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1. Abstract

En el presente trabajo utilizamos redes neuronales para llevar a cabo la predicción de la

transición de fase del modelo de Ising bidimensional. Utilizamos dos tipos de estructuras para

las redes neuronales: redes fully connected y convolucionales. La obtención de la temperatura

cŕıtica que caracteriza la transición se realiza de dos maneras diferentes. Por un lado entrena-

mos a las redes en la predicción del orden de las configuraciones de Ising, situando la transición

en la temperatura cuyas configuraciones pasan de considerarse mayoritariamente ordenadas a

desordenadas. Por otro lado, centramos el entrenamiento en la predicción de la longitud de co-

rrelación, estableciendo la temperatura cŕıtica como aquella cuyas configuraciones dan lugar a

las mayores predicciones. Los resultados obtenidos son en general satisfactorios; muestran que

las redes fully connected centran sus predicciones en propiedades globales de la red como la

magnetización, aunque desconocen la topoloǵıa local de la misma dando lugar a malos resul-

tados en la longitud de correlación, mientras que las convolucionales se comportan de manera

complementaria, obviando los observables globales y sobreestimando el valor de la transición

con el método de clasificación al carecer de información sobre la magnetización.

Nota del autor. El campo de la inteligencia artificial es relativamente joven y se ha desa-

rrollado principalmente en la literatura anglosajona. Como consecuencia, no existen buenas

traducciones al castellano para la mayoŕıa de los términos utilizados en el campo, y se suelen

utilizar con su formulación original. Por tanto, de ahora en adelante recurriremos a los nombres

originales en inglés en la mayoŕıa de ocasiones, salvo que la traducción sea evidente e ineqúıvo-

ca. Por otro lado, por decisión de estilo, el presente trabajo se ha escrito utilizando la primera

persona del plural pese a tener un único autor.

2. Introducción

El concepto de Inteligencia Artificial (IA) engloba todas aquellas actividades llevadas a cabo

por una máquina que reproducen comportamientos que consideramos inteligentes por parte de

humanos o animales. Se trata por tanto de un campo extremadamente amplio que abarca una

gran cantidad de actividades, desde procesamiento de lenguaje hasta conducción autónoma,

pasando por el reconocimiento de imágenes. Para llevar a cabo todos estos procedimientos es

necesario que las inteligencias artificiales se someta a un proceso de aprendizaje, dando lugar a

una nueva rama de investigación, el Aprendizaje Automático o Machine Learning (ML), en la

que se han desarrollado multitud de herramientas y algoritmos que logran muy buenos resultados

para aplicaciones cada vez más complejas. El desarrollo actual de la Inteligencia Artificial se basa

en la disponibilidad y accesibilidad de una cantidad cada vez mayor de datos e información, parte

crucial en el proceso de aprendizaje. La Inteligencia Artificial está pues llamada a convertirse

en una de las principales herramientas tecnológicas del futuro.

La Inteligencia Artificial no sólo es aplicable en la vida cotidiana, también comienza a apa-

recer en la ciencia. En los últimos años ha crecido exponencialmente la disponibilidad de datos
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experimentales y la capacidad de procesamiento, y la posibilidad de clasificar y extraer infor-

mación de forma rápida y precisa resulta cada vez más atractiva. En este sentido se están

planteando IAs capaces por ejemplo de clasificar la ingente cantidad eventos provenientes de

colisiones de part́ıculas en el LHC [1], predecir estructuras proteicas a partir de la secuencia pri-

maria del DNA, o reproducir correctamente el comportamiento de fluidos sin recurrir a costosas

simulaciones numéricas. En el campo de la materia condensada, y concretamente en el estudio

de diversos modelos estad́ısticos como el modelo de Ising, la Inteligencia Artificial nos permite

predecir una gran cantidad de propiedades y clasificar configuraciones según diversos criterios.

El objetivo principal de este trabajo consistirá pues en construir redes neuronales capaces de

predecir la existencia de una transición de fase en el modelo de Ising. Utilizaremos para ello dos

propiedades diferentes. Por un lado, crearemos redes capaces de discernir entre configuraciones

ordenadas y desordenadas, según si corresponden a temperaturas menores o mayores que la

cŕıtica. Por otro, construiremos una red para predecir la longitud de correlación de cualquier

configuración, que diverge en la transición. En ambos casos, generando grandes cantidades de

configuraciones para muchas temperaturas y realizando las predicciones, podemos encontrar el

valor cŕıtico en el que se cumplen las condiciones para la transición, a saber: el punto en el que las

configuraciones pasan de clasificarse mayormente como ordenadas a desordenadas y viceversa,

y el punto en el que las configuraciones tienen las mayores longitudes de correlación.

La estructura del trabajo es la siguiente: en la primera parte se discuten los conceptos bási-

cos que utilizaremos durante el trabajo. En la sección 3 presentamos las redes neuronales, las

estrategias principales que se utilizan durante el entrenamiento y los posibles problemas que

pueden surgir. En la sección 4 realizamos un breve resumen de las propiedades principales del

modelo de Ising que se utilizarán en el trabajo. En la segunda parte se presentan los resultados

obtenidos; en la sección 5 se muestran los resultados para las redes neuronales que predicen la

transición de fase mediante clasificación de configuraciones, y en el apartado 6 se muestran los

resultados para las redes neuronales que predicen la longitud de correlación. Por último, en el

apartado 7 se discuten las conclusiones más importantes del trabajo.

Parte I

Conceptos básicos

3. Redes neuronales

Una de las estrategias más populares en la aplicación del ML son las llamadas ”redes neuro-

nales”, inspiradas en las estructuras que forman las neuronas en los seres vivos, que han dado

lugar a toda una nueva rama de estudio sobre Machine Learning con algoritmos espećıficos de

aprendizaje. La unidad fundamental de este tipo de redes es la neurona, que se coloca en la

red formando parte de una capa. Las redes constan de una o varias capas sucesivas entre la

información de entrada o input, y la de salida o output. En los últimos años han ganado protago-

nismo las redes con multitud de capas intermedias, dando lugar a lo que conocemos como deep
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learning. Las capas intermedias reciben el nombre de hidden layers o deep layers. Describimos

a continuación los conceptos básicos que utilizaremos durante el trabajo.

3.1. Neuronas

Las neuronas son pequeñas unidades de la red capaces de recibir un input de la capa anterior y

generar un output para la capa siguiente, aplicando función f(z) sobre dicho input. Cada neurona

k se caracteriza a su vez por un conjunto de pesos wr
k = (wrk1, . . . , w

r
kN ) correspondientes a

cada una de sus uniones con las N neuronas de la capa anterior, y un bias brk. El supeŕındice

r ∈ 1, ..., R indica la capa a la que corresponden dichas variables. De esta forma, dado un output

xr−1 = (xr−11 , . . . , xr−1N ) proveniente de la capa anterior, el valor que se introduce en la función

propia de la neurona n viene dado por:

zrk =
∑
j

wrkjx
r−1
j + brk = wr

k · xr−1 + brk (1)

A partir de este input generamos un nuevo output f(zrk) ≡ ark. Al atravesar toda la red ob-

tenemos finalmente una predicción aR(w, b)1, que es función de todos los pesos w y biases b

de todas las capas. Omitimos los ı́ndices para indicarlo. Tenemos por tanto una gran cantidad

de parámetros en la red que podemos ajustar: un bias por neurona y un peso por cada unión

entre neuronas. Esto hace que incluso en redes relativamente simples tengamos que ajustar miles

de parámetros, y en las más complejas hasta millones. Aqúı reside la potencia de estas redes,

que les permite adaptarse a una gran cantidad de problemas diferentes y reproducir resultados

complejos, pero también es uno de sus principales inconvenientes. Primero, es muy dif́ıcil y cos-

toso computacionalmente trabajar con una cantidad tan elevada de parámetros, y los tiempos

de entrenamiento pueden resultar prohibitivos. Segundo, corremos el riesgo de sobreajustar el

comportamiento de la IA, de forma que más allá de aprender las caracteŕısticas generales del

problema para predecir correctamente sobre nuevos datos, comience a aprender las caracteŕısti-

cas particulares del conjunto de datos utilizados como entrenamiento, dando lugar a predicciones

erróneas o poca capacidad de generalización en un proceso conocido como overfitting. Por to-

do esto trataremos siempre de reducir al máximo el número de parámetros de nuestras redes.

Veremos algunos métodos para lidiar con ambos problemas en apartados posteriores.

Exiten una gran cantidad de funciones posibles que podemos utilizar en una red neuronal.

En nuestro caso aplicaremos las funciones sigmoid, ReLU, leaky ReLU y softmax. La primera

es la pieza fundamental de gran parte del trabajo, y como su propio nombre indica, utiliza la

sigmoide como función de activación:

f(z) = σ(z) =
1

1 + e−z
(2)

La representación gráfica se muestra en la figura (1). El output puede tomar cualquier valor entre

0 y 1, siendo la función suave y derivable en todo su dominio. La forma de esta función otorga

gran versatilidad al funcionamiento de la red siempre y cuando los biases y pesos den lugar a

valores de z en torno al origen, donde se produce un mayor cambio en el output bajo pequeñas

variaciones de input. Sin embargo, el hecho de que las derivadas en los extremos de la función

1Puede tratarse de un único escalar si la última capa tiene una sola neurona, o de un vector si tiene varias.
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Figura 1: Función sigmoide.

(regiones planas) se anulen puede resultar muy problemático en la aplicación del algoritmo de

backpropagation durante el proceso de aprendizaje (ver anexo 4).

Además de ser razonablemente versátiles y poder formar parte de casi cualquier red neuronal,

el hecho de poseer una imagen entre 0 y 1 convierte a estas neuronas en óptimas para formar

parte de la capa de salida en problemas de clasificación. En estas aplicaciones nos interesa

obtener un output que podamos interpretar como ”pertenece a una clase” o ”no pertenece a una

clase”. Matemáticamente la aproximación más simple se da con 0 y 1, y basta construir una capa

a la salida formada por tantas neuronas sigmoides como clases busquemos diferenciar. Aquella

neurona con mayor output marca la predicción de la red. En caso de querer realizar predicciones

en las que el output y no esté necesariamente contenido entre 0 y 1, necesitamos normalizar

los datos de entrenamiento para que ninguno supere la unidad. Esto obliga a determinar de

antemano un valor máximo para el output, asignarle la unidad y normalizar el resto frente a él.

3.2. Tipos de redes

A lo largo del trabajo utilizaremos dos tipos de redes diferentes: redes completamente conec-

tadas (fully connected), y redes convolucionales. En las primeras cada neurona recibe un input

de todas las neuronas de la capa inmediatamente anterior, realiza una operación determinada,

y emite un output a todas las neuronas de la capa inmediatamente posterior. Vemos un ejemplo

de este tipo de redes en la figura (2a). Las redes convolucionales son más complejas. Utilizan

capas intermedias con estructura de matriz formadas por neuronas cuyo input no procede de

todas las neuronas de la capa anterior, sino únicamente de aquellas en su vecindad. El parámetro

que determina el número de neuronas de la capa anterior utilizadas viene dado por el receptive

field, de forma (l, l). Por ejemplo, si tenemos un receptive field (5, 5), los inputs vendrán de la

neurona anterior y sus dos primeros vecinos en todas las direcciones, incluyendo la diagonal.

Vemos esto más claramente en la figura (2c). De esta forma, partiendo de una red de tamaño

L · L, la siguiente capa intermedia será otra red de, como máximo, L · L neuronas2. Tenemos

2En principio el tamaño de la red se reduce con cada capa convolucional debido al tamaño del receptive field.

Por ejemplo, con un receptive field de (5, 5) la siguiente capa debeŕıa tener un tamaño de (L− 2, L− 2), debido

a que no hay información más allá para llenar las dos capas restantes. Lo que se hace en ocasiones es rellenar la
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entonces un número de pesos dado por el receptive field y un bias. La clave de este tipo de redes

es que estos pesos y biases no son únicos para cada neurona, sino que todas ellas comparten

los mismos valores. Siguiendo el ejemplo anterior con un receptive field de (5, 5), tenemos un

total de 25 pesos y 1 bias, y serán estos los que utilice cada neurona para determinar su input.

Las ventajas evidentes de este tipo de redes es que reducimos en gran medida el número de

parámetros necesarios, fomentamos la capacidad de generalización del resultado, y explotamos

la posible invariancia traslacional de nuestros datos.

Es aconsejable además la utilización de las conocidas como pooling layers. Estas capas redu-

cen el tamaño de la matriz con la que trabajamos agrupando la información de la capa anterior

mediante diversos criterios, reduciendo aún más el número de parámetros. Funcionan de forma

similar al resto de capas, pero en esta ocasión cada neurona de la capa anterior sólo puede

servir de input para una neurona de la capa siguiente. Por ejemplo, si tomamos un receptive

field de (2, 2), el output de cada conjunto de cuatro neuronas formando un cuadrado únicamente

servirá como input de una neurona. De esta manera reducimos el tamaño de la red a la mitad,

(L/2, L/2). Además, las neuronas de estas capas suelen tener un comportamiento muy simple;

los casos más comunes son la max pooling layer, cuyo output es igual al mayor de sus inputs, y

la average pooling layer, cuyo output es el valor promedio de sus inputs.

Las capas de la red pueden tener a su vez subcapas, denominadas filtros, que reciban la

información de la misma capa anterior y apliquen pesos y biases diferentes. De esta manera,

logramos capas tridimensionales de la forma (L,L, f), donde f es el número de filtros. Un

mayor número de filtros permite la detección de más caracteŕısticas mejorando el funcionamiento

de la red. Además, estas capas se pueden superponer una tras otra, y cada filtro utilizará la

información de las l · l ·f neuronas anteriores. Al finalizar es conveniente añadir una última capa

fully connected antes de la capa de output para filtrar el resultado. Vemos una red que une todas

las ideas anteriores en la figura (2b).

(a)

(b)

(c)

Figura 2: (a) Ejemplo de red neuronal fully connected con varias capas intermedias, capa de input y de

output. (b) Ejemplo de red con una capa convolucional, una pooling layer, una capa fully connected y

capa de output. (c) Concepto de campo receptivo en una red convolucional. En la imagen, las neuronas

de la primera capa presentan un campo receptivo de (5,5). Imágenes editadas, fuente original: [2].

capa de input a los lados con ceros hasta poder crear una nueva capa de tamaño (L,L). Esto será lo que hagamos

en el trabajo.
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En el proceso de construcción de una red neuronal se deben fijar algunas caracteŕısticas como

el número de capas, el número de neuronas por capa, el tamaño del receptive field... Todas estas

cantidades reciben el nombre de hiperparámetros (frente a los pesos y biases, que se denominan

parámetros), se establecen desde el principio e influyen de forma clara en el funcionamiento de

la red. Se requiere por tanto un estudio previo para determinar los valores que pueden tomar.

En general el funcionamiento de las redes es muy sensible a los valores seleccionados, aunque

en nuestro caso lograremos buenos resultados para casi cualquier combinación. Los comentados

hasta ahora no son los únicos hiperparámetros, veremos más a lo largo del trabajo.

3.3. Entrenamiento

Nos fijamos primero en los datos que debe ser capaz de interpretar la IA. La información de

entrada es un conjunto de L ·L spines en el caso bidimensional, y L ·L ·L en el tridimensional.

Al trabajar con redes fully connected, los spines se introducen en la red como un único vector de

datos de dimensión (L · L, 1) o (L · L · L, 1) respectivamente. Para ello se toma la configuración

de Ising y se construye un vector concatenando las filas una detrás de otra. De esta manera,

las redes neuronales carecen en principio de información topológica acerca de la red de spines,

salvo en la dirección horizontal. De ser relevante, esta información deberá adquirirla durante

el proceso de aprendizaje. Por otro lado, en las redes convolucionales se introduce la red de

Ising bidimensional completamente estructurada, de forma que la información topológica está

presente desde el principio y la red neuronal se puede centrar en el comportamiento local de los

spines.

Los principios que rigen el proceso de entrenamiento de una IA para lograr predicciones

correctas son relativamente simples. Partimos de una red formada por neuronas conectadas,

en las que los pesos y bias toman valores iniciales al azar. Tomamos una configuración y la

introducimos en el sistema. Obtenemos una predicción a la salida que distará del resultado real

que esperamos de la red, y variamos ligeramente los parámetros para lograr que el output se

aproxime un poco más a dicho resultado. Repetimos este procedimiento varias veces para todas

las configuraciones de entrenamiento hasta que obtenemos unas predicciones que consideramos

correctas. El problema que se presenta en este proceso es el inmenso tamaño del espacio de fases

de la red, que alcanza con facilidad las decenas o cientos de miles de parámetros dificultando

el proceso de aprendizaje. Los largos periodos de tiempo necesarios para llevar a cabo el entre-

namiento han sido históricamente el principal lastre para el desarrollo de IAs, aunque se han

desarrollado multitud de estrategias que comentaremos a continuación.

3.3.1. Función coste

Para lograr el aprendizaje debemos definir en primer lugar una función que nos permita

cuantificar el rendimiento de la red. Esta es la función coste C(w, b), que nos da un valor

numérico de la desviación del output aR(w, b) de la red respecto del valor esperado y. Se calcula

con el output real y el esperado, y por tanto es función del conjunto de pesos y biases de la red,

lo que nos permite determinar con relativa facilidad cómo debemos variar estos para disminuir
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el valor final sin más que determinar el gradiente del coste ∇C(w, b) frente a cada peso y bias

individual. En problemas de clasificación la función coste más utilizada es la cross-entropy :

C = − 1

M

M∑
x=1

[y · ln a + (1− y) · ln(1− a)] (3)

Las operaciones con términos vectoriales deben entenderse elemento a elemento, i.e. ln(1− a) ≡
(ln(1− a1), . . . , ln(1− aN )), siendo N el número de neuronas de la última capa. M es el núme-

ro de configuraciones usadas en el entrenamiento, y la suma se da sobre todos sus outputs. Las

propiedades principales de esta función y su conveniencia se discuten en el anexo 1. Independien-

temente de la función utilizada, el cálculo de las derivadas resulta muy complejo por la elevada

cantidad de parámetros y la propia estructura de la red; basta darse cuenta de que un peso cual-

quiera en una capa intermedia influye en la función coste a través de todas las neuronas de las

capas posteriores. Este problema encuentra fácil solución mediante la aplicación del algoritmo

de backpropagation, que nos da una receta sencilla para el cálculo del gradiente recorriendo la

red desde la última capa hasta la primera (de ah́ı su nombre), y para la actualización de los

parámetros.

Otro problema reseñable es que al definirse la función coste sobre la totalidad de las confi-

guraciones utilizadas en el entrenamiento, necesitamos calcular todos los outputs y compararlos

con los reales antes de actualizar los parámetros. Esto puede resultar muy exigente desde el

punto de vista computacional si trabajamos con una gran cantidad de configuraciones o redes

relativamente grandes, ralentizando en gran medida el entrenamiento. La estrategia natural para

combatir este problema consiste en asumir que el gradiente de la función coste calculado con

la totalidad de las configuraciones es muy cercano al gradiente que podemos calcular haciendo

uso de un subconjunto de las mismas. Naturalmente, cuanto mayor sea el subconjunto más se

parecerán los gradientes, pero más lento será el proceso de entrenamiento. El tamaño de este

subconjunto se conoce como mini-batch, y es un hiperparámetro de la red. Esta aproximación

al problema se conoce como stochastic gradient descent, y se discute en el anexo 2.

3.3.2. Overfitting

La existencia de una función coste dependiente de los parámetros de la red nos permite

también afrontar el problema del overfitting comentado anteriormente. Una gran cantidad de

parámetros, lejos de dotar a la red de una mayor capacidad predictiva al aumentar su compleji-

dad, puede llevar fácilmente a la identificación errónea de patrones, de forma que las predicciones

no se basen en caracteŕısticas generales del modelo de Ising sino en particularidades del conjunto

de configuraciones de entrenamiento. Podemos entenderlo como un efecto análogo a los proble-

mas que surgen al ajustar polinomios de diverso grado a un conjunto de datos experimentales.

Con un mayor grado logramos más precisión en el ajuste, pero comprometemos la capacidad

de predicción del resultado a obtener en otras medidas fuera del conjunto inicial de datos, y

con toda probabilidad estaremos incluyendo el ruido de la medida. Trasladado al modelo de

Ising, un indicador general que puede aportar información útil en la predicción de la fase es la

magnetización, y es deseable que la red sea capaz de identificarla como tal. Sin embargo, si la
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red basa sus predicciones en otras caracteŕısticas como si la configuración comienza con un spin

positivo o negativo, o si los grupos de spines orientados en la misma dirección tienden a ser más

anchos que altos (ambas cosas podŕıan ocurrir en suficientes configuraciones entre los datos de

entrenamiento como para que la red las identificara como factores), entonces las predicciones de

la red se veŕıan afectadas y perdeŕıan validez.

Existen varias aproximaciones posibles para combatir este problema. Por un lado, podemos

aumentar el número de configuraciones que utilizamos para entrenar la red, de forma que las

posibles peculiaridades de configuraciones concretas se vean diluidas y no afecten en gran medida

al resultado final. Por otro lado, resulta conveniente reducir el número de parámetros para

obligar a la red a generalizar su comportamiento. Podemos lograrlo reduciendo el tamaño de

la red, pero esto puede ser muy perjudicial para su rendimiento, y es preferible recurrir a otra

técnica llamada ”regularización”. Consiste en añadir un término adicional a la función coste

original C0 que penalice la existencia de una gran cantidad de parámetros y los posibles valores

abultados que puedan tomar, C(w, b) = C0(w, b) + λ reg(w, b). El término de regularización

viene pesado por el hiperparámetro de regularización λ; un valor elevado de λ reduce el número

de parámetros útiles, y viceversa. Esto puede ir en detrimento del correcto funcionamiento de la

red, y por tanto deberemos ser cuidadosos a la hora de seleccionar su valor. Este nuevo término

de regularización puede tomar distintas funciones, y puede incluir o no los biases. En nuestro

caso utilizaremos una función L2 = 1
2M

∑
w w

2 y no incluiremos los biases. Discutimos estas

elecciones en el anexo 1. La función coste resulta finalmente:

C = − 1

M

M∑
x=1

[y · ln a + (1− y) · ln(1− a)] +
λ

2M

∑
w

w2 (4)

La última estrategia útil para evitar el overfitting consiste en detener el entrenamiento en el

momento adecuado, lo que se denomina early stopping. Nos interesa que la función coste tome

un valor final muy pequeño para asegurar que las predicciones son correctas, pero si exigimos un

valor demasiado pequeño lo más probable es que la red comience a aprender las particularidades

de los datos de entrenamiento para reducirlo, perjudicando su capacidad de generalización.

Utilizaremos diferentes estrategias para abordar este problema.

4. Modelo de Ising

Hemos centrado el trabajo en la transición de fase que se da en el modelo de Ising en una red

cuadrada a partir de dos dimensiones. Resulta ideal para este estudio por su simpleza y el amplio

conocimiento disponible sobre su comportamiento para diferentes temperaturas. Describimos a

continuación brevemente el modelo y sus caracteŕısticas principales. El cálculo y los detalles de

la simulación del modelo de Ising se discuten en el anexo 5.

El modelo de Ising consiste en un conjunto de spines {σα} que pueden tomar dos valores

diferentes, +1 y −1, dando lugar a una configuración C(σα) caracterizada por una enerǵıa:

Hα = −
∑
〈i,j〉

Jijσiσj −H
∑
i

σi (5)
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En nuestro caso no aplicaremos campo magnético, y por tanto prescindimos del segundo término.

La suma del primer término se realiza sobre todas las posibles parejas de spines 〈i, j〉 de la red,

y viene pesada por un término Jij que marca la intensidad de la interacción. En el trabajo nos

ceñiremos al caso en el que la interacción se da únicamente entre primeros vecinos, y además

es constante para todas las parejas. En caso de ser positiva, favorece energéticamente que los

spines se alineen, y da lugar a un comportamiento ferromagnético. Si es negativa, favorece un

comportamiento antiferromagnético. A lo largo del trabajo haremos uso de ambos. Esta enerǵıa

fija la probabilidad de que aparezca una configuración determinada C(σα) a cierta temperatura

T según la distribución de Boltzmann:

P ({σα}, T ) =
1

Z(T )
e
− Hα
kBT =

1

Z(T )
e−βHα (6)

De ahora en adelante utilizaremos la temperatura y β = (kBT )−1 indistintamente, donde kB es

la constante de Boltzmann, aunque tomaremos siempre kB = 1. El término Z(T ) representa la

función de partición del sistema a cierta temperatura, Z(T ) =
∑
{σα} exp(−βHα), donde la suma

se da sobre todas las posibles configuraciones del sistema. Definimos también la magnetización

de una configuración como la suma de sus spines, m = 1
N

∑
j σj , que es el parámetro de orden

del modelo ferromagnético. En la fase desordenada, que se da en altas temperaturas, su valor

esperado es 0. La naturaleza del modelo implica que los spines tienen dos orientaciones posibles

que dan lugar a dos fases ordenadas, una en la que todos los spines toman valor +1, y otra

en la que toman −1. Si bien ambas son simétricas en sus propiedades, son diferentes desde

el punto de vista de la red neuronal, y deberemos asegurarnos de que en las configuraciones

utilizadas para entrenamiento y predicción estén presentes ambos comportamientos. En el caso

antiferromagnético es sencillo comprobar que el valor de este observable será prácticamente nulo

para todas las temperaturas. En este caso utilizamos la staggered magnetization, esto es, la

magnetización de las dos subredes que se forman tomando como vecinos los spines en diagonal

en lugar de los adyacentes.

En ambos casos, la transición de fase en el ĺımite termodinámico (esto es, para redes infi-

nitas) se produce cuando el valor esperado de los observables respectivos deja de ser nulo, y se

trata de una transición de segundo orden. Nosotros trabajaremos con redes finitas imponiendo

condiciones de contorno periódicas para suplir en parte esta carencia. En el caso bidimensional

y con J = ±1, Onsager [4] demostró que la transición de fase se da en β2dc ' 0,44069. Nues-

tro objetivo en el trabajo será lograr predecir esta temperatura, y tomaremos este valor como

referencia de ahora en adelante.

4.1. Longitud de correlación

Otra propiedad fundamental de la transición de fase del modelo de Ising, que estudiaremos

únicamente en el caso bidimensional, es la divergencia de ciertos observables que se da también

en el ĺımite termodinámico cuando alcanzamos Tc, como la susceptibilidad χ, el calor espećıfico

Cv o la longitud de correlación ξ. Condensaremos su estudio únicamente en la longitud de

correlación, que caracteriza el tamaño de los clusters que forman los spines de mismo signo a

diferentes temperaturas. Formalmente, definimos la correlación entre dos spines i, j cualesquiera
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de la red según la expresión3:

C(i, j) = 〈σiσj〉 − 〈σi〉 〈σj〉 (7)

Este valor depende únicamente de la distancia entre spines, C(i, j) = C(|ri − rj|) ≡ C(rij). Las

correlaciones decaen exponencialmente con dicha distancia, lo que nos permite definir la longitud

de correlación ξ(T ) según la expresión:

C(rij) ∝ e
−

|rij|
ξ(T ) (8)

Es decir, ξ(T ) marca la distancia en la que las correlaciones decaen un factor e. Buscaremos

entrenar una red neuronal capaz de predecir ξ(T ) a partir de una configuración. Esta longitud

de correlación diverge en Tc según ξ(T ) ∝ |T − Tc|−ν .

Dado que las correlaciones son únicamente función de la distancia entre spines, podemos

realizar los promedios necesarios sobre todas las posibles parejas de spines en una configuración

determinada. La importancia de este hecho radica en que partiendo de una única configuración,

y aplicando el tratamiento matemático adecuado, obtenemos un único valor para la longitud de

correlación, siempre el mismo4. Al entrenar la red neuronal nos aseguramos de que existe una

relación directa, aunque compleja, entre la configuración y el output esperado.

Parte II

Resultados

5. Predicción de fase ordenada y desordenada

Nuestro primer objetivo es entrenar a la red para que, dada una configuración, sea capaz

de distinguir en qué fase se encuentra. Esto se traduce en que la red debe tener una capa de

entrada de L ·L neuronas y una capa de salida con dos neuronas, una correspondiente a la fase

ordenada y otra a la desordenada. Dada una configuración, la predicción de la red será aquella

cuya neurona tome un mayor valor a la salida. Utilizamos una red con dos capas intermedias, la

primera con 60 neuronas y la segunda con 30. Considerando un bias para cada neurona (excepto

las del input) y un peso entre cada par de neuronas de capas adyacentes, tenemos un total de

L · L · 60 + 1952 parámetros. En caso de una red t́ıpica con L = 40, trabajamos con 97952

parámetros.

3Utilizamos esta expresión y no únicamente C(i, j) = 〈σiσj〉 porque con esta última se producen divergencias

en la longitud de correlación a baja temperatura, cuando todos los spines se orientan en la misma dirección.

En este caso, C(i, j) = 1 ∀ i, j, y por tanto ξ(T ) → ∞ por la expresión (8). En cambio, con nuestra ecuación,

C(i, j) = 0 ∀ i, j, porque a bajas temperaturas 〈σiσj〉 ' 〈σi〉 〈σj〉, obteniendo finalmente ξ(T )→ 0.
4En realidad el cálculo de la longitud de correlación implica un ajuste exponencial según la relación (8), y por

tanto su determinación conlleva cierto error inherente al método computacional utilizado para ello. En nuestro

caso el ajuste se realiza mediante la función optimize.curve fit de la libreŕıa scipy de Python.
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5.1. Entrenamiento y predicción

Es importante entrenar a la red con una gran cantidad de configuraciones, y que éstas sean

representativas del comportamiento que queremos enseñar. En nuestro caso esto se consigue

tomando configuraciones en los ĺımites T → 0 y T →∞, donde sabemos con seguridad que son

ordenadas y desordenadas, respectivamente. Si nos acercamos demasiado a la temperatura de

transición en la búsqueda de configuraciones, se diluirán las caracteŕısticas propias de estas fases

y adulteraremos el entrenamiento, debido principalmente a que no podremos tener siquiera la

seguridad de que la fase asignada sea la adecuada5.

Utilizaremos para el entrenamiento configuraciones correspondientes a diferentes β en los

rangos [0,1, 0,3] y [0,8, 1,0] a intervalos de ∆β = 0,02. Se encuentran por tanto muy alejados del

valor cŕıtico βc ' 0,44. Para cada temperatura generaremos 1000 configuraciones, dando lugar

finalmente a un total de 20000. Como hemos comentado anteriormente, debemos asegurarnos de

que en la fase ordenada aparecen configuraciones con los spines apuntando en ambas direcciones.

Para ello, recorreremos el rango de temperaturas dos veces con fases ordenadas apuntando en

dirección contraria, dando lugar a 40000 configuraciones.

Con estos datos podemos pasar a entrenar la red aplicando los procedimientos descritos en la

primera sección. Como hiperparámetros tomamos η = 0,5 para cada paso de actualización de los

parámetros por descenso de gradiente, y λ = 10 para la regularización L2. Tomaremos un tamaño

de mini-batch de 10 configuraciones. Estas elecciones, si bien no son completamente arbitrarias,

tienen poca influencia en el rendimiento de la red; otras elecciones de los parámetros no producen

cambios sensibles ni en el resultado ni en la velocidad. Esto se debe principalmente a la simpleza

del modelo, que da lugar a convergencias muy rápidas del proceso logrando una precisión del

100 % de aciertos para los datos de entrenamiento en unas pocas épocas, en ningún caso más de

diez. Para evitar el overfitting, hemos tomado como criterio que el entrenamiento termine tras

la segunda época consecutiva en la que la red clasifique correctamente todas las configuraciones

de entrenamiento. De esta forma aseguramos que es capaz de realizar las predicciones, sin dar

tiempo a sobreajustar la red.

Una vez entrenada la red, necesitamos una gran cantidad de configuraciones en torno a

βc para llevar a cabo la predicción. En general utilizaremos valores de β entre [0,4, 0,45], con

∆β = 0,002. Para cada temperatura generamos 1000 configuraciones, dando lugar a un total

25000.l Al igual que en el caso anterior, duplicamos esta cantidad para obtener 50000. Con estas

configuraciones realizamos la predicción de la siguiente manera: introducimos en la red todas

aquellas configuraciones correspondientes a la misma temperatura, y realizamos un promedio

con todas las predicciones de cada neurona por separado6. Repitiendo este procedimiento para

todas las temperaturas podemos representar una gráfica con dos series de datos correspondientes

a ambas predicciones. Asignaremos la transición de fase al punto de corte entre ambas series.

5En un sistema finito no existe una frontera ńıtida para la transición, sino que en cierto rango de temperaturas

aparecen configuraciones muy dif́ıciles de clasificar, que dan lugar a magnetizaciones medias pequeñas pero dife-

rentes de 0 para temperaturas mayores que la cŕıtica. Por tanto, asignar como único criterio para la clasificación

que la configuración haya aparecido a una β mayor o menor que la cŕıtica no resulta válido.
6Es decir, promediamos por un lado las predicciones de la neurona correspondiente a la fase desordenada, y

por otro las de la desordenada.
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5.2. Redes fully connected

Se muestran en la figura (3) los resultados para una red de Ising ferromagnética con L = 40,

que sitúan la transición de fase en βc = 0,426. Vemos que en un rango relativamente amplio de

β conviven configuraciones ordenadas y desordenadas, según la red neuronal. Estos resultados

tienen bastante variabilidad en la tercera cifra decimal para diferentes entrenamientos de la red.

Se observan dos ĺıneas casi superpuestas porque cada una de ellas corresponde a una orientación

de spines diferente en la fase ordenada. Vemos que prácticamente no hay efectos de histéresis y

el sistema es capaz de aprender las fases independientemente de la orientación de los spines.

Figura 3: Resultados para las predicciones del modelo de Ising ferromagnético con L = 40 haciendo uso

de una red fully connected. Se muestra el output promedio de cada neurona por separado frente a β. (a)

Utilizamos las configuraciones generadas con β ∈ [0, 4, 0, 45] para predecir con precisión la transición de

fase, que se sitúa en βc = 0, 426. (b) Mostramos una imagen general de las predicciones de la red en el

rango β ∈ [0,1, 1,0] con ∆β = 0,05, para poner en contexto las gráfica en (a) y mostrar la precisión de

las predicciones.

Si bien el valor teórico se sitúa en 0,4406, hay que tener en cuenta que para una red de

tamaño finito no existe una frontera clara entre fases y la magnetización promedio deja de ser

nula para valores de β más pequeños. Se trata por tanto de un comportamiento esperable, que

se debeŕıa corregir para redes de mayor tamaño. Realizamos ahora el mismo experimento con

redes de Ising de diversos tamaños; los resultados se muestran en la figura (4). Vemos que existe

poca variabilidad en la determinación de diferentes valores de βc para una misma L dando lugar

a errores muy pequeños en el ajuste, y que aparece una clara tendencia ascendente conforme

nos acercamos al ĺımite termodinámico. Realizando un fit lineal obtenemos βc = 0,4362±0,0012

cuando L→∞, que se desv́ıa del valor teórico en poco más de un 1 %. Se observa pues que se

reproduce el comportamiento esperado con L.

En definitiva, vemos que la red es capaz de predecir correctamente la transición de fase. Po-

demos indagar ahora en su funcionamiento interno para intentar explicar este comportamiento.

Existen dos caracteŕısticas principales en las que se puede fijar la red para realizar sus predic-

ciones. Por un lado, puede estar aprendiendo la magnetización de la red de Ising y prediciendo

a partir de ésta. Por otro, puede codificar también las relaciones entre spines que caracterizan

el orden del modelo y también determinan la transición de fase. Centrándonos en la magneti-

zación, vemos en la figura (5) que no es el único criterio para determinar las predicciones de la
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Figura 4: Se representan las predicciones de la transición de fase frente a 1/L, lo que nos permite

extrapolar las tendencias al ĺımite termodinámico, cuando 1/L = 0. Se han utilizado redes con L = 64, 48,

40, 32, 24, 20 y 16. Los valores en verde muestran la βc promedio, obtenida a partir de cinco entrenamientos

diferentes de la red para cada L, que se muestran en gris. La desviación estándar no se muestra en la

gráfica porque en la mayoŕıa de ocasiones es más pequeña que el tamaño del punto. El ajuste lineal arroja

un valor en el ĺımite termodinámico de βc = 0,4362± 0,0012.

red neuronal, aunque ambas estén claramente relacionadas. Para ello basta fijarse en la anchura

de la parte de transición, indicando que la red asigna las mismas predicciones para redes con

magnetizaciones que difieren hasta en 0, 2.

Figura 5: En el eje vertical se representa la diferencia de outputs entre la neurona ordenada y desordenada

frente a la magnetización de la configuración. Por tanto, todo valor superior a 0 indica que la configuración

se considera ordenada, y menor que 0, desordenada. Se observa inmediatamente que el proceso no es un

simple aprendizaje de la magnetización del sistema.

Este comportamiento tiene un problema fundamental, porque pueden existir configuracio-

nes con magnetización nula que por su enerǵıa puedan corresponder a fase ordenada. Vemos un

ejemplo en la figura (6a). Recordemos que la enerǵıa es mayor cuantas más fronteras entre spines

de distinto signo hay, y a mayor enerǵıa, menor probabilidad de aparecer a temperaturas bajas.

Por tanto, es razonable asumir que una configuración con enerǵıa muy baja se debeŕıa consi-

derar correspondiente a fase ordenada, donde la probabilidad de que aparezca es infinitamente
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mayor que en la fase desordenada al competir con una cantidad mucho menor de configuracio-

nes. Sin embargo, esto no ocurre para las configuraciones mostradas: mientras que la segunda

configuración se asigna correctamente a la fase ordenada, la primera se asigna a la desordenada.

Esto apunta a una fuerte dependencia con la magnetización en redes del tipo fully connected.

Si bien no es un comportamiento que podamos calificar como incorrecto, siembra dudas sobre

otras predicciones con casos similares, pese a que no representa un gran problema dada la baja

probabilidad de este tipo de configuraciones. Estos resultados también apuntan a que, en caso

de existir, el conocimiento de la topoloǵıa de la red se da de forma global; si la red neuronal

valorase el orden general de la configuración según el orden local en pequeñas zonas de la misma

(grandes conjuntos de spines correctamente ordenados que dan lugar a magnetizaciones no nulas

en amplias zonas de la red), la configuración (6a) se debeŕıa considerar ordenada. En cualquier

caso este comportamiento es esperable debido a que las configuraciones para el entrenamiento

se generan en temperaturas en las que el orden local no es tan importante7, y por tanto en

principio la red no es capaz de aplicar este criterio.

(a) (b)

Figura 6: Configuraciones del modelo de Ising con L = 40. Cada color corresponde a una orientación

de spin. Ambas configuraciones tienen la misma enerǵıa, correspondiente a 80 fronteras entre spines

de diferente signo (condiciones de contorno periódicas). Sin embargo, la configuración (a) presenta una

magnetización global nula, mientras que la configuración (b) tiene una magnetización muy cercana a 1.

5.2.1. Relaciones entre spines. Ising antiferromagnético

Para estudiar cómo aprende la red las relaciones entre spines resulta muy útil analizar el

comportamiento con un sistema antiferromagnético. Sabemos que también existe una transición

de fase que no depende del signo de J y por tanto es la misma que en el sistema ferromagnético.

En este caso la magnetización es prácticamente nula para todo el espectro de temperaturas,

y como hemos visto el parámetro de orden más adecuado es la staggered magnetization, la

magnetización de las subredes del sistema. Centraremos el estudio en las propiedades de una

red de Ising antiferromagnética con L = 40, utilizando un método completamente análogo al

caso ferromagnético. Los resultados obtenidos se muestran en la figura (7). Se comprueba que el

7Estos grandes conjuntos de spines ordenados son propios de las regiones de temperaturas cercanas a la

transición de fase, en las que la longitud de correlación diverge y las fluctuaciones aumentan mucho su tamaño.
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sistema es capaz de aprender a partir de los datos de entrenamiento y obtener una predicción para

la transición de fase, que se sitúa en βc = 0,426, el mismo valor que en el caso ferromagnético.

Vemos también que la relación entre las predicciones y la media de staggered magnetizations

de ambas subredes es muy similar al caso anterior, situándose la transición en unos valores

parecidos de la magnetización y con similar anchura.

(a) (b)

Figura 7: Resultados para las predicciones del modelo de Ising antiferromagnético con L = 40 haciendo

uso de una red fully connected. (a) Predicción de la transición de fase en función de β, que se da en

β = 0, 426. (b) Diferencia entre outputs ordenado y desordenado en función de la media de las staggered

magnetizations de ambas subredes para cada configuración.

Es importante notar que el cálculo de la staggered magnetization no es sencillo para la

red: debe promediar por separado aquellos spines cuya suma de ambos términos i + j de sus

coordenadas (i, j) dé lugar a números pares e impares. A esto nos referimos cuando hablamos

de la topoloǵıa de la red, a ser capaz de determinar la combinación de spines que hace aflorar el

orden correcto del modelo. Aunque la gráfica (7b) parece indicar que este conocimiento śı se da al

lograr determinar correctamente la staggered magnetization, es posible (aunque improbable) que

sea consecuencia únicamente de la aplicación de un criterio rudimentario de elevada alternancia

entre spines, lo que podŕıa dar lugar a esta correlación entre predicciones y magnetizaciones sin

que la red llegue a establecerla como criterio.

Para profundizar en el funcionamiento de la red, utilizamos las configuraciones mostradas

en (8). La ventaja de utilizar el modelo antiferromagnético reside en que la fase ordenada tiene

una estructura caracteŕıstica de tablero de ajedrez, como se muestra en la figura (8a). Cuando

consideramos este tipo de estructuras como un único vector, que es lo que se introduce en la

red neuronal, nos encontramos con una sucesión de spines cuyas direcciones se van alternando

casi a la perfección8. En caso de que la red no fuera capaz de aprender las relaciones verticales

entre los spines, toda configuración con una elevada alternancia de spines se debeŕıa considerar

ordenada, pues se parecen mucho a la configuración completamente ordenada. La configuración

(8b) muestra una alternancia perfecta de spines al construir el vector, pero vemos claramente que

la configuración en dos dimensiones no corresponde a una fase ordenada, sino que en vertical

8En realidad son completamente alternos salvo en las uniones entre dos filas, en las que se juntan dos spines

que apuntan en la misma dirección.

16



todos los spines apuntan en una misma dirección y dan lugar a un alto valor de la enerǵıa.

Además, la staggered magnetization es nula en ambas subredes, por lo que también según este

criterio la predicción debeŕıa corresponder a fase desordenada. En efecto, la red acierta en su

predicción y clasifica correctamente la configuración como desordenada, indicando que la simple

alternancia entre spines no determina completamente las predicciones de la red, sino que se

asignan más criterios.

Por último, la configuración (8c) corresponde a una fase ordenada en la que la sección inferior

se ha desplazado una spin hacia la derecha, dando lugar a una configuración cualitativamente

análoga a la mostrada en (6b) para el caso ferromagnético. Al igual que antes, presenta por un

lado una staggered magnetization nula, lo que podŕıa indicar una fase desordenada, pero por otro

tiene una enerǵıa muy pequeña, propia de las configuraciones ordenadas; ambas propiedades

compiten. La predicción para esta configuración corresponde a una fase desordenada, lo que

indica que la red es capaz de calcular la staggered magnetization, con las dificultades que esto

conlleva, y además la aplica como criterio principal para sus predicciones. En este caso el uso de

la staggered magnetization conlleva necesariamente cierto conocimiento de la topoloǵıa de la red

de spines para determinar cuáles de estos deben sumarse entre śı. No obstante, al igual que en

el caso ferromagnético, este conocimiento de las magnetizaciones es global y no parece valorar

las relaciones entre spines adyacentes, únicamente es capaz de separarlos en dos grandes grupos

para realizar la suma, es un conocimiento global.

(a) (b) (c)

Figura 8: Configuraciones para el modelo de Ising antiferromagnético bidimensional. (a) Configuración

completamente ordenada. (b) Configuración ordenada en la que las filas pares se han desplazado una

unidad hacia un lado, de forma que cada spin ya no está rodeado únicamente de spines contrarios, sino

que dos de sus vecinos tienen su misma orientación. Nótese que esto da lugar a una staggered magnetization

nula para ambas subredes. (c) Configuración ordenada, en la que la mitad inferior se ha desplazado un

spin hacia la derecha. Al igual que en (b) la staggered magnetization es nula en ambas subredes, pero la

configuración tiene una enerǵıa mucho menor.

5.2.2. Disminución de los parámetros. Redes estranguladas

Podemos realizar un experimento interesante consistente en estudiar qué ocurre cuando tra-

bajamos con redes extremadamente simples, con muy pocos parámetros. De esta forma, hacemos

aflorar las caracteŕısticas más simples del modelo que nos permiten realizar las predicciones. En
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este apartado construimos una red neuronal con una única capa intermedia de 3 neuronas (en

total, 4811 parámetros) y llevamos a cabo el mismo proceso de entrenamiento que en el caso

anterior para una red de Ising con L = 40. Para asegurar que trabajamos con el menor número

de parámetros posibles, utilizamos un hiperparámetro de regularización extremadamente gran-

de, λ = 1000. Los resultados para el caso ferromagnético se muestran en la figura (9a). Vemos

que somos capaces de predecir una transición, pero basada únicamente en la magnetización

de la configuración, como indica la anchura reducida de la ĺınea formada por las predicciones.

Se observa además que para diferentes orientaciones del spin en la fase ordenada el output es

sensiblemente diferente, lo que indica que la red ni siquiera es capaz de generalizar su compor-

tamiento a ambas orientaciones, aunque las predicciones finales sean correctas. Por último, en

ĺınea con los apartados anteriores, la red neuronal predice incorrectamente que configuraciones

con magnetizaciones de en torno a 0, 5 corresponden a la fase desordenada.

(a) (b)

Figura 9: Predicciones de la red neuronal simple para el modelo de Ising con L = 40. (a) Caso ferro-

magnético. Diferencia entre outputs de las neuronas ordenada y desordenada frente a la magnetización

de la configuración. Inset: predicción para la transición de fase, que se sitúa en βc = 0,435. (b) Caso anti-

ferromagnético. A la izquierda se muestran las predicciones frente a las staggered magnetizations de cada

configuración. Aparecen por tanto dos puntos por configuración. Inset: predicción para la transición de

fase, que se sitúa en βc = 0,432. A la derecha se muestran las predicciones frente a la media de staggered

magnetizations de cada configuración.

Podemos realizar un procedimiento igual al anterior con el caso antiferromagnético. Utili-

zando los mismos parámetros, obtenemos los resultados que se muestran en la figura (9b). Si

bien son similares a los del caso ferromagnético, destaca que en esta ocasión las predicciones

dependen claramente del valor medio de las staggered magnetizations de cada configuración,

lo que requiere cierto conocimiento de la topoloǵıa de la red para calcular correctamente las

magnetizaciones de cada subred, y después un cálculo adicional para determinar la media. Este

cálculo no es sencillo, y ejemplifica la capacidad de las redes neuronales fully connected, que

incluso con muy pocos parámetros son capaces de obtener información topológica acerca de la

estructura general de los datos.

5.3. Redes convolucionales

Realizaremos ahora el mismo experimento con redes convolucionales. Como hemos comen-

tado anteriormente, esto nos permite estudiar las configuraciones desde un punto de vista local,
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es decir, fomentando la búsqueda de relaciones entre spines cercanos que permitan caracterizar

el orden de la red de Ising a un nivel global, aprovechando que se conoce la topoloǵıa de la

configuración. Esto implica que la magnetización total de la configuración ya no debeŕıa ser el

principal indicador del orden de la red, porque ésta no es capaz de calcularla de un modo global.

En pocas palabras, la red debe aprender si el sistema está o no ordenado a partir de la presencia

o ausencia de orden en zonas locales.

Para construir las redes convolucionales utilizamos Tensorflow, que implementa una gran

cantidad de herramientas propias del aprendizaje automático en una libreŕıa de Python. Los

fundamentos básicos de las funciones incluidas son los mismos que los explicados hasta ahora,

y el funcionamiento de la red es completamente análogo al caso anterior. En este apartado

utilizaremos una red con dos capas convolucionales intermedias, cada una de ellas con cuatro

filtros y un receptive field de (3, 3), compuestas por neuronas Leaky ReLU. A continuación

introducimos una average pooling layer que promedia los outputs de la capa anterior con un

receptive field de (2, 2), lo que reduce el tamaño de las matrices a la mitad. Añadimos después

una capa fully connected de 30 neuronas ReLU, y finalmente obtenemos el output de una capa

con dos neuronas softmax. En total, para una red de Ising con L = 40 tenemos 48280 parámetros,

aproximadamente la mitad que en el caso anterior. Respecto al resto de hiperparámetros, no

incluimos regularización9, y utilizamos un tamaño de mini-batch de 32 configuraciones.

(a) (b)

Figura 10: Resultados para las predicciones del modelo de Ising ferromagnético haciendo uso de una red

convolucional. (a) Predicciones de la transición de fase frente a 1/L. Se han utilizado redes con L = 64,

48, 40, 32, 24 y 20. El ajuste lineal arroja un valor en el ĺımite termodinámico de βc = 0,4414± 0,0008.

Se muestra en el inset una de las predicciones con L = 40, dando lugar a βc = 0,437. (b) Diferencia de

outputs ordenado y desordenado frente a la magnetización de la configuración para una red de Ising con

L = 40.

Mostramos en la figura (10a) los resultados obtenidos para una red de Ising con diferentes

valores de L. Cabe resaltar que no hemos incluido resultados con L = 16, puesto que el diseño

de la red neuronal da lugar a un total de 7960 parámetros, demasiado pocos como para obtener

resultados válidos10. Observamos que la predicción de fase se realiza de forma correcta en todos

9Las redes convolucionales muestran una notable resistencia al overfitting por su propia naturaleza, que pro-

media su comportamiento sobre toda la red. Además, partimos de un reducido número de parámetros.
10En principio nada impide utilizar redes con distinto número de neuronas y capas, puesto que el número de
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los casos, obteniendo un valor en el ĺımite termodinámico de βc = 0, 4414± 0,0008, que incluye

el valor teórico de βteorc = 0,4406 dentro del intervalo de confianza. Se trata por tanto de un

resultado muy satisfactorio.

La diferencia principal frente a los resultados anteriores aparece en la imagen (10b), donde se

ensancha la zona de transición mostrando que la magnetización pierde importancia para las pre-

dicciones. Destaca la gran cantidad de configuraciones con magnetizaciones elevadas, por encima

de 0,6, que se predicen como desordenadas. Es un umbral bastante mayor que el obtenido para

redes fully connected (ver figura (7)), lo que explica el desplazamiento de la beta cŕıtica frente

a resultados anteriores. Es dif́ıcil justificar que configuraciones con magnetizaciones tan eleva-

das se clasifiquen como desordenadas (pese a que esto puede ocurrir durante las simulaciones,

recordemos que en fase desordenada todas las configuraciones son equiprobables), y podemos

considerarlo un mal comportamiento, que se corrige no obstante conforme aumenta L al hacerse

más abrupta la transición. Pod́ıamos esperar este resultado, puesto que por su estructura la red

convolucional es incapaz de utilizar observables que se calculan de forma global. Vemos además

por la anchura de la franja de transición que la magnetización deja de ser un factor determinante

en la predicción final. Aparecen también algunas configuraciones con valores muy bajos de la

magnetización que se consideran ordenadas, una propiedad que permite a la red clasificar correc-

tamente las configuraciones mostradas en la figura (6), situándolas ambas en la fase ordenada

pese a valor nulo de la magnetización de la primera de ellas. En definitiva, el comportamiento

de las redes convolucionales resulta en cierto modo complementario al anterior, centrándose en

las relaciones locales y no en los parámetros de orden.

Lo mismo ocurre en el caso antiferromagnético, que mostramos en la figura (11). Observamos

que la transición de fase se predice correctamente en βc = 0,436, muy cercano al valor real y a la

predicción realizada en el caso ferromagnético. Llama la atención también que las predicciones

parecen tener mucho menos en cuenta la staggered magnetization que la magnetización en el caso

ferromagnético, ensanchando mucho la zona de transición en la gráfica (11b), aunque el compor-

tamiento es cualitativamente similar clasificando configuraciones con staggered magnetizations

por encima de 0, 7 como fase desordenada. Esto puede deberse a que la staggered magnetization

es más complicada de aprender para la red, por lo que la podŕıa tener menos en cuenta. Por

último, esta red neuronal clasifica correctamente todas las configuraciones mostradas en la figura

(8), de manera similar al caso ferromagnético con sus configuraciones.

6. Longitud de correlación

Trataremos de entrenar ahora a la red en la predicción de la longitud de correlación ξ del

modelo de Ising. El objetivo es determinar el valor de β para el que se da la máxima longitud de

correlación, que marca la transición de fase βc. A diferencia del caso anterior, en el que llevába-

mos a cabo un proceso de clasificación, en esta ocasión necesitamos obtener un valor numérico

determinado en el output. Esto se traduce en que la última capa está formada únicamente por

parámetros no se mantiene constante para distintos valores de L, y se podŕıan justificar cambios en la red neuronal

para aumentar su número en caso de ser demasiado pocos. No obstante, hemos preferido limitarnos a los casos

en los que podemos mantener la estructura inicial.
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(a) (b)

Figura 11: Resultados para las predicciones del modelo de Ising antiferromagnético con L = 40 haciendo

uso de una red convolucional. (a) Predicción de la transición de fase, que se sitúa en βc = 0,436. (b)

Diferencia de outputs ordenado y desordenado frente a la magnetización de la configuración.

una neurona. Además, la longitud de correlación puede tomar cualquier valor positivo, y no se

limita al rango entre 0 y 1, por lo que en caso de utilizar neuronas en la última capa cuya salida

se encuentre limitada como la sigmoide, necesitaremos llevar a cabo un proceso de normalización

de los outputs antes del entrenamiento y predicción. En nuestro caso el criterio será asignar la

unidad al mayor valor de la longitud de correlación entre todas las configuraciones de entrena-

miento y predicción y reescalar el resto de longitudes frente a esta. La desventaja principal es

que necesitaremos tener siempre presente el valor máximo con el que hemos normalizado para

reescalar el resultado de las predicciones, y que seremos incapaces de determinar correctamente

las longitudes de correlación por encima de dicho valor. La solución evidente pasa por utilizar

neuronas a la salida con el output ilimitado, para lograr un comportamiento universal.

6.1. Entrenamiento y predicción

Como hemos comentado anteriormente, a cada configuración le corresponde una única lon-

gitud de correlación que se obtiene calculando las correlaciones para todas las parejas de spines

(formadas por un spin y cualquiera de sus vecinos en direcciones vertical y horizontal) según

la relación (7), y ajustando la exponencial según la expresión (8). En el proceso de entrena-

miento necesitamos utilizar configuraciones cuyas longitudes de correlación abarquen rangos

amplios, para que la red sea capaz de aprender correctamente en todo rango de temperaturas

y sus predicciones resulten válidas incluso cerca de la temperatura cŕıtica, en la que la longi-

tud de correlación diverge. Para lograr esto, utilizamos configuraciones obtenidas en el rango

βc ∈ [0,1, 0,8], con ∆β = 0,01, atravesando claramente βc y abarcando al mismo tiempo las fa-

ses ordenadas y desordenadas. Generamos 100 configuraciones para cada valor de β, pero dado

que en muchas configuraciones alejadas de la zona de transición la longitud de correlación es

prácticamente nula, generaremos 1000 configuraciones para cada β en el rango [0,35, 0,5]. De

esta manera, garantizamos un número suficiente de configuraciones con longitudes de correlación

más abultadas. Al igual que en el caso anterior incluiremos configuraciones con fases ordenadas
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apuntando en direcciones opuestas, dando lugar a un total de 41000 configuraciones.

Centraremos el proceso de predicción en el intervalo βc ∈ [0,3, 0,6], con ∆β = 0,002. Utiliza-

remos 500 configuraciones para cada valor de β, y recorreremos el intervalo dos veces según la

orientación de la fase ordenada, dando lugar a un total de 150000 configuraciones. Se muestra en

la figura (12a) la longitud de correlación en función de β obtenida como promedio de longitudes

calculadas para todas las configuraciones correspondientes a una misma β.

6.2. Redes fully connected

Utilizamos de nuevo una red neuronal con dos capas intermedias, pero en esta ocasión de 100

y 50 neuronas sigmoides respectivamente. El resto de hiperparámetros, salvo el de regularización

que toma un valor λ = 0,01, se mantienen igual que en el caso de la predicción de fase. De

nuevo, esta elección de parámetros no es única, existen otras combinaciones que dan lugar a

buenos comportamientos de la red. A la salida situamos una única neurona sigmoide, puesto

que esperamos un resultado entre 0 y 1 para cada configuración, siendo 1 el valor asignado para

la mayor longitud de correlación entre todas las configuraciones de entrenamiento y predicción.

Un problema importante que aparece en esta ocasión es que no existe un criterio claro para

terminar el proceso de entrenamiento, porque a diferencia de las redes utilizadas en clasificación

en las que podemos determinar de forma clara los aciertos en las predicciones, en este caso

no tenemos una métrica que nos indique si la red está funcionando correctamente. Únicamente

podemos fijarnos en el valor que adquiere la función coste tras cada época de entrenamiento

y tratar de minimizarlo. Además, este valor no disminuye de forma uniforme, sino que puede

mantenerse constante o incluso aumentar en algunas épocas antes de seguir disminuyendo. Por

tanto, resulta complicado implementar un criterio de early stopping que funcione en todos los

casos. Para superar esta dificultad, seleccionamos aleatoriamente un 5 % de las configuraciones

de entrenamiento y las apartamos, asegurando que la red no las reciba como input y no las pueda

utilizar en el aprendizaje. Monitorizamos el valor de la función coste sobre estas configuraciones,

de forma que podamos tener una imagen razonablemente buena de la capacidad de la red para

predecir correctamente la longitud de correlación en configuraciones que no ha visto anterior-

mente. A partir de esto, establecemos como criterio para terminar el entrenamiento que el valor

que adquiera la función coste en una época determinada sea mayor que la media de las últimas

veinte épocas. Además, establecemos un ĺımite máximo de cincuenta épocas de entrenamiento.

Mostramos en la figura (12a) las predicciones para una red de Ising ferromagnética con L = 40

junto con los resultados numéricos. En la figura (12b) se muestran las predicciones obtenidas

por la red en función del valor numérico para cada configuración. La diagonal, marcada en

naranja, corresponde al funcionamiento ideal de la red neuronal, en el que las predicciones

son iguales que el resultado obtenido numéricamente. Lo primero que destaca en esta gráfica

es que las predicciones parecen seguir una tendencia general acertada, pero se desv́ıan mucho

cuantitativamente dando lugar a una nube de predicciones para valores intermedios. Observamos

también que un aumento significativo del número de parámetros de la red no parece mejorar los

resultados, y podemos asumir que el comportamiento mostrado es el esperable y representativo

de redes neuronales fully connected. En cualquier caso, la ĺınea diagonal parece situarse en un

punto intermedio entre las predicciones para buena parte del rango de longitudes de correlación,
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por lo que es posible que los errores de unas predicciones y otras para una misma β se compensen

dando lugar a un buen ajuste. En efecto, esto lo observamos en la gráfica (12a), en la que pese a

los malos resultados para cada configuración por separado, obtenemos promedios que se ajustan

muy bien al valor real. Es aún más importante para nosotros el hecho de que las predicciones

acierten en la β en la que se produce el máximo de la longitud de correlación, pues esto determina

la transición de fase.

(a) (b)

Figura 12: Predicciones para una red de Ising ferromagnética con L = 40 haciendo uso de una red

neuronal fully connected. (a) Predicciones y resultados numéricos para el valor medio de la longitud

de correlación en función de β. El máximo de las predicciones se sitúa en βc = 0,422 ± 0,04. (b) En

verde, predicción para la longitud de correlación frente al valor obtenido de forma numérica. La ĺınea

dorada marca la diagonal, el valor que debeŕıan tomar las predicciones. Todas las predicciones han sido

reescaladas para representar el valor real de la longitud de correlación. Izquierda: Resultados obtenidos

para la red original, con estructura [LxL, 100, 50, 1]. Derecha: resultados obtenidos para diversas redes

con un mayor número de parámetros. Inset: predicciones de la red en función de la magnetización de la

configuración.

También se aprecia que la red parece tener un umbral inferior para las predicciones, y no es

capaz de alcanzar el valor nulo debido a que necesita inputs muy negativos para ello, dif́ıciles

de conseguir durante el entrenamiento. Se trata por tanto de un problema de construcción de

la red, que se puede solucionar sustituyendo la función de la neurona a la salida. Por otro lado,

la red parece infravalorar también las longitudes de correlación más elevadas. No obstante, esto

no corresponde al mismo efecto de saturación que para los valores más bajos, puesto que el

valor máximo de las correlaciones con el que se normaliza el output se sitúa en torno a 7, 5 y

corresponde a una configuración de entrenamiento, lejos del mayor valor que encontramos en

las configuraciones para la predicción. Por tanto, la desviación de los datos probablemente se

deba a una falta de configuraciones con longitudes de correlación elevadas en el conjunto de

entrenamiento, evitando un correcto aprendizaje. La incapacidad de este tipo de redes para

predecir correctamente el valor de la longitud de correlación es esperable teniendo en cuenta que

la topoloǵıa de la red se conoce de forma general. Vemos además en el inset de la figura (12) que

no existe una relación clara entre la predicción de la longitud de correlación y la magnetización,

que deja de usarse como criterio.

En cualquier caso, el éxito principal de la red neuronal consiste en ser capaz de determinar

correctamente la β a la que se da la máxima longitud de correlación, pues en ese punto se sitúa

la transición de fase. En este sentido, vemos que en efecto los máximos obtenidos de forma
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numérica y mediante la red neuronal coinciden en βc = 0,422± 0,04. El ĺımite para la precisión

corresponde a la anchura del máximo calculado de forma numérica, factor limitante en esta

predicción. Se trata no obstante de un resultado muy satisfactorio.

6.3. Redes convolucionales

Realizamos ahora el mismo procedimiento, haciendo uso esta vez de redes neuronales con-

volucionales. En esta ocasión utilizamos una red formada por dos capas convolucionales con

8 filtros cada una y un receptive field de (5,5), formadas por neuronas leaky ReLU, una capa

fully connected con 30 neuronas ReLU, y una capa de salida con una única neurona sigmoide a

la salida. El aumento de los filtros en las capas convolucionales y el tamaño del receptive field

responde al aumento de dificultad de las predicciones. Los resultados para el promedio de las

predicciones se muestran en la figura (13a). Como vemos, los promedios de las predicciones se

ajustan correctamente a los valores numéricos, y la posición del máximo es la adecuada, en

βc = 0,422 ± 0,04. Se trata del mismo resultado que en el caso anterior, al estar limitada la

precisión por los propios datos de entrenamiento y no por el desempeño de la red neuronal.

Destacan los problemas de la red para asignar correctamente la longitud de correlación según la

orientación del spin en la fase ordenada, un problema mucho menos frecuente en la red anterior.

(a) (b)

Figura 13: Predicciones para una red de Ising ferromagnética con L = 40 haciendo uso de una red

convolucional con una neurona sigmoid a la salida. (a) Predicciones y resultados numéricos para el valor

medio de la longitud de correlación en función de β. El máximo se sitúa de nuevo en βc = 0,422± 0,04.

(b) Predicciones para la longitud de correlación que obtenemos de la red frente al valor obtenido de forma

numérica. Todas las predicciones de la red han sido reescaladas para representar el valor real de la longitud

de correlación. La ĺınea dorada marca la diagonal, el valor que debeŕıan tomar las predicciones. En verde,

resultados obtenidos con un receptive field de (3, 3). En rojo, resultados obtenidos con un receptive field

de (5, 5).

Vemos en la figura (13b) que las predicciones son mucho más precisas que en el caso ante-

rior, pese a que todav́ıa existe una variabilidad importante en la determinación. Se trata de una

mejora significativa frente a las redes fully connected. La capacidad predictiva de las redes con-

volucionales se explica por su arquitectura, puesto que la longitud de correlación es una medida
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del tamaño medio de las zonas ordenadas. Una red que basa sus detecciones en la búsqueda de

propiedades en zonas localizadas de la red (demarcadas por el receptive field) puede obtener de

forma relativamente sencilla esta información. Es evidente entonces que un mayor tamaño del

receptive field puede dar lugar a mejores predicciones, al ser capaz de abarcar zonas ordenadas

más grandes, y delimitar correctamente las más pequeñas. Esto explica por qué los resultados

mejoran ligeramente al pasar de un receptive field de (3,3) a (5,5), y justifica el uso de este últi-

mo para nuestra red. Los resultados no mejoran más allá de este tamaño, precisamente porque

hay muy pocas configuraciones con una longitud de correlación por encima de 5, y el resto de

configuraciones se pueden caracterizar bien con un receptive field menor.

Por último, queda por estudiar el comportamiento de una red convolucional en la que el

output no se encuentre limitado. Para ello, cambiamos la neurona sigmoid a la salida por una

neurona ReLU, cuyo output puede tomar cualquier valor positivo. En este caso no podemos usar

la función cross-entropy para calcular el coste, y recurriremos a una función coste de mı́nimos

cuadrados (ver anexo 1). Como vemos en la figura (14a), los resultados son muy similares a los

casos anteriores, situando correctamente el valor máximo y ajustándose en general para todas

las β. De nuevo, se observa que la red tiene algunos problemas para consensuar las predicciones

en la fase ordenada según la orientación del spin. Vemos en la figura (14) que las predicciones

se ajustan razonablemente al valor numérico, de forma similar al caso anterior.

(a) (b)

Figura 14: Predicciones para una red de Ising ferromagnética con L = 40 haciendo uso de una red

neuronal convolucional con una neurona ReLU a la salida. (a) Predicciones y resultados numéricos para el

valor medio de la longitud de correlación en función de β. El máximo se sitúa de nuevo en βc = 0,422±0,04.

(b) En verde, predicciones para la longitud de correlación frente al valor obtenido de forma numérica. La

ĺınea dorada marca la diagonal, el valor que debeŕıan tomar las predicciones.

En definitiva, las redes convolucionales se muestran claramente superiores a las fully con-

nected en la predicción de observables, hecho que se explica por la incapacidad de las últimas

para determinar correctamente la topoloǵıa local de las redes de Ising. En cuanto a las redes

convolucionales, el comportamiento resulta muy similar independientemente de la neurona que

coloquemos a la salida. Las redes con output limitado tienen el problema de que todas sus pre-

dicciones deben ser reescaladas adecuadamente, y además tienen un ĺımite superior a la longitud

de correlación que son capaces de predecir dado por el valor máximo con el que han sido entre-

25



nadas. De aqúı se concluye que las redes convolucionales con un output ilimitado son las mejores

en la predicción de la longitud de correlación. No obstante, incluso mostrando malos resultados

en las predicciones para configuraciones concretas, las tres redes logran situar correctamente los

máximos en función de β, y su magnitud.

7. Conclusiones

En el presente trabajo hemos comprobado que las redes neuronales fully connected y las

convolucionales son capaces de aprender y predecir distintas caracteŕısticas del modelo de Ising

bidimensional, permitiéndonos extraer de estas predicciones información acerca de la existencia

y particularidades de su transición de fase.

En primer lugar, hemos logrado entrenar redes en la clasificación de configuraciones según su

pertenencia a una fase ordenada y desordenada, lo que nos ha permitido establecer una tempe-

ratura cŕıtica de frontera entre ambas fases. Esta frontera ha resultado dependiente del tamaño

de la red de Ising y del tipo de red neuronal utilizada: las redes fully connected han mostrado su

capacidad de cálculo de observables generales como la magnetización, y las convolucionales, su

comprensión del orden local. En segundo lugar, hemos logrado entrenar redes en la predicción

de la longitud de correlación, obteniendo buenas estimaciones incluso para la configuraciones

con longitudes más grandes. En este caso las redes convolucionales han obtenido resultados muy

satisfactorios, pero ha quedado patente la limitación que conlleva el desconocimiento de la to-

poloǵıa del sistema en las redes fully connected, que da lugar a un buen comportamiento en

promedio pero algo pobre en los resultados para configuraciones individuales.

En definitiva, las redes neuronales se han mostrado capaces de extraer información útil

acerca del modelo de Ising y aplicarla en sus predicciones. Incluso con la simpleza del modelo,

hemos podido comprobar las limitaciones y caracteŕısticas más importantes de cada tipo de red

neuronal y algunos de sus hiperparámetros, recorriendo los primeros pasos en el camino de la

implantación de la Inteligencia Artificial como herramienta básica en el estudio de la materia

condensada.
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