez los momentos, puede medirse el
tiempo de relajacion T;. Tanto T5 como 17 son caracteristicos de cada una de las transiciones. Los
resultados obtenidos en [3] muestran que las siete transiciones presentan valores de T del orden de
0.5 ps y del orden de 2 us para T7.

3.2. Modelo teérico

Necesitamos ahora una forma de poder describir el GdW3y mediante un modelo matematico
sobre el que experimentar con las distintas perturbaciones. Este tipo de sistemas se puede describir
con bastante precision mediante los llamados Hamiltonianos de espin. Para el GdW3p en concreto,

usaremos el siguiente Hamiltoniano (ver Ref. [9] y Ref. [10]):

!

A A 1 A N 2
H=D [53—35(5*“)] +E(S§—s§) —gupS-H, (3.1)

siendo D = 1281 MHz y E = 294 MHz. Estas componentes se corresponden con los términos
anisotrépicos de segundo orden y su valor se determina mediante ajuste experimental usando ex-
perimentos de EPR. g = 2 es la razon giromagnética, S = (gx,gy, 5}) es el operador vector de
spin, referido a los ejes anisotrépicos, pup el magnetén de Bohr y S = 7/2. El sistema puede estar
sometido a un campo magnético externo H.

Tal como se ha dicho antes, para poder asignar a cada transicién entre niveles una frecuencia
caracteristica diferente, es necesario que exista esta anisotropia magnética (D # E). De lo contrario
aparecen degeneraciones entre niveles, y frecuencias iguales. Esta anisotropia debe ser sin embargo
lo suficientemente débil como para que las transiciones sean accesibles a experimentos de EPR en
banda-X (9.48 GHz). A pesar de la ruptura de la simetria inducida por la anisotropia, en ausencia
del dltimo término en la Eq. (3.1), todavia existen frecuencias degeneradas dos a dos (dobletes). Para
romper la degeneraciéon de estos dobletes se aplica un campo magnético H orientado a lo largo del
eje “duro” de la molécula (eje z, perpendicular al plano de la Fig. 3.1b). Escogiendo la intensidad de
este campo magnético externo puede regularse, hasta cierto punto, la distribucién de las frecuencias
de transicion. Este hecho estd representado en la Fig. 3.2, que muestra el espectro de energias en
funcién del campo magnético externo. Hemos implementado este modelo de Hamiltoniano de espin
sobre el c6digo qutip [11, 12]; la figura 3.2 la hemos obtenido de esta manera, y es una réplica de
la Fig. 3(b) de la Ref. [3]. La situacién de estos niveles respecto al montaje experimental puede
ser contrastada mediante la obtencién del espectro EPR del sistema. Dado que la interpretaciéon de
estos espectros no es trivial, suele compararse con un espectro obtenido a partir del modelo tedrico.
Tal como se muestra en [3] ambos resultados son compatibles.

Otra forma que tenemos de comparar el modelo tedrico con los resultados experimentales es
mediante procesos de evolucién temporal del sistema sujeto a una perturbacion, tomando medidas
de algin observable. Para poder modelar este tipo de procesos, no es suficiente, en general, considerar
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Figura 3.2: Diagrama Zeeman de los niveles de energia del sistema GdW3sg en funcién del campo
magnético H, que se ha elegido en direccién z.

la ecuacién de Schrodinger asociada al Hamiltonian (3.1). En la préctica, el sistema magnético no
estd aislado de interacciones externas. Para poder modelizar este tipo de interacciones externas se
utiliza la teoria de sistemas cudnticos abiertos. Esta teoria se basa en el formalismo de la matriz
densidad que resumiremos aqui brevemente; una introducciéon completa puede encontrarse en la
Ref. [13].

Cuando nuestro conocimiento del sistema a estudio es completo, podemos asignarle un estado
|1)) que lo describe completamente (salvo una fase global). A estos estados los denominamos estados
puros. Sin embargo, las condiciones experimentales no suelen permitir un conocimiento completo: en
la mayoria de casos, solo sabremos que el sistema puede estar en una determinada mezcla estadistica
de estados {|1;)} con probabilidades p; tal que ). p; = 1, es decir, una mezcla de estados puros
normalizados y no necesariamente ortogonales. De esta forma, si mas de un p; es distinto de 0, el
estado dejara de ser llamado estado puro y pasard a denominarse estado mezcla. La herramienta
matematica que describe el conocimiento de este tipo de sistemas es el operador densidad (o matriz

densidad), definido como:

p= Zpi i) (il - (3.2)

Las matrices densidad son operadores hermiticos de traza unidad y semidefinidas positivas, es decir,
que Y [¢), se cumple que (¢|p|yp) > 0. Cualquier operador que satisfaga estas dos propiedades puede
considerarse un operador densidad, capaz de describir un sistema cudntico estadistico (también
denominado ensemble). El uso de las matrices densidades fue por primera vez propusto por von
Neumann [14].

Dada la matriz densidad es facil determinar si se trata de un estado puro o mezcla pues, para un
estado puro, tendremos que Tr[p?] = Tr[p] = 1. Si Tr[p?] < 1 el sistema estd en un estado mezcla. La
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cantidad Tr[p?] se denomina pureza del estado y satisface que 2 < Tr[p?] < 1, siendo d la dimensién
del espacio de Hilbert. Por 1ltimo, es facil demostrar que dado un operador cualquiera, A, el valor
esperado puede calcularse como:

(A) = Tr[Ap] . (3.3)

Pasemos ahora a tratar la evolucién temporal de los estados mezcla. Sabemos que la evolucién
de los estados puros en un sistema cerrado, dado un Hamiltoniano H, viene dada por la ecuacion
de Schrodinger:

. d A
i (W) = H9(t)) - (3.4)

La resolucién formal de esta ecuacién conduce a la definicién del operador evolucién, que es lineal y
unitario y, por tanto, preserva la norma de los estados. Utilizando la definicién de la matriz densidad
(3.2) y la ecuacién de Schrodinger se puede probar que la evolucién de los estados mezcla viene dada
por la ecuacién de von Neumann (o ecuacién Liouville-von Neumann):

p=—ilH,pl = Lp, (3.5)

donde se ha utilizado el conmutador, definido como [A, B] = AB — BA, y se ha definido £, denomi-
nado Liouwvillian superoperator. Es facil probar que esta dindmica hamiltoniana conserva la pureza
del sistema.

Ahora bien, como hemos dicho antes, nuestro sistema no estd completamente aislado del exterior,
y estas ecuaciones solo son validas para un sistema aislado. Para describir sistemas abiertos, se
empieza por considerar un nuevo sistema cerrado, formado por el sistema a estudio en el que estamos
interesados y un sistema acoplado a él llamado entorno. De esta forma, el espacio de estados del
sistema completo compuesto se podra definir como el producto tensorial del espacio de estados
de cada componente, es decir, H = Hgys @ Heny. Nosotros queremos centrarnos en el subsistema
original, asumiendo que la descripcién completa es imposible. La herramienta para intentar esta
descripcién parcial es la matriz densidad reducida: Sea un sistema compuesto tal que H = H, @ Hyp,
si el estado completo estd definido por una matriz densidad p, definimos la matriz densidad reducida

del subsistema a como:
pa = Trafp], (3.6)

donde Try, es la traza parcial sobre el subsistema b, definida como:

Tro | Y las) {ag| @ o) (il | =Y las) a| Te | D [b) (Bi] | (3.7)

i,,k,l 1,J k,l

siendo {|a;)} y {|bi)} bases ortonormales de H, y Hp, respectivamente. Asi, la matriz densidad
reducida del sistema inicial que interacciona con el entorno sera pgys = Treny[p].

Debe establecerse ahora cudl es la ecuacién que describe la evolucion de un subsistema que forma
parte de un sistema mayor mas grande, es decir, la evolucion de esta matriz densidad reducida. Para
ello deben aplicarse una serie de pasos y aproximaciones que no presentaremos aqui; una posible

solucién al problema es la ecuacién maestra de Lindblad, o ecuacién GKSL (Gorini — Kossakowski
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— Sudarshan — Lindblad) [15, 16]. Esta es la ecuacién maestra Markoviana'

mas general posible
para la evolucién de matrices densidad, de forma que preserve las leyes de la mecénica cudntica, (es
una transformacion completamente positiva y conserve la traza independientemente de la condicion
inicial). Sendas demostraciones pueden ser encontradas en Ref. [17] y Ref. [18]. Esta ecuacién tiene

la siguiente forma:

d . i1 t
Zp=—ilH,p] +ijrk <Lkak —5{LeL p}) , (3.8)

siendo Ly los denominados jump operatos (o Lindblad operators) y T'j un conjunto de constantes
que modulan el ratio de acoplo del sistema con el entorno. Los collapse operators se definen como
Cy = VT; L. La ecuacién maestra de Lindblad tiene algunas propiedades interesantes que merece la
pena comentar. Por ejemplo, se puede demostrar que la pureza de un sistema que sigue esta dinamica
cumple que %(Tr[pﬂ < 0), es decir, que la pureza del estado siempre disminuye. De esta forma, si
preparamos el sistema inicial en un estado puro acabaremos obteniendo estados mezcla. Ademés,
la ecuacion maestra de Lindblad es invariante bajo transformaciones unitarias de los operadores de
colapso por lo que, sin pérdida de generalidad, siempre es posible encontrar operadores de colapso
de traza nula.

El objetivo de este trabajo es, en realidad, conseguir pulsos lo suficientemente cortos como para
que la evolucion del sistema sea coherente. Es decir, trabajar en un régimen en el que la influencia
del entorno es pequena, de manera que basta con la ecuacién de Schrédinger, y no se precisa
de la ecuacion de Lindblad o similares. Sin embargo, hemos realizado una simulacién a tiempos
largos con esta ultima para valorar si el comportamiento del modelo es consistente con los medidas
experimentales obtenidas por el grupo de F. Luis en el ICMA.

Asi, utilizando como modelo el Hamiltoniano mostrado en la ecuacién (3.1), introducimos una
perturbacién sinusoidal dependiente del tiempo. De esta forma, el Hamiltoniano perturbado puede
escribirse como:

H(t) = Ho + 2\ cos(wt)V (3.9)

siendo Hy el Hamiltoniano (3.1) y
V =—gupS-Hy,. (3.10)

En el Hamiltoniano (3.1) habfamos introducido un campo magnético estatico H que, en la medida
experimental concreta que queremos aproximadamente simular, se aplica en direccion del eje z con
un valor de 615 mT. En estas condiciones, la primera transicién (del estado fundamental al primer
excitado) tiene una frecuencia de resonancia de 9.468 GHz. Ahora, anadimos un campo magnético
variable H,, que se aplica en la direccién del eje x. La amplitud de oscilaciéon A &~ 0.163 mT también
se ha escogido de forma que corresponde con las condiciones experimentales. Por ltimo w se elige
de forma que el pulso introducido esté en resonancia con la primera transicién del sistema, es decir,
w = 9.47 GHz.

Usando la ecuacién maestra de Lindblad podemos calcular como varian los valores esperado de

Decimos que la ecuacién es Markoviana porque induce una dindmica Markoviana en el sistema. Esto es, que la
derivada de la matriz densidad depende solo del estado actual, y no de los estados pasados, lo cual es cierto cuando
la dindmica del entorno es lo suficientemente rapida como para que la correlaciéon del sistema con el bano se pierda
también rapidamente.
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Figura 3.3: Valor esperado de S, y S, obtenidos usando el modelo dado por las ecuaciones (3.9)
y (3.10), comparandolo con los resultados obtenidos experimentalmente para .S,. Los datos experi-
mentales han sido obtenidos de la Ref. [3], donde también pueden consultarse los resultados para el
resto de transiciones.

los observables de espin con el tiempo. Asi, en la Fig. 3.3 hemos mostrado estos valores esperados
para Sy, y S.. Ahora bien, cabe destacar que los observables se calculan en un marco de referencia
en rotacién (rotating frame), dado que esta es la situacién que se considera en el experimento: el
sistema estd rotando en torno al eje z, a la frecuencia caracteristica de la cavidad wg, acoplada a la

primera transicién del sistema. La transformacién necesaria estd dada por:
or  dwotS, & —iw tS’z
Sy(t) = 0= Sy e w0t (3.11)

Advertir que, bajo esta transformacion, S, permanecera inalterado.

En la Fig. 3.3 hemos puesto también resultados de una medida experimental. Vemos que hay
una discrepancia entre los resultados experimentales y los valores obtenidos teéricamente. Esto se
debe a que lo que realmente se mide no es exactamente lo que hemos calculado: los célculos teéricos
se corresponden con la evolucién temporal de los observables bajo la actuacién de la perturbacion
dada por la Eq. (3.9); en el caso experimental, se trata del valor de S, como funcién del tiempo
de actuacién del primer pulso en un experimento de spin echo. Por desgracia no hemos podido
modelizar exactamente este tipo de experimentos. Sin embargo, la superposicién de ambos resul-
tados experimentales y computacionales, si bien inconsistentes, si que permiten asignar al menos
cualitativamente la magnitud de los efectos de disipacién.

Lo mas relevante que podemos deducir de estos resultados, por lo tanto, es que el decaimiento
obtenido es del mismo orden que el medido experimentalmente, utilizando para los calculos tedricos
St =8, + iS’y como jump operator y I' = /0.2 como el valor del pardmetro de acoplo con el
entorno. Recordemos que los tiempos de coherencia de las transiciones fundamentales son cercanos
a los 0.5 ps por lo que, si queremos evitar el problema de la decoherencia, tendremos que utilizar

pulsos que actiien en tiempos menores. En concreto, siempre que sea posible, intentaremos trabajar
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con tiempos de propagacion de, al menos, uno o dos ordenenes de magnitud menor, de forma que

nos movamos en el rango de unos pocos nanosegundos.

4. Metodologia

Una vez conocido el sistema y el modelo mateméatico usado para describirlo, vamos a ver en
qué consisten los calculos que nos permitirdn obtener los pulsos 6ptimos: aquellos que permiten
inducir una determinada transiciéon, o bien que generan una determinada evolucién temporal o
puerta cuantica. Este planteamiento encaja con el tipo de problemas estudiado por la teoria de
control éptimo cudntico (QOCT), y es por ello que dedicamos esta seccién a exponer las bases de

la QOCT que hemos necesitado para el desarrollo de este trabajo.

4.1. Introduccién a QOCT

Partimos del Hamiltoniano ﬁo de un sistema de N niveles. En nuestro caso ﬁo serd el hamilto-
niano de N = 8 niveles, descrito en la ecuacién (3.1). Los cdlculos de computacién cuéntica se haran
sobre los niveles de energia de este hamiltoniano, asi que trabajaremos en la base de autoestados
de ﬁo, de forma que su representacién matricial sea diagonal. Al Hamiltonian Hy le afiadimos una
perturbacién dependiente del tiempo, f({u;}, t)V, donde V est4 definido por la Eq. (3.10), de forma
que la ecuacién de Schrodinger que rige la evolucion temporal es:

i le(t)) = ﬁo+f({ui},t)V] le(t)) (4.1a)
|c(0)) = |co) - (4.1b)

Los parametros {u;} controlan la forma de la perturbacién, y se denominan parametros de control
(para simplificar la notacién, a partir de ahora escribiremos u = {u;}). V es el operador de acoplo
que conecta distintos niveles del sistema. En general, las componentes predominantes de V son
aquellas que conectan niveles contiguos, siendo el resto de acoplos muy pequenos, o nulos. La forma
analitica de f(u,t) puede ser completamente arbitraria aunque, obviamente, habra elecciones més
adecuadas que otras. Més adelante se explicitara la utilizada en este trabajo.

La ecuacién de Schrodinger implica una transformacién lineal |¢(0)) — |c(t)), que puede expre-
sarse también definiendo el operador evolucién:

e(t)) = U (t,1) e(t")) - (4.2)

Para simplificar la notacién podemos tomar el tiempo inicial de la propagacién como ¢t = 0, de
forma que U(t,0) = U(t) y siendo U(0) = L. La ecuacién que determina la evolucién del propio

operador evolucion es:

U(t) = [ﬁo + V] O() (4.3a)
U0) =1. (4.3b)
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Hay no obstante una manera alternativa de escribir estas ecuaciones: la representacién de inter-
accién [frente a la representacién de Schrodinger, que es la usada en las Egs. (4.1) y (4.3)]. En la
representacion de interaccién se atribuye dependencia temporal tanto a las funciones de onda como
a los operadores, definiendo las transformaciones:

5(15) — ¢itHoye—itHo (4.4a)
E(t)) = 0 |e(t)) . (4.4b)

Podemos definir también un operador evolucion en la representacién de interaccion:
@) = Ut,t) [e(t)) - (4.5)

Las Egs. (4.1) y (4.3) se transforman en:

Z% &) = flu )V (E) &) (4.6a)
1¢(0)) = o) (4.6b)
y
i%ff(t) — Fu, V(T () (4.72)
U0) =1. (4.7b)

Numéricamente, con lo que realmente trabajaremos serd con las coordenadas de |c(t)), que
denominaremos c(t), y las representaciones matriciales de Hy, V y U (), que escribiremos como
Hy, V y U(t), y no con los estados y operadores en abstracto. Hemos utilizado siempre la base de
autoestados de PAIO.

Independientemente de si propagamos la funcién de onda o el operador evolucion, son los parame-
tros de control los que dictan la evolucion del sistema, por lo que podemos escribir tanto la matriz
que representa el operador evolucién, como las coordenadas de la funcién de onda, como funcién de
estos parametros: c(t) = clu](t) y U(t) = Ulu](¢). Asi, nuestro objetivo serd buscar el valor de los
parametros de control tal que o bien la funciéon de onda o bien el operador evolucién, para un tiempo
caracteristico, T', tenga un comportamiento dptimo. Por ejemplo, podriamos querer que la funcion
de onda al final del proceso sea una superposicion de estados concreta, o que el operador evolucion
generado sea equivalente a la representacion matricial de una puerta légica. Por lo general, este
tiempo caracteristico T' nos interesard que sea lo mas pequeno posible, para que el proceso no se
vea afectado por la decoherencia cuantica.

La busqueda del valor 6ptimo de los parametros de control se llevara a cabo mediante la teoria

[19]

de control éptimol*”!. Esta es la aplicaciéon al mundo cuantico de la teoria de control 6ptimo mas

[20]

general, aplicable, en principio, a cualquier tipo de sistema y proceso'*”!. Antes de continuar debemos
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distinguir entre dos problemas diferentes: (1) la optimizacién del comportamiento del sistema, es
decir, el control de la funcién de onda dado un estado inicial particular; y (2) la optimizacién
del operador evolucién completo, sea cual sea el estado inicial. Las expresiones resultantes son
ligeramente diferentes en funcién del objetivo deseado. Veamos cada uno de los casos.

Funcién de onda

En primer lugar, es necesario codificar cudl es el objetivo que queremos que cumpla el sistema,
definiendo una funciéon del mismo cuya maximizacién implique el cumplimiento de ese objetivo.
Asi, por ejemplo, podemos pretender la maximizacién de un determinado observable al final de la
propagacion:

Ji(c) = ¢/ (T)Oc(T), (4.8)

donde O y ¢(T') son las representaciones del observable y de la funcién de onda en la base escogida.
Es posible que sea conveniente anadir una funcién opcional que penaliza determinadas regiones
del espacio de parametros, Jo(u), de forma que tome valores bajos para pulsos que no sean ex-
perimentalmente convenientes o posibles. Por ejemplo, se pueden evitar amplitudes muy grandes

definiendo:

T
Ja(u) = —oz/0 2 (u, t)dt, (4.9)

para un cierto a > 0.

Dado que la evolucion del sistema estd determinada por los pardmetros u, el problema finalmente

se reduce a la maximizacion de una funcién:
G(u) = Ji(clu]) + J2(u) (4.10)

En los casos que veremos més adelante, el objetivo serd la poblacion de un estado final objetivo,
de forma que O es la representacién matricial de la matriz densidad asociada a ese estado. De esta
forma, J; toma su valor maximo, 1, cuando el estado final del sistema y el estado objetivo son

equivalentes (solo difieren en una fase constante global).

Lo tinico que falta es un algoritmo de optimizacién que, como minimo, necesitara un procedimiento
para calcular G(u) y, en algunos casos, una forma de calcular el gradiente de G(u) en funcién de los
parametros de control pues su uso permite acelerar la eficiencia de la optimizacién. La QOCT nos

proporciona la siguiente expresion'?H 21 para el gradiente:

S V L1 g vy | + 220 (4.11)
0

Oup, oup, Oup,

En esta ecuacién se utiliza el denominado coestado d[u](t), que esté definido mediante las siguientes

ecuaciones del movimiento:

i%d[u] (1) = B (u, )du] (1) (4.12a)
d[u](T) = (%f[u‘f]lm. (4.12D)
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H(u,t) es la representacién matricial del hamiltoniano total. Estas ecuaciones tienen similitud con
las mostradas en la expresion (4.1): se trata de una ecuacién de Schrédinger en la que la condicién
inicial, en lugar de darse a tiempo 0 se da a tiempo T, el tiempo total de propagaciéon. Dada la
definicién de J; [Eq. (4.8)], esta condicién final esta dada por:

d[u)(T) = Oc[u(T) . (4.13)

Esta expresién depende de las coordenadas del estado final en el tiempo T

Dadas estas ecuaciones, para poder calcular el gradiente, tendran que realizarse dos propagaciones;
la primera para obtener como varian las coordenadas del estado del sistema a lo largo del tiempo, y
su valor en T, y una segunda propagacion hacia atrds para obtener las del coestado. Hecho esto, es
posible computar el gradiente y, mediante un algoritmo de optimizacion, modificar los parametros

de control de forma que nos acerquemos al valor éptimo.

Operador evolucion

Si lo que se pretende es optimizar el comportamiento del operador evolucion, el proceso es bastante
similar al ya visto en el caso anterior. Partimos sin embargo de la definicion de una funcién objetivo
J1 que dependerd de U y no de c. Por ejemplo, en nuestro caso prentendemos que Ulu](T) sea
equivalente a un cierto operador predefinido — la puerta cudntica buscada Uygrges. Para conseguirlo,
definimos esta funcién como el médulo al cuadrado del producto de Frobenius entre Uu](T') y el
operador objetivo, donde el producto de Frobenius entre dos operadores A y B viene definido como:

1
A-B= aT]f[ATB] , (4.14)
siendo d la dimensién de las correspondientes representaciones matriciales. De esta forma:
Jl (U[u]) = |U[u} (T) : Utarget|2 . (4.15)

Para operadores unitarios, este producto no puede tomar valores mayores que uno, y valdrd uno
cuando los operadores sean equivalentes, es decir, que se diferencien iinicamente en un factor de fase
. _ 0 .
global, e. g.: Uu|(T) = " Uyarger:
‘6_20‘2
a2

[U[(T) - Usarget* = leU]

target Utm"get’Q = TI'[I]Q =1. (416)
El problema se reduce nuevamente a la optimizacién de una funcién G(u) = J1(Ulu]) + J2(u). En

este caso, la expresién del gradiente estd dada por:

8J2 (u) ‘

O,

P00 o | [ 2D (voey)] +
0

Oupm, Oum,

(4.17)

Ahora, es Blu|(t) a lo que llamaremos coestado, y estd determinado por las siguientes ecuaciones
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del movimiento:

i%B[u] (t) = B (u, ) B () (4.182)
o,
WD) = S (4.18b)

De nuevo, esta ecuacién es similar a la Eq. (4.3), salvo que, igual que ocurria para la ecuacién
analoga de control éptimo para funciones de onda, la condicién inicial es en realidad final, se da
para t = T. Dada la definicién de J; en (4.15), el estado final del coestado estd dado por:

B[ul(T) = (Utarget(T) - Uul(T)) Utarget (T) (4.19)

Este mismo proceso puede realizarse partiendo de las ecuaciones del movimiento en la repre-
sentacién de interaccién en lugar de en la representacion de Schrodinger. De hecho, se obtienen
ecuaciones analogas, sustituyendo las expresiones matriciales de los operadores en la representacion
de Schrodinger por las correspondientes en la representacion de interacciéon . La tnica excepcién
son las ecuaciones del movimiento de los coestados, pues ahora partimos de (4.6) y (4.7) en vez de
(4.1) y (4.3). Asi, las ecuaciones del coestado en la representacién de interaccién serdn:

i%{i[u] () = flu, )V (H)du] () (4.20a)
d[u](T) = (%%J]I(T) (4.20D)
para el caso de I funcién de onda y
i%f’,[u] () = F(u, )V (0)B](t) (4.21a)
Bu|(T) = aﬁ?[i}(T) (4.21b)

para el operador evolucién. Para la realizacién de los calculos numéricos puede utilizarse cualquiera
de las dos representaciones, aunque normalmente la representacién de interaccién es mas convenien-
te, ya que desaparecen las frecuencias naturales del sistema.

En cualquier caso, independientemente de si trabajamos con operadores o con funciones de
onda hemos reducido el problema a la biisqueda del maximo de una funcién. Para el proceso de
optimizacién hemos utilizado la librerfa Nlopt??, que incluye diversos algoritmos de optimizacién,
tanto globales como locales. En general es preferible utilizar un algoritmo basado en el gradiente
pues convergen mas rapido en espacios de optimizacién de alta dimensién. Por ello, para la mayoria
de los célculos que se presentan a continuacién se ha utilizado el algoritmo SLSQP (Sequential Least
Squares Programming)[23], un algoritmo de optimizacion local basado en el gradiente. Cabe destacar
que se ha escogido este algoritmo en concreto por ser el tinico de todos los incluidos en NLopt que se
basa en el calculo del gradiente y que, al mismo tiempo, permite el uso de restricciones arbitrarias

en la funcién a optimizar. Més adelante veremos por qué esto es importante. Este algoritmo se basa

18



en un método iterativo donde el problema pasa a tratarse como la optimizacién de una secuencia
de subproblemas en los que se linealizan las restricciones. Cada uno de estos problemas se resuelve
mediante el algoritmo BFGS (Broyden—FletCher—Goldfarb—Shanno)[24}, también local y basado en el
gradiente.

4.2. Parametrizacién del pulso

Hasta aqui, hemos presentado la funcién que describe la forma temporal del pulso, f(u,t),
como una funcién genérica. Describimos aqui la forma concreta que hemos utilizado, y cémo esta
parametrizada en funcion de u. Utilizaremos pulsos basados en la transformada de Fourier, aunque
adaptados para facilitar su realizacién experimental. Asi, podemos escribir un pulso genérico que se
aplica un tiempo 7' de la siguiente forma:

M M
1 2 2
u,t) = —=ug + — Uk COS Wit + —= U sin wgt . 4.22
f(u,t) N ﬁkzl 2k k \/Tk;zl 2%+ 1 k (4.22)

Vemos que, efectivamente, no es otra cosa que la expansion en serie de Fourier, por lo que, por
definicién wy = 27k/T, siendo T el tiempo de propagacién de la perturbacién. Asi, el nimero total
de pardametros de control dependerd del valor méximo M que escojamos para k (cutoff). En general
debemos elegir el valor del cutoff de manera que incluyamos todas las frecuencias relevantes, que
estaran en el rango de las frecuencias caracteristicas del sistema.

Esta parametrizacion también permite calcular de forma sencilla la derivada del pulso en funcién

de los parametros de control:

a];(;j;ﬂ = f(em,t), (4.23)
donde e, es el conjunto de pardmetros de control donde todos tienen valor nulo excepto el parametro
m-ésimo, que valdra 1.

En la préctica, debemos asegurarnos de que el pulso empieza y termina en cero, f(u,0) =
f(u,T) = 0. La libreria Nlopt, utilizada para los cdlculos de optimizacién, permite incluir restric-
ciones: asi, podemos exigir que el valor del pulso en 0 y T sea nulo. Mas concretamente, partiendo
de la expresién (4.22), como sabemos que sin(wy,0) = sin(w,7")) = 0 y cos(w,0) = cos(w,T)) = 1,

se exige que:
M

ug +2) g =0. (4.24)
k=1

Asimismo, forzando que ug = 0 imponemos el hecho de que la amplitud media, fOT f(u, t)dt, también

sea nula. En resumen, anadimos al proceso de optimizacion las siguientes restricciones:

M

gr(u) = ug, (4.25a)
k=1

g2(u) = uo, (4.25Db)

de forma que el proceso de optimizacién intentara que tanto gi(u) como go(u) sean nulas (con una
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determinada tolerancia).

No podemos tampoco admitir soluciones que tengan una amplitud muy alta, no realizable ex-
perimentalmente. Es por ello que definimos finalmente una serie de restricciones en forma de de-
sigualdad:

" (u) = u} — k% <0. (4.26)

con K = umaz\/T/ 2. Esta restriccion limita el espacio de soluciones a aquellas que no contengan
parametros de control que hayan tomado valores superiores a U;,q., limitando de esta manera la
amplitud del pulso final.

5. Transiciones entre estados vecinos

Aunque el objetivo del trabajo es el disefio de pulsos capaces de generar puertas cudnticas, en
esta seccién vamos a comenzar por estudiar un problema mads sencillo: transiciones entre estados.
Comenzaremos por realizar estas transiciones mediante pulsos simples monocromaticos, los llama-
dos pulsos-m. Las puertas cuanticas tradicionalmente se generan concatenado este tipo de pulsos
monocromaticos. La limitacién de esta técnica es que para que estos pulsos realizen las transiciones
buscadas con fidelidad alta, deben ser lentos. En esta seccién mostraremos como la QOCT permite

acelerar estas transiciones.

5.1. Transiciones con pulsos-m

Los pulsos-7 son un tipo de perturbacién que permite manipular la ocupacion de los diferentes
estados. Por ejemplo, si partimos de un sistema de dos niveles (equivalente a un 1 g-bit), y los
niveles no estan degenerados, el sistema puede pasar del estado fundamental al estado excitado, de
mayor energia, si aplicamos una perturbacién resonante, por ejemplo, fotones con esa frecuencia
especifica. Eventualmente, el sistema volvera al estado fundamental, donde podré reabsorber otro
fotén y volver al estado excitado, reiniciando el ciclo. Este ciclo, denominado ciclo de Rabi, muestra
oscilaciones en la probabilidad de encontrar el estado en el nivel excitado.

Maés concretamente, consideremos el Hamiltoniano de un sistema de dos niveles ({|0), |1)}), tipo

Hy = —wpoz/2, en el que introducimos una perturbacién oscilante i cos(wt + 1¥)ox siendo

(3 ) (1) 51

Es posible demostrar que, bajo cierta aproximacion que comentaremos mas adelante, la probabilidad
de encontrar el sistema en el estado excitado, |1), (suponiendo que inicialmente parte del estado
fundamental, |0)), viene dada como:

Py (t) = (“0> sin? <'L;t> siendo g1 = 1/ (w — wp)? + pd. (5.2)
W

Esta expresion se denomina férmula de Rabil?”) y a p se le denomina, por tanto, frecuencia de Rabi.
Asi, vemos como, efectivamente, aparece una oscilacién en la probabilidad de encontrar el sistema
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en el nivel excitado.

La transicion perfecta con probabilidad 1 solo puede ocurrir si 4 = pg que, a su vez, solo se
cumple si w = wy. Esto se denomina condicién de resonancia e implica que la frecuencia de la
perturbacién coincide con la frecuencia caracteristica del sistema (diferencia de energia entre los
dos niveles). De esta forma, periddicamente, se logrard invertir la ocupacién inicial. La primera vez

que ocurre esta inversién es en t = t; = (de ahi el nombre de pulso 7). Asi, si detenemos la

o
Ko
aplicacién del pulso en t; diremos que la perturbacién resultante es un pulso-m que habra invertido
la poblacién inicial (equivale a una rotacién de 7 en la esfera de Bloch). De hecho, esta es una forma
sencilla de generar la puerta ox mencionada en la introduccién, pues la representacién matricial en
base de autoestados de Hy del operador evolucién en ¢t = ¢, es equivalente a la matriz ox.

No obstante, para llegar a este resultado debe asumirse la llamada rotating wave approrima-
tion!2°] (o RWA), que solo es vélida cuando el campo que estamos aplicando estd cerca de la
resonancia y la amplitud pg es baja. Este hecho implica que para que las transiciones realmente
sean completas se necesiten largos tiempos de propagacion. Esto resulta inconveniente, pues in-
teresa realizar estas transiciones en los tiempos mas pequenos posibles pues, de otra forma, nos
arriesgamos a acercarnos demasiado al tiempo de coherencia. Asi, debemos encontrar un equilibrio
entre la amplitud (tiempo de aplicacién) del pulso y la fidelidad de la transicién: si intentamos una
transicién répida mediante una amplitud grande, la fidelidad de la transicién (ocupacién del estado
objetivo), serd menor.

Hemos asumido sistemas de dos niveles, pero el concepto de pulso-m puede extenderse a sistemas
m&s grandes, con més niveles, siempre que cada transicién esté caracterizada por una frecuencia
distinta. Esta propiedad la cumple el sistema de ocho niveles que hemos descrito en el apartado
3.2, cuyo Hamiltoniano aparece en la expresién (3.1). Asi, si introducimos un pulso-7 en el sistema,
podemos definir un nuevo hamiltoniano perturbado dependiente del tiempo como:

H(t) = Ho + f-(t)V, (5.3)

siendo Hy el hamiltoniano (3.1). En los célculos descritos a continuacién, el campo estatico H se
aplica en el eje z, con un valor de 150mT, y V es el operador que conecta distintos niveles del
sistema, dado por la expresién (3.10). Este campo oscilante H,, se aplicaré en el eje y, por ello en
ocasiones nos referiremos a el como H,. En la base de autoestados de Hy, V conecta principalmente

niveles vecinos, siendo el resto de términos de menor orden. Por iltimo, f(t) se trata de un pulso-:

ASin(Wi7i+]_t) si tO <t< tf = tO + m

fﬂ(t) = (5.4)

0 en otro caso

donde w; ;41 es la frecuencia de transicion entre el nivel 7 y el i 4+ 1, A la amplitud del pulso, f; ;41
la, amplitud de interaccién debido a 1% (que no tiene porque coincidir para distintas transiciones) y
to el tiempo inicial de aplicaciéon que, por lo general, se tomard como tg = 0.

Hemos aplicado sistematicamente este tipo de pulsos para todas las transiciones del sistema, con
el objeto de estudiar como varia la fidelidad de las distintas transiciones en funcién de la amplitud (y
en consecuencia, del tiempo total de aplicacién) del pulso-7r. Los resultados obtenidos se muestran
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Figura 5.1: Representacion grafica de la fidelidad en funcién de distintos parametros del pulso-7, en
concreto: (a) 1—Fidelidad frente a la amplitud y (b) 1—Fidelidad frente al tiempo de propagacién.
En esta tltima se incluye un ajuste lineal en escala logaritmica para bajas amplitudes (tiempos de
propagacién largos).

en la Fig. 5.1, donde la fidelidad se ha calculado como la probabilidad de medir el sistema en el
estado |i + 1): | (i + 1|¢p(T)) |?, partiendo inicialmente de |i). La Fig. 5.1a muestra esta fidelidad en
funcion de la amplitud del pulso-7 y la Fig. 5.1b en funcién del tiempo de propagaciéon. Como es de
esperar, la fidelidad aumenta segtin se reduce la amplitud, o equivalentemente se aumenta el tiempo
de propagacién, ya que son las condiciones necesarias para que la RWA sea buena.

Viendo estas graficas, se aprecia una dependencia lineal para amplitudes pequenas. Por ello,
en la Fig. 5.1b hemos marcado también un ajuste lineal, encontrando una pendiente de valor 2: se
puede concluir que el error de la RWA es de orden dos en el valor de la amplitud del pulso. Estos
resultados muestran como, para obtener una determinada fidelidad en las transiciones utilizando
un pulso-7, es necesario un tiempo de propagacion correspondiente. Cabe preguntarse entonces si

es posible realizar transiciones mas rapidas utilizando QOCT.

5.2. Transiciones calculadas con QOCT

Partamos de las soluciones obtenidas con pulsos-7w. Usando el ajuste lineal anteriormente co-
mentado, podemos calcular el tiempo de propagacién necesario para que un pulso-m provoque la
transicion buscada con una fidelidad de, al menos, 0.999. Estos valores se muestran en la tabla
5.1. En esta seccién nos preguntamos si es posible, mediante QOCT, obtener un pulso que logre la
misma fidelidad (o mayor), en un tiempo por ejemplo 10 veces menor.

Para ello utilizaremos la parametrizacién del pulso incluida en la expresién (4.22), usando las
restricciones no lineales ya comentadas para limitar la amplitud inicial y final, y las ecuaciones de
optimal control para funciones de onda, expresiones (4.8), (4.11) y (4.12), fijando los tiempos totales
de propagacién a 1/10 de los tiempos necesarios para obtener fidelidad de 0.999 con los pulso-7. Los
resultados se resumen en la tabla 5.2. En esa tabla se muestran las fidelidades obtenidas con pulsos
7, y con pulsos obtenidos mediante QOCT. Vemos que para todos los casos es posible, mediante
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Transicién  Frecuencia [MHz] Tiempo [ns] Amplitud [mT] (1 — Fidelidad) - 1073

0) — [1) 4093 6.43 1.349 1.17
1) —» [2) 5394 31.35 0.273 0.63
2) — |3) 5723 346.73 0.025 0.85
13) — |4) 5693 413.23 0.023 3.12
14) — |5) 5185 43.13 0.263 1.63
|5) —> |6) 4963 63.44 0.221 5.29
16) — |7) 1848 5.45 5.813 1.58

Tabla 5.1: Fidelidad de las transiciones a nivel superior del sistema GdW3g usando pulsos-m

Transicién Tiempo [ns] 1 — Fidelidad (pulso-w) 1 — Fidelidad (QOCT)

0) — [1) 0.65 0.120 5.50 - 1075
1) — |2) 3.13 0.059 5.30-1076
12) — |3) 34.67 0.051 1.26-1073
3) — [4) 41.32 0.046 1.16 - 1072
|4) — |5) 4.31 0.055 1.20-107*
15) — |6) 6.34 0.061 4.37-1074
6) — |7) 0.54 0.067 1.95-1074

Tabla 5.2: Fidelidad de las transiciones a nivel superior del sistema GdW3y usando pulsos-m con
tiempos de aplicacién 10 veces menor que el necesario para obtener una fidelidad de, al menos, 0.999
y usando pulsos generados con QOCT para el mismo tiempo.

QOCT, obtener pulsos que den lugar a transiciones con una fidelidad bastante mayor que la obtenida
con pulsos-m de igual tiempo total de aplicacién, tal y como queriamos comprobar.

Los pulsos especificos obtenidos, asi como su transformada de Fourier, pueden verse en la Fig.
5.2. De la misma forma, la Fig. 7.1, incluida en el Anexo, muestra la ocupacién de cada estado en
funcién del tiempo para cada una de estas transiciones utilizando los pulsos correspondientes. Cabe
destacar que, dado que los tiempos de propagaciéon son bastante menores, la amplitud de los pulsos
obtenidos es mayor: cuanto maés corto es el pulso, necesariamente la amplitud debe ser mayor para
que pueda ejecutar la transicién requerida. Es por ello que es necesario fijar, como hemos hecho,

restricciones a las amplitudes en el algoritmo de optimizacion.

6. Realizacién de puertas logicas cuanticas con pulsos no mono-

cromaticos

Para terminar, describimos los resultados que constituyen el objetivo ultimo de este trabajo:
el uso de QOCT para el disefio de puertas logicas cuanticas. Para ello, pasaremos a utilizar las
ecuaciones de optimal control correspondientes a operadores, expresiones (4.15), (4.17) y (4.18), pero
manteniendo la misma parametrizacién del pulso usada en el estudio de las transciones mostrado
en la seccién anterior. A continuacién mostramos los resultados obtenidos para distintos tipos de
puertas de tres g-bits.
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Figura 5.2: Pulsos 6ptimos obtenidos para cada una de las transiciones fundamentales del sistema
GdW30 asi como la correspondiente transformada de Fourier. Los tiempos de transicion empleados
para cada transicién son los mostrados en la tabla 5.2. Asi, (a) y (b) se corresponden con la primera
transicion, (c) y (d) a la segunda, etcétera.

6.1. Puerta de Toffoli

La primera puerta que generaremos es la puerta de Toffoli, También llamada puerta CCNOT
o CCX. Esta puerta, como mencionamos en la introduccién, es importante en sistemas de tres g-
bits, pues permite, mediante combinaciones de la misma, construir cualquier operacién cldsica en
un ordenador cuantico. La representacién matricial asociada al operador de esta puerta en la base
computacional, asi como el simbolo usado en circuitos l6gicos se muestran en la Fig. 6.1.

A efectos practicos, esta puerta aplica la puerta ox al dltimo g-bit si el primero y el segundo
estan en el estado |1). En caso contrario no cambia el estado de ningin g-bit.

El tiempo de propagacion T se ha elegido como el tiempo que requiere un pulso-7 en este sistema
para producir la ultima transicién (|6) — |7)), pues es, al fin y al cabo, la transicién que manipula

10000000 °
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g {0000 10000 ®
Toflei =19 00 0 1 0 00
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(b)

(a)

Figura 6.1: (a) Representacién matricial de la puerta de Toffoli en la base computacional. (b)
Simbolo utilizado para la representacion de la Puerta de Toffoli en circuitos 1égicos.
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Figura 6.2: Pulso en el dominio temporal (a) y frecuencial (b) necesario para generar una puerta de
Toffoli en el sistema GdW3sg. En rojo aparecen las frecuencias caracteristicas del sistema. El valor
de 1 — Fidelidad obtenida para la puerta, usando este pulso, es de 2.39 - 10™%.

esta puerta. Eligiendo el cutoff de frecuencias en 8 GHz, tenemos que encontrar el valor 6ptimo de
87 paréametros de control. A diferencia de lo que ocurria en la optimizacién de transiciones, donde
podiamos tomar los parametros de control iniciales como aquellos que mas se aproximaran al pulso-
7, en este caso vamos completamente a ciegas por lo que los parametros de control iniciales se han
generado aleatoriamente. El programa ha requerido de 226 iteraciones del proceso de optimizacién,
llevadas a cabo a lo largo de unas 8 horas en un ordenador doméstico.

El pulso obtenido necesario para que el operador evolucién en T' sea equivalente a la puerta de
Toffoli, asi como su transformada de Fourier se muestran en la Fig. 6.2.

6.2. Puerta de Deutsch

La puerta de Deutsch (o Dy) es un tipo de puerta de tres g-bits cuya representacién es la

I ;cosf  sinf
Dy= (6 O con  Dy(6) = [ €80 smO ) (6.1)
0 Dy(0) sinf icosf

siendo I la matriz identidad de dimensién 6. De esta forma, la puerta de Deutsch actia de forma

siguiente:

similar a la puerta de Toffoli, en el sentido de que es una puerta controlada: es decir, solo aplica
la transformacién Dg(#) al tercer g-bit si los dos primeros estdn en el estado |1). De hecho, para
6 = /2, la puerta de Deutsch coincide con la puerta de Toffoli. Hemos decidido trabajar con las
puertas de Deutsch, pues cumplen la propiedad de que son un conjunto de puertas universales para
sistemas de tres g-bits: una vez se tiene un método para generar puertas de Deutsch, se puede
construir cualquier circuito.

Igual que en el caso de la puerta de Toffoli, hemos tomado 7T como el tiempo usado en la dltima
transicion del sistema por pulsos-w. Tampoco se ha cambiado el valor del cutoff en frecuencias.
Ahora bien, el valor inicial de los parametros de control se ha tomado como los obtenidos para
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generar la puerta de Toffoli, pues estos dos tipos de puertas actian de forma similar. Los tiempos
de céalculo requeridos para obtener los pulsos éptimos varian en funcién del valor de @, siendo de 12
horas y media (171 iteraciones) en el mejor de los casos y de 18 horas (300 iteraciones) en el peor.
Realizadas también en un ordenador doméstico.

En la figura Fig. 6.3 se incluyen los pulsos obtenidos, asi como sus transformadas de Fourier, para
obtener la puerta de Deutsch con distintos valores de 8. También se incluye el valor de 1 — Fidelidad
obtenido para cada una de ellas. Vemos que las amplitudes de los pulsos son bastante altas; en
la seccién anterior también vimos cémo los pulsos obtenidos mediantes QOCT tenian amplitudes
significativamente mayores que los pulsos-m que usdbamos de referencia. Seria posible obtener pulsos
de menor amplitud aumentando el tiempo de propagacion.

7. Conclusiones

A lo largo de este documento hemos conseguido mostrar que la teoria de control éptimo nos
permite obtener la forma de la perturbacién que debemos introducir en un sistema de 8 niveles
(GdW3yp) tal que el operador evolucion resultante, pasado un tiempo 7', sea equivalente al operador
que define una puerta légica. De esta forma, hemos obtenido, con valores de fidelidad considerable-
mente altos, las perturbaciones necesarias para generar la puerta de Toffoli y distintas puertas de
Deutsch. La duracién de esta perturbacién es de 5.45 ns, considerablemente menor que el tiempo
de coherencia de las transiciones caracteristicas del sistema (~ 0.5 us ). Esto permite ignorar los
grados de libertad del sistema que interactiian con el exterior, considerando simplemente la evo-
lucién temporal dada por la ecuacién de Schrodinger. Concluimos, por lo tanto, que este sistema
cumple con las condiciones necesarias para poder realizar cdlculos de computacién cudntica: en pri-
mer lugar, cada transicién tiene una frecuencia caracteristica tinica; en segundo lugar, los tiempo
de decoherencia son lo suficientemente largos como para permitir que las puertas se ejecuten sin
que se deteriore el sistema por los efectos del entorno.

En una primera fase del trabajo, hemos abordado el problema de generar transiciones entre
estados. Hemos visto que los pulsos obtenidos mediante optimal control permiten obtener estas
transiciones con una fidelidad mayor que la obtenida mediante pulsos-7 y en tiempos significativa-
mente menores. A cambio, la amplitud de los pulsos tiende a ser mayor que la que necesitariamos
con los métodos habituales.

En la segunda parte del trabajo, hemos pasado al estudio de las puertas cudnticas. Se han
logrado obtener puertas de 3 g-bits: puertas de Toffoli y de Deustch. Hemos elegido esta familia
de puertas porque constituyen un conjunto universal (cualquier circuito de computacién cudntica
puede construirse concatenando puertas de esta familia). Los resultados obtenidos, de nuevo, son
satisfactorios, pues se han obtenido fidelidades cercanas a la unidad en tiempos relativamente cortos.
Sin embargo, igual que ocurria con las transiciones de estado, la amplitud de los pulsos necesarios
para replicar las puertas buscadas son elevadas, y podria llegar a suponer un problema experimental.
En ese caso, debe aumentarse el tiempo T de aplicacién del pulso, garantizandose que existen
soluciones con buena fidelidad para tiempos superiores, pero teniendo cuidado de no acercarnos
demasiado a los tiempos de coherencia de las transiciones.
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Figura 6.3: Pulsos necesarios para generar puertas de Deutsch con distintos valores de 6. En concreto,
(a) y (b) muestran el pulso en el dominio temporal y frecuencial para una puerta de Deutsch con
§ = 7/4, siendo el valor de 1 — Fidelidad de 2.27 - 107%. (c¢) y (d) muestran esto mismo para
6 = 3m/4 con una fidelidad de 3.12-10~%. Por tltimo, tenemos (e) y (f) para = 7 y una fidelidad
de 5.14 - 1074
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El cédigo desarrollado y utilizado para la realizaciéon de los cédlculos puede encontrarse en

https://gitlab.com/acbarrigon/qoct-gates. git.
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Anexo: Ocupacion de cada nivel en las transiciones fundamentales
usando QOCT

En las graficas que se muestran a continuacién aparece la variacién de la ocupacién de cada nivel

en funcién del tiempo durante la aplicaciones de pulsos obtenidos mediante QOCT. En concreto,

estos pulsos son los que aparecen en la Fig. 5.2. Cada uno de ellos induce la transicién de un nivel

determinado del sistema al nivel superior. Esto lo hace en tiempos diez veces menores a los que

serian necesarios si utilizaramos pulsos-m pero de forma que no afecta a la fidelidad.
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Figura 7.1: Variacién en la ocupacion de cada uno de los estados durante la aplicaciéon de cada uno
de los pulsos mostrados en la Fig. 5.2. Siendo (a) la variacién de la ocupacién en la transicién del

estado |0) al [1), (b) del [1) al |2), etcétera.
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