Parte 111
Anexos

Anexo 1. Funcién coste

Como hemos comentado, existen muchas elecciones posibles para la funcién coste, que deben
cumplir una serie de caracteristicas. En el caso més sencillo podemos definir una funcién de

coste cuadratica:

1 1 U
C(w7b) = M Zcm(wab) = m Z ||y($) - aR(xawvb)HQ (1)
r=1 =1

donde = € 1,..., M hace referencia a las configuraciones de entrenamiento de la red. Es impor-
tante definir el coste total como la suma normalizada de costes de todas las configuraciones para
poder aplicar el stochastic gradient descent. Por otro lado, conviene que sea una funcion directa
de los parametros de la udltima capa de neuronas para poder aplicar el algoritmo de backpro-
pagation, criterio que se cumple al ser funcién del output a®(w,b). Su valor debe ser siempre
positivo, y es conveniente que en caso de que el output de la red y el esperado sean iguales,
ademds de tener un minimo en la funcién, el valor de C'(w,b) sea 0. Por tltimo, una buena
funcién coste debe ser continua y derivable para poder determinar correctamente los cambios
en los parametros necesarios para minimizarla. La funcién de coste cuadratica cumple todas las
caracteristicas anteriores, al igual que la cross entropy:

| M
C':—M;[y-lna—i-(l—y)ln(l—a)] (2)

Por brevedad hemos omitido los indices. Aparentemente la cross entropy no presenta ninguna
ventaja frente a la funcién cuadratica. En realidad, la conveniencia de esta funcién nace de la
aplicacién del algoritmo de backpropagation, al acelerar en gran medida el aprendizaje en las
primeras etapas cuando el output de la red dista mucho del valor real. Es importante notar que
en el caso de la funcion cross entropy los outputs deben estar limitados entre 0 y 1, lo que hace
dificil su aplicacién para problemas que no sean de clasificacion.

Respecto al término de regularizacién, los mas utilizados son los correspondientes a la regu-
larizacién L1, que utiliza simplemente la norma del vector de parametros, y la regularizacién L2,
que utiliza la norma al cuadrado. Nosotros utilizaremos esta dltima, aunque no existen grandes

diferencias entre el comportamiento de ambas.

L1(w, b) = % Sy Lo(wb) = o2 30 2 3)

v=w,b v=w,b

La suma se da sobre todos los pesos y biases de la red, y se divide por el niimero de configuracio-
nes de entrenamiento M. Como ya hemos comentado, el parametro A se conoce como ” pardmetro
de regularizacion”, y es un hiperparametro de la red. La suma sobre w, b indica que se da so-
bre todos los pesos y biases. Esto no es estrictamente necesario, puesto que se ha comprobado
empiricamente que renormalizar los biases no produce una mejora significativa del rendimiento,

principalmente debido a que se ven mucho menos influidos que los pesos ante cambios en el input
X y que valores elevados de éstos en ocasiones son ttiles para saturar ciertas neuronas. Por esta
razén, nosotros hemos optado por realizar la suma dnicamente sobre los pesos. Finalmente, la

funcién coste utilizada en nuestro trabajo resulta:

o 1 < A 2
——M;[y-lna—l—(l—y)'ln(l—a)]—i-Wgw (4)

Anexo 2. Stochastic gradient descent

Definida la funcién coste, debemos ahora desarrollar un método que nos permita minimizarla
variando los pardmetros de la red. Esto se logra mediante la aplicacién de algoritmos de descenso
de gradiente, de forma que partiendo de un conjunto de pardmetros v (en nuestro caso los pesos
y biases) y una funcién coste C(v), y calculando el vector gradiente:

vew - (2.2)’ 8

podemos alcanzar el minimo de la funcién actualizando progresivamente los pardametros segin:
v—v =v-nVC (6)

El calculo del gradiente de la funcion coste respecto de cada parametro se realiza mediante el
algoritmo de backpropagation, que se detalla en el anexo 3. El factor es un hiperparametro de
la red, se conoce como learning rate en el campo de la inteligencia artificial y es siempre positivo.
Un valor elevado acelera el proceso de aprendizaje, pero un desplazamiento mayor en el espacio
de fases en cada actualizaciéon puede provocar que el sistema sea incapaz de encontrar el minimo
o incluso diverja. En cambio, un valor demasiado pequeno alarga el proceso de entrenamiento y
puede provocar que el sistema quede anclado en minimos locales. Nos interesa por tanto un valor
intermedio que evite ambos comportamientos perjudiciales, o incluso que éste vaya variando con
el tiempo para ajustarse a las necesidades del entrenamiento.

Es importante notar que nuestra funcién coste se construye como la media de costes indi-
viduales para cada configuraciéon de entrenamiento, y por tanto podemos expresar el gradiente

CcOomao:
1 M
Ve = o ;:1: Ve, (7)

Esto implica que para actualizar los pardmetros en cada paso temporal debemos calcular el
gradiente de la funcion coste de cada configuracion y promediarlos. En caso de contar con varias
decenas de miles de configuraciones y cientos de miles de parametros, el proceso puede prolon-
garse mucho en el tiempo hasta hacer inviable el entrenamiento. Para sortear este problema se
introduce el descenso de gradiente estocastico, cuya idea principal consiste en utilizar un subcon-

junto de m configuraciones de entrenamiento para calcular el gradiente. Dicho subconjunto debe

ser pequeno para acelerar el proceso, pero lo suficientemente grande como para poder asumir
que se cumple:

1 & 1 &

—E vC %—E vC, =VC (8)

m M

r=1 =1

Es decir, suponemos que con un conjunto relativamente pequenio de configuraciones logramos
estimar correctamente la direccién que toma el gradiente en el espacio de fases, acelerando el
proceso en un factor M /m. En la practica se agrupan las configuraciones de manera aleatoria en
pequenos grupos llamados mini-batches, y se van actualizando los parametros hasta utilizar cada
uno de estos conjuntos. Cada ciclo en el que se utilizan todas las configuraciones de entrenamiento

se conoce como €poca.

Anexo 3. Backpropagation

En este apartado vamos a estudiar cémo calcular explicitamente el gradiente de la fun-
cion coste respecto de todos los pesos y biases. Una aproximacién al problema que determine
la direcciéon de dicho gradiente variando un sdlo parametro ligeramente y comprobando si el
coste aumenta o disminuye no es factible por la inmensa cantidad de parametros y el tiempo
necesario para recalcular cada coste. Debemos por tanto cenirnos al calculo analitico de las deri-
vadas, aunque a primera vista parece un problema inabarcable en redes relativamente profundas.
Historicamente se han desarrollado multitud de estrategias para enfrentar esta cuestion, entre
las cuales destaca el algoritmo de backpropagation [3], que se ha convertido en un estdndar por
su simpleza y su buen funcionamiento desde que fue propuesto en 1986.

El algoritmo se basa en la definicién una variable vectorial 8" para cada capa r, denominada

error, que cuantifica el efecto del input de la misma sobre la funcién coste segun:

oC
6z;7

& = 9)

donde j denota la j-ésima neurona de la capa. Nétese que hemos definido el error como el cambio
ante el input 27, y no el output a . En principio cualquiera de las dos versiones es valida, pero
la segunda Comphca un poco més el dlgebra. Con esta variable podemos expresar las cuatro

ecuaciones fundamentales del algoritmo de backpropagation.

o = jj%f'(zf) (10)
& = ZwT“aT“ (2%) (11)
gg“; _py (12)
a(?gk = a0 (13)

La estrategia para calcular los gradientes es sencilla: la primera ecuacion nos dice como calcular
el error de la dltima capa, y utilizamos la segunda ecuacién para propagar los errores hacia capas
cada vez mas internas, lo que da su nombre al método. Las dos tultimas ecuaciones nos dicen
como determinar a partir del error de cada capa las derivadas parciales que nos interesan para
minimizar el coste. La demostracion de estas relaciones es inmediata a partir de la definicién
del error en la ecuacién (9) y de la definicién de z; dada en el trabajo, aplicando la regla de la
cadena. La funcién f(z) es la correspondiente a la neurona con la que estemos trabajando y su
derivada es conocida, al igual que la derivada de la funcién coste con respecto del output de la
red. En el caso concreto en el que utilicemos una funcién coste de entropia cruzada, y neuronas
sigmoid, basta sustituir

oc 1 M yi o 1—uyj
aaf _sz_:l @ + 1-— af (14)
f(z]) = d'(2]) = o(2]) (1 — o(2))) (15)

para obtener las expresiones explicitas. Como comentario, ndtese que las posibles divergencias
en la primera de las ecuaciones anteriores por el término af en los denominadores no son tales:
si el valor esperado y; es nulo, entonces el primer término siempre es 0 y el segundo no. Si el
valor esperado es 1, ocurre lo mismo con el segundo término. En resumen, ambas funciones son
analiticas y se pueden calcular con facilidad conociendo el output af de la red. A partir de
estas, el calculo del resto de errores y el gradiente se realiza de forma muy réapida propagando
estos resultados hacia atras en un tnico paso. Hecho esto para todas las configuraciones del
mini-batch, se calcula el gradiente final y se actualizan pesos y biases para disminuir el valor de

la funcién coste.

Anexo 4. Neuronas

En el trabajo hemos explicado la neurona sigmoid, la mas comin desde los inicios de la
Inteligencia Artificial hasta la aparicién de las neuronas ReL U, que solucionaban gran parte de
sus problemas asociados. En la actualidad existen una gran cantidad de neuronas posibles, cada
una con sus ventajas e inconvenientes. En este anexo presentaremos algunas de ellas, incluidas
todas las utilizadas en el trabajo.

La neurona mas simple que podemos implementar en nuestra IA es el perceptrén, caracteri-

zado por una funcién escalén:

0 si Y wjzj+b<0
1 s ijjijrbzo

output = (16)

El bias b actia como una umbral a partir del cual se da o no output en la neurona. Se puede
demostrar que este modelo extremadamente simple es capaz de reproducir el comportamiento
de una puerta légica NAND, y resulta por tanto un conjunto funcionalmente completo, capaz de
describir cualquier funcién légica. No obstante, pequenos cambios en el input o en los parametros
internos del sistema pueden provocar grandes cambios repentinos en el output o no variarlo en

absoluto, dificultando el proceso de aprendizaje de la red y desaconsejando el uso de este tipo
de neuronas.

Las neuronas sigmoid no presentan los problemas anteriores, y permiten construir redes
neuronales capaces de llevar a cabo buenas predicciones, sobre todo en problemas de clasificacién
debido a su output limitado. Este tipo de neuronas tienen un mejor desempeno en redes no muy
profundas, con pocas capas intermedias. La razén para ello se deriva de forma inmediata del
algoritmo de backpropagation: vemos en la ecuacién (11) que el calculo de 6, de la que depende
de forma directa el gradiente de la funcién coste, viene multiplicado por la derivada de la funcién
correspondiente a la neurona. En el caso de la sigmoid esta derivada es nula para valores de
tnput mucho mayores o mucho menores que 0, y ademés toma siempre un valor menor que 1.
Dado que el cédlculo de una ¢ hace uso de las § de todas las capas posteriores, y en cada capa el
valor se ve disminuido al multiplicarse por un factor menor que 1 (y en ocasiones muy pequeno),
el método termina perdiendo validez para capas relativamente profundas al anularse este valor.
Esto se conoce en la literatura como el problema del vanishing gradient.

Otr tipo de funcién que se utiliza principalmente para la capa de salida de redes neuronales
de clasificacién es la softmax. Su caracteristica mas importante es que la suma de los outputs esta
normalizada a 1, de forma que podemos entenderla como una distribucion de probabilidad que
en un problema de clasificaciéon nos dice cuanto de probable es que el input de la red pertenezca
a una categoria u otra. Su funcién resulta por tanto un poco mas complicada que la anterior:

R
e~

R _
> €k

donde af representa el output de la neurona j-ésima de la capa de salida. Su comportamiento

(17)

depende asi de los inputs del resto de neuronas. Vemos un ejemplo con dos neuronas a la salida
en la figura (1b), suponiendo que uno de los inputs toma el valor z; = 1,0.

Para resolver el problema del vanishing gradient se introdujeron las neuronas ReLU, que
obedecen la ecuacién:

0 st z:zjwjzj—}—bg()

output = (18)

z osioz=) jwjzj+b>0

Podemos resumir su comportamiento en output = maxz{0,z}. Es evidente que la derivada de
esta funcién es 1 para todo z > 0. Su output esta contenido inicamente para valores negativos,
un comportamiento que puede resultar adecuado para ser utilizadas como capa de salida de la
red en ciertos casos, como la prediccion de la longitud de correlacion que hemos estudiado en
el trabajo. Durante la ultima década esta neurona se ha impuesto frente al resto impulsando el
desarrollo de las redes neuronales profundas, y en la actualidad es la neurona mas utilizada en
el campo de la inteligencia artificial.

No obstante, las neuronas ReLU tienen un inconveniente que en ocasiones puede perjudicar
al funcionamiento de la redes. Cuando su input es negativo las neuronas se encuentran apagadas,
su derivada es nula, y por tanto su output no varia ante pequenos cambios en los parametros. Esto
provoca que dependiendo de la inicializacion de los parametros o el proceso de entrenamiento,
cierta cantidad de neuronas pueden quedar fijadas con inputs negativos resultando inttiles para

1.00 1.00
0.75 0.75
E“ Softmax
— - . I =
N os0 Sigmoid & 050 1
m:“.,_k a§
0.25 0.25
0.00 0.00
—6 —4 -2 0 2 4 6 -6 —4 -2 0 2 4 6
Z zZ
(a) (b)
1.00 1.00
0.75 0.75
~ 0.50{ RelLU w 0307 Leaky RelLU
= =
0.25
0.25
0.00
0.00
-1.0 -0.5 0.0 0.5 1.0 -1.0 —-0.5 0.0 0.5 1.0
Z £
(c) (d)

Figura 1: Representacién del comportamiento de las principales neuronas utilizadas durante el trabajo.
En (b) se muestra el caso de la funcién softmaz aplicada al caso concreto de una capa de salida con dos
neuronas, en el que uno de los inputs toma el valor z; = 1,0.

la red. Si este comportamiento se da en una cantidad suficiente de neuronas, se puede llegar
a bloquear el proceso de entrenamiento imposibilitando el aprendizaje. Este es el denominado
problema de las dying ReLU.

La solucion en este caso resulta trivial, basta con anadir cierta pendiente al resultado cuando
el input es negativo, de forma que la derivada de la funciéon no se anule y el aprendizaje no se
detenga. Esta nueva funcién se conoce como Leaky ReL U, y se caracteriza por un hiperparametro

a que determina la pendiente en la zona negativa.

az sioz=) wizi+b<0

output = (19)

z st 2= jwizi+b>0

Es importante notar que ninguno de los problemas anteriores imposibilita el uso de cualquie-
ra de estas funciones en redes neuronales, no aparecen en todas las ocasiones e incluso pueden
resultar ttiles en algunos casos. La eleccién de unas funciones u otras responde principalmente
a criterios puramente empiricos, basados en ensayo y error, en los que los problemas comen-
tados influyen pero no son determinantes. Por ejemplo, las neuronas ReL U son ahora mismo
dominantes sobre otras porque en diversos experimentos se ha comprobado que se comportan
mejor de forma consistente. Sin embargo, la decisién de usar neuronas Leaky ReLU y no ReLU
en algunas capas de las redes convolucionales presentes en el trabajo se debe tinicamente a que

los resultados parecian ser en general mas estables en el primer caso, pero esto ni siquiera se
cumplia en todas las ejecuciones. Esto quiere decir que la eleccién final de todos los componen-
tes de una red neuronal dependen en gran medida de los objetivos a alcanzar, y que no existen
reglas absolutas que permitan construir desde un principio redes adecuadas. Serdn necesarios
avances significativos en la comprensién del funcionamiento tanto de las redes como de neuronas
individuales para empezar a vislumbrar estas reglas generales que permitan asentar sobre una
base sélida el campo de la Inteligencia Artificial, joven todavia.

Anexo 5. Modelo de Ising. Computacion.

Durante este trabajo se han utilizado una gran cantidad de configuraciones de diversas redes
de Ising. Para generarlas hemos utilizado principalmente cédigos en C' cuyas propiedades y
parametros béasicos explicamos en este apartado.

Las configuraciones para cada temperatura se han generado mediante un algoritmo de Metro-
polis, en el que el paso de una configuracion a otra depende del cociente entre las probabilidades
de aparicién de ambas a dicha temperatura. Es importante destacar que se usan condiciones
de contorno periédicas e interacciones unicamente a primeros vecinos, tanto ferromagnéticas
como antiferromagnéticas. Las cuestiones técnicas mas importantes a resolver en la generacion
de configuraciones son la termalizacion y la autocorrelacién entre configuraciones. Al generar
las configuraciones para una nueva temperatura, debemos asegurarnos de que la distribucién de
probabilidad con la que aparecen corresponde realmente al nuevo caso. Para ello debemos llevar
a cabo un proceso de termalizacién asegurando que las nuevas configuraciones corresponden ver-
daderamente a la nueva temperatura. En nuestro caso hemos establecido un periodo de 10000
configuraciones por defecto para todos los casos, cantidad mas que suficiente para asegurar la
correcta termalizacién del sistema incluso para las redes méas grandes con L = 64. Por otro lado,
las configuraciones que tomamos para realizar nuestros experimentos deben estar completamen-
te descorrelacionadas entre ellas para evitar comportamientos no deseados. Esto implica que
debemos desechar una gran cantidad de configuraciones intermedias entre dos tomas de datos
diferentes. En nuestro caso hemos establecido que dejaremos pasar por defecto 1000 configu-
raciones entre cada configuracién vélida para el experimento, incrementando este valor hasta
10000 en el intervalo 8 € [0,43,0,45] para combatir el critical slowdown propio del modelo de
Ising cuando se aproxima a (.

Estudiamos en la figura (2a) el proceso de termalizacién de una red de Ising con L = 64,
la mas grande utilizada en el trabajo. Se representa tanto la magnetizacién como la energia
por spin del modelo en la trayectoria desde una configuracién completamente ordenada a una
completamente desordenada, la mas larga posible. Como se puede ver, en algo menos de 1000
paso temporales ambos valores alcanzan el equilibrio, y por tanto con 10000 pasos temporales
entre temperaturas tenemos asegurada la termalizacién de la red. Por otro lado, mostramos en

la figura (2b) las autocorrelaciones del modelo calculadas segun la expresion:

(20)

Las configuraciones se consideran descorrelacionadas cuando x(t) = 0. Es importante notar
que esta expresién es vilida por debajo de la temperatura de transicién; por encima adquiere
un valor en el equilibrio distinto de 0 para todo tiempo, por la existencia de magnetizacién
espontanea. Esto se observa en la figura, donde se ve que cuando 8 = 0,43 las autocorrelaciones
decaen exponencialmente hasta anularse en menos de 2000 pasos temporales, mientras que en
B = 0,44, muy cerca de la transicién pero por encima (recordemos que se trata de redes finitas
y la transicién se da antes), su valor decae a un ritmo constante hasta alcanzar x(t) = 0,2,
a partir del cual se producen oscilaciones. Este es el umbral al que nos hemos referido antes.
En definitiva, podemos concluir que 1000 pasos temporales fuera de la zona de transicién, y
10000 en dicha zona, son suficientes para asegurar que las configuraciones estan suficientemente

descorrelacionadas.
1.0 1.0
\ B=0.01
0.8 —— magnetizacion 0.8
= energia
@ 0.6 0.6
i)
= 0.4 = 0.4
E 0.2 0.2
0.0 e aenitn 0.0
0 200 400 600 800 1000 0 2000 4000 6000 8000 10000
t t
(a) (b)

Figura 2: Resultados para una red de Ising ferromagnética con L = 64 (a) Magnetizacién y energfa por
spin en funcién del paso temporal durante un proceso de termalizacién. Representamos el paso de una
temperatura muy baja a una muy alta. (b) Autocorrelaciones en funcién del tiempo, calculadas a partir
de 1000 ejecuciones diferentes con la ecuacién (20).

Anexo 6. Otros programas

La naturaleza computacional del presente trabajo ha hecho necesario el uso de diversos
lenguajes de programacién y herramientas, ademéas de las anteriormente comentadas para la
generacion de configuraciones. Todas las redes neuronales utilizadas durante el trabajo se han
desarrollado en Python. Por un lado, las redes neuronales fully connected se han construido a
partir de los cédigos incluidos en [?], llevando a cabo las modificaciones necesarias para adaptar
el funcionamiento de redes cuyo objetivo es reconocer digitos escritos a mano a la prediccion
de orden en configuraciones de Ising. Por otro lado, las redes convolucionales se han construido
haciendo uso de la libreria Tensorflow, que permite implementar redes neuronales y trabajar
con ellas de manera muy sencilla. Se ha utilizado la libreria Matplotlib para la elaboracién de
figuras, y los calculos mas pesados para las propiedades de las redes de Ising se han realizado en
Cython, un lenguaje de programacion que permite escribir extensiones en C con las que operar
desde Python ganando mucha rapidez en la obtencién de resultados. Se ha aplicado a cédlculos

como la magnetizacion de las configuraciones o las correlaciones entre spines. Por ltimo, se
ha usado la funcién optimize.curve_fit de la libreria scipy de Python para realizar los ajustes
exponenciales que nos permiten obtener la longitud de correlacion, un paso sensible porque de
su correcta obtencion dependen los resultados del trabajo.

Anexo 7. Redes fully connected y convolucionales: consensos

para la transicion de fase

Hemos visto que las redes fully connected y las convolucionales tienen propiedades comple-
mentarias en su proceso de prediccién del orden en la red de Ising. Para aprovechar lo mejor
de cada una, podemos plantear un sistema en el que tomemos las predicciones por separado de
varias redes y las promediemos, compensando las posibles deficiencias de redes particulares y
asegurando un comportamiento consistente.

Tomamos asi todas las redes neuronales utilizadas en la prediccion de la transicién de fase
mediante clasificacién de configuraciones, tanto fully connected como convolucionales (seccién 5),
y promediamos sus outputs para cada configuracién. Utilizamos 10 redes diferentes para realizar
una estimacion concertada de .. Los resultados para una red de Ising con L = 40 se muestran en
la figura (3). Como podemos observar, la prediccién de la transicion de fase tiene una forma muy
similar a los casos anteriores por separado. El promediado sobre las diez predicciones suaviza
las curvas y situa la prediccién a medio camino de los resultados por separado, evidentemente.
La ventaja de este método es que las configuraciones dudosas en las que las redes se encuentran
divididas dan lugar a predicciones de en torno a 0,5 en ambos outputs, ordenado y desordenado,
y por tanto influyen muy poco en la determinacién de S..

Por otro lado, vemos un comportamiento peculiar en la figura (3b), que compara las predic-
ciones con las magnetizaciones. Se observa un comportamiento que en la mitad inferior recuerda
al de las fully connected y en la mitad superior, al de las convolucionales. Lo que ocurre en la
zona de transicién es que las redes fully connected pasan a considerar configuraciones ordenadas
para magnetizaciones relativamente pequenas, de en torno a 0,4, pero las convolucionales apenas
han comenzado a ascender lastrando el crecimiento de la curva. Esta adquiere una forma similar
a la curva de las fully connected, que son quienes guian el aumento. Por otro lado, a partir de
magnetizaciones mayores de 0,5 las redes fully connected consideran todas las configuraciones
ordenadas, y son las convolucionales las que guian el aumento de las predicciones, otorgando su
forma a la curva en el ultimo tramo. De esta manera obtenemos las ventajas de ambos métodos,
adelantamos la magnetizacion a la que se produce la transicién frente a las redes convoluciona-
les, y tenemos en cuenta las relaciones entre spines, a diferencia de las redes fully connected. En
este sentido, el sistema clasifica la configuracién (6a) mostrada en el trabajo como desordenada,
pero por un pequeno margen (0,533 frente a 0,467), por lo que el posible error tendra muy poca
influencia en el resultado final. Por supuesto, clasifica correctamente la segunda configuracién
como ordenada.

Todo esto nos permite obtener una nueva prediccién para la transicion de fase en el limite
termodindmico repitiendo el procedimiento para distintas L. Se muestra el resultado en la figura
(4). Como podemos observar, la dependencia es mucho més lineal que en los casos anteriores

10 _ ol) 0.45
81 0.44
4|
e 4 |
2 61 — Desordenado e 0'433
= —— Ordenado 3
O 4 w 0.42
[a)
2] 0.41
01— T T T T T ., — . . . 0.40
0.40 0.41 0.42 0.43 0.44 0.45 0.0 0.2 0.4 0.6 0.8
B Magnetizacion
(a) (b)

Figura 3: Predicciones para una red de Ising ferromagnética con L = 40, haciendo uso al mismo tiempo
de 5 redes fully connected y 5 redes convolucionales. (a) Prediccién de la transicién de fase, que se sitia
en . = 0,434. (b) Prediccién de la red frente a la magnetizacién de cada configuracion.

y da lugar a un ajuste muy preciso que sitia la transicion en el limite termodinamico en 3, =
0,4403 £+ 0,0004. Es un valor extremadamente cercano al tedrico, que ademads incluye en su
intervalo de error. Es importante destacar ademads que el nuevo resultado no se sitia a medio
camino entre los resultados por separado para los distintos tipos de redes (8. = 0,4362 40,0012
para las fully connected y . = 0,4414 £ 0,0008 para las convolucionales), y ademds es mucho
mas cercano al obtenido con redes convolucionales. En cualquier caso se trata de un resultado
muy satisfactorio que mejora los anteriores y justifica el uso de este tipo de estrategias para los
problemas de clasificacién, y en concreto para la prediccién de la transicion de fase en el modelo
de Ising.

0.445
® f- media

0.440 1 —— Fit lineal
0.435 1
@ 0.430
0.425 {

0.420 {

0.415 T T T T T T
0.00 001 0.02 003 0.04 005 006 0.07

L

Figura 4: Predicciones de B, para redes de Ising ferromagnéticas de diferentes tamanos (L =
20, 24, 32,40, 48,64), haciendo uso de 5 redes fully connected y 5 redes convolucionales. La transicién
en el limite termodindmico (cuando 1/L — 0) se sitia en 5. = 0,4403 + 0,0004.

10

Anexo 8. jPor qué correlaciones?

En el trabajo hemos utilizado la longitud de correlacién como método para predecir la
transicién de fase del modelo de Ising. No es la unica opcién, otros observables como el calor
especifico o la susceptibilidad también divergen en f., y podrian haber sido elecciones vélidas
para llevar a cabo los experimentos. Sin embargo, como hemos comentado durante el trabajo, la
propiedad fundamental que inclina la balanza hacia la longitud de correlacién es que al poder
ser calculada usando todas las posibles parejas de spines de una configuracién, podemos asignar
un valor a la longitud de correlacién que la red, al menos en teoria, debe ser capaz de calcular
partiendo inicamente de dicha configuracion.

Esto contrasta con lo que ocurriria si entrendsemos la red en la prediccién de la suscepti-
bilidad o el calor especifico. A diferencia de la longitud de correlacién, se obtienen a partir de
promedios de la magnetizacién y la energia de una gran cantidad de configuraciones, y por tanto
caracterizan al conjunto de configuraciones correspondientes a una temperatura, y no a cada una
por separado. Esto implica que no existe una relacién directa entre input y output, comprome-
tiendo la capacidad predictiva de la red. Para resaltar el problema claramente, supongamos que
entrenamos la red con configuraciones cercanas a la transicién de fase. Debido a las divergencias
de x y Cy, es posible que para valores de 8 muy cercanos entre si el calor especifico o la sus-
ceptibilidad sean notablemente diferentes. Sin embargo, existe una probabilidad no despeciable
en estos rangos de que aparezcan las mismas configuraciones en temperaturas muy proximas.
Estariamos por tanto entrenando la red con dos configuraciones iguales esperando dos outputs
diferentes. Esto no puede ocurrir en el caso de las correlaciones tal y como las calculamos, y por
ello las hemos seleccionado.

Mostramos en la figura (5) los resultados que habriamos obtenido si en lugar de utilizar
la longitud de correlacién calculada para cada configuracion hubiéramos usado el promedio co-
rrespondiente a la temperatura a la que ha sido generada. Podemos ver que el comportamiento
global es correcto, situdndose el maximo en el mismo lugar que en los casos anteriores y con
magnitud similar, aunque ligeramente subestimada. Vemos en la figura (5b) las predicciones de
la red frente al valor calculado numéricamente. A la izquierda estimamos dicho valor numérico
como la media de longitudes de todas las configuraciones correspondientes a una misma 3, y a
la derecha, a cada longitud de correlacién por separado. Vemos que las predicciones de la red
son bastante razonables si las comparamos con las medias para cada [, pero sin embargo son
completamente erréneas para configuraciones individuales con longitudes de correlacién abulta-
das. Podemos observar que la red ni siquiera es capaz de reproducir una tendencia ascendente
en las predicciones para tamanos mayores de las fluctuaciones, lo que siembra dudas acerca de
los criterios utilizados para realizar dichas predicciones. Por ejemplo, existe la posibilidad de que
la red esté traduciendo las configuraciones a una temperatura, y de ahi asigne un valor de la
longitud de correlacién, subvirtiendo el objetivo de la red y utilizando la transicién de fase como
medio para realizar las predicciones. De esta manera invalidaria la estimacion de ., porque
la red tiene ya codificado el maximo que debe asignar a las predicciones segiin la temperatura
que estima para cada configuracién. Es importante recalcar una vez més que la relacién entre
configuracién y longitud de correlacion si existe y es mas o menos directa, simplemente la red
no la ha aprendido como tal y estd recurriendo a otros caminos. En definitiva, pese a los resul-

11

tados aparentemente buenos no podemos considerar que el funcionamiento es adecuado. Este
mal funcionamiento probablemente se deba al método de entrenamiento propuesto para la red,
resaltando la importancia de un correcto diseno de todas las fases implicadas en la construccion

y entrenamiento de las redes neuronales.

| o
c 5 1 —— Maximo
78 ’ * Valores numéricos 3 6
% 20 'n_... ¢ Predicciones -
i 1 0
o 5 G2 r4
o 15 kY =
v A 3
o ~ bt
C';‘l 1.0 o 1 r2
c
£ ; \
0.3 0.4 0.5 0.6 05 10 15 20 25 0 2 4 6
B Valor numérico
(a) (b)

Figura 5: Predicciones para la longitud de correlacién en una red de Ising ferromagnética con L = 40
haciendo uso de una red neuronal convolucional con una neurona ReLU a la salida. (a) Predicciones y
resultados numéricos para el valor medio de la longitud de correlaciéon en funcién de 5. El maximo se
sitia en 8. = 0,422 + 0,04. (b) Izquierda: predicciones que obtenemos de la red frente al valor obtenido
de forma numérica promediando las longitudes de correlacién para cada 3. Derecha: predicciones frente
a las longitudes de correlacion obtenidas para cada configuracion.

Otro ejemplo quizd mas interesante que la longitud de correlacion es la susceptibilidad
magnética. A diferencia del caso anterior, en el que el valor para el entrenamiento se obtiene
como media de longitudes, ahora el calculo se debe realizar necesariamente con la influencia de
todas las configuraciones pertenecientes a una misma (. Desde el punto de vista computacional
podemos definir la susceptibilidad magnética como:

X(T) = V((m®) = (Im])?) (21)
donde V' es el niimero de spines de la red, y m la magnetizacion de la configuracién. Los pro-
medios se realizan sobre todas las configuraciones generadas para una misma S. Se trata por
tanto de una cantidad que no se puede calcular partiendo de una tnica configuracién, y por tan-
to la red no puede establecer una relacién matematica directa entre configuracion y resultado.
Vemos los resultados en la figura (6). Como podemos observar, la red neuronal logra establecer
correctamente la posicién del maximo de la susceptibilidad pese a desviarse notablemente en
su magnitud. Vemos sin embargo a la derecha que las predicciones para cada configuracién son
manifiestamente mejorables extendiéndose por un amplio rango de valores para todas las 3. Pese
a que los promedios finales obtienen resultados decentes, la predicciéon para cada configuracion
individual no es confiable. Nos encontramos en una situacién similar al caso anterior: la red
se comporta correctamente haciendo aquello para lo que ha sido entrenada, pero es incapaz
de trasladar este buen resultado a la configuracién individual. Estas dificultades también son
esperables teniendo en cuenta que la susceptibilidad no esta definida por configuracién, sino que
caracteriza una temperatura, y teniendo en cuenta que todas las configuraciones tienen pro-
babilidades no nulas de aparecer en todas las temperaturas, no es realista esperar un correcto

12

funcionamiento fuera de los promedios. En el fondo estamos entrenando a la red en la compren-
sién de las distribuciones de probabilidad de las configuraciones en funcién de la temperatura, y
luego exigiendo que aplique este conocimiento para predecir a partir de una sola configuracion,
algo muy complicado. Esto nos lleva inevitablemente a los temores planteados en el caso de las
correlaciones, es posible que la red esté prediciendo una temperatura y asignando después una
susceptibilidad, invalidando los resultados para la transicién de fase que podamos obtener con
este método.

80 4 T
|— Maximo
valores numéricos 1001

T 607 ¢ Predicciones 80 1
E L =
S 40 2l o
a Mk 5
9 P 9 40
0 2 H [
3 201 - -~
i / lh.'||,‘ %

01 01

030 035 040 045 050 055 0.60 0 20 40 60
B Valor numérico
(a) (b)

Figura 6: Predicciones para la susceptibilidad en una red de Ising ferromagnética con L = 40 haciendo
uso de una red neuronal convolucional con una neurona ReLU a la salida. (a) Predicciones y resultados
numeéricos para el valor medio de la susceptibilidad en funcién de . El maximo se sitia en 5. = 0,43 £+
0,03. (b) Predicciones de la red frente al valor numérico calculado para cada 8. Cada una de las lineas

verticales corresponde a todas las configuraciones generadas para una (3, a la que se le asigna una tnica
susceptibilidad.

Vemos asi la importancia de poder establecer relaciones claras entre datos de entrenamiento
y predicciones, al igual que la asombrosa capacidad de las redes neuronales para adaptarse y
dar respuesta a casi cualquier problema. Esta capacidad puede actuar no obstante en contra
de nuestros objetivos, pues como hemos comprobado en este anexo es posible que redes apa-
rentemente bien comportadas no estén basando sus predicciones en los criterios que nosotros
esperamos, dando lugar a una mala capacidad de generalizacion, o incluso extrayendo direc-
tamente de nuestros datos la informaciéon que esperamos que sea capaz de obtener de forma
auténoma, invalidando nuestros resultados.

13

