
Parte III

Anexos

Anexo 1. Función coste

Como hemos comentado, existen muchas elecciones posibles para la función coste, que deben

cumplir una serie de caracteŕısticas. En el caso más sencillo podemos definir una función de

coste cuadrática:

C(w, b) =
1

M

M∑
x=1

Cx(w, b) =
1

2M

M∑
x=1

||y(x)− aR(x,w, b)||2 (1)

donde x ∈ 1, ...,M hace referencia a las configuraciones de entrenamiento de la red. Es impor-

tante definir el coste total como la suma normalizada de costes de todas las configuraciones para

poder aplicar el stochastic gradient descent. Por otro lado, conviene que sea una función directa

de los parámetros de la última capa de neuronas para poder aplicar el algoritmo de backpro-

pagation, criterio que se cumple al ser función del output aR(w, b). Su valor debe ser siempre

positivo, y es conveniente que en caso de que el output de la red y el esperado sean iguales,

además de tener un mı́nimo en la función, el valor de C(w, b) sea 0. Por último, una buena

función coste debe ser continua y derivable para poder determinar correctamente los cambios

en los parámetros necesarios para minimizarla. La función de coste cuadrática cumple todas las

caracteŕısticas anteriores, al igual que la cross entropy :

C = − 1

M

M∑
x=1

[y · lna + (1− y) · ln(1− a)] (2)

Por brevedad hemos omitido los ı́ndices. Aparentemente la cross entropy no presenta ninguna

ventaja frente a la función cuadrática. En realidad, la conveniencia de esta función nace de la

aplicación del algoritmo de backpropagation, al acelerar en gran medida el aprendizaje en las

primeras etapas cuando el output de la red dista mucho del valor real. Es importante notar que

en el caso de la función cross entropy los outputs deben estar limitados entre 0 y 1, lo que hace

dif́ıcil su aplicación para problemas que no sean de clasificación.

Respecto al término de regularización, los más utilizados son los correspondientes a la regu-

larización L1, que utiliza simplemente la norma del vector de parámetros, y la regularización L2,

que utiliza la norma al cuadrado. Nosotros utilizaremos esta última, aunque no existen grandes

diferencias entre el comportamiento de ambas.

L1(w, b) =
λ

M

∑
ν=w,b

|ν| L2(w, b) =
λ

2M

∑
ν=w,b

ν2 (3)

La suma se da sobre todos los pesos y biases de la red, y se divide por el número de configuracio-

nes de entrenamiento M . Como ya hemos comentado, el parámetro λ se conoce como ”parámetro

de regularización”, y es un hiperparámetro de la red. La suma sobre w, b indica que se da so-

bre todos los pesos y biases. Esto no es estrictamente necesario, puesto que se ha comprobado

emṕıricamente que renormalizar los biases no produce una mejora significativa del rendimiento,

1

principalmente debido a que se ven mucho menos influidos que los pesos ante cambios en el input

x y que valores elevados de éstos en ocasiones son útiles para saturar ciertas neuronas. Por esta

razón, nosotros hemos optado por realizar la suma únicamente sobre los pesos. Finalmente, la

función coste utilizada en nuestro trabajo resulta:

C = − 1

M

M∑
x=1

[y · lna + (1− y) · ln(1− a)] +
λ

2M

∑
w

w2 (4)

Anexo 2. Stochastic gradient descent

Definida la función coste, debemos ahora desarrollar un método que nos permita minimizarla

variando los parámetros de la red. Esto se logra mediante la aplicación de algoritmos de descenso

de gradiente, de forma que partiendo de un conjunto de parámetros ν (en nuestro caso los pesos

y biases) y una función coste C(ν), y calculando el vector gradiente:

∇C(ν) =

(
∂C

∂ν1
,
∂C

∂ν2
, . . .

)T
(5)

podemos alcanzar el mı́nimo de la función actualizando progresivamente los parámetros según:

ν → ν′ = ν − η∇C (6)

El cálculo del gradiente de la función coste respecto de cada parámetro se realiza mediante el

algoritmo de backpropagation, que se detalla en el anexo 3. El factor η es un hiperparámetro de

la red, se conoce como learning rate en el campo de la inteligencia artificial y es siempre positivo.

Un valor elevado acelera el proceso de aprendizaje, pero un desplazamiento mayor en el espacio

de fases en cada actualización puede provocar que el sistema sea incapaz de encontrar el mı́nimo

o incluso diverja. En cambio, un valor demasiado pequeño alarga el proceso de entrenamiento y

puede provocar que el sistema quede anclado en mı́nimos locales. Nos interesa por tanto un valor

intermedio que evite ambos comportamientos perjudiciales, o incluso que éste vaya variando con

el tiempo para ajustarse a las necesidades del entrenamiento.

Es importante notar que nuestra función coste se construye como la media de costes indi-

viduales para cada configuración de entrenamiento, y por tanto podemos expresar el gradiente

como:

∇C =
1

M

M∑
x=1

∇Cx (7)

Esto implica que para actualizar los parámetros en cada paso temporal debemos calcular el

gradiente de la función coste de cada configuración y promediarlos. En caso de contar con varias

decenas de miles de configuraciones y cientos de miles de parámetros, el proceso puede prolon-

garse mucho en el tiempo hasta hacer inviable el entrenamiento. Para sortear este problema se

introduce el descenso de gradiente estocástico, cuya idea principal consiste en utilizar un subcon-

junto de m configuraciones de entrenamiento para calcular el gradiente. Dicho subconjunto debe

2

ser pequeño para acelerar el proceso, pero lo suficientemente grande como para poder asumir

que se cumple:

1

m

m∑
x=1

∇Cx ≈
1

M

M∑
x=1

∇Cx = ∇C (8)

Es decir, suponemos que con un conjunto relativamente pequeño de configuraciones logramos

estimar correctamente la dirección que toma el gradiente en el espacio de fases, acelerando el

proceso en un factor M/m. En la práctica se agrupan las configuraciones de manera aleatoria en

pequeños grupos llamados mini-batches, y se van actualizando los parámetros hasta utilizar cada

uno de estos conjuntos. Cada ciclo en el que se utilizan todas las configuraciones de entrenamiento

se conoce como época.

Anexo 3. Backpropagation

En este apartado vamos a estudiar cómo calcular expĺıcitamente el gradiente de la fun-

ción coste respecto de todos los pesos y biases. Una aproximación al problema que determine

la dirección de dicho gradiente variando un sólo parámetro ligeramente y comprobando si el

coste aumenta o disminuye no es factible por la inmensa cantidad de parámetros y el tiempo

necesario para recalcular cada coste. Debemos por tanto ceñirnos al cálculo anaĺıtico de las deri-

vadas, aunque a primera vista parece un problema inabarcable en redes relativamente profundas.

Históricamente se han desarrollado multitud de estrategias para enfrentar esta cuestión, entre

las cuales destaca el algoritmo de backpropagation [3], que se ha convertido en un estándar por

su simpleza y su buen funcionamiento desde que fue propuesto en 1986.

El algoritmo se basa en la definición una variable vectorial δr para cada capa r, denominada

error, que cuantifica el efecto del input de la misma sobre la función coste según:

δrj ≡
∂C

∂zrj
(9)

donde j denota la j-ésima neurona de la capa. Nótese que hemos definido el error como el cambio

ante el input zlj , y no el output alj . En principio cualquiera de las dos versiones es válida, pero

la segunda complica un poco más el álgebra. Con esta variable podemos expresar las cuatro

ecuaciones fundamentales del algoritmo de backpropagation.

δRj =
∂C

∂aRj
f ′(zRj) (10)

δrj =

N∑
k=1

wr+1
kj δr+1

k f ′(zrj) (11)

∂C

∂brj
= δrj (12)

∂C

∂wrjk
= ar−1k δrj +

λ

M
wrjk (13)

3

La estrategia para calcular los gradientes es sencilla: la primera ecuación nos dice cómo calcular

el error de la última capa, y utilizamos la segunda ecuación para propagar los errores hacia capas

cada vez más internas, lo que da su nombre al método. Las dos últimas ecuaciones nos dicen

cómo determinar a partir del error de cada capa las derivadas parciales que nos interesan para

minimizar el coste. La demostración de estas relaciones es inmediata a partir de la definición

del error en la ecuación (9) y de la definición de zrj dada en el trabajo, aplicando la regla de la

cadena. La función f(z) es la correspondiente a la neurona con la que estemos trabajando y su

derivada es conocida, al igual que la derivada de la función coste con respecto del output de la

red. En el caso concreto en el que utilicemos una función coste de entroṕıa cruzada, y neuronas

sigmoid, basta sustituir

∂C

∂aRj
= − 1

M

M∑
x=1

[
yj

aRj
+

1− yj
1− aRj

]
(14)

f ′(zrj) = σ′(zrj) = σ(zrj)
(
1− σ(zrj)

)
(15)

para obtener las expresiones expĺıcitas. Como comentario, nótese que las posibles divergencias

en la primera de las ecuaciones anteriores por el término aRj en los denominadores no son tales:

si el valor esperado yj es nulo, entonces el primer término siempre es 0 y el segundo no. Si el

valor esperado es 1, ocurre lo mismo con el segundo término. En resumen, ambas funciones son

anaĺıticas y se pueden calcular con facilidad conociendo el output aRj de la red. A partir de

estas, el cálculo del resto de errores y el gradiente se realiza de forma muy rápida propagando

estos resultados hacia atrás en un único paso. Hecho esto para todas las configuraciones del

mini-batch, se calcula el gradiente final y se actualizan pesos y biases para disminuir el valor de

la función coste.

Anexo 4. Neuronas

En el trabajo hemos explicado la neurona sigmoid, la más común desde los inicios de la

Inteligencia Artificial hasta la aparición de las neuronas ReLU, que solucionaban gran parte de

sus problemas asociados. En la actualidad existen una gran cantidad de neuronas posibles, cada

una con sus ventajas e inconvenientes. En este anexo presentaremos algunas de ellas, incluidas

todas las utilizadas en el trabajo.

La neurona más simple que podemos implementar en nuestra IA es el perceptrón, caracteri-

zado por una función escalón:

output =

0 si
∑

j wjxj + b < 0

1 si
∑

j wjxj + b ≥ 0
(16)

El bias b actúa como una umbral a partir del cual se da o no output en la neurona. Se puede

demostrar que este modelo extremadamente simple es capaz de reproducir el comportamiento

de una puerta lógica NAND, y resulta por tanto un conjunto funcionalmente completo, capaz de

describir cualquier función lógica. No obstante, pequeños cambios en el input o en los parámetros

internos del sistema pueden provocar grandes cambios repentinos en el output o no variarlo en

4

absoluto, dificultando el proceso de aprendizaje de la red y desaconsejando el uso de este tipo

de neuronas.

Las neuronas sigmoid no presentan los problemas anteriores, y permiten construir redes

neuronales capaces de llevar a cabo buenas predicciones, sobre todo en problemas de clasificación

debido a su output limitado. Este tipo de neuronas tienen un mejor desempeño en redes no muy

profundas, con pocas capas intermedias. La razón para ello se deriva de forma inmediata del

algoritmo de backpropagation: vemos en la ecuación (11) que el cálculo de δ, de la que depende

de forma directa el gradiente de la función coste, viene multiplicado por la derivada de la función

correspondiente a la neurona. En el caso de la sigmoid esta derivada es nula para valores de

input mucho mayores o mucho menores que 0, y además toma siempre un valor menor que 1.

Dado que el cálculo de una δ hace uso de las δ de todas las capas posteriores, y en cada capa el

valor se ve disminuido al multiplicarse por un factor menor que 1 (y en ocasiones muy pequeño),

el método termina perdiendo validez para capas relativamente profundas al anularse este valor.

Esto se conoce en la literatura como el problema del vanishing gradient.

Otr tipo de función que se utiliza principalmente para la capa de salida de redes neuronales

de clasificación es la softmax. Su caracteŕıstica más importante es que la suma de los outputs está

normalizada a 1, de forma que podemos entenderla como una distribución de probabilidad que

en un problema de clasificación nos dice cuánto de probable es que el input de la red pertenezca

a una categoŕıa u otra. Su función resulta por tanto un poco más complicada que la anterior:

aRj =
ez

R
j∑

k e
zRk

(17)

donde aRj representa el output de la neurona j-ésima de la capa de salida. Su comportamiento

depende aśı de los inputs del resto de neuronas. Vemos un ejemplo con dos neuronas a la salida

en la figura (1b), suponiendo que uno de los inputs toma el valor z1 = 1,0.

Para resolver el problema del vanishing gradient se introdujeron las neuronas ReLU, que

obedecen la ecuación:

output =

0 si z =
∑

j wjxj + b ≤ 0

z si z =
∑

j wjxj + b > 0
(18)

Podemos resumir su comportamiento en output = max{0, z}. Es evidente que la derivada de

esta función es 1 para todo z > 0. Su output está contenido únicamente para valores negativos,

un comportamiento que puede resultar adecuado para ser utilizadas como capa de salida de la

red en ciertos casos, como la predicción de la longitud de correlación que hemos estudiado en

el trabajo. Durante la última década esta neurona se ha impuesto frente al resto impulsando el

desarrollo de las redes neuronales profundas, y en la actualidad es la neurona más utilizada en

el campo de la inteligencia artificial.

No obstante, las neuronas ReLU tienen un inconveniente que en ocasiones puede perjudicar

al funcionamiento de la redes. Cuando su input es negativo las neuronas se encuentran apagadas,

su derivada es nula, y por tanto su output no vaŕıa ante pequeños cambios en los parámetros. Esto

provoca que dependiendo de la inicialización de los parámetros o el proceso de entrenamiento,

cierta cantidad de neuronas pueden quedar fijadas con inputs negativos resultando inútiles para

5

(a) (b)

(c) (d)

Figura 1: Representación del comportamiento de las principales neuronas utilizadas durante el trabajo.

En (b) se muestra el caso de la función softmax aplicada al caso concreto de una capa de salida con dos

neuronas, en el que uno de los inputs toma el valor z1 = 1,0.

la red. Si este comportamiento se da en una cantidad suficiente de neuronas, se puede llegar

a bloquear el proceso de entrenamiento imposibilitando el aprendizaje. Este es el denominado

problema de las dying ReLU.

La solución en este caso resulta trivial, basta con añadir cierta pendiente al resultado cuando

el input es negativo, de forma que la derivada de la función no se anule y el aprendizaje no se

detenga. Esta nueva función se conoce como Leaky ReLU, y se caracteriza por un hiperparámetro

α que determina la pendiente en la zona negativa.

output =

αz si z =
∑

j wjxj + b ≤ 0

z si z =
∑

j wjxj + b > 0
(19)

Es importante notar que ninguno de los problemas anteriores imposibilita el uso de cualquie-

ra de estas funciones en redes neuronales, no aparecen en todas las ocasiones e incluso pueden

resultar útiles en algunos casos. La elección de unas funciones u otras responde principalmente

a criterios puramente emṕıricos, basados en ensayo y error, en los que los problemas comen-

tados influyen pero no son determinantes. Por ejemplo, las neuronas ReLU son ahora mismo

dominantes sobre otras porque en diversos experimentos se ha comprobado que se comportan

mejor de forma consistente. Sin embargo, la decisión de usar neuronas Leaky ReLU y no ReLU

en algunas capas de las redes convolucionales presentes en el trabajo se debe únicamente a que

6

los resultados parećıan ser en general más estables en el primer caso, pero esto ni siquiera se

cumpĺıa en todas las ejecuciones. Esto quiere decir que la elección final de todos los componen-

tes de una red neuronal dependen en gran medida de los objetivos a alcanzar, y que no existen

reglas absolutas que permitan construir desde un principio redes adecuadas. Serán necesarios

avances significativos en la comprensión del funcionamiento tanto de las redes como de neuronas

individuales para empezar a vislumbrar estas reglas generales que permitan asentar sobre una

base sólida el campo de la Inteligencia Artificial, joven todav́ıa.

Anexo 5. Modelo de Ising. Computación.

Durante este trabajo se han utilizado una gran cantidad de configuraciones de diversas redes

de Ising. Para generarlas hemos utilizado principalmente códigos en C cuyas propiedades y

parámetros básicos explicamos en este apartado.

Las configuraciones para cada temperatura se han generado mediante un algoritmo de Metro-

polis, en el que el paso de una configuración a otra depende del cociente entre las probabilidades

de aparición de ambas a dicha temperatura. Es importante destacar que se usan condiciones

de contorno periódicas e interacciones únicamente a primeros vecinos, tanto ferromagnéticas

como antiferromagnéticas. Las cuestiones técnicas más importantes a resolver en la generación

de configuraciones son la termalización y la autocorrelación entre configuraciones. Al generar

las configuraciones para una nueva temperatura, debemos asegurarnos de que la distribución de

probabilidad con la que aparecen corresponde realmente al nuevo caso. Para ello debemos llevar

a cabo un proceso de termalización asegurando que las nuevas configuraciones corresponden ver-

daderamente a la nueva temperatura. En nuestro caso hemos establecido un periodo de 10000

configuraciones por defecto para todos los casos, cantidad más que suficiente para asegurar la

correcta termalización del sistema incluso para las redes más grandes con L = 64. Por otro lado,

las configuraciones que tomamos para realizar nuestros experimentos deben estar completamen-

te descorrelacionadas entre ellas para evitar comportamientos no deseados. Esto implica que

debemos desechar una gran cantidad de configuraciones intermedias entre dos tomas de datos

diferentes. En nuestro caso hemos establecido que dejaremos pasar por defecto 1000 configu-

raciones entre cada configuración válida para el experimento, incrementando este valor hasta

10000 en el intervalo β ∈ [0,43, 0,45] para combatir el critical slowdown propio del modelo de

Ising cuando se aproxima a βc.

Estudiamos en la figura (2a) el proceso de termalización de una red de Ising con L = 64,

la más grande utilizada en el trabajo. Se representa tanto la magnetización como la enerǵıa

por spin del modelo en la trayectoria desde una configuración completamente ordenada a una

completamente desordenada, la más larga posible. Como se puede ver, en algo menos de 1000

paso temporales ambos valores alcanzan el equilibrio, y por tanto con 10000 pasos temporales

entre temperaturas tenemos asegurada la termalización de la red. Por otro lado, mostramos en

la figura (2b) las autocorrelaciones del modelo calculadas según la expresión:

χ(t) =
〈Si(0)Si(t)〉 − 〈Si(0)〉2

〈Si(0)2〉 − 〈Si(0)〉2
(20)

7

Las configuraciones se consideran descorrelacionadas cuando χ(t) = 0. Es importante notar

que esta expresión es válida por debajo de la temperatura de transición; por encima adquiere

un valor en el equilibrio distinto de 0 para todo tiempo, por la existencia de magnetización

espontánea. Esto se observa en la figura, donde se ve que cuando β = 0,43 las autocorrelaciones

decaen exponencialmente hasta anularse en menos de 2000 pasos temporales, mientras que en

β = 0,44, muy cerca de la transición pero por encima (recordemos que se trata de redes finitas

y la transición se da antes), su valor decae a un ritmo constante hasta alcanzar χ(t) = 0,2,

a partir del cual se producen oscilaciones. Este es el umbral al que nos hemos referido antes.

En definitiva, podemos concluir que 1000 pasos temporales fuera de la zona de transición, y

10000 en dicha zona, son suficientes para asegurar que las configuraciones están suficientemente

descorrelacionadas.

(a) (b)

Figura 2: Resultados para una red de Ising ferromagnética con L = 64 (a) Magnetización y enerǵıa por

spin en función del paso temporal durante un proceso de termalización. Representamos el paso de una

temperatura muy baja a una muy alta. (b) Autocorrelaciones en función del tiempo, calculadas a partir

de 1000 ejecuciones diferentes con la ecuación (20).

Anexo 6. Otros programas

La naturaleza computacional del presente trabajo ha hecho necesario el uso de diversos

lenguajes de programación y herramientas, además de las anteriormente comentadas para la

generación de configuraciones. Todas las redes neuronales utilizadas durante el trabajo se han

desarrollado en Python. Por un lado, las redes neuronales fully connected se han construido a

partir de los códigos incluidos en [?], llevando a cabo las modificaciones necesarias para adaptar

el funcionamiento de redes cuyo objetivo es reconocer d́ıgitos escritos a mano a la predicción

de orden en configuraciones de Ising. Por otro lado, las redes convolucionales se han construido

haciendo uso de la libreŕıa Tensorflow, que permite implementar redes neuronales y trabajar

con ellas de manera muy sencilla. Se ha utilizado la libreŕıa Matplotlib para la elaboración de

figuras, y los cálculos más pesados para las propiedades de las redes de Ising se han realizado en

Cython, un lenguaje de programación que permite escribir extensiones en C con las que operar

desde Python ganando mucha rapidez en la obtención de resultados. Se ha aplicado a cálculos

8

como la magnetización de las configuraciones o las correlaciones entre spines. Por último, se

ha usado la función optimize.curve fit de la libreŕıa scipy de Python para realizar los ajustes

exponenciales que nos permiten obtener la longitud de correlación, un paso sensible porque de

su correcta obtención dependen los resultados del trabajo.

Anexo 7. Redes fully connected y convolucionales: consensos

para la transición de fase

Hemos visto que las redes fully connected y las convolucionales tienen propiedades comple-

mentarias en su proceso de predicción del orden en la red de Ising. Para aprovechar lo mejor

de cada una, podemos plantear un sistema en el que tomemos las predicciones por separado de

varias redes y las promediemos, compensando las posibles deficiencias de redes particulares y

asegurando un comportamiento consistente.

Tomamos aśı todas las redes neuronales utilizadas en la predicción de la transición de fase

mediante clasificación de configuraciones, tanto fully connected como convolucionales (sección 5),

y promediamos sus outputs para cada configuración. Utilizamos 10 redes diferentes para realizar

una estimación concertada de βc. Los resultados para una red de Ising con L = 40 se muestran en

la figura (3). Como podemos observar, la predicción de la transición de fase tiene una forma muy

similar a los casos anteriores por separado. El promediado sobre las diez predicciones suaviza

las curvas y sitúa la predicción a medio camino de los resultados por separado, evidentemente.

La ventaja de este método es que las configuraciones dudosas en las que las redes se encuentran

divididas dan lugar a predicciones de en torno a 0,5 en ambos outputs, ordenado y desordenado,

y por tanto influyen muy poco en la determinación de βc.

Por otro lado, vemos un comportamiento peculiar en la figura (3b), que compara las predic-

ciones con las magnetizaciones. Se observa un comportamiento que en la mitad inferior recuerda

al de las fully connected y en la mitad superior, al de las convolucionales. Lo que ocurre en la

zona de transición es que las redes fully connected pasan a considerar configuraciones ordenadas

para magnetizaciones relativamente pequeñas, de en torno a 0,4, pero las convolucionales apenas

han comenzado a ascender lastrando el crecimiento de la curva. Esta adquiere una forma similar

a la curva de las fully connected, que son quienes gúıan el aumento. Por otro lado, a partir de

magnetizaciones mayores de 0,5 las redes fully connected consideran todas las configuraciones

ordenadas, y son las convolucionales las que gúıan el aumento de las predicciones, otorgando su

forma a la curva en el último tramo. De esta manera obtenemos las ventajas de ambos métodos,

adelantamos la magnetización a la que se produce la transición frente a las redes convoluciona-

les, y tenemos en cuenta las relaciones entre spines, a diferencia de las redes fully connected. En

este sentido, el sistema clasifica la configuración (6a) mostrada en el trabajo como desordenada,

pero por un pequeño margen (0,533 frente a 0,467), por lo que el posible error tendrá muy poca

influencia en el resultado final. Por supuesto, clasifica correctamente la segunda configuración

como ordenada.

Todo esto nos permite obtener una nueva predicción para la transición de fase en el ĺımite

termodinámico repitiendo el procedimiento para distintas L. Se muestra el resultado en la figura

(4). Como podemos observar, la dependencia es mucho más lineal que en los casos anteriores

9

(a) (b)

Figura 3: Predicciones para una red de Ising ferromagnética con L = 40, haciendo uso al mismo tiempo

de 5 redes fully connected y 5 redes convolucionales. (a) Predicción de la transición de fase, que se sitúa

en βc = 0,434. (b) Predicción de la red frente a la magnetización de cada configuración.

y da lugar a un ajuste muy preciso que sitúa la transición en el ĺımite termodinámico en βc =

0,4403 ± 0,0004. Es un valor extremadamente cercano al teórico, que además incluye en su

intervalo de error. Es importante destacar además que el nuevo resultado no se sitúa a medio

camino entre los resultados por separado para los distintos tipos de redes (βc = 0,4362± 0,0012

para las fully connected y βc = 0,4414 ± 0,0008 para las convolucionales), y además es mucho

más cercano al obtenido con redes convolucionales. En cualquier caso se trata de un resultado

muy satisfactorio que mejora los anteriores y justifica el uso de este tipo de estrategias para los

problemas de clasificación, y en concreto para la predicción de la transición de fase en el modelo

de Ising.

Figura 4: Predicciones de βc para redes de Ising ferromagnéticas de diferentes tamaños (L =

20, 24, 32, 40, 48, 64), haciendo uso de 5 redes fully connected y 5 redes convolucionales. La transición

en el ĺımite termodinámico (cuando 1/L→ 0) se sitúa en βc = 0,4403± 0,0004.

10

Anexo 8. ¿Por qué correlaciones?

En el trabajo hemos utilizado la longitud de correlación como método para predecir la

transición de fase del modelo de Ising. No es la única opción, otros observables como el calor

espećıfico o la susceptibilidad también divergen en βc, y podŕıan haber sido elecciones válidas

para llevar a cabo los experimentos. Sin embargo, como hemos comentado durante el trabajo, la

propiedad fundamental que inclina la balanza hacia la longitud de correlación es que al poder

ser calculada usando todas las posibles parejas de spines de una configuración, podemos asignar

un valor a la longitud de correlación que la red, al menos en teoŕıa, debe ser capaz de calcular

partiendo únicamente de dicha configuración.

Esto contrasta con lo que ocurriŕıa si entrenásemos la red en la predicción de la suscepti-

bilidad o el calor espećıfico. A diferencia de la longitud de correlación, se obtienen a partir de

promedios de la magnetización y la enerǵıa de una gran cantidad de configuraciones, y por tanto

caracterizan al conjunto de configuraciones correspondientes a una temperatura, y no a cada una

por separado. Esto implica que no existe una relación directa entre input y output, comprome-

tiendo la capacidad predictiva de la red. Para resaltar el problema claramente, supongamos que

entrenamos la red con configuraciones cercanas a la transición de fase. Debido a las divergencias

de χ y Cv, es posible que para valores de β muy cercanos entre śı el calor espećıfico o la sus-

ceptibilidad sean notablemente diferentes. Sin embargo, existe una probabilidad no despeciable

en estos rangos de que aparezcan las mismas configuraciones en temperaturas muy próximas.

Estaŕıamos por tanto entrenando la red con dos configuraciones iguales esperando dos outputs

diferentes. Esto no puede ocurrir en el caso de las correlaciones tal y como las calculamos, y por

ello las hemos seleccionado.

Mostramos en la figura (5) los resultados que habŕıamos obtenido si en lugar de utilizar

la longitud de correlación calculada para cada configuración hubiéramos usado el promedio co-

rrespondiente a la temperatura a la que ha sido generada. Podemos ver que el comportamiento

global es correcto, situándose el máximo en el mismo lugar que en los casos anteriores y con

magnitud similar, aunque ligeramente subestimada. Vemos en la figura (5b) las predicciones de

la red frente al valor calculado numéricamente. A la izquierda estimamos dicho valor numérico

como la media de longitudes de todas las configuraciones correspondientes a una misma β, y a

la derecha, a cada longitud de correlación por separado. Vemos que las predicciones de la red

son bastante razonables si las comparamos con las medias para cada β, pero sin embargo son

completamente erróneas para configuraciones individuales con longitudes de correlación abulta-

das. Podemos observar que la red ni siquiera es capaz de reproducir una tendencia ascendente

en las predicciones para tamaños mayores de las fluctuaciones, lo que siembra dudas acerca de

los criterios utilizados para realizar dichas predicciones. Por ejemplo, existe la posibilidad de que

la red esté traduciendo las configuraciones a una temperatura, y de ah́ı asigne un valor de la

longitud de correlación, subvirtiendo el objetivo de la red y utilizando la transición de fase como

medio para realizar las predicciones. De esta manera invalidaŕıa la estimación de βc, porque

la red tiene ya codificado el máximo que debe asignar a las predicciones según la temperatura

que estima para cada configuración. Es importante recalcar una vez más que la relación entre

configuración y longitud de correlación śı existe y es más o menos directa, simplemente la red

no la ha aprendido como tal y está recurriendo a otros caminos. En definitiva, pese a los resul-

11

tados aparentemente buenos no podemos considerar que el funcionamiento es adecuado. Este

mal funcionamiento probablemente se deba al método de entrenamiento propuesto para la red,

resaltando la importancia de un correcto diseño de todas las fases implicadas en la construcción

y entrenamiento de las redes neuronales.

(a) (b)

Figura 5: Predicciones para la longitud de correlación en una red de Ising ferromagnética con L = 40

haciendo uso de una red neuronal convolucional con una neurona ReLU a la salida. (a) Predicciones y

resultados numéricos para el valor medio de la longitud de correlación en función de β. El máximo se

sitúa en βc = 0,422 ± 0,04. (b) Izquierda: predicciones que obtenemos de la red frente al valor obtenido

de forma numérica promediando las longitudes de correlación para cada β. Derecha: predicciones frente

a las longitudes de correlación obtenidas para cada configuración.

Otro ejemplo quizá más interesante que la longitud de correlación es la susceptibilidad

magnética. A diferencia del caso anterior, en el que el valor para el entrenamiento se obtiene

como media de longitudes, ahora el cálculo se debe realizar necesariamente con la influencia de

todas las configuraciones pertenecientes a una misma β. Desde el punto de vista computacional

podemos definir la susceptibilidad magnética como:

χ(T) = V (
〈
m2
〉
− 〈|m|〉2) (21)

donde V es el número de spines de la red, y m la magnetización de la configuración. Los pro-

medios se realizan sobre todas las configuraciones generadas para una misma β. Se trata por

tanto de una cantidad que no se puede calcular partiendo de una única configuración, y por tan-

to la red no puede establecer una relación matemática directa entre configuración y resultado.

Vemos los resultados en la figura (6). Como podemos observar, la red neuronal logra establecer

correctamente la posición del máximo de la susceptibilidad pese a desviarse notablemente en

su magnitud. Vemos sin embargo a la derecha que las predicciones para cada configuración son

manifiestamente mejorables extendiéndose por un amplio rango de valores para todas las β. Pese

a que los promedios finales obtienen resultados decentes, la predicción para cada configuración

individual no es confiable. Nos encontramos en una situación similar al caso anterior: la red

se comporta correctamente haciendo aquello para lo que ha sido entrenada, pero es incapaz

de trasladar este buen resultado a la configuración individual. Estas dificultades también son

esperables teniendo en cuenta que la susceptibilidad no está definida por configuración, sino que

caracteriza una temperatura, y teniendo en cuenta que todas las configuraciones tienen pro-

babilidades no nulas de aparecer en todas las temperaturas, no es realista esperar un correcto

12

funcionamiento fuera de los promedios. En el fondo estamos entrenando a la red en la compren-

sión de las distribuciones de probabilidad de las configuraciones en función de la temperatura, y

luego exigiendo que aplique este conocimiento para predecir a partir de una sola configuración,

algo muy complicado. Esto nos lleva inevitablemente a los temores planteados en el caso de las

correlaciones, es posible que la red esté prediciendo una temperatura y asignando después una

susceptibilidad, invalidando los resultados para la transición de fase que podamos obtener con

este método.

(a) (b)

Figura 6: Predicciones para la susceptibilidad en una red de Ising ferromagnética con L = 40 haciendo

uso de una red neuronal convolucional con una neurona ReLU a la salida. (a) Predicciones y resultados

numéricos para el valor medio de la susceptibilidad en función de β. El máximo se sitúa en βc = 0,43±
0,03. (b) Predicciones de la red frente al valor numérico calculado para cada β. Cada una de las ĺıneas

verticales corresponde a todas las configuraciones generadas para una β, a la que se le asigna una única

susceptibilidad.

Vemos aśı la importancia de poder establecer relaciones claras entre datos de entrenamiento

y predicciones, al igual que la asombrosa capacidad de las redes neuronales para adaptarse y

dar respuesta a casi cualquier problema. Esta capacidad puede actuar no obstante en contra

de nuestros objetivos, pues como hemos comprobado en este anexo es posible que redes apa-

rentemente bien comportadas no estén basando sus predicciones en los criterios que nosotros

esperamos, dando lugar a una mala capacidad de generalización, o incluso extrayendo direc-

tamente de nuestros datos la información que esperamos que sea capaz de obtener de forma

autónoma, invalidando nuestros resultados.

13

