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1. Abstract

En el presente trabajo utilizamos redes neuronales para llevar a cabo la prediccién de la
transicién de fase del modelo de Ising bidimensional. Utilizamos dos tipos de estructuras para
las redes neuronales: redes fully connected y convolucionales. La obtencion de la temperatura
critica que caracteriza la transicién se realiza de dos maneras diferentes. Por un lado entrena-
mos a las redes en la prediccién del orden de las configuraciones de Ising, situando la transicién
en la temperatura cuyas configuraciones pasan de considerarse mayoritariamente ordenadas a
desordenadas. Por otro lado, centramos el entrenamiento en la prediccién de la longitud de co-
rrelacién, estableciendo la temperatura critica como aquella cuyas configuraciones dan lugar a
las mayores predicciones. Los resultados obtenidos son en general satisfactorios; muestran que
las redes fully connected centran sus predicciones en propiedades globales de la red como la
magnetizacién, aunque desconocen la topologia local de la misma dando lugar a malos resul-
tados en la longitud de correlacién, mientras que las convolucionales se comportan de manera
complementaria, obviando los observables globales y sobreestimando el valor de la transicién

con el método de clasificacién al carecer de informacion sobre la magnetizacion.

Nota del autor. El campo de la inteligencia artificial es relativamente joven y se ha desa-
rrollado principalmente en la literatura anglosajona. Como consecuencia, no existen buenas
traducciones al castellano para la mayoria de los términos utilizados en el campo, y se suelen
utilizar con su formulacién original. Por tanto, de ahora en adelante recurriremos a los nombres
originales en inglés en la mayoria de ocasiones, salvo que la traduccion sea evidente e inequivo-
ca. Por otro lado, por decisién de estilo, el presente trabajo se ha escrito utilizando la primera
persona del plural pese a tener un tnico autor.

2. Introduccion

El concepto de Inteligencia Artificial (IA) engloba todas aquellas actividades llevadas a cabo
por una maquina que reproducen comportamientos que consideramos inteligentes por parte de
humanos o animales. Se trata por tanto de un campo extremadamente amplio que abarca una
gran cantidad de actividades, desde procesamiento de lenguaje hasta conduccién auténoma,
pasando por el reconocimiento de imégenes. Para llevar a cabo todos estos procedimientos es
necesario que las inteligencias artificiales se someta a un proceso de aprendizaje, dando lugar a
una nueva rama de investigacion, el Aprendizaje Automdtico o Machine Learning (ML), en la
que se han desarrollado multitud de herramientas y algoritmos que logran muy buenos resultados
para aplicaciones cada vez mas complejas. El desarrollo actual de la Inteligencia Artificial se basa
en la disponibilidad y accesibilidad de una cantidad cada vez mayor de datos e informacién, parte
crucial en el proceso de aprendizaje. La Inteligencia Artificial estd pues llamada a convertirse
en una de las principales herramientas tecnolégicas del futuro.

La Inteligencia Artificial no sélo es aplicable en la vida cotidiana, también comienza a apa-
recer en la ciencia. En los ultimos anos ha crecido exponencialmente la disponibilidad de datos



experimentales y la capacidad de procesamiento, y la posibilidad de clasificar y extraer infor-
macién de forma rapida y precisa resulta cada vez mas atractiva. En este sentido se estan
planteando IAs capaces por ejemplo de clasificar la ingente cantidad eventos provenientes de
colisiones de particulas en el LHC [1], predecir estructuras proteicas a partir de la secuencia pri-
maria del DNA, o reproducir correctamente el comportamiento de fluidos sin recurrir a costosas
simulaciones numéricas. En el campo de la materia condensada, y concretamente en el estudio
de diversos modelos estadisticos como el modelo de Ising, la Inteligencia Artificial nos permite
predecir una gran cantidad de propiedades y clasificar configuraciones segin diversos criterios.

El objetivo principal de este trabajo consistira pues en construir redes neuronales capaces de
predecir la existencia de una transicién de fase en el modelo de Ising. Utilizaremos para ello dos
propiedades diferentes. Por un lado, crearemos redes capaces de discernir entre configuraciones
ordenadas y desordenadas, seglin si corresponden a temperaturas menores o mayores que la
critica. Por otro, construiremos una red para predecir la longitud de correlacién de cualquier
configuracién, que diverge en la transicion. En ambos casos, generando grandes cantidades de
configuraciones para muchas temperaturas y realizando las predicciones, podemos encontrar el
valor critico en el que se cumplen las condiciones para la transicion, a saber: el punto en el que las
configuraciones pasan de clasificarse mayormente como ordenadas a desordenadas y viceversa,
y el punto en el que las configuraciones tienen las mayores longitudes de correlacion.

La estructura del trabajo es la siguiente: en la primera parte se discuten los conceptos basi-
cos que utilizaremos durante el trabajo. En la seccion 3 presentamos las redes neuronales, las
estrategias principales que se utilizan durante el entrenamiento y los posibles problemas que
pueden surgir. En la seccién 4 realizamos un breve resumen de las propiedades principales del
modelo de Ising que se utilizaran en el trabajo. En la segunda parte se presentan los resultados
obtenidos; en la seccién 5 se muestran los resultados para las redes neuronales que predicen la
transicién de fase mediante clasificacion de configuraciones, y en el apartado 6 se muestran los
resultados para las redes neuronales que predicen la longitud de correlacién. Por ltimo, en el
apartado 7 se discuten las conclusiones mas importantes del trabajo.

Parte 1

Conceptos basicos

3. Redes neuronales

Una de las estrategias mas populares en la aplicacién del ML son las llamadas ”redes neuro-
nales”, inspiradas en las estructuras que forman las neuronas en los seres vivos, que han dado
lugar a toda una nueva rama de estudio sobre Machine Learning con algoritmos especificos de
aprendizaje. La unidad fundamental de este tipo de redes es la neurona, que se coloca en la
red formando parte de una capa. Las redes constan de una o varias capas sucesivas entre la
informacién de entrada o input, y la de salida o output. En los dltimos anios han ganado protago-
nismo las redes con multitud de capas intermedias, dando lugar a lo que conocemos como deep



learning. Las capas intermedias reciben el nombre de hidden layers o deep layers. Describimos

a continuacién los conceptos basicos que utilizaremos durante el trabajo.

3.1. Neuronas

Las neuronas son pequenas unidades de la red capaces de recibir un input de la capa anterior y
generar un output para la capa siguiente, aplicando funcién f(z) sobre dicho input. Cada neurona
k se caracteriza a su vez por un conjunto de pesos wj = (wj,,...,w}y) correspondientes a
cada una de sus uniones con las N neuronas de la capa anterior, y un bias bj,. El superindice
r € 1, ..., R indica la capa a la que corresponden dichas variables. De esta forma, dado un output
R G ,:L"];,_l) proveniente de la capa anterior, el valor que se introduce en la funcién
propia de la neurona n viene dado por:

2 = szjngl + b = wk - x"1 40 (1)

J

A partir de este input generamos un nuevo output f(z;) = aj. Al atravesar toda la red ob-
tenemos finalmente una predicciéon a®(w, b)!, que es funcién de todos los pesos w y biases b
de todas las capas. Omitimos los indices para indicarlo. Tenemos por tanto una gran cantidad
de parametros en la red que podemos ajustar: un bias por neurona y un peso por cada unién
entre neuronas. Esto hace que incluso en redes relativamente simples tengamos que ajustar miles
de parametros, y en las mas complejas hasta millones. Aqui reside la potencia de estas redes,
que les permite adaptarse a una gran cantidad de problemas diferentes y reproducir resultados
complejos, pero también es uno de sus principales inconvenientes. Primero, es muy dificil y cos-
toso computacionalmente trabajar con una cantidad tan elevada de pardmetros, y los tiempos
de entrenamiento pueden resultar prohibitivos. Segundo, corremos el riesgo de sobreajustar el
comportamiento de la IA, de forma que mads alld de aprender las caracteristicas generales del
problema para predecir correctamente sobre nuevos datos, comience a aprender las caracteristi-
cas particulares del conjunto de datos utilizados como entrenamiento, dando lugar a predicciones
erréneas o poca capacidad de generalizaciéon en un proceso conocido como overfitting. Por to-
do esto trataremos siempre de reducir al méaximo el nimero de parametros de nuestras redes.
Veremos algunos métodos para lidiar con ambos problemas en apartados posteriores.

Exiten una gran cantidad de funciones posibles que podemos utilizar en una red neuronal.
En nuestro caso aplicaremos las funciones sigmoid, ReLU, leaky ReLU y softmax. La primera
es la pieza fundamental de gran parte del trabajo, y como su propio nombre indica, utiliza la

sigmoide como funcién de activacién:

1

f(z):J(Z):m

(2)

La representacién gréfica se muestra en la figura (1). El output puede tomar cualquier valor entre
0 y 1, siendo la funcién suave y derivable en todo su dominio. La forma de esta funcién otorga
gran versatilidad al funcionamiento de la red siempre y cuando los biases y pesos den lugar a
valores de z en torno al origen, donde se produce un mayor cambio en el output bajo pequenas
variaciones de input. Sin embargo, el hecho de que las derivadas en los extremos de la funcién

'Puede tratarse de un dnico escalar si la tltima capa tiene una sola neurona, o de un vector si tiene varias.
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Figura 1: Funcién sigmoide.

(regiones planas) se anulen puede resultar muy problemético en la aplicacién del algoritmo de
backpropagation durante el proceso de aprendizaje (ver anexo 4).

Ademas de ser razonablemente versatiles y poder formar parte de casi cualquier red neuronal,
el hecho de poseer una imagen entre 0 y 1 convierte a estas neuronas en éptimas para formar
parte de la capa de salida en problemas de clasificacién. En estas aplicaciones nos interesa
obtener un output que podamos interpretar como ”pertenece a una clase” o "no pertenece a una
clase”. Matematicamente la aproximacién més simple se da con 0 y 1, y basta construir una capa
a la salida formada por tantas neuronas sigmoides como clases busquemos diferenciar. Aquella
neurona con mayor output marca la prediccién de la red. En caso de querer realizar predicciones
en las que el output y no esté necesariamente contenido entre 0 y 1, necesitamos normalizar
los datos de entrenamiento para que ninguno supere la unidad. Esto obliga a determinar de

antemano un valor maximo para el output, asignarle la unidad y normalizar el resto frente a él.

3.2. Tipos de redes

A lo largo del trabajo utilizaremos dos tipos de redes diferentes: redes completamente conec-
tadas (fully connected), y redes convolucionales. En las primeras cada neurona recibe un input
de todas las neuronas de la capa inmediatamente anterior, realiza una operacién determinada,
y emite un output a todas las neuronas de la capa inmediatamente posterior. Vemos un ejemplo
de este tipo de redes en la figura (2a). Las redes convolucionales son mas complejas. Utilizan
capas intermedias con estructura de matriz formadas por neuronas cuyo input no procede de
todas las neuronas de la capa anterior, sino unicamente de aquellas en su vecindad. El pardmetro
que determina el nimero de neuronas de la capa anterior utilizadas viene dado por el receptive
field, de forma (I,1). Por ejemplo, si tenemos un receptive field (5,5), los inputs vendrén de la
neurona anterior y sus dos primeros vecinos en todas las direcciones, incluyendo la diagonal.
Vemos esto mds claramente en la figura (2c¢). De esta forma, partiendo de una red de tamano
L - L, la siguiente capa intermedia serd otra red de, como maximo, L - L neuronas®. Tenemos

2En principio el tamaifio de la red se reduce con cada capa convolucional debido al tamaifio del receptive field.
Por ejemplo, con un receptive field de (5,5) la siguiente capa deberfa tener un tamafio de (L — 2, L — 2), debido

a que no hay informacién maés alld para llenar las dos capas restantes. Lo que se hace en ocasiones es rellenar la



entonces un numero de pesos dado por el receptive field y un bias. La clave de este tipo de redes
es que estos pesos y biases no son tunicos para cada neurona, sino que todas ellas comparten
los mismos valores. Siguiendo el ejemplo anterior con un receptive field de (5,5), tenemos un
total de 25 pesos y 1 bias, y seran estos los que utilice cada neurona para determinar su input.
Las ventajas evidentes de este tipo de redes es que reducimos en gran medida el ntimero de
parametros necesarios, fomentamos la capacidad de generalizacién del resultado, y explotamos
la posible invariancia traslacional de nuestros datos.

Es aconsejable ademas la utilizacién de las conocidas como pooling layers. Estas capas redu-
cen el tamano de la matriz con la que trabajamos agrupando la informacién de la capa anterior
mediante diversos criterios, reduciendo ain més el nimero de parametros. Funcionan de forma
similar al resto de capas, pero en esta ocasiéon cada neurona de la capa anterior sélo puede
servir de input para una neurona de la capa siguiente. Por ejemplo, si tomamos un receptive
field de (2,2), el output de cada conjunto de cuatro neuronas formando un cuadrado inicamente
servird como input de una neurona. De esta manera reducimos el tamano de la red a la mitad,
(L/2,L/2). Ademas, las neuronas de estas capas suelen tener un comportamiento muy simple;
los casos mas comunes son la max pooling layer, cuyo output es igual al mayor de sus inputs, y
la average pooling layer, cuyo output es el valor promedio de sus inputs.

Las capas de la red pueden tener a su vez subcapas, denominadas filtros, que reciban la
informacién de la misma capa anterior y apliquen pesos y biases diferentes. De esta manera,
logramos capas tridimensionales de la forma (L, L, f), donde f es el nimero de filtros. Un
mayor nimero de filtros permite la deteccién de mas caracteristicas mejorando el funcionamiento
de la red. Ademads, estas capas se pueden superponer una tras otra, y cada filtro utilizara la
informacién de las [ -1 - f neuronas anteriores. Al finalizar es conveniente anadir una ltima capa
fully connected antes de la capa de output para filtrar el resultado. Vemos una red que une todas
las ideas anteriores en la figura (2b).

fully
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(a) (c)
Figura 2: (a) Ejemplo de red neuronal fully connected con varias capas intermedias, capa de input y de
output. (b) Ejemplo de red con una capa convolucional, una pooling layer, una capa fully connected y
capa de output. (¢) Concepto de campo receptivo en una red convolucional. En la imagen, las neuronas
de la primera capa presentan un campo receptivo de (5,5). Imédgenes editadas, fuente original: [2].

capa de input a los lados con ceros hasta poder crear una nueva capa de tamano (L, L). Esto serd lo que hagamos
en el trabajo.



En el proceso de construccién de una red neuronal se deben fijar algunas caracteristicas como
el nimero de capas, el nimero de neuronas por capa, el tamafno del receptive field... Todas estas
cantidades reciben el nombre de hiperpardmetros (frente a los pesos y biases, que se denominan
parametros), se establecen desde el principio e influyen de forma clara en el funcionamiento de
la red. Se requiere por tanto un estudio previo para determinar los valores que pueden tomar.
En general el funcionamiento de las redes es muy sensible a los valores seleccionados, aunque
en nuestro caso lograremos buenos resultados para casi cualquier combinacién. Los comentados
hasta ahora no son los tinicos hiperpardmetros, veremos maés a lo largo del trabajo.

3.3. Entrenamiento

Nos fijamos primero en los datos que debe ser capaz de interpretar la IA. La informacién de
entrada es un conjunto de L - L spines en el caso bidimensional, y L - L - L en el tridimensional.
Al trabajar con redes fully connected, los spines se introducen en la red como un tnico vector de
datos de dimensién (L - L,1) o (L - L - L, 1) respectivamente. Para ello se toma la configuracién
de Ising y se construye un vector concatenando las filas una detras de otra. De esta manera,
las redes neuronales carecen en principio de informacién topoldgica acerca de la red de spines,
salvo en la direccién horizontal. De ser relevante, esta informacién debera adquirirla durante
el proceso de aprendizaje. Por otro lado, en las redes convolucionales se introduce la red de
Ising bidimensional completamente estructurada, de forma que la informacién topoldgica esta
presente desde el principio y la red neuronal se puede centrar en el comportamiento local de los
spines.

Los principios que rigen el proceso de entrenamiento de una [A para lograr predicciones
correctas son relativamente simples. Partimos de una red formada por neuronas conectadas,
en las que los pesos y bias toman valores iniciales al azar. Tomamos una configuracion y la
introducimos en el sistema. Obtenemos una prediccion a la salida que distara del resultado real
que esperamos de la red, y variamos ligeramente los pardmetros para lograr que el output se
aproxime un poco mas a dicho resultado. Repetimos este procedimiento varias veces para todas
las configuraciones de entrenamiento hasta que obtenemos unas predicciones que consideramos
correctas. El problema que se presenta en este proceso es el inmenso tamano del espacio de fases
de la red, que alcanza con facilidad las decenas o cientos de miles de pardmetros dificultando
el proceso de aprendizaje. Los largos periodos de tiempo necesarios para llevar a cabo el entre-
namiento han sido histéricamente el principal lastre para el desarrollo de IAs, aunque se han
desarrollado multitud de estrategias que comentaremos a continuacion.

3.3.1. Funcién coste

Para lograr el aprendizaje debemos definir en primer lugar una funcién que nos permita
cuantificar el rendimiento de la red. Esta es la funcién coste C(w,b), que nos da un valor
numérico de la desviacién del output aR(w,b) de la red respecto del valor esperado y. Se calcula
con el output real y el esperado, y por tanto es funcion del conjunto de pesos y biases de la red,

lo que nos permite determinar con relativa facilidad como debemos variar estos para disminuir



el valor final sin més que determinar el gradiente del coste VC(w, b) frente a cada peso y bias

individual. En problemas de clasificacién la funcién coste mas utilizada es la cross-entropy:

1 M
0:—M;[y.lna+(1—y).1n(1—a)] (3)

Las operaciones con términos vectoriales deben entenderse elemento a elemento, i.e. In(1 —a) =
(In(1 —ai),...,In(1 —ayn)), siendo N el nimero de neuronas de la tdltima capa. M es el niime-
ro de configuraciones usadas en el entrenamiento, y la suma se da sobre todos sus outputs. Las
propiedades principales de esta funcién y su conveniencia se discuten en el anexo 1. Independien-
temente de la funcién utilizada, el calculo de las derivadas resulta muy complejo por la elevada
cantidad de parametros y la propia estructura de la red; basta darse cuenta de que un peso cual-
quiera en una capa intermedia influye en la funcién coste a través de todas las neuronas de las
capas posteriores. Este problema encuentra facil solucién mediante la aplicacion del algoritmo
de backpropagation, que nos da una receta sencilla para el cdlculo del gradiente recorriendo la
red desde la tltima capa hasta la primera (de ahi su nombre), y para la actualizacién de los
parametros.

Otro problema resenable es que al definirse la funcién coste sobre la totalidad de las confi-
guraciones utilizadas en el entrenamiento, necesitamos calcular todos los outputs y compararlos
con los reales antes de actualizar los parametros. Esto puede resultar muy exigente desde el
punto de vista computacional si trabajamos con una gran cantidad de configuraciones o redes
relativamente grandes, ralentizando en gran medida el entrenamiento. La estrategia natural para
combatir este problema consiste en asumir que el gradiente de la funcién coste calculado con
la totalidad de las configuraciones es muy cercano al gradiente que podemos calcular haciendo
uso de un subconjunto de las mismas. Naturalmente, cuanto mayor sea el subconjunto mas se
pareceran los gradientes, pero més lento serd el proceso de entrenamiento. El tamano de este
subconjunto se conoce como mini-batch, y es un hiperparametro de la red. Esta aproximacion
al problema se conoce como stochastic gradient descent, y se discute en el anexo 2.

3.3.2. Qverfitting

La existencia de una funcion coste dependiente de los pardametros de la red nos permite
también afrontar el problema del overfitting comentado anteriormente. Una gran cantidad de
parametros, lejos de dotar a la red de una mayor capacidad predictiva al aumentar su compleji-
dad, puede llevar facilmente a la identificacién errénea de patrones, de forma que las predicciones
no se basen en caracteristicas generales del modelo de Ising sino en particularidades del conjunto
de configuraciones de entrenamiento. Podemos entenderlo como un efecto andlogo a los proble-
mas que surgen al ajustar polinomios de diverso grado a un conjunto de datos experimentales.
Con un mayor grado logramos maés precision en el ajuste, pero comprometemos la capacidad
de prediccién del resultado a obtener en otras medidas fuera del conjunto inicial de datos, y
con toda probabilidad estaremos incluyendo el ruido de la medida. Trasladado al modelo de
Ising, un indicador general que puede aportar informacion 1til en la prediccion de la fase es la
magnetizacion, y es deseable que la red sea capaz de identificarla como tal. Sin embargo, si la



red basa sus predicciones en otras caracteristicas como si la configuraciéon comienza con un spin
positivo o negativo, o si los grupos de spines orientados en la misma direccion tienden a ser mas
anchos que altos (ambas cosas podrian ocurrir en suficientes configuraciones entre los datos de
entrenamiento como para que la red las identificara como factores), entonces las predicciones de
la red se verian afectadas y perderian validez.

Existen varias aproximaciones posibles para combatir este problema. Por un lado, podemos
aumentar el nimero de configuraciones que utilizamos para entrenar la red, de forma que las
posibles peculiaridades de configuraciones concretas se vean diluidas y no afecten en gran medida
al resultado final. Por otro lado, resulta conveniente reducir el nimero de parametros para
obligar a la red a generalizar su comportamiento. Podemos lograrlo reduciendo el tamano de
la red, pero esto puede ser muy perjudicial para su rendimiento, y es preferible recurrir a otra
técnica llamada ”regularizacién”. Consiste en anadir un término adicional a la funcién coste
original Cy que penalice la existencia de una gran cantidad de pardmetros y los posibles valores
abultados que puedan tomar, C(w,b) = Co(w,b) + X reg(w,b). El término de regularizacién
viene pesado por el hiperparametro de regularizacién \; un valor elevado de A reduce el niimero
de parametros ttiles, y viceversa. Esto puede ir en detrimento del correcto funcionamiento de la
red, y por tanto deberemos ser cuidadosos a la hora de seleccionar su valor. Este nuevo término
de regularizacion puede tomar distintas funciones, y puede incluir o no los biases. En nuestro
caso utilizaremos una funcién L2 = ﬁ >, w? ¥ no incluiremos los biases. Discutimos estas
elecciones en el anexo 1. La funcién coste resulta finalmente:

1 M

A 2
0:—$1[y.1na+(1—y).1n(1—a)]+QMZw:w (4)

La ultima estrategia 1til para evitar el overfitting consiste en detener el entrenamiento en el
momento adecuado, lo que se denomina early stopping. Nos interesa que la funcién coste tome
un valor final muy pequeno para asegurar que las predicciones son correctas, pero si exigimos un
valor demasiado pequeno lo méas probable es que la red comience a aprender las particularidades
de los datos de entrenamiento para reducirlo, perjudicando su capacidad de generalizacion.

Utilizaremos diferentes estrategias para abordar este problema.

4. Modelo de Ising

Hemos centrado el trabajo en la transicién de fase que se da en el modelo de Ising en una red
cuadrada a partir de dos dimensiones. Resulta ideal para este estudio por su simpleza y el amplio
conocimiento disponible sobre su comportamiento para diferentes temperaturas. Describimos a
continuacién brevemente el modelo y sus caracteristicas principales. El calculo y los detalles de
la simulacién del modelo de Ising se discuten en el anexo 5.

El modelo de Ising consiste en un conjunto de spines {o,} que pueden tomar dos valores
diferentes, +1 y —1, dando lugar a una configuracién C(o,) caracterizada por una energia:

Ho = — ZjijUin - HZ% (5)
(i,3) i



En nuestro caso no aplicaremos campo magnético, y por tanto prescindimos del segundo término.
La suma del primer término se realiza sobre todas las posibles parejas de spines (7, j) de la red,
y viene pesada por un término J;; que marca la intensidad de la interaccién. En el trabajo nos
ceniremos al caso en el que la interaccién se da tnicamente entre primeros vecinos, y ademas
es constante para todas las parejas. En caso de ser positiva, favorece energéticamente que los
spines se alineen, y da lugar a un comportamiento ferromagnético. Si es negativa, favorece un
comportamiento antiferromagnético. A lo largo del trabajo haremos uso de ambos. Esta energia
fija la probabilidad de que aparezca una configuracién determinada C(o,) a cierta temperatura
T segun la distribuciéon de Boltzmann:

P({oa},T) = e e (6)

De ahora en adelante utilizaremos la temperatura y 8 = (kgT)~! indistintamente, donde kp es
la constante de Boltzmann, aunque tomaremos siempre kg = 1. El término Z(T') representa la
funcién de particién del sistema a cierta temperatura, Z(T) = > (00} exp(—fHa), donde la suma
se da sobre todas las posibles configuraciones del sistema. Definimos también la magnetizacién
de una configuracién como la suma de sus spines, m = % > ;0j» que es el pardmetro de orden
del modelo ferromagnético. En la fase desordenada, que se da en altas temperaturas, su valor
esperado es 0. La naturaleza del modelo implica que los spines tienen dos orientaciones posibles
que dan lugar a dos fases ordenadas, una en la que todos los spines toman valor +1, y otra
en la que toman —1. Si bien ambas son simétricas en sus propiedades, son diferentes desde
el punto de vista de la red neuronal, y deberemos asegurarnos de que en las configuraciones
utilizadas para entrenamiento y prediccién estén presentes ambos comportamientos. En el caso
antiferromagnético es sencillo comprobar que el valor de este observable serd practicamente nulo
para todas las temperaturas. En este caso utilizamos la staggered magnetization, esto es, la
magnetizacion de las dos subredes que se forman tomando como vecinos los spines en diagonal
en lugar de los adyacentes.

En ambos casos, la transicién de fase en el limite termodindmico (esto es, para redes infi-
nitas) se produce cuando el valor esperado de los observables respectivos deja de ser nulo, y se
trata de una transicion de segundo orden. Nosotros trabajaremos con redes finitas imponiendo
condiciones de contorno peridédicas para suplir en parte esta carencia. En el caso bidimensional
y con J = %1, Onsager [4] demostré que la transicién de fase se da en 524 ~ 0,44069. Nues-
tro objetivo en el trabajo serd lograr predecir esta temperatura, y tomaremos este valor como
referencia de ahora en adelante.

4.1. Longitud de correlacion

Otra propiedad fundamental de la transicién de fase del modelo de Ising, que estudiaremos
Unicamente en el caso bidimensional, es la divergencia de ciertos observables que se da también
en el limite termodinamico cuando alcanzamos 7., como la susceptibilidad y, el calor especifico
C, o la longitud de correlacién €. Condensaremos su estudio dnicamente en la longitud de
correlacién, que caracteriza el tamano de los clusters que forman los spines de mismo signo a

diferentes temperaturas. Formalmente, definimos la correlacion entre dos spines 4, j cualesquiera
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de la red segtin la expresién?:

C(i,5) = {@i05) = (i) (7)) (7)
Este valor depende tunicamente de la distancia entre spines, C'(4, j) = C(|r; — rj|) = C(rj;). Las

correlaciones decaen exponencialmente con dicha distancia, lo que nos permite definir la longitud
de correlacién £(7T) segin la expresién:

Irijl

C(ryj) oce €0 (8)
Es decir, {(T") marca la distancia en la que las correlaciones decaen un factor e. Buscaremos
entrenar una red neuronal capaz de predecir £(T") a partir de una configuracién. Esta longitud
de correlacién diverge en T, segtin &(T) o< [T — Te|™".

Dado que las correlaciones son tnicamente funciéon de la distancia entre spines, podemos
realizar los promedios necesarios sobre todas las posibles parejas de spines en una configuracion
determinada. La importancia de este hecho radica en que partiendo de una tinica configuracion,
y aplicando el tratamiento matemaético adecuado, obtenemos un tnico valor para la longitud de
correlacién, siempre el mismo*. Al entrenar la red neuronal nos aseguramos de que existe una

relacion directa, aunque compleja, entre la configuracion y el output esperado.

Parte 11
Resultados

5. Prediccion de fase ordenada y desordenada

Nuestro primer objetivo es entrenar a la red para que, dada una configuracién, sea capaz
de distinguir en qué fase se encuentra. Esto se traduce en que la red debe tener una capa de
entrada de L - L neuronas y una capa de salida con dos neuronas, una correspondiente a la fase
ordenada y otra a la desordenada. Dada una configuracién, la prediccion de la red sera aquella
cuya neurona tome un mayor valor a la salida. Utilizamos una red con dos capas intermedias, la
primera con 60 neuronas y la segunda con 30. Considerando un bias para cada neurona (excepto
las del input) y un peso entre cada par de neuronas de capas adyacentes, tenemos un total de
L - L-60+4 1952 pardametros. En caso de una red tipica con L = 40, trabajamos con 97952

parametros.

3Utilizamos esta expresién y no tnicamente C(i,7) = (0i0;) porque con esta tltima se producen divergencias
en la longitud de correlaciéon a baja temperatura, cuando todos los spines se orientan en la misma direccién.
En este caso, C(i,5) = 1 V4,7, y por tanto £(T") — oo por la expresién (8). En cambio, con nuestra ecuacion,
C(i,7) = 0Vi,j, porque a bajas temperaturas (o;0;) ~ (0;) (0;), obteniendo finalmente &£(7T") — 0.

4En realidad el calculo de la longitud de correlacién implica un ajuste exponencial segiin la relacién (8), y por
tanto su determinacién conlleva cierto error inherente al método computacional utilizado para ello. En nuestro
caso el ajuste se realiza mediante la funcién optimize.curve_fit de la libreria scipy de Python.
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5.1. Entrenamiento y prediccién

Es importante entrenar a la red con una gran cantidad de configuraciones, y que éstas sean
representativas del comportamiento que queremos ensenar. En nuestro caso esto se consigue
tomando configuraciones en los limites T'— 0 y T' — 0o, donde sabemos con seguridad que son
ordenadas y desordenadas, respectivamente. Si nos acercamos demasiado a la temperatura de
transicion en la buisqueda de configuraciones, se diluirdn las caracteristicas propias de estas fases
y adulteraremos el entrenamiento, debido principalmente a que no podremos tener siquiera la
seguridad de que la fase asignada sea la adecuada®.

Utilizaremos para el entrenamiento configuraciones correspondientes a diferentes S en los
rangos (0,1, 0,3] y [0,8, 1,0] a intervalos de Ag = 0,02. Se encuentran por tanto muy alejados del
valor critico 8. ~ 0,44. Para cada temperatura generaremos 1000 configuraciones, dando lugar
finalmente a un total de 20000. Como hemos comentado anteriormente, debemos asegurarnos de
que en la fase ordenada aparecen configuraciones con los spines apuntando en ambas direcciones.
Para ello, recorreremos el rango de temperaturas dos veces con fases ordenadas apuntando en
direccién contraria, dando lugar a 40000 configuraciones.

Con estos datos podemos pasar a entrenar la red aplicando los procedimientos descritos en la
primera secciéon. Como hiperparametros tomamos 1 = 0,5 para cada paso de actualizacién de los
parametros por descenso de gradiente, y A = 10 para la regularizacién L2. Tomaremos un tamano
de mini-batch de 10 configuraciones. Estas elecciones, si bien no son completamente arbitrarias,
tienen poca influencia en el rendimiento de la red; otras elecciones de los parametros no producen
cambios sensibles ni en el resultado ni en la velocidad. Esto se debe principalmente a la simpleza
del modelo, que da lugar a convergencias muy rapidas del proceso logrando una precisiéon del
100 % de aciertos para los datos de entrenamiento en unas pocas épocas, en ningun caso mas de
diez. Para evitar el overfitting, hemos tomado como criterio que el entrenamiento termine tras
la segunda época consecutiva en la que la red clasifique correctamente todas las configuraciones
de entrenamiento. De esta forma aseguramos que es capaz de realizar las predicciones, sin dar
tiempo a sobreajustar la red.

Una vez entrenada la red, necesitamos una gran cantidad de configuraciones en torno a
B para llevar a cabo la prediccién. En general utilizaremos valores de § entre [0,4, 0,45], con
Ag = 0,002. Para cada temperatura generamos 1000 configuraciones, dando lugar a un total
25000.1 Al igual que en el caso anterior, duplicamos esta cantidad para obtener 50000. Con estas
configuraciones realizamos la prediccién de la siguiente manera: introducimos en la red todas
aquellas configuraciones correspondientes a la misma temperatura, y realizamos un promedio
con todas las predicciones de cada neurona por separado®. Repitiendo este procedimiento para
todas las temperaturas podemos representar una grafica con dos series de datos correspondientes
a ambas predicciones. Asignaremos la transicién de fase al punto de corte entre ambas series.

5En un sistema finito no existe una frontera nitida para la transicién, sino que en cierto rango de temperaturas
aparecen configuraciones muy dificiles de clasificar, que dan lugar a magnetizaciones medias pequefias pero dife-
rentes de 0 para temperaturas mayores que la critica. Por tanto, asignar como tnico criterio para la clasificacién
que la configuracién haya aparecido a una 8 mayor o menor que la critica no resulta vélido.

5Es decir, promediamos por un lado las predicciones de la neurona correspondiente a la fase desordenada, y
por otro las de la desordenada.
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5.2. Redes fully connected

Se muestran en la figura (3) los resultados para una red de Ising ferromagnética con L = 40,
que situan la transicién de fase en 8. = 0,426. Vemos que en un rango relativamente amplio de
B conviven configuraciones ordenadas y desordenadas, segin la red neuronal. Estos resultados
tienen bastante variabilidad en la tercera cifra decimal para diferentes entrenamientos de la red.
Se observan dos lineas casi superpuestas porque cada una de ellas corresponde a una orientacién
de spines diferente en la fase ordenada. Vemos que practicamente no hay efectos de histéresis y

el sistema es capaz de aprender las fases independientemente de la orientacion de los spines.

1.0

1.0
0.8 0.8
3_ 067 Desordenado i 0.6 —— Desordenado
= —— Ordenado = —— oOrdenado
© 04 o 0.4
0.2 0.2
0.0 0.0
0.40 0.41 0.42 043 0.44 0.45 0.2 0.4 0.6 0.8 1.0
B B

Figura 3: Resultados para las predicciones del modelo de Ising ferromagnético con L = 40 haciendo uso
de una red fully connected. Se muestra el output promedio de cada neurona por separado frente a 8. (a)
Utilizamos las configuraciones generadas con S € [0, 4, 0,45] para predecir con precisién la transicién de
fase, que se sitia en 8. = 0,426. (b) Mostramos una imagen general de las predicciones de la red en el
rango S € [0,1, 1,0] con Ag = 0,05, para poner en contexto las gréfica en (a) y mostrar la precisién de
las predicciones.

Si bien el valor tedrico se situa en 0,4406, hay que tener en cuenta que para una red de
tamaifio finito no existe una frontera clara entre fases y la magnetizaciéon promedio deja de ser
nula para valores de 5 mdas pequefios. Se trata por tanto de un comportamiento esperable, que
se deberia corregir para redes de mayor tamafio. Realizamos ahora el mismo experimento con
redes de Ising de diversos tamanos; los resultados se muestran en la figura (4). Vemos que existe
poca variabilidad en la determinacion de diferentes valores de 3. para una misma L dando lugar
a errores muy pequeiios en el ajuste, y que aparece una clara tendencia ascendente conforme
nos acercamos al limite termodindmico. Realizando un fit lineal obtenemos g, = 0,4362 + 0,0012
cuando L — oo, que se desvia del valor tedrico en poco més de un 1%. Se observa pues que se
reproduce el comportamiento esperado con L.

En definitiva, vemos que la red es capaz de predecir correctamente la transicién de fase. Po-
demos indagar ahora en su funcionamiento interno para intentar explicar este comportamiento.
Existen dos caracteristicas principales en las que se puede fijar la red para realizar sus predic-
ciones. Por un lado, puede estar aprendiendo la magnetizacion de la red de Ising y prediciendo
a partir de ésta. Por otro, puede codificar también las relaciones entre spines que caracterizan
el orden del modelo y también determinan la transiciéon de fase. Centrandonos en la magneti-

zacion, vemos en la figura (5) que no es el unico criterio para determinar las predicciones de la
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Figura 4: Se representan las predicciones de la transiciéon de fase frente a 1/L, lo que nos permite
extrapolar las tendencias al limite termodindmico, cuando 1/L = 0. Se han utilizado redes con L = 64, 48,
40, 32, 24, 20 y 16. Los valores en verde muestran la /3. promedio, obtenida a partir de cinco entrenamientos
diferentes de la red para cada L, que se muestran en gris. La desviacién estandar no se muestra en la
grafica porque en la mayoria de ocasiones es mas pequena que el tamano del punto. El ajuste lineal arroja
un valor en el limite termodinamico de 5. = 0,4362 4 0,0012.

red neuronal, aunque ambas estén claramente relacionadas. Para ello basta fijarse en la anchura
de la parte de transicién, indicando que la red asigna las mismas predicciones para redes con

magnetizaciones que difieren hasta en 0, 2.

1.0 1 0.45
0.44
0.5 1
b
=
3 0.43
3 004 B
= 0.42
[m]
-0.5 1
0.41
-1.01° 0.40

00 02 04 06 0.8
Magnetizacién

Figura 5: En el eje vertical se representa la diferencia de outputs entre la neurona ordenada y desordenada
frente a la magnetizacién de la configuracién. Por tanto, todo valor superior a 0 indica que la configuracién
se considera ordenada, y menor que 0, desordenada. Se observa inmediatamente que el proceso no es un

simple aprendizaje de la magnetizacion del sistema.

Este comportamiento tiene un problema fundamental, porque pueden existir configuracio-
nes con magnetizacién nula que por su energia puedan corresponder a fase ordenada. Vemos un
ejemplo en la figura (6a). Recordemos que la energia es mayor cuantas mas fronteras entre spines
de distinto signo hay, y a mayor energia, menor probabilidad de aparecer a temperaturas bajas.
Por tanto, es razonable asumir que una configuraciéon con energia muy baja se deberia consi-
derar correspondiente a fase ordenada, donde la probabilidad de que aparezca es infinitamente
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mayor que en la fase desordenada al competir con una cantidad mucho menor de configuracio-
nes. Sin embargo, esto no ocurre para las configuraciones mostradas: mientras que la segunda
configuracién se asigna correctamente a la fase ordenada, la primera se asigna a la desordenada.
Esto apunta a una fuerte dependencia con la magnetizacién en redes del tipo fully connected.
Si bien no es un comportamiento que podamos calificar como incorrecto, siembra dudas sobre
otras predicciones con casos similares, pese a que no representa un gran problema dada la baja
probabilidad de este tipo de configuraciones. Estos resultados también apuntan a que, en caso
de existir, el conocimiento de la topologia de la red se da de forma global; si la red neuronal
valorase el orden general de la configuracién seguin el orden local en pequenas zonas de la misma
(grandes conjuntos de spines correctamente ordenados que dan lugar a magnetizaciones no nulas
en amplias zonas de la red), la configuracién (6a) se deberia considerar ordenada. En cualquier
caso este comportamiento es esperable debido a que las configuraciones para el entrenamiento
se generan en temperaturas en las que el orden local no es tan importante’, y por tanto en
principio la red no es capaz de aplicar este criterio.

40

30

20

10

10 20 30 40 10 20 30 40
(a) (b)

Figura 6: Configuraciones del modelo de Ising con L = 40. Cada color corresponde a una orientacién
de spin. Ambas configuraciones tienen la misma energia, correspondiente a 80 fronteras entre spines
de diferente signo (condiciones de contorno periddicas). Sin embargo, la configuracién (a) presenta una

magnetizacién global nula, mientras que la configuracién (b) tiene una magnetizacién muy cercana a 1.

5.2.1. Relaciones entre spines. Ising antiferromagnético

Para estudiar como aprende la red las relaciones entre spines resulta muy ttil analizar el
comportamiento con un sistema antiferromagnético. Sabemos que también existe una transicién
de fase que no depende del signo de J y por tanto es la misma que en el sistema ferromagnético.
En este caso la magnetizacién es practicamente nula para todo el espectro de temperaturas,
y como hemos visto el parametro de orden mas adecuado es la staggered magnetization, la
magnetizacion de las subredes del sistema. Centraremos el estudio en las propiedades de una
red de Ising antiferromagnética con L = 40, utilizando un método completamente analogo al
caso ferromagnético. Los resultados obtenidos se muestran en la figura (7). Se comprueba que el

"Estos grandes conjuntos de spines ordenados son propios de las regiones de temperaturas cercanas a la
transicién de fase, en las que la longitud de correlacién diverge y las fluctuaciones aumentan mucho su tamano.

15



sistema es capaz de aprender a partir de los datos de entrenamiento y obtener una prediccién para
la transicién de fase, que se sitia en S, = 0,426, el mismo valor que en el caso ferromagnético.
Vemos también que la relacién entre las predicciones y la media de staggered magnetizations
de ambas subredes es muy similar al caso anterior, situdndose la transicién en unos valores

parecidos de la magnetizacién y con similar anchura.

1.0 1.0 0.45
0.8 0.44
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5 —— Ordenado o
S 0.4 e 0.42
[
—0.5
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B Staggered magnetization media
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Figura 7: Resultados para las predicciones del modelo de Ising antiferromagnético con L = 40 haciendo
uso de una red fully connected. (a) Prediccion de la transicién de fase en funcién de 8, que se da en
B = 0,426. (b) Diferencia entre outputs ordenado y desordenado en funcién de la media de las staggered
magnetizations de ambas subredes para cada configuracién.

Es importante notar que el calculo de la staggered magnetization no es sencillo para la
red: debe promediar por separado aquellos spines cuya suma de ambos términos ¢ + j de sus
coordenadas (i,7) dé lugar a nimeros pares e impares. A esto nos referimos cuando hablamos
de la topologia de la red, a ser capaz de determinar la combinacién de spines que hace aflorar el
orden correcto del modelo. Aunque la grafica (7b) parece indicar que este conocimiento si se da al
lograr determinar correctamente la staggered magnetization, es posible (aunque improbable) que
sea consecuencia Unicamente de la aplicaciéon de un criterio rudimentario de elevada alternancia
entre spines, lo que podria dar lugar a esta correlaciéon entre predicciones y magnetizaciones sin
que la red llegue a establecerla como criterio.

Para profundizar en el funcionamiento de la red, utilizamos las configuraciones mostradas
en (8). La ventaja de utilizar el modelo antiferromagnético reside en que la fase ordenada tiene
una estructura caracteristica de tablero de ajedrez, como se muestra en la figura (8a). Cuando
consideramos este tipo de estructuras como un tinico vector, que es lo que se introduce en la
red neuronal, nos encontramos con una sucesién de spines cuyas direcciones se van alternando
casi a la perfeccion®. En caso de que la red no fuera capaz de aprender las relaciones verticales
entre los spines, toda configuraciéon con una elevada alternancia de spines se deberia considerar
ordenada, pues se parecen mucho a la configuraciéon completamente ordenada. La configuracién
(8b) muestra una alternancia perfecta de spines al construir el vector, pero vemos claramente que
la configuracién en dos dimensiones no corresponde a una fase ordenada, sino que en vertical

8En realidad son completamente alternos salvo en las uniones entre dos filas, en las que se juntan dos spines

que apuntan en la misma direccién.
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todos los spines apuntan en una misma direccién y dan lugar a un alto valor de la energia.
Ademis, la staggered magnetization es nula en ambas subredes, por lo que también segin este
criterio la prediccién deberia corresponder a fase desordenada. En efecto, la red acierta en su
prediccién y clasifica correctamente la configuracion como desordenada, indicando que la simple
alternancia entre spines no determina completamente las predicciones de la red, sino que se
asignan mas criterios.

Por 1ltimo, la configuracién (8c) corresponde a una fase ordenada en la que la seccién inferior
se ha desplazado una spin hacia la derecha, dando lugar a una configuracién cualitativamente
andloga a la mostrada en (6b) para el caso ferromagnético. Al igual que antes, presenta por un
lado una staggered magnetization nula, lo que podria indicar una fase desordenada, pero por otro
tiene una energia muy pequena, propia de las configuraciones ordenadas; ambas propiedades
compiten. La prediccién para esta configuracion corresponde a una fase desordenada, lo que
indica que la red es capaz de calcular la staggered magnetization, con las dificultades que esto
conlleva, y ademas la aplica como criterio principal para sus predicciones. En este caso el uso de
la staggered magnetization conlleva necesariamente cierto conocimiento de la topologia de la red
de spines para determinar cuales de estos deben sumarse entre si. No obstante, al igual que en
el caso ferromagnético, este conocimiento de las magnetizaciones es global y no parece valorar
las relaciones entre spines adyacentes, inicamente es capaz de separarlos en dos grandes grupos
para realizar la suma, es un conocimiento global.

40 40 40
30 30 30
20 20 20
10 10 10
10 20 30 40 10 20 30 40 10 20 30 40

(a) (b) ()

Figura 8: Configuraciones para el modelo de Ising antiferromagnético bidimensional. (a) Configuracién
completamente ordenada. (b) Configuracién ordenada en la que las filas pares se han desplazado una
unidad hacia un lado, de forma que cada spin ya no estd rodeado inicamente de spines contrarios, sino
que dos de sus vecinos tienen su misma orientacion. Notese que esto da lugar a una staggered magnetization
nula para ambas subredes. (¢) Configuracién ordenada, en la que la mitad inferior se ha desplazado un
spin hacia la derecha. Al igual que en (b) la staggered magnetization es nula en ambas subredes, pero la

configuracion tiene una energia mucho menor.

5.2.2. Disminucién de los parametros. Redes estranguladas

Podemos realizar un experimento interesante consistente en estudiar qué ocurre cuando tra-
bajamos con redes extremadamente simples, con muy pocos parametros. De esta forma, hacemos
aflorar las caracteristicas méas simples del modelo que nos permiten realizar las predicciones. En
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este apartado construimos una red neuronal con una unica capa intermedia de 3 neuronas (en
total, 4811 pardmetros) y llevamos a cabo el mismo proceso de entrenamiento que en el caso
anterior para una red de Ising con L = 40. Para asegurar que trabajamos con el menor niimero
de pardmetros posibles, utilizamos un hiperparametro de regularizacién extremadamente gran-
de, A = 1000. Los resultados para el caso ferromagnético se muestran en la figura (9a). Vemos
que somos capaces de predecir una transicién, pero basada unicamente en la magnetizacion
de la configuracion, como indica la anchura reducida de la linea formada por las predicciones.
Se observa ademaés que para diferentes orientaciones del spin en la fase ordenada el output es
sensiblemente diferente, lo que indica que la red ni siquiera es capaz de generalizar su compor-
tamiento a ambas orientaciones, aunque las predicciones finales sean correctas. Por tltimo, en
linea con los apartados anteriores, la red neuronal predice incorrectamente que configuraciones

con magnetizaciones de en torno a 0,5 corresponden a la fase desordenada.
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Figura 9: Predicciones de la red neuronal simple para el modelo de Ising con L = 40. (a) Caso ferro-
magnético. Diferencia entre outputs de las neuronas ordenada y desordenada frente a la magnetizacién
de la configuracion. Inset: prediccién para la transicién de fase, que se sitia en 5. = 0,435. (b) Caso anti-
ferromagnético. A la izquierda se muestran las predicciones frente a las staggered magnetizations de cada
configuracién. Aparecen por tanto dos puntos por configuracién. Inset: prediccién para la transicién de
fase, que se sitia en 8. = 0,432. A la derecha se muestran las predicciones frente a la media de staggered

magnetizations de cada configuracion.

Podemos realizar un procedimiento igual al anterior con el caso antiferromagnético. Utili-
zando los mismos pardametros, obtenemos los resultados que se muestran en la figura (9b). Si
bien son similares a los del caso ferromagnético, destaca que en esta ocasion las predicciones
dependen claramente del valor medio de las staggered magnetizations de cada configuracion,
lo que requiere cierto conocimiento de la topologia de la red para calcular correctamente las
magnetizaciones de cada subred, y después un calculo adicional para determinar la media. Este
calculo no es sencillo, y ejemplifica la capacidad de las redes neuronales fully connected, que
incluso con muy pocos parametros son capaces de obtener informacion topoldgica acerca de la

estructura general de los datos.

5.3. Redes convolucionales

Realizaremos ahora el mismo experimento con redes convolucionales. Como hemos comen-
tado anteriormente, esto nos permite estudiar las configuraciones desde un punto de vista local,
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es decir, fomentando la busqueda de relaciones entre spines cercanos que permitan caracterizar
el orden de la red de Ising a un nivel global, aprovechando que se conoce la topologia de la
configuracién. Esto implica que la magnetizacién total de la configuracién ya no deberia ser el
principal indicador del orden de la red, porque ésta no es capaz de calcularla de un modo global.
En pocas palabras, la red debe aprender si el sistema esta o no ordenado a partir de la presencia
o ausencia de orden en zonas locales.

Para construir las redes convolucionales utilizamos Tensorflow, que implementa una gran
cantidad de herramientas propias del aprendizaje automético en una libreria de Python. Los
fundamentos basicos de las funciones incluidas son los mismos que los explicados hasta ahora,
y el funcionamiento de la red es completamente analogo al caso anterior. En este apartado
utilizaremos una red con dos capas convolucionales intermedias, cada una de ellas con cuatro
filtros y un receptive field de (3,3), compuestas por neuronas Leaky ReLU. A continuacién
introducimos una average pooling layer que promedia los outputs de la capa anterior con un
receptive field de (2,2), lo que reduce el tamano de las matrices a la mitad. Anadimos después
una capa fully connected de 30 neuronas ReL U, y finalmente obtenemos el output de una capa
con dos neuronas softmaz. En total, para una red de Ising con L = 40 tenemos 48280 parametros,
aproximadamente la mitad que en el caso anterior. Respecto al resto de hiperparametros, no

incluimos regularizacién?, y utilizamos un tamano de mini-batch de 32 configuraciones.
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Figura 10: Resultados para las predicciones del modelo de Ising ferromagnético haciendo uso de una red
convolucional. (a) Predicciones de la transicién de fase frente a 1/L. Se han utilizado redes con L = 64,
48, 40, 32, 24 y 20. El ajuste lineal arroja un valor en el limite termodinamico de 8. = 0,4414 £ 0,0008.
Se muestra en el inset una de las predicciones con L = 40, dando lugar a . = 0,437. (b) Diferencia de
outputs ordenado y desordenado frente a la magnetizacién de la configuracion para una red de Ising con
L = 40.

Mostramos en la figura (10a) los resultados obtenidos para una red de Ising con diferentes
valores de L. Cabe resaltar que no hemos incluido resultados con L = 16, puesto que el disefio
de la red neuronal da lugar a un total de 7960 parametros, demasiado pocos como para obtener
resultados validos'?. Observamos que la prediccién de fase se realiza de forma correcta en todos

9Las redes convolucionales muestran una notable resistencia al overfitting por su propia naturaleza, que pro-
media su comportamiento sobre toda la red. Ademés, partimos de un reducido niimero de pardmetros.
0FEn principio nada impide utilizar redes con distinto nimero de neuronas y capas, puesto que el nimero de
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los casos, obteniendo un valor en el limite termodindmico de 3. = 0,4414 + 0,0008, que incluye

teor

1" = 0,4406 dentro del intervalo de confianza. Se trata por tanto de un

el valor tedrico de 5
resultado muy satisfactorio.

La diferencia principal frente a los resultados anteriores aparece en la imagen (10b), donde se
ensancha la zona de transicion mostrando que la magnetizacion pierde importancia para las pre-
dicciones. Destaca la gran cantidad de configuraciones con magnetizaciones elevadas, por encima
de 0,6, que se predicen como desordenadas. Es un umbral bastante mayor que el obtenido para
redes fully connected (ver figura (7)), lo que explica el desplazamiento de la beta critica frente
a resultados anteriores. Es dificil justificar que configuraciones con magnetizaciones tan eleva-
das se clasifiquen como desordenadas (pese a que esto puede ocurrir durante las simulaciones,
recordemos que en fase desordenada todas las configuraciones son equiprobables), y podemos
considerarlo un mal comportamiento, que se corrige no obstante conforme aumenta L al hacerse
mas abrupta la transicién. Podiamos esperar este resultado, puesto que por su estructura la red
convolucional es incapaz de utilizar observables que se calculan de forma global. Vemos ademaés
por la anchura de la franja de transicién que la magnetizacién deja de ser un factor determinante
en la prediccion final. Aparecen también algunas configuraciones con valores muy bajos de la
magnetizacién que se consideran ordenadas, una propiedad que permite a la red clasificar correc-
tamente las configuraciones mostradas en la figura (6), situdndolas ambas en la fase ordenada
pese a valor nulo de la magnetizacién de la primera de ellas. En definitiva, el comportamiento
de las redes convolucionales resulta en cierto modo complementario al anterior, centrandose en
las relaciones locales y no en los pardmetros de orden.

Lo mismo ocurre en el caso antiferromagnético, que mostramos en la figura (11). Observamos
que la transicién de fase se predice correctamente en 5. = 0,436, muy cercano al valor real y a la
prediccion realizada en el caso ferromagnético. Llama la atencion también que las predicciones
parecen tener mucho menos en cuenta la staggered magnetization que la magnetizacion en el caso
ferromagnético, ensanchando mucho la zona de transicién en la grafica (11b), aunque el compor-
tamiento es cualitativamente similar clasificando configuraciones con staggered magnetizations
por encima de 0,7 como fase desordenada. Esto puede deberse a que la staggered magnetization
es mas complicada de aprender para la red, por lo que la podria tener menos en cuenta. Por
ultimo, esta red neuronal clasifica correctamente todas las configuraciones mostradas en la figura

(8), de manera similar al caso ferromagnético con sus configuraciones.

6. Longitud de correlacion

Trataremos de entrenar ahora a la red en la prediccion de la longitud de correlacién & del
modelo de Ising. El objetivo es determinar el valor de 3 para el que se da la maxima longitud de
correlacién, que marca la transicién de fase .. A diferencia del caso anterior, en el que lleviaba-
mos a cabo un proceso de clasificacion, en esta ocasién necesitamos obtener un valor numérico

determinado en el output. Esto se traduce en que la iltima capa estd formada tinicamente por

pardmetros no se mantiene constante para distintos valores de L, y se podrian justificar cambios en la red neuronal
para aumentar su nimero en caso de ser demasiado pocos. No obstante, hemos preferido limitarnos a los casos
en los que podemos mantener la estructura inicial.
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Figura 11: Resultados para las predicciones del modelo de Ising antiferromagnético con L = 40 haciendo
uso de una red convolucional. (a) Prediccién de la transiciéon de fase, que se sitia en 5. = 0,436. (b)
Diferencia de outputs ordenado y desordenado frente a la magnetizacién de la configuracién.

una neurona. Ademas, la longitud de correlacién puede tomar cualquier valor positivo, y no se
limita al rango entre 0 y 1, por lo que en caso de utilizar neuronas en la iltima capa cuya salida
se encuentre limitada como la sigmoide, necesitaremos llevar a cabo un proceso de normalizacién
de los outputs antes del entrenamiento y prediccién. En nuestro caso el criterio sera asignar la
unidad al mayor valor de la longitud de correlacion entre todas las configuraciones de entrena-
miento y prediccion y reescalar el resto de longitudes frente a esta. La desventaja principal es
que necesitaremos tener siempre presente el valor maximo con el que hemos normalizado para
reescalar el resultado de las predicciones, y que seremos incapaces de determinar correctamente
las longitudes de correlacién por encima de dicho valor. La solucién evidente pasa por utilizar

neuronas a la salida con el output ilimitado, para lograr un comportamiento universal.

6.1. Entrenamiento y prediccién

Como hemos comentado anteriormente, a cada configuracién le corresponde una tnica lon-
gitud de correlacién que se obtiene calculando las correlaciones para todas las parejas de spines
(formadas por un spin y cualquiera de sus vecinos en direcciones vertical y horizontal) segin
la relacién (7), y ajustando la exponencial segin la expresién (8). En el proceso de entrena-
miento necesitamos utilizar configuraciones cuyas longitudes de correlaciéon abarquen rangos
amplios, para que la red sea capaz de aprender correctamente en todo rango de temperaturas
y sus predicciones resulten validas incluso cerca de la temperatura critica, en la que la longi-
tud de correlacion diverge. Para lograr esto, utilizamos configuraciones obtenidas en el rango
Be € 10,1, 0,8], con Ap = 0,01, atravesando claramente (. y abarcando al mismo tiempo las fa-
ses ordenadas y desordenadas. Generamos 100 configuraciones para cada valor de 3, pero dado
que en muchas configuraciones alejadas de la zona de transicion la longitud de correlacién es
practicamente nula, generaremos 1000 configuraciones para cada f en el rango [0,35, 0,5]. De
esta manera, garantizamos un numero suficiente de configuraciones con longitudes de correlacion

méas abultadas. Al igual que en el caso anterior incluiremos configuraciones con fases ordenadas
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apuntando en direcciones opuestas, dando lugar a un total de 41000 configuraciones.

Centraremos el proceso de prediccion en el intervalo S, € [0,3, 0,6], con A = 0,002. Utiliza-
remos 500 configuraciones para cada valor de 3, y recorreremos el intervalo dos veces segin la
orientaciéon de la fase ordenada, dando lugar a un total de 150000 configuraciones. Se muestra en
la figura (12a) la longitud de correlacién en funcién de 5 obtenida como promedio de longitudes
calculadas para todas las configuraciones correspondientes a una misma, 3.

6.2. Redes fully connected

Utilizamos de nuevo una red neuronal con dos capas intermedias, pero en esta ocasion de 100
v 50 neuronas sigmoides respectivamente. El resto de hiperparametros, salvo el de regularizacion
que toma un valor A = 0,01, se mantienen igual que en el caso de la prediccién de fase. De
nuevo, esta eleccién de parametros no es unica, existen otras combinaciones que dan lugar a
buenos comportamientos de la red. A la salida situamos una tnica neurona sigmoide, puesto
que esperamos un resultado entre 0 y 1 para cada configuracion, siendo 1 el valor asignado para
la mayor longitud de correlacién entre todas las configuraciones de entrenamiento y prediccion.

Un problema importante que aparece en esta ocasién es que no existe un criterio claro para
terminar el proceso de entrenamiento, porque a diferencia de las redes utilizadas en clasificacién
en las que podemos determinar de forma clara los aciertos en las predicciones, en este caso
no tenemos una métrica que nos indique si la red estd funcionando correctamente. Unicamente
podemos fijarnos en el valor que adquiere la funcién coste tras cada época de entrenamiento
y tratar de minimizarlo. Ademads, este valor no disminuye de forma uniforme, sino que puede
mantenerse constante o incluso aumentar en algunas épocas antes de seguir disminuyendo. Por
tanto, resulta complicado implementar un criterio de early stopping que funcione en todos los
casos. Para superar esta dificultad, seleccionamos aleatoriamente un 5 % de las configuraciones
de entrenamiento y las apartamos, asegurando que la red no las reciba como input y no las pueda
utilizar en el aprendizaje. Monitorizamos el valor de la funcién coste sobre estas configuraciones,
de forma que podamos tener una imagen razonablemente buena de la capacidad de la red para
predecir correctamente la longitud de correlacién en configuraciones que no ha visto anterior-
mente. A partir de esto, establecemos como criterio para terminar el entrenamiento que el valor
que adquiera la funcién coste en una época determinada sea mayor que la media de las tltimas
veinte épocas. Ademas, establecemos un limite maximo de cincuenta épocas de entrenamiento.

Mostramos en la figura (12a) las predicciones para una red de Ising ferromagnética con L = 40
junto con los resultados numéricos. En la figura (12b) se muestran las predicciones obtenidas
por la red en funcién del valor numérico para cada configuracién. La diagonal, marcada en
naranja, corresponde al funcionamiento ideal de la red neuronal, en el que las predicciones
son iguales que el resultado obtenido numéricamente. Lo primero que destaca en esta grafica
es que las predicciones parecen seguir una tendencia general acertada, pero se desvian mucho
cuantitativamente dando lugar a una nube de predicciones para valores intermedios. Observamos
también que un aumento significativo del niimero de parametros de la red no parece mejorar los
resultados, y podemos asumir que el comportamiento mostrado es el esperable y representativo
de redes neuronales fully connected. En cualquier caso, la linea diagonal parece situarse en un
punto intermedio entre las predicciones para buena parte del rango de longitudes de correlacién,
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por lo que es posible que los errores de unas predicciones y otras para una misma [ se compensen
dando lugar a un buen ajuste. En efecto, esto lo observamos en la gréfica (12a), en la que pese a
los malos resultados para cada configuracién por separado, obtenemos promedios que se ajustan
muy bien al valor real. Es atin mas importante para nosotros el hecho de que las predicciones
acierten en la 3 en la que se produce el maximo de la longitud de correlacién, pues esto determina

la transicién de fase.
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Figura 12: Predicciones para una red de Ising ferromagnética con L = 40 haciendo uso de una red
neuronal fully connected. (a) Predicciones y resultados numéricos para el valor medio de la longitud
de correlacién en funcién de 8. El méximo de las predicciones se sitda en 8. = 0,422 £+ 0,04. (b) En
verde, prediccién para la longitud de correlacion frente al valor obtenido de forma numérica. La linea
dorada marca la diagonal, el valor que deberian tomar las predicciones. Todas las predicciones han sido
reescaladas para representar el valor real de la longitud de correlacién. Izquierda: Resultados obtenidos
para la red original, con estructura [LxL, 100, 50, 1]. Derecha: resultados obtenidos para diversas redes
con un mayor numero de parametros. Inset: predicciones de la red en funcién de la magnetizacién de la
configuracion.

También se aprecia que la red parece tener un umbral inferior para las predicciones, y no es
capaz de alcanzar el valor nulo debido a que necesita inputs muy negativos para ello, dificiles
de conseguir durante el entrenamiento. Se trata por tanto de un problema de construccién de
la red, que se puede solucionar sustituyendo la funcién de la neurona a la salida. Por otro lado,
la red parece infravalorar también las longitudes de correlacién mas elevadas. No obstante, esto
no corresponde al mismo efecto de saturacién que para los valores mas bajos, puesto que el
valor méaximo de las correlaciones con el que se normaliza el output se sitia en torno a 7,5 y
corresponde a una configuracién de entrenamiento, lejos del mayor valor que encontramos en
las configuraciones para la prediccion. Por tanto, la desviacién de los datos probablemente se
deba a una falta de configuraciones con longitudes de correlacién elevadas en el conjunto de
entrenamiento, evitando un correcto aprendizaje. La incapacidad de este tipo de redes para
predecir correctamente el valor de la longitud de correlacién es esperable teniendo en cuenta que
la topologia de la red se conoce de forma general. Vemos ademas en el inset de la figura (12) que
no existe una relacién clara entre la prediccion de la longitud de correlacion y la magnetizacion,
que deja de usarse como criterio.

En cualquier caso, el éxito principal de la red neuronal consiste en ser capaz de determinar
correctamente la 8 a la que se da la maxima longitud de correlacién, pues en ese punto se sitia
la transicién de fase. En este sentido, vemos que en efecto los méaximos obtenidos de forma
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numérica y mediante la red neuronal coinciden en 5. = 0,422 4+ 0,04. El limite para la precision
corresponde a la anchura del maximo calculado de forma numérica, factor limitante en esta

prediccion. Se trata no obstante de un resultado muy satisfactorio.

6.3. Redes convolucionales

Realizamos ahora el mismo procedimiento, haciendo uso esta vez de redes neuronales con-
volucionales. En esta ocasién utilizamos una red formada por dos capas convolucionales con
8 filtros cada una y un receptive field de (5,5), formadas por neuronas leaky ReLU, una capa
fully connected con 30 neuronas ReL U, y una capa de salida con una inica neurona sigmoide a
la salida. El aumento de los filtros en las capas convolucionales y el tamano del receptive field
responde al aumento de dificultad de las predicciones. Los resultados para el promedio de las
predicciones se muestran en la figura (13a). Como vemos, los promedios de las predicciones se
ajustan correctamente a los valores numéricos, y la posicién del maximo es la adecuada, en
Be = 0,422 + 0,04. Se trata del mismo resultado que en el caso anterior, al estar limitada la
precision por los propios datos de entrenamiento y no por el desempeno de la red neuronal.
Destacan los problemas de la red para asignar correctamente la longitud de correlacién segin la
orientacién del spin en la fase ordenada, un problema mucho menos frecuente en la red anterior.
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Figura 13: Predicciones para una red de Ising ferromagnética con L = 40 haciendo uso de una red
convolucional con una neurona sigmoid a la salida. (a) Predicciones y resultados numéricos para el valor
medio de la longitud de correlacién en funcién de 8. El méximo se situa de nuevo en 5. = 0,422 4 0,04.
(b) Predicciones para la longitud de correlacién que obtenemos de la red frente al valor obtenido de forma
numérica. Todas las predicciones de la red han sido reescaladas para representar el valor real de la longitud
de correlacién. La linea dorada marca la diagonal, el valor que deberian tomar las predicciones. En verde,
resultados obtenidos con un receptive field de (3,3). En rojo, resultados obtenidos con un receptive field
de (5,5).

Vemos en la figura (13b) que las predicciones son mucho més precisas que en el caso ante-
rior, pese a que todavia existe una variabilidad importante en la determinacién. Se trata de una
mejora significativa frente a las redes fully connected. La capacidad predictiva de las redes con-

volucionales se explica por su arquitectura, puesto que la longitud de correlacién es una medida
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del tamano medio de las zonas ordenadas. Una red que basa sus detecciones en la busqueda de
propiedades en zonas localizadas de la red (demarcadas por el receptive field) puede obtener de
forma relativamente sencilla esta informacién. Es evidente entonces que un mayor tamano del
receptive field puede dar lugar a mejores predicciones, al ser capaz de abarcar zonas ordenadas
mas grandes, y delimitar correctamente las més pequenas. Esto explica por qué los resultados
mejoran ligeramente al pasar de un receptive field de (3,3) a (5,5), y justifica el uso de este 1lti-
mo para nuestra red. Los resultados no mejoran més alld de este tamano, precisamente porque
hay muy pocas configuraciones con una longitud de correlaciéon por encima de 5, y el resto de
configuraciones se pueden caracterizar bien con un receptive field menor.

Por 1ltimo, queda por estudiar el comportamiento de una red convolucional en la que el
output no se encuentre limitado. Para ello, cambiamos la neurona sigmoid a la salida por una
neurona ReL U, cuyo output puede tomar cualquier valor positivo. En este caso no podemos usar
la funcién cross-entropy para calcular el coste, y recurriremos a una funcién coste de minimos
cuadrados (ver anexo 1). Como vemos en la figura (14a), los resultados son muy similares a los
casos anteriores, situando correctamente el valor maximo y ajustandose en general para todas
las 8. De nuevo, se observa que la red tiene algunos problemas para consensuar las predicciones
en la fase ordenada segun la orientacién del spin. Vemos en la figura (14) que las predicciones

se ajustan razonablemente al valor numérico, de forma similar al caso anterior.
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Figura 14: Predicciones para una red de Ising ferromagnética con L = 40 haciendo uso de una red
neuronal convolucional con una neurona ReL U a la salida. (a) Predicciones y resultados numéricos para el
valor medio de la longitud de correlacién en funcién de 8. El maximo se situa de nuevo en . = 0,422+0,04.
(b) En verde, predicciones para la longitud de correlacién frente al valor obtenido de forma numérica. La
linea dorada marca la diagonal, el valor que deberian tomar las predicciones.

En definitiva, las redes convolucionales se muestran claramente superiores a las fully con-
nected en la prediccién de observables, hecho que se explica por la incapacidad de las ultimas
para determinar correctamente la topologia local de las redes de Ising. En cuanto a las redes
convolucionales, el comportamiento resulta muy similar independientemente de la neurona que
coloquemos a la salida. Las redes con output limitado tienen el problema de que todas sus pre-
dicciones deben ser reescaladas adecuadamente, y ademads tienen un limite superior a la longitud
de correlacién que son capaces de predecir dado por el valor mdximo con el que han sido entre-
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nadas. De aqui se concluye que las redes convolucionales con un output ilimitado son las mejores
en la prediccién de la longitud de correlacién. No obstante, incluso mostrando malos resultados
en las predicciones para configuraciones concretas, las tres redes logran situar correctamente los

maximos en funcién de 3, y su magnitud.

7. Conclusiones

En el presente trabajo hemos comprobado que las redes neuronales fully connected y las
convolucionales son capaces de aprender y predecir distintas caracteristicas del modelo de Ising
bidimensional, permitiéndonos extraer de estas predicciones informacién acerca de la existencia
y particularidades de su transicién de fase.

En primer lugar, hemos logrado entrenar redes en la clasificaciéon de configuraciones segiin su
pertenencia a una fase ordenada y desordenada, lo que nos ha permitido establecer una tempe-
ratura critica de frontera entre ambas fases. Esta frontera ha resultado dependiente del tamano
de la red de Ising y del tipo de red neuronal utilizada: las redes fully connected han mostrado su
capacidad de célculo de observables generales como la magnetizacion, y las convolucionales, su
comprensién del orden local. En segundo lugar, hemos logrado entrenar redes en la prediccion
de la longitud de correlacién, obteniendo buenas estimaciones incluso para la configuraciones
con longitudes més grandes. En este caso las redes convolucionales han obtenido resultados muy
satisfactorios, pero ha quedado patente la limitacién que conlleva el desconocimiento de la to-
pologia del sistema en las redes fully connected, que da lugar a un buen comportamiento en
promedio pero algo pobre en los resultados para configuraciones individuales.

En definitiva, las redes neuronales se han mostrado capaces de extraer informacién 1til
acerca del modelo de Ising y aplicarla en sus predicciones. Incluso con la simpleza del modelo,
hemos podido comprobar las limitaciones y caracteristicas mas importantes de cada tipo de red
neuronal y algunos de sus hiperparametros, recorriendo los primeros pasos en el camino de la
implantacién de la Inteligencia Artificial como herramienta bésica en el estudio de la materia
condensada.
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