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Abstract

This proyect tries to synthesize the most relevant information about Catalan‘s numbers. It has been
structured in three chapters.
Firstly, a breif historical review about Catalan’s numbers discovery by Leonard Euler will be given, to
understand why Eugene Catalan gave his own name to these combinatorics numbers. After that, it is
shown the original problem posed by Euler and the recurrence that solved it.

n
Cor1 = CiCop=CoC, +C1C1+...+C1C1+C,,Cy, neN.
k=0

Before giving the formal definition, it is preferable to calculate his generating function.

> 1—v1—-4
C(x) = Z Cx'= 7)6,
) 2x

1 2n
C,:=
" n—|—1<n>’

and also equivalent expressions and some interesting properties about that. To finish the fisrt chap-
ter, some populars Catalan problems with a brief explanation about the relations between them will be
shown.

for 1/4<x<1/4.

Then, the usual definition is shown,

The second chapter is about the Shapiro‘s Catalan Triangle whose (n, p) entry is defined by

p/( 2n
Bn"p::n(n—p>’ n,peN, p<n.

Vandermonde’s identity will be used in order to prove a useful proposition that is necessary to check
various idetities that relates the Catalan’s numbers with his triangle.

n

n
Z (Bn.,p)z =Coyp1, Z (PBn,p)z = (3” - 2)C2(n—1)-
p=1 p=1
These identities opens an interesting question at the end of the chapter, which will be treated in the
next one.

The last chapter begins the exating WZ theory’s introduction. This theory is able to prove, evaluate
and discover identities, just making use of a computer algothrim. This allows us to prove more identites
that in the previous chapter and have a better understanding of the open question and others that may
arise.

Finally, the proyect ends up with some comments and conclusions.
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Capitulo 1

Introduccion a los numeros de Catalan

La ley de la eponimia de Stigler (1980) afirma que «ningiin descubrimiento cientifico recibe el
nombre de quien lo descubrié en primer lugar» y como vamos a ver, los nimeros de Catalan no son una
excepcion en este caso. La informacidn de esta seccidn es obtenida del articulo de Igor Pak [7] para el
libro de Richard P. Stanley [12], para una explicacion mds extensa y detallada recomendamos su lectura.

1.1. Historia de la eponimia

La primera aparicion histérica de los nimeros de Catalan se debe al matematico chino Ming Antu
en su libro «Quick Methods for Accurate Values of Circle Segments» escrito en la década de 1730 pero
publicado de forma p6stuma en 1839. En este libro los nimeros de Catalan no tienen relevancia pues
solo se mencionan en una serie de potencias trigonométrica.

Posteriormente en el afio 1751, fueron descritos por Leonhard Euler (1707-1783) en una carta dirigi-
da a Christian Goldbach (1690-1764) en la cual planteaba un problema y en su empefio en la resolucién
los introducia y daba una férmula cerrada para ellos. La prueba del resultado de Euler se obtuvo con la
colaboracién por correspondencia con Goldbach, pero sobretodo, por las aportacién de Johann Andreas
von Segner (1704-1777) en 1759 con una recurriencia que ayudo a concluir la demostracion. Es por todo
ello que inicialmente los ndmeros de Catalan eran denominados niimeros de Segner o de Euler-Segner.

Eugene Charles Catalan (1814-1894) es el hombre que a dia de hoy da nombre a esta secuencia
de nimeros. En 1838 siendo estudiante en la Ecole Polytechnique (escuela politécnica) de Liouville,
se interesd en trabajos posteriores acerca de lo que hicieron Segner y Euler. Sobretodo por el trabajo
de Gabriel Lamé (1795-1870) que encontrd una solucidén al problema de encontrar una manera sencilla
de derivar la formula de Euler a partir de la recurriencia obtenida por Segner. Catalan obtuvo algunos
resultados y en 1839 definié por primera vez ballot numbers, disfrazados como los numeros de unas
ciertas triangulaciones. Catalan di6 una férmula en términos de los nimeros de Catalan, pero no dié una
tabla de los primeros valores ni una férmula cerrada.

Finalmente, no fue hasta 1901 cuando el mateméatico Eugen Netto (1848-1919) los renombré como
nimeros de Catalan en un capitulo de su libro «Lehrbuk der Combinatorik» y mas tarde en 1938, el
matematico historiador Eric Temple Bell (1883-1960) menciond en un articulo los nimeros de Catalan,
pero solo en el contexto del trabajo de Catalan sobre estos nimeros. Y ya en 1968 cobré popularidad
este nuevo nombre gracias al libro de John Riordan (1903-1988) « Combinational Identities». A los si-
guientes afios se continud llamando de esta nueva forma con autores como Henry Gould en «A Research
Bibliography of Two Special Number Sequences» y Neil Sloane en «A Handbook of Integer Sequences».
Es por todo ello que en nuestros dias se le conocen como nimeros de Catalan.
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El problema inicial

Aunque hay muchas maneras de definir los nimeros de Catalan, vamos a definirlos mediante su
primera interpretacién combinatoria, la cual como ya mencioné, debemos a Euler y Segner.

Supongamos que tenemos un poligono regular de n lados, de cuantas formas se puede triangular? Si
el poligono es un triangulo, es obvio, no hay que hacer nada pues ya estd triangulado. Si es un cuadrado,
hay dos formas de hacerlo, con un pentdgono tenemos cinco formas, y con un hexdgono hay catorce
triangulaciones posibles.

Figura 1.1: Poligonos triangulados

Generalizando el problema, sea P,, un poligono convexo en el plano de n+ 2 vértices, y una trian-
gulacion de P,.» es un conjunto de diagonales que no se cruzan en el interior del poligono formando
tridngulos. Se ve facilmente que el nimero de tridngulos que se forman en cada triangulacién de un
poligono de n+2 vértices es n, pues para el triangulo inicial necesitamos 3 vértices, quedando conn— 1
en el poligono, y luego al afiadir los demds tridngulos solo necesitamos un vértice mds, pues los otros
dos lo comparten con el anterior, obteniendo n — 1 tridngulos mads el inicial.

Mediante esta cuestién de contar el nimero de maneras de triangular P, se define el n-ésimo
nimero de Catalan, denotado por C,,. Tomando por convenio Cy = 1, se tiene por tanto, C; = 1, C, =2,
C3=5yC4=14.

1.2. Recurrencia de los nameros Catalan

Para determinar una férmula explicita que resuelva el problema anterior, y por tanto defina los ni-
meros de Catalan, necesitamos entender la recurrencia que se esconde detrds de estas triangulaciones,
la recurrencia que Segner encontro.

Procedemos por induccién sobre n para calcular C,. Supongamos que sabemos triangular P,
ahora con esta hipdtesis triangulemos P, ;3. Fijamos /, un lado de nuestro poligono de n + 3 vértices y
Ilamamos a los vértices que lo unen 1 y n+ 3 de manera que el tercer vértice que forma el triangulo
pertenece al conjunto de vértices {2,3,...,n+2}, a este vértice lo llamaremos i.

Eliminando el triangulo de vértices i, 1 y n+ 3 obtenemos dos nuevos poligonos convexos triangu-
lados. Uno con vértices 1,3,...,i con lo que hay C,,_, maneras de triangularlo, y el otro con vértices
i,i+1,...,n+3 con C,_;; formas de ser triangulado. Luego el numero de combinaciones al triangular
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P13 con el triangulo escogido inicialmente, es de C,_>C,_;;+»>. Finalmente al variar el vértice i entre
todos los posibles vértices restantes, que son 2,3,...,n+ 2 obtenemos C,,+ y la recurrencia buscada.

n
Cor1 =Y CiCyy = CoCp+C1Cot + ...+ Co_1C1 + CuCo. (1.1)
k=0

Esta recurrencia es fundamental para explicar muchas de las interpretaciones combinatorias de los
nimeros de Catalan, ya que muchos elementos contados tienen una descomposicién en dos partes, tal y
como sucede con las triangulaciones de poligonos regulares.

1.3. Funcion generatriz

Definicién. La funcién generatriz (o generadora)! de una sucesion {a, },>o se define como la serie de
potencias de coeficientes los términos de la sucesién, es decir

glx) = Z apx".
n=0
A veces suele llamarse transformada Z.

Antes de continuar con nuestro empeflo de obtener una férmula explicita para los nimeros de Cata-
lan, vamos a calcular su funcién generadora. Para ello recordamos al lector el teorema generalizado del
binomio.

Sea a un ndmero real cualesquiera y n € N, entonces se tiene

(1+x)*= i (Z)x” (1.2)

n=0

y los coeficientes del binomio vienen dados por

(a) a(a—1)...(a—n+1)

n n!

La siguiente proposicidon nos proporciona la funcién generatriz de los nimeros de Catalan, puede
verse en [12]

Proposicion 1.1. Sea

C(x)= i Cux"
n=0

1_7 V21_4x’ x| < 1/4.
X

entonces C(x) converge para |x| < 1/4y ademds C(x) =
Demostracion. Multiplicamos por x" la recurrencia (1.1) y sumamos los resultados obtenidos para todos
los valores de n obtenemos

oo

Y Corix" =) (CoCi+CiCui + ...+ CuoiCr + CuCo) X"
n=0 n=0

Por un lado, haciendo el cambio n+ 1 = j, tenemos

Y G =) G ——-=) ij"*l—sz.
n=0 X =0

N1 X X

"Herbert S. Wilf (1931-2012) definié coloquialmente en su recomendable libro Generatingfunctionology (1990) funcién
generatriz como, una cuerda de la ropa en la que tendemos una sucesién de nimeros para exhibirla.
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Y por el otro lado vemos que los coeficientes de x” en C(x)? son Y i—0CkCy—k, luego tenemos la
siguiente ecuacién cuadratica

Cx)—1
X
Resolvemos la ecuacién y obtenemos

= C(x)* oequivalentemente xC(x)* —C(x)+1=0.

1++/1—4x
2x ’
Ahora tenemos que discernir cual es el signo correcto, para ello usaremos (1.2) para desarrollar en
serie de potencias el binomio (1 — 4x)'/?

C(x) =

(1—4x)"/? = Z (1/2> (—4x)" =1 —2x— 20" —4x> — 10x* —
n=0 h
Como todos los sumandos de C(x) son positivos, es claro que nos tenemos que quedar con la so-
lucién con el discriminante negativo. Luego acabamos de probar la igualdad deseada y por tanto su
convergencia, ahora solo faltaria ver para que valores de x la serie converge.

Como
e =% e =G = (1= 8 () )

estudiar la convergencia de C(x) es equivalente a hacerlo en el desarrollo en serie de potencias de
v/1 —4x. Notar que en x = 0 no hay ningiin problema ya que

B PV = e B pey vl BN g
C(O):hm = lim .
x—0 2x x—0 2x 14++v/1—4x
. 1—(1—4x) L 2

= lim =lim———— =1
=02x(14++v/1—4x) =014 +/1—4x

Recordamos rdpidamente al lector que una serie de potencias centrada en O convergird si

. ‘anJr 1 Zn+1 ’
lim

n—oo  |a,z"|

< 1.
luego por propiedades de los limites se obtiene el radio de convergencia r € R™

|an|

|z| < lim =r.
n= |dp 1|

Procedemos para nuestro caso,

n

WPy ] e [1/2-(1/2= 1) oo (12— (n 1)+ fan]

) |(1/2)(_4>n| y 1/2-(1/2—1)-...-(1/2—n+1)|(n+1)!

L 12021/ (1 2= D) 1 k]
TaSeT 120-1/2)-. (n—1/2) 4 abe(n—1/2) 4

Por tanto, nuestra serie converge para |x| < 1/4. Miremos que sucede en los extremos,
C(1/4)=2y C(—1/4)=2v2-2.

No presentan ningtin problema, con lo que los valores de x por los cuales C(x) estd definida y por

tanto la serie converge son x € [-1/4,1/4].
O
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1.4. Definicion de los nameros de Catalan

Finalmente, utilizando la funcién generatriz calculada podemos deducir una férmula para los nime-
ros de Catalan. Otros procedimientos para hallar la férmula de los nimeros de Catalan vienen explicados
en [10] y [4] capitulo 5.

Definicion. Sea n € N, se define el n-ésimo nimero de Catalan mediante la siguiente férmula

1 2n
C,= . 1.3
n+1<n> (13)

Veamos que esta definicidn es equivalente a la introducida en (1.1).
Por la proposicidn anterior se tiene

- g () LE (e

n=0

L5 () (e

Si recordamos la definicién de C(x) en la proposicién (1.1), igualamos los coeficientes de x" de las

dos series, se tiene
1/2
C,=2 —4)",
" <n + 1) (=4)

Ahora solo falta operar un poco y verificar (1.3)

2( 1/2>(_4)n:21/2(1/2_1)(1/2_2)'--"(1/2_(n+1)+1)(_4)n_

n+1 (n+1)!
_(1/2)B/2)-(n=1/2) ) 1:3:5--(20—1) ),
(n+1)! (n+1)!
1:3:5-...-(2n—1)-2"n0 _ (2n)! 1 (2n
B (n+1)!n! _(n+1)!n!_n+1( )

Esta es la manera habitual de presentar los niimeros de Catalan, pero existen otras formulas equiva-
lentes.

Lema 1.2. Las siguientes igualdades son equivalentes:
C — 2n 2n 1 2n+1\ 1 2n
"\ n n+1) 2n+1 n Cn\n—-1)°

Demostracion. Para la primera igualdad,

<nzjl> - (n+1()2n(31'— - n—T—l ' (nz!}:i)!! N n—T—l (2nn>

2n 2n B 2n n 2n - (1 n ) 2n B 1 2n ps
n n+1) \n n+1\n) n+1/\n) n+i\n/) "
Para la segunda igualdad,

1 /2n+1 1 (2n+1)! 2n+1 (2n)! 1 (2n _c
2m+1\ n ) 2n+1 nln+ 1)l @Qn+D)(n+1) aln!  n+l o

luego,
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Finalmente se tiene,

1<2n>:1.( @) 1 (@)

n\n—1 n—Dn+1)! n+l nln!
O
La siguiente proposicién muestra una nueva recurrencia.
Proposicion 1.3. Los niimeros de Catalan verifican la siguiente recurrencia,
4n—2
C,= Co1, >1.
n+1 ! "=
Demostracion. Sea n > 1, entonces
L /2n\ 1 (2n)! 2n(2n-1) (2n—2)!  4n—-2 (2n-2
" n+1\n) n+l nnl (a+Dn2 (n—1D)!n-1)! (n+Dn\n—-1
dn—2 (1/2(n—-1) 4n—2
= - - = Cl’l*l .
n+1 n\ n—1 n+1
O

Lema 1.4. Cuando n es suficientemente grande, se tienen las siguientes equivalencias:
22n
(i) Gi =~

n/an
(i) Cprt ~4C,.

nﬂ

Demostracion. (i) Utilizando la equivalencia del factorial de Stirling, n! ~ cuando n — oo

se tiene

<2”> _(2n)! _ (2n/e)*V2m2n _ (2n/e)™-2y/mn _ 2"
n ()2 " ((nfe)"v2mn):  (nfe)™-2an  \/mn’
Luego cuando 7 es suficientemente grande

22n 22n

~ ~

T+ DEn T nymn

(ii)
Cor1 . Q+D))n+Dn! . (2n+1)(2n+2) 4n?

li — - ~ lim = = 4.
e G nbe Qe 2) k)] ate (nt )(n12) e n2

O]

Notar que el limite de (ii) es anédlogo al limite calculado en la proposicion (1.1) para calcular el radio
de convergencia de la funcién generatriz de C,,.

1.5. Aplicaciones en combinatoria

Al inicio del capitulo hemos visto que los nimeros de Catalan resuelven el problema de contar
cuantas maneras de triangular un poligono convexo de n 4 2 vértices, pero también son intrinsecos en
muchos otros.

Esta seccion la dedicaremos a ver algunos de los problemas mds populares en los que los nimeros
de Catalan nos dan su solucién. Pueden encontrarse estas aplicaciones y muchas mas en [12] seccién
1,5 y en [4] en los capitulos 6 y 7 con demostraciones més detallas.
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El problema del paréntesis

Este problema consiste en contar las diferentes maneras de colocar 2n paréntesis, n paréntesis abier-
tos y n cerrados, de forma correcta. Es decir, encontrar el nimero P, de secuencias correctas de parén-
tesis abiertos y cerrados que se pueden formar con n parejas.

Solucion. El siguiente cuadro muestra la solucién para n =0, 1,2,3. Se denota Py = 1 pues solo hay
un forma de no colocar paréntesis (obviamente no poniendo).

n | Paréntesis correctos | P,
0| * 1
110 1
2100 O 2
3 5

000 ()0
0O [0)  (00)

Vamos a desarrollar una férmula recursiva que resuelva el problema para P,. Notar primeramente
que Py = P, = 1. Suponemos n > 2 y que sabemos calcular P,_;, veamos si podemos calcular P, a
partir de los resultados anteriores. Tomamos 0 < i < n — 1, sabemos que con los primeros i pares de
paréntesis hay P; maneras de colocarlos y los restantes n — 1 —i tienen P,_;_; formas de hacerlo. Luego
para esta eleccion en particular para colocar n parejas de paréntesis hay P, - P,_;_; maneras proceder.
Abhora variando todas las posibles elecciones de i obtenemos,

n—1
Po=Y PP
i=0

Ahora es claro que esta es la misma recurrencia que verifican los nimeros de Catalan, luego P, = C,.

Caminos de Dyck

Un camino de Dyck es un recorrido de 2n pasos, los cuales n son en direccidn noreste y otros n en
direccion sureste, de tal forma que nunca podemos estar a una altura inferior a la comenzada y termina
siempre en dicha altura al completar los 2n pasos. Un ejemplo de caminos de Dyck es el siguiente,

VAN

Figura 1.2: Caminos posibles con n = 2.

Como se puede observar, para n = 2 solo hay dos posibles caminos de Dyck. Esto nos hace plan-
tearnos la cuestion de cuantos posibles caminos se pueden formar para cualquier n € N. Pero si paramos
y pensamos detenidamente, nos daremos cuenta de que este problema es esencialmente el mismo que el
anterior. Podemos reemplazar cada paso en direccién noreste por un paréntesis abierto y cada paso sur-
este por un paréntesis cerrado, tal como muestra la Figura 1.3. Luego es claro que existe una biyeccion
entre estos dos problemas por lo que con el mismo argumento se puede resolver. Se concluye asi que la
solucidn al problema de los caminos de Dyck son los nimeros de Catalan.

2 Aclaramos al lector que consideramos una forma correcta de poner paréntesis a todas aquellas en las que si se abre
paréntesis, debe haber otro cerrando. Por ejemplo, esta es una forma correcta ()()(()) pero sin embargo esta )((()) y esta (O(()
no lo son.
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AN YN

00 () (00)

Figura 1.3: Biyeccién entre los caminos de Dyck y los paréntesis.

El problema de dar la mano

Suponemos que en una mesa redonda se sientan 2n personas. De cuantas formas se pueden dar
la mano en parejas, sin que no se crucen los brazos los unos con los otros? Este problema se puede
reescribir de la siguiente manera. Para n > 0, distribuimos 27 puntos en una circunferencia. De cuantas
maneras podemos emparejar los puntos con arcos, de tal forma que estos no se crucen?

SN U,

Figura 1.4: Solucién para n = 3.

Vamos a conectar esta cuestién con el problema del paréntesis otra vez. Para ello numeramos los
2n puntos de la circunferencia y tomamos una secuencia correcta de 2n paréntesis. Ahora procedemos
de la siguiente manera, para todo paréntesis i, cerrado por el paréntesis j, con 0 < i < j < 2n, entonces
trazamos un arco del punto i al j. De este modo podemos encontrar todas las combinaciones, pues son
las mismas posibles que para los paréntesis. Este procedimiento también se puede realizar a la inversa
para encontrar las distintas secuencias correctas de paréntesis, luego es claro que también existe una
biyeccién entre los dos problemas.

o~
[ —
W~
P~
R

) e g
]

5 4

Figura 1.5: Ejemplo de la biyeccion.

Como es obvio, este problema también puede interpretarse como el problema de los caminos de
Dyck, véase en mas detalle [2].

«The ballot problem»

En unas elecciones con dos candidatos A y B, reciben un total de n votos cada uno, los cuales son

contados de uno en uno. De cuantas formas pueden ser contadas las 2n papeletas de manera que el
candidato A siempre va por delante o empatado con el candidato B?
Este problema puede verse como los caminos de Dyck si asociamos cada voto al candidato A como un
paso en direccién noreste y cada voto a B como otro en direccién sureste. De la misma manera que en
los caminos de Dyck, nunca podemos estar por debajo del punto de partida, andlogamente tampoco el
candidato B puede estar por delante y en las dos cuestiones, acaban en el mismo lugar, es decir, acaban
empatados. Luego en esencia es el mismo problema y por lo tanto su solucién también.
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La escalera al cielo

En una cuadricula n X n, de cuantas maneras podemos llegar desde la esquina inferior izquierda a la
esquina superior derecha con pasos horizontales y verticales sin superar nunca la diagonal?

Para n = 0,1 la solucién es obvia, solo hay una manera. Para n = 2 hay dos maneras, para una
cuadricula 3 x 3 hay 5 y para n = 4 son 14. La prueba grafica para los primeros 6 casos se puede
consultar en [1].

Figura 1.6: Solucién para n = 3.

Este problema también se puede ver como los caminos de Dyck, pues cada paso horizontal corres-
ponde a un paso noreste y cada paso vertical a uno sureste. Ademds, como en ningtin momento puede
haber mds pasos verticales que horizontales, ya que sino nos podriamos encontrar por encima de la dia-
gonal, cumplimos el requisito de los caminos de Dyck de no estar por debajo del punto inicial. Luego
tenemos la solucién con los nimeros de Catalan.

B

Figura 1.7: Ejemplo de la biyeccién entre los dos problemas.






Capitulo 2

Triangulo de Catalan e identidades

combinatorias

2.1. El triangulo de Catalan

Existen muchos tridngulos conocidos como triangulo de Catalan, pero el siguiente es uno de los mds

relevantes,

Cada entrada viene dada por la férmula

Ck,m =

Notar que Cy es el k-ésimo numero de Catalan. Para nuestro estudio vamos a considerar otro
triangulo, el introducido por Shapiro en [1 1], definiendo el par (n,p) comok+m=2n—1y p=n—m.

Por lo que ahora la férmula queda

B,

y el nuevo triangulo queda,

(k+m)!(k—m+1)

m!(k+1)!

-4

2n
n—p

k/m |0 |1 |2 |3 |4 5 6 7
0 |1

1 1 1

2 |1 |2 |2

3 1 |3 |5 |5

4 1 |4 |9 |14 |14

5 1 15 14 | 28 | 42 | 42

6 1 |6 |20(48 |90 | 132|132

7 1 |7 |27 |75 ] 165|297 | 429 | 429

con 0<m<k.

> con n,peN p<n.

n/p |1 2 3 4 5 16 |7
1 1

2 (2 1

3 15 4 1

4 14 |14 |6 1

5 (42 |48 |27 |8 1

6 132 | 165 | 110 | 44 |10 |1

7 429 | 572 | 429 | 208 | 65 |12 | 1

11
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A partir de ahora cuando se haga una referencia al triangulo de Catalan, nos referiremos a este
ultimo triangulo. La nueva férmula obtenida se puede expresar mediante la recurrencia (véase [11])

Bn,p = Bn—l.,p—l + 2Bn—l,p +Bn—1,p+1 para p >2.
Como era de esperar, en este triangulo también aparecen los nimeros de Catalan, vemos como la

primera columna corresponde a dichos nimeros (B, 1 = C,,).

2.2. Identidades combinatorias I

En esta seccion probaremos identidades entre B, , y C, contenidas en [3]. Para alguna demostracion,
la siguiente identidad serd de gran ayuda. Sean n,m,p € N tales que 0 < p < n,m. La identidad de

Vandermonde afirma: )
n+m n m
— ) (2.1)
( p ) kg’) <k) (p - k>

Pueden encontrarla en [13]. Notar que en el caso m = n = p, la igualdad nos recuerda a los nimeros

de Catalan,
G- =50 22
n_kg;)k n—k _k;)k' 22

Proposicion 2.1. Sea n € N, se cumplen las siguientes identidades
Q) "i"] m\? 1 4n 2\ 2
i =— — .
=\ k 2\ \2n n
n—2 2 2
. 2n—1 1/2(2n—1) 2n—1
=- — >2.
(i) k_0< k ) 2( n—1 ) <n—1> con =
n—1 2 2
2 2(2n—1 2n—1
(iii) kz( ”) = 2’ < (2n )>—2<” ) con n>2.
= k 2n—1 n
n—2 2 2
2 4n—1 2n—1
(iv) k( n> :n<n >—3n<n > con n>2.
= \k 2n—1 n
n—2 2 2
2n—1 2n—1 4n—3 2n—1\ [2(n—1) 2(n—1)
k = — -2 — > 3.
) =1 < k > 2 (<2(n_1)> <n_1>< n—2 ) ( n—1 con =
Demostracion. (i) Aplicando (2.2) se tiene

2n <2n>2 (4n)
Z = , n>0.
=\ k 2n
Pero por otro lado,
2n 2 2 2n 2 p—1 2 2 n—1 2
2n 2n 2 2n 2n 2
i—o \ k im0\ k kme1 \ K i—o \ k n Zo\2n—j

por lo tanto,
2"21 20\ (4n\  [(2n)°
=\k)  \2n n)’

Para probar (ii) se procede de manera similar.
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(iii) Tenemos en cuenta,
2n\ _, (Cm)t (2n—1)! B 2n—1
k(k)k KMn—i " (k—1)!(2n—k)!2”(k—1>'
n-l wm\? nl 2n— 2
2 _ 2
o) e (0 -5 ()

Ahora usamos (ii) y obtenemos el resultado. Los apartados (iv) y (v) se demuestran de forma anélo-
ga. O

Luego

Los siguientes teoremas muestran mds relaciones entre C, y B, p.

Teorema 2.2. Sea n € N, entonces
n

Z (Bn,p)z = CZn—l .

p=l1

Demostracion.

n n n—1 n—1 2
p( 2n 1 2n 1 2 o 21
s = £ (2(2) =L (00 (3)) =g Zor-mren(3)
Yowr=x(0(",)) =L 7)) =L (2
Ahora usando (i), (iii) y (iv) de la proposicién (2.1) se tiene
" 4n 4n—2 4n—1 1/2n\*  [2n—1\*> [2n—1\"
Sosur=3() () () - (GO ) )

es sencillo comprobar que

1/2n\*  (2n—1\* _[(2n—1)°
G o) o) =
2\ n n n

con lo que finalmente

i 1 (4n 49 4n—-2 4n—1
o np - 2\2n 2n—1 2n—1
(4n)(4n—1) (4n—-2 4n—2 4n—1 (4n—2 1 (4n—2
=) 2 il =— = Cont.
272 \2n—1) T\ w1 m \2n—1) = an\on—1) =
Teorema 2.3. Sea n € N, entonces

Z anp 3” 2)C2(n 1)

Demostracion. Procedemos inicialmente como en la anterior demostracion,

Bunr 15 AR ()

p=1 n—p J

Desarrollamos el binomio,

(n—p)4 =n*—an’p+6n*p® —dnp’ + p* =
=n*—4n’p+p?(p— 1)+ (2 —4n)p*(p— 1)+ p*(6n* —4n+1).
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Tenemos ahora,

1] 2n 2 il o\t (en2—4n+1)") (267
nz,,;o p Z pZ:O p n’ p;o p
2- 4 2 = 2\
2—4n) Z < ”> = Zp ( ”) — [+ I+ I+ IV+V.
four) p

Aplicando los resultados de la proposicién (2.1),
n* [ (4n on\? 4n—1 2n—1\°
I=— -~ ;= —4n* -3 ;
2 <2n> (n> ’ " <2n—1> < n > ’
2(2n—1) 2n—1\?
I =2(6n* —4n+1 -2 :
(6n ”+)<(2n—1> <n>>
Haciendo el cambio j=p—1
_ 2 2
Z 12 ( 2n ) _ < 2n(2n—1)! ) _
& 1 . G+0!@n—j-1)

4(2—4n) i (22’;1_;)_”)2:4(2—4n);)j< ”j_l> 8(2n—1 nfp<2"_1)2.

ahora por la proposicién (2.1) (v),

V= _8(2”;”2 ((;Z:f)) _2(2:_‘11) (25;1__21)) . (2;"__11>>2> .

Anélogamente como en [V,
2n—2 =3 (on—-2\?
4(2n—1 ZZ < " ) —42n—1 Y ( " >
p=0 p

mvanw (350 ()] - (22)

e G -1((8)-C)
a2 <<421,;: 1) 3 <2nn— 1>2>
+2(6n° —4n+1) ((2(22:__11)) _2<2nn_ 1>2>
_4n—1) ((2‘(12_“;’)) _2<2nn—11) <2(n”_21)> B <2(n”_11)>2>
F42n—1)? <; [(;‘z:;‘) _ <2:__12>} ) <2:__12>> .
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Viendo que los siguientes términos se anulan,

2 20\ 2n—1\° 2n—1\°
—”< ”> +12n2< " ) —4(6n2—4n+1)< " )
2\ n n n
2n—1\ (2(n—1) 2n—1)\? 1/2n—2 2n—2
4(2n—1)*( 2 —4(2n—1)*( = =
+4(2n )<<n—l><n—2>+<n—l (2n=1) 2\ n—1 * n—1 0
y operando con los restantes obtenemos el resultado
2
n” (4n 4n—1 22n—1)
— —4n? 2(6n* —4n+1
2 <2n> " <2n—1>+ (6n" —dn+ )( 2n—1 )

—4(2n— 1)2<2‘EZ:?)> +4(2n— 1)2% <2Z:j) = (3n=2)Cyn-1)-

O
Por la proposicién (1.3),
(3n—2)n
-2 =—Co1-
(3n—2)Cyn—1) 4,3 Cu-l
Luego estos dos teoremas nos hacen plantearnos si para todo k € N, se tiene
n
Y (P*Buy)* = Pu(n)Can1, (2.3)
p=1

es decir, si el sumatorio se puede expresar como el producto de un polinomio por dicho nimero de
Catalan.

Para los casos k = 0 y k =1 hemos visto que si sucede, en el siguiente capitulo abordaremos esta
cuestion.






Capitulo 3

Conjeturas en el triangulo de Catalan

Para poder plantearnos la cuestién final del anterior capitulo, necesitamos introducir previamente el
método WZ de Herb S. Wilf y Doron Zeilberger [9].

3.1. El método WZ
Definicién. Una funcién discreta F (n,k) se dice hipergeométrica en sus dos variables si,

F(n+1,k) F(nk+1)
F(n,k) = F(nk)

nkeN

ambas son funciones racionales.

Un ejemplo de funcién hipergeométrica son los nimeros combinatorios.
Supongamos que tenemos una identidad A = B donde A es una serie de términos de una funcién hiper-
geométrica y B es el supuesto resultado de la serie. Por ejemplo la identidad (2.2). El método WZ es
un algoritmo que nos permite verificar la igualdad con ayuda del ordenador. Esto es posible ya que es
un método simbdlico y no numérico, por lo que las demostraciones generadas son totalmente rigurosas
y pueden ser corroboradas por nosotros. Ademads de proporcionar demostraciones es un algoritmo muy
dtil para evaluar y descubrir identidades.

La validez de las demostraciones del método se logra obteniendo lo que se denomina par WZ.

Definicién. Un par WZ (o par Wilf-Zeilberger) son un par de funciones discretas (F (n,k),G(n,k)) tales
que verifican,
F(n+1,k)—F(n,k) = G(n,k+1) — G(n,k) 3.1

Supongamos que queremos probar la igualdad Y, f(n,k) = r(n). Lo primero que tenemos que hacer
es pasar dividiendo r(n) para tener

Y F(n,k)=1, con F(nk)=
%

Notar que si r(n) = 0 no importa, pues ya estaria igualado a una constante que es lo que queremos.

Definimos f(n) := Y F(n,k), veamos que f(n) es constante para todo n. Una forma de probarlo es
versi f(n+1)— f(n) = 0 para todo n. Esto sucederia si encontraramos una funcién G(n, k) que verificara
(3.1), porque entonces sumariamos todos los enteros k y veriamos como en efecto, f(n+ 1) — f(n) es
siempre 0 (ya que la suma es telescopica). Wilf y Zielberger probaron en general que si G existe,
entonces G(n,k) = R(n,k)F (n,k) donde R es una funcién racional. Por suerte, en la gran mayoria de
casos se tiene esta existencia y esta es sencilla de encontrar con el algoritmo WZ, que nos proporciona
la funcién R y solo tenemos que multiplicar por la funcién F.

17



18 Capitulo 3. Conjeturas en el triangulo de Catalan

3.2. Identidades combinatorias II

El siguiente teorema que presentamos esta probado en [3](pagina 58, teorema 5) con una demostra-
cién bastante técnica y con gran habilidad. Pero en nuestro caso haremos uso del programa informético
MAPLE con el paquete EKHAD [15] escrito por Zeilberger, el cual contiene el algoritmo WZ para
demostrar identidades como las que vamos a ver a continuacién del triangulo de Catalan. Un ejemplo
de su uso se puede encontrar en [9] (ejemplo 7.5.3).

Teorema 3.1. Sea n,k € N tal que i < n, entonces

k
2(n—1
ZB,,,,B,,W k(n+2p—k) = (n—i—l)C,,( (k_1)>.

Demostracion. Definimos en Maple la funcién

Bn,an,rH—p—k : (I’l +2p— k)
2(n—1
(n+ I)Cn( (kn—l ))

y escribimos el comando ¢t (F(n,k,p),1,p,n,N). El algoritmo nos devuelve por pantalla el par

F(n,k,p) = , 1<p<i<n,

N+17 R(”7k7p)7

donde R(n,k, p) es la funcién racional con la que obtenemos el par WZ y N + 1 hace referencia a
que la serie es telescopica. Aplicando la teoria WZ tenemos la demostracion concluida. O

Corolario 3.2. Sean € N, entonces
n
Z (n4+1)(2n—3)C,Cp_».

Demostracion. Tomando k = n en el teorema anterior se comprueba directamente,

n

n
Z Bn,an,nﬂan(” +2p—n)=2 Z I’(Bn,p)z =n(n+1)C,Cy-1,
p=1 p=1

luego aplicando la recurrencia (1.3),

“ 1
Z p(Bn,p)2 = n(”“‘ )Cncnfl = (n+ 1)(2n - 3)Cncnf2-

p=1 2
]
Corolario 3.3. Sean € Ny f(x) = ag +a1x+axx’ un polinomio de segundo grado. Entonces
“ n(n+1
Y fp) (Bup)* = aoCop—1 +ai gcncnfl +ax(3n—2)Cy, 1)
p=1
Demostracion. Por linealidad, se tiene
- - 2 S 2
Zf(l’)( Z ,p +a12p ,p) Jr‘122‘,17 (Bn,p) .
p:] : —1 p:1
Haciendo uso de los teoremas (2.2), (2.3) y del corolario anterior se tiene el resultado. ]

Volviendo a aplicar la poderosa herramienta EKHAD, vamos a abordar la identidad planteada (2.3)
al final del anterior capitulo para unos cuantos valores de k. Incluiremos en el siguiente teorema los re-
sultados de los teoremas (2.2) y (2.3), ya que con este software informéatico obtenemos una demostracién
equivalente y asi ilustraremos mejor nuestro problema.
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Teorema 3.4. Sean € N, entonces

(Bn,p)2 — C2n71 .

—
—-

N

1=

=
I
—_

—~
.
—
N—
a~1
1M1=
SN
~
ov]
=
bS]
N~—
[\e)
1
—~
(O8]
3
|
\e]
N—
S
S
|

(15n% —30n2 + 16n—2)n
(4n—3)(4n-5)
(1051° — 420n* + 5881 — 3561 +96n — 10)n
(4n—3)(4n—5)(4n—17) et

(szn,k)z = 2n—1-

—~
—-
=
=

N

Ms

Ji
(=)

(pSBn,k)2 =

=
=
1=

i
(=]

Demostracion. Como el proceso de demostracion es igual para los cuatro casos, vamos a detallar aqui
solo el apartado (i). En el apéndice aparecerd la demostracion informatica de los restantes.
Definimos la funcién

F(n,p):= (Bup)® _ 2p2(n2—np)2 _ 2p% - (2n)? - ((2n—1)1)?
T T @) (=) (i p) )2 (An = 2)0

y ejecutamos el comando ct(F(n,p),1,p,n,N). El programa nos devuelve el par, 1 — N (re-
currencia telescopica) y la funcién racional R(n,p), la cual nos proporciona la funcién G dada por
G(n,p) =R(n,p)F (n,p). De este modo obtenemos el par WZ.

(p—1)(—8np> +16np + 12np* —2p> — 8n® +18n*p — p+3p> —9n> — 2n)
2p(16n% —1)(n+1—p?)

R(n,p) =
Haciendo uso de la teoria WZ, se demuestra la identidad deseada. OJ

Como acabamos de ver, se cumple (2.3) para mds valores de k. Ahora por el corolario (3.2), nos
preguntamos si para p con exponente impar también sucede, en este caso relacionando C,C,,_, por un
polinomio. Esto nos lleva al siguiente teorema.

Teorema 3.5. Sea n € N, entonces

p(Bnp)* = (n+1)(2n—3)C,Cys.

~—
-

S~—

M:

=
Il

PP (Bup)? =n(n+1)(2n—3)C,Cys.

—
.
=
S~—
M:

=
Il

P’ (Bu)? =n(n+1)(3n* — 5n+1)C,Cpa.

—~
-
=
=:

Ra/

M=

i
(=]

(Bux)? = n(n+1)(6n(n—1)* = 1)C,Cp».

Z

ek

AS
~

i
(=]

Demostracion. Siguiendo los mismos pasos que la demostracién del teorema anterior se comprueban
estas identidades. O
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3.3. Cuestiones abiertas

Nuestra cuestion (2.3), podemos deducir partiendo del teorema (3.4), que el polinomio buscado
tiene la siguiente forma,

k
n)-T] (4n—(2j+1)) 7"
j=1

Sin embargo no podemos dar respuesta a la pregunta, existen polinomios g(n) con coeficientes
enteros tales que

n

Z (Pan,p)z = qi(n)

p=1 J=1

(4n—(2j+1))"', parakeN.

.d»

Ya que atin nos queda la incégnita de descubrir al misterioso polinomio g (n). Lo mismo nos ocurre
para el caso de exponentes impares. En esta cuestion nos preguntamos si existen polinomios P,(n) con
coeficientes enteros tales que

n

szr—l(Bn’p =(n+1)P(n)C,Cy—», parareN.
p=1



Apéndice A

Ventana de trabajo de Maple con los comandos para demostrar el teorema (3.4).

Archive (F) Editar Ver Insertar Formato Evaluar Herramientas (T) Ventana (W) Ayuda (H)

e _____________________________________________________

Iniciar sesion 2,

plan—1)(3n+1)(4n—3) (n+1—p)

v

DBEPgR €856 o Tr= == ¢éa> BWI10%C & QAR
o Wistartmw X | (8 EHAD.mw X
P Tests [Matematica] | C 20 nput v | [Timestewroman  ~|[ 12 ~| B[[|U == L g i=i= «
This is EKHAD, Orne of the Maple packages
qccomparying the book
ng=g"
(published by A K Peters, Wellesley, 1996)
by Marko Petlovsek, Herh Wilf and Doron Zeilberger.
The most current version is available on WWW at:
hitp:/Awww.math ruigers. edu/~zeilberg .
Information about the book and haw to order it, can be found in
Htp./www.ceniral.cis. upenn edu/~wilfdegB. html .
Please report all bugs to: zeilberg@math rutgers.edu .
All bugs or other comments wed will be acknowledged in furura
versions.
For general help, and a list of the available finctions,
type “ezraf);". For specific help type "ezra(procedure name)”
TernTao| 2+ 1. — 2 k2kK m
JE+1
[>
|V
27 (a1 ((2n= 1))
> flnp) = - -
n((4n=2)1)-((n=p))" ((n+p)1) ) N
2 2n " (2n—1)0
S tnp) e —2ECAEER_NE @
ni(4n—2)1-(n—p)"(n+p)!
> et finp) Lpn i)
. (87 —d4n +9 +anp—r +2n+p) (p=1) (-1 +2p)
N-1- ! @
2p(161 = 1) (n+1—p)
| >
208 (4n—=3) (Zan (e 1)’
> flnp) = 5 5
(3n=2) (41— 21 ((n—p)D* ((n+p)1) . 5 5
2p (4n—3)(2n)°(2n—1)0
f=(np)—
| A (3n—2)(4n—2)1(n—p)% (n+p)? )
> alflnp).LpnN) 2 N 2 5
_nf-L S B I N (LAY v R Lpip 3 1, WV Fle-lin Fle—1l
efH\mih H; N+L:n~ ? L=+TLR 247 N“;m+h ARt St v L«m W T m u ®
2 . 5

Figura 3.1: Demostracion de (i) y (ii) por Maple y EKHAD
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9% X

Archivo (F) Editar Ver Insertar Formato Evaluar Herramientas (T) Ventana (W) Ayuda (H)

DBE0gd ®x88 «s BT = W1oxC & Aqa ®

[ Startmw X | [ *EKHAD.mw X
BJU == L g =i= &«

This is EKHAD, One of the Maple packages
accompanying the book
ng=g"
(published by A K. Peters, Wellesiey, 1996)
by Marko Petkovsek, Herb Wilf, and Doron Zeilberger.

Iniciar sesion 2,

v a

Texto Matematica| | C 2D Input ~ | [Times New Roman

The most current version is available on WWW at:
http:www.math rutgers. edu/~zeilberg .
Information about the book and how to order it, can be found in
Buip:eww. cantral cis upenn edu/~wilfldegB himl .
Please report all bugs to: zeilberg@math.rurgers.edu .

All bugs or other comments used will be acknowledged in future
versions.

For general help, and a list of the available fimctions,
type “ezraf);". For specific help type "ezrafprocedure_name)"

Tem-rao[ﬁ +1 xzk2k K] o

JE+1

25 (4n—3) (an—5)- (20 ((2n—1)1)?
(1598 =30 + 16 —2) - ((4n—2)0)-((n— p) ) ((n+p)1)*

f=(np)—

> finp) =

PLan=3)(4n=5 20 2n-1)"
| (1597 =302 + 16— 2) (4n—2)1-(n— p)1 - (n+ p)1*
[> alf(np).LanN) @

I L 1 5. (89 5 4 5 187 )5 5
o p](linaﬁ»15732+n71)(4n75](4n73](n+1—p32{120[[ - thrp]"+[120+ 37 pj 120 ] +[ P

ENCIREL AN AN
2F TP T 7

67 1 L _ 4 41 ﬁ,ﬂi ﬁ4,i _ 1
+120p+24]”+[ A g p 11()p+1201”3 Lzopl 40er ]”3+[ £ CAANTTR S

120 120 120 40p ],,2
peelir 3 fee o]

120

Figura 3.2: Demostraciéon con Maple y EKHAD de (iii)

x
Archivo (F) Editar Ver Insertar Formato Evaluar Herramientas (T) Ventana (W) Ayuda (H)

NoOEE X588 a4 BT>= = n1o%C £ AQa @

A Wistartmw X | [l EKHAD.w X
BlIIU E Lo =i &

This is EKHAD, One of the Maple packages
accomparnying the book
A=B"
(published by A.K. Peters, Welleslegy, 1996)
by Marko Petkovsel, Herb Wilf, and Doron Zeilberger

Iniciar sesién 2

P rexto [Matematics] | C 20 nput ¥ | [Times New Roman

The most current version is available on WWW at:
http:Avww.math rurgers. edu/~zeilberg .
Information about the book; and how to order it, can be found in
hep:ieww.cetral cis upenn edu/~wilfldegB homl .
Please repart all bugs to: zeilberg@math rutgers.edu .
All bugs or other comments used will be acknowledged in future

versions.

For genaral help, and a list of the available functions,
tvpe “ezraf); . For specific help type "ezrafprocedure_name)”

Tmyrao[ﬁ +1, xzk2k K] )

1
J2+1

_ 28 4n—3) 4n—5) da—1 (20 (2n-11?
(1059 — 420-4" + 58817 — 35647 + 961 — 10) - (41— 2)1)-((m—p) 1) ((n+ p)1)*
P g — ) 28 (4n—3)(4n—5)-(dn—7 -2t 2n-—1r
(10577 — 42028" + 58847 — 35692 + 96-n— 10) (40— 2)1- (n—p) - (n+ p)1* @

[> alfinp).LanN)

1 1 [} 177 13 151
N-1- < 840 [ -— -N||-=F-Zp-= -3 35 | - =
: p7(1057!1+LUSFH*‘!ZYP*()II}*?H‘F])(4?!77](4n75](n+17p]2{ [ ﬂ’](p ]{[ 51’2 5P ﬂ" L Pj] +{ rey 3 w07 @

8 w7 120 40 280 7 7 280 120 40 840 840 TR ZBD 840 420 28

RN NI () R 199] 5 [143 S_AT9 4 ST 5 283 5 335 7%pg+2p77 141 6 1151]6 [ 1007 337 5, 367 4 151 173

1 g 1 7 87 g\ 5. (103 373 3 _ 281 137 33 ;3799 ¢ 113 5 391 s 33 g) a4 (19 29 _ 19 g 19 5
e 2P+s40‘r’)"}+[4zo+s4o"’3 840P2+420P 108 T s T s40P+4uP] +[a4o+2so 340*’1 940*”"'410"’ 105 ¥

+

4 B P
[ —2p - R D 2 —1
29 5 8 5 S0 4y s 1 M9 5 347 4 45 %) 4 4 729 62 [‘” 4 47 a? 47]p1(‘” Vn
5407 T e ¥ T w0 ? 830

56 280 540 280 840 56" 140P AT
Alp-1)? [—+p —2P3+P]
4

56

Figura 3.3: Demostracién con Maple y EKHAD de (iv)



Apéndice B

Los 50 primeros nimeros de Catalan.

n C, n C,

01 26 | 18.367.353.072.152

1 |1 27 | 69.533.550.916.004

212 28 | 263.747.951.750.360

315 29 | 1.002.242.216.651.368

4 |14 30 | 3.814.986.502.092.304

5 |42 31 | 14.544.636.039.226.909

6 | 132 32 | 55.534.064.877.048.198

7 | 429 33 | 212.336.130.412.243.110

8 | 1.430 34 | 812.944.042.149.730.764

9 | 4.862 35 | 3.116.285.494.907.301.262

10 | 16.796 36 | 11.959.798.385.860.453.492

11 | 58.786 37 | 45.950.804.324.621.742.364

12 | 208.012 38 | 176.733.862.787.006.701.400

13 | 742.900 39 | 680.425.371.729.975.800.390

14 | 2.674.440 40 | 2.622.127.042.276.492.108.820

15 | 9.694.845 41 | 10.113.918.591.637.898.134.020

16 | 35.357.670 42 | 39.044.429.911.904.443.959.240

17 | 129.644.790 43 | 150.853.479.205.085.351.660.700

18 | 477.638.700 44 | 583.300.119.592.996.693.088.040

19 | 1.767.263.190 45 | 2.257.117.854.077.248.073.253.720
20 | 6.564.120.420 46 | 8.740.328.711.533.173.390.046.320
21 | 24.466.267.020 47 | 33.868.773.757.191.046.886.429.490
22 | 91.482.563.640 48 | 131.327.898.242.169.365.477.991.900
23 | 343.059.613.650 49 | 509.552.245.179.617.138.054.608.572
24 | 1.289.904.147.324 | 50 | 1.978.261.657.756.160.653.623.774.456
25 | 4.861.946.401.452

23
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