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ABSTRACT 
 

A study of a karst bauxitic deposit in Alós de Balaguer (Lleida), has been carried out.  The deposit 

is located in the Sierras Marginales Unit, within the Central South Pyrenean Unit (USC). The 

bauxite deposit overlies a stretch of massive karstified dolomites corresponding to the Dogger 

and it is overlaid by Santonian sands and gravels. The objective of the study is the mineralogical 

and textual characterization of the deposit with the aim of knowing the conditions under which 

it was formed. 

To get this, a representative number of samples have been analyzed by visual description, X-ray 

diffraction, optical microscopy, electron microscopy and geochemistry, allowing the samples to 

be characterized both mineralogically and texturally in order to determine the genesis of the 

different identified minerals. 

The samples are a mixture of authigenic and detrital phases and include frequent pisoliths. The 

detrital phases are composed of calcite, plagioclase, illite, zircon, and Ti oxides and would be 

present in the parent material. The authigenic phases include kaolinite, Al hydroxides, and iron 

oxyhydroxides. Kaolinite is the most abundant authigenic phase and occurs as platy-type laminar 

crystals, laminar aggregates, “book” aggregates or as subidiomorphic to allotriomorphic 

nanometric crystals. Al hydroxide usually occurs as idiomorphic to subidiomorphic crystals, 

intermixed with kaolinite or between sheets of kaolinite “book” aggregates. Finally, iron 

oxyhydroxides are usually observed with a rounded morphology and irregular contours, and can 

also be found disseminated in the matrix with kaolinite and Al hydroxide. 

The bauxitization occurred in situ in several episodes with different physical-chemical 

conditions, including variations in water saturation conditions and a certain reworking of the 

material between the different episodes. These materials would have formed by intense 

chemical weathering, in a humid tropical climate with abundant rainfall, which favored the 

dissolution of previous Si- and Al-rich phases leading to an enrichment in those immobile 

elements together with Fe. 
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PLANTEAMIENTO 
 

La siguiente memoria corresponde al Trabajo de Fin de Grado (TFG) del Grado de Geología de la 

Universidad de Zaragoza, que consiste en la realización individual de un trabajo geológico en el 

que se pongan de manifiesto los conocimientos, habilidades y actitudes adquiridas. Para ello, se 

ha llevado a cabo el estudio de un depósito bauxítico kárstico situado en el término municipal 

de Alós de Balaguer (Lleida), cuya edad estaría comprendida entre el Aptiense y el Santoniense 

(Combes, 1969; Pocoví, 1978) y correspondería, según Bardossy (1982), a un depósito de tipo 

Mediterráneo en forma de bolsada. Según este autor, las bauxitas kársticas son aquellas que se 

disponen sobre un sustrato carbonatado. 

En general, las bauxitas son el producto residual de la meteorización química intensa de rocas 

madre aluminosilicatadas en climas húmedos, de tropicales a subtropicales y con abundantes 

precipitaciones. En estas condiciones se produce el lavado de los elementos químicos móviles a 

la vez que se da el enriquecimiento de los elementos inmóviles (Al, Fe y Ti). Como consecuencia, 

las bauxitas consisten en una mezcla de hidróxidos de Al, filosilicatos (principalmente caolinita), 

oxihidróxidos de Fe y, óxidos de Ti (Bardossy y Aleva, 1990). 

Existen algunos trabajos que se han centrado en el estudio de depósitos de bauxitas kársticas 

del NE de la Península Ibérica, como los de Ordoñez et al. (1990), Molina y Salas (1993) o Yuste 

et al. (2015), en los que se aborda su estudio desde el punto de vista geológico, paleogeográfico, 

mineralógico, textural, geoquímico y/o genético. También se pueden citar trabajos previos, 

como el de Ríos y Almena (1950), donde se descubren en la zona nuevos afloramientos de 

bauxita. No obstante, son escasos los trabajos recientes centrados específicamente en los 

depósitos de bauxitas de la provincia de Lérida, pudiéndose mencionar los de Molina et al. 

(1994) y Reinhardt et al. (2018). 

El presente trabajo se ha planteado para el reconocimiento y descripción de los materiales 

bauxíticos mencionados, así como para su caracterización mineralógica y textural y la 

profundización del conocimiento en las condiciones genéticas que controlan la formación de las 

distintas fases minerales presentes. 

 

OBJETIVOS 
 

Los objetivos que se pretenden alcanzar con la realización de este trabajo son los siguientes: 

- Reconocer y describir en el campo los materiales bauxíticos objeto de estudio y su 

localización en la columna estratigráfica. 

- Caracterizar mineralógica y texturalmente dichos materiales. 

- Elaborar una hipótesis genética haciendo hincapié en las condiciones paleoclimáticas 

y/o ambientales que condicionaron la formación de estos paleosuelos. 

- Integrar los datos obtenidos en el contexto geológico local/regional y en los modelos 

paleoclimáticos globales. 
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SITUACIÓN GEOGRÁFICA Y GEOLÓGICA 
 

Los materiales estudiados proceden de un afloramiento situado en el paraje Font dels Coms, en 

el domo de Sant Mamet, encontrándose dentro del término municipal de Alós de Balaguer en la 

Comarca de Noguera (Lleida/Lérida) (Fig. 1). El afloramiento se encuentra a unos 7.5km al NW 

de la localidad de Alós de Balaguer. Se accede a él a través de una pista que parte del carrer de 

Sant Antonio de dicha localidad. Las coordenadas geográficas son: 41⁰ 57’ 21.6” N (latitud) y 0⁰ 

57’9.7” E (longitud) 

 

Figura 1: Localización geográfica del afloramiento, marcado con un recuadro negro en el mapa 

Desde el punto de vista geológico, el área estudiada se encuentra dentro de la Unidad 

Surpirenaica Central (USC) (Séguret, 1972; Rodríguez, 2013), que a su vez se encuentra situada 

en la zona límite con la cuenca de antepaís del Ebro (Sauila i Briansó, et al. 2000), estando 

limitada por el cabalgamiento de Montsec al Norte y el cabalgamiento de Sierras Marginales al 

Sur (Martínez y Pocoví, 1988). Mas concretamente, el área estudiada se encuentra situada en la 

unidad de Sierras Marginales (Fig.2), que se trata de una de las láminas que compartimentan la 

Unidad Surpirenaica Central, que son: Manto de Boixols, cabalgamiento de Montsec y Sierras 

Marginales, de Norte a Sur (Teixell y Muñoz, 2000; Sauila i Briansó et al, 2000). 

La cordillera pirenaica es una alineación montañosa con una orientación preferente WSW-ESE 

que bordea al Norte de España (Rodriguez, 2013). 

La configuración post-hercínica del área de estudio comienza en el Pérmico, cuando se produjo 

una etapa de extensión controlada por fracturas heredadas que presentan una orientación 
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aproximada E-W, NE-SW y NW-SE. Este proceso comenzó con un movimiento sinestral que 

evolucionó hacia un periodo de extensión, relacionado con la apertura del Atlántico y una 

rotación de trayectoria E-W provocando la ruptura de la placa Ibérica y Euroasiática 

(Puigdefábregas y Souquet, 1986). 

Este periodo de extensión siguió presente durante el Jurásico, también controlado por fallas 

heredadas. En el Lías se produce una plataforma carbonatada que durante el Dogger adoptó una 

estructura tipo horst y finalmente en el Oxfordiense se configuró otra vez como plataforma 

carbonatada. Durante este periodo se produce el depósito de carbonatos en un ambiente 

marino de aguas profundas (Puigdefábregas y Souquet, 1986) 

 

Figura 2: a) Esquema geológico del Pirineo central (modificado de Teixell, 1996); el recuadro rojo indica la situación 
geográfica en la que se encuentra el afloramiento. b) Esquema tectónico de las Sierras Marginales del Pirineo en la 

zona de Lérida (modificado de Martínez y Pocoví, 1988); el recuadro rojo marca la situación geográfica del 
afloramiento 

En el Cretácico Inferior se produce un periodo de erosión con una sedimentación discontinua, 

debido a un proceso de emersión, a causa de una caída en el nivel del mar. Posteriormente, 

durante el Aptiense y Albiense inferior se produce un nuevo periodo de extensión y se produce 

un empuje entre las cuencas de antepaís, generándose un sistema de fallas NW-SE 

(Puigdefábregas y Souquet, 1986). Entre el Campaniense y Mioceno se produce la colisión entre 

la placa Ibérica y Europea generándose un movimiento sinestral de la placa Ibérica respecto a la 

Europea (Muñoz, 1982). Debido a este movimiento, se produjo una elevación de la cadena 

asociado a una caída del nivel el mar (Puigdefábregas y Souquet, 1986), dando lugar a un 

movimiento regresivo de la línea de costa haca el Sur (Sauila i Briansó et al, 2000). 

Posteriormente durante el Paleoceno y Eoceno inferior, debido a la inversión de las cuencas 

extensivas, se produce una propagación de la deformación hacia el Sur, provocando un 

plegamiento sinsedimentario (Teixell y Muñoz, 2000), así como el desarrollo de una cuenca de 
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antepaís que migra debido al emplazamiento de láminas cabalgantes en secuencia piggy back 

(Puigdefábregas y Souquet, 1986). En el Eoceno Superior y Oligoceno se produce una 

reactivación y ruptura de las Sierras Marginales (Muñoz, 1982), presentando las láminas 

cabalgantes su nivel de despegue en el nivel de facies arcillosas y evaporíticas del Triásico, donde 

los cabalgamientos de cobertera surpirenaicos enraízan hacia el Norte (Teixell y Muñoz, 2000). 

Las Sierras Marginales están constituidas por una serie de escamas imbricadas con escasa 

deformación interna. Las estructuras presentan una orientación aproximada WNW-ESE, donde 

las escamas imbricadas presentan una orientación preferente hacia el Sur, pero el domo de Sant 

Mamet, donde se encuentra el afloramiento estudiado (Fig. 3) presenta unas estructuras cuyas 

direcciones se deben al arrastre producido por el desplazamiento sinestral de la falla 

trascurrente que los limita al Norte (Martinez y Pocoví, 1988). Las bauxitas que se encuentran 

en esta zona se encuentran en una de las cuatro regiones principales de bauxitas en España 

(Molina et al., 1984). 

 

Figura 3: Mapa geológico (Sauila i Brianso et al., 2000) de la zona en la que se encuentra el afloramiento, señalado 
con un recuadro 

En cuanto a los materiales que afloran en la zona de estudio, en la base se encuentra un tramo 

de dolomías masivas correspondientes al Dogger. Se trata un tramo que presenta un grano 

grueso, son porosas y presentan numerosas cavidades (Sauila i Briansó et al., 2000; Pocoví, 

1978). Su espesor depende de la discordancia Presenoniese, donde la dolomitizacion no se inicia 

en un nivel determinado, en este caso la dolomitizacion corresponde a edad Toarciense (Pocoví, 

1978). Debido a la intensa dolomitizacion que ha sufrido, no se puede reconocer la facies 

original. Esta unidad presenta discordancia angular respecto al techo, con el desarrollo de 

paleokarst poniendo en contacto las dolomías con los depósitos bauxíticos, pero no existen 

dataciones que confirmen que corresponda al Dogger (Sauila i Briansó et al.,  2000) 

El depósito bauxítico se encuentra en la base del Cretácico, en contacto con el sustrato 

dolomítico Jurásico, dentro de las cavidades producidas por el paleokarst. Esta unidad de 

bauxitas puede contener intercalaciones de arena y grava de cuarzo (Sauila i Briansó et al., 
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2000). Su espesor es variable dependiendo de las irregularidades del sustrato erosionado. Según 

el estudio de espectro esporo-polenítico de Combes (1969), se trata de una formación que tiene 

una edad de Aptiense-Santoniense (Combes, 1969; Pocoví, 1978), aunque la laguna 

estratigráfica es más amplia. 

Posteriormente al depósito bauxítico, se encuentra un nivel de areniscas y gravas del 

Santoniense, con un espesor decimétrico a métrico presentando laminación cruzada y 

bioturbación. Esta unidad presenta restos de conchas, lamelibranquios y corales, y cuyo límite 

inferior es un contacto neto o localmente erosivo respecto al nivel de bauxitas, aunque la 

similitud de facies dificulta su posición exacta (Sauila i Briansó et al., 2000). 

METODOLOGÍA 
 

Para cumplir con los objetivos marcados para este trabajo final de grado, se han utilizado 

diferentes técnicas y metodologías: trabajo de campo, descripción visual del material, difracción 

de rayos X, microscopía óptica, microscopía electrónica y análisis geoquímicos. Antes de la 

jornada de campo, se llevó a cabo una revisión bibliográfica sobre la zona. 

Para realizar este trabajo se contaba con muestras tomadas previamente del perfil objeto de 

estudio. Adicionalmente, se tomaron algunas muestras más para completar el muestreo del 

perfil. 

Trabajo de Campo 
 

Se realizó una jornada de campo en la que se llevó a cabo el reconocimiento y descripción del 

afloramiento y la toma de fotografías del mismo (Fig. 4). Asimismo, se tomaron dos muestras en 

la base del perfil que, como se ha comentado, completaron el muestreo preexistente del mismo. 

En concreto, para la realización del trabajo se ha contado con un total de 9 muestras, 7 de ellas 

tomadas previamente y 2 de ellas recogidas en la jornada de campo. Las muestras se encuentran 

localizadas en el perfil de la Figura 5. 

 

Figura 4: Aspecto de campo del afloramiento objeto de estudio 
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Todas las muestras que se han recogido son muestras arcillosas y las nuevas muestras se han 

siglado de manera correlativa teniendo en cuenta el siglado de las muestras recolectadas 

previamente. También se ha procedido a la toma de fotografías del lugar de emplazamiento de 

las muestras, tomando datos de sus coordenadas GPS.  

 

 

Figura 5: Esquema del afloramiento estudiado junto a la situación de las muestras estudiadas, modificado de 
(IMINSA, 1987)  

Descripción visual 
 

Se ha procedido al reconocimiento visual de todas las muestras, describiéndose la roca fresca, 

sin ningún tratamiento. Se ha descrito su color, tamaño de grano, presencia de pisolitos, 

estructuras o alteraciones, etc. 

Difracción de rayos X 
 

Se ha utilizado esta técnica para determinar la composición mineralógica de cada muestra, tanto 

de la muestra total, como de la fracción de tamaño arcilla (<2 μm), y la cristalinidad de la 

caolinita. Para el análisis mineralógico, tanto para la muestra total como para la fracción menor 

a 2μ se ha utilizado un difractómetro de polvo Philips 1970, usando radiación Cu-Ka, con ventana 

automática y un monocromador de grafito. Los difractogramas han sido obtenidos utilizando el 

software Xpowder (Martín, 2004). Para la estimación semicuantitativa de la composición 

mineral de la muestra total se han utilizado los poderes reflectantes de Smith y Johnson (2000). 

Para realizar el análisis mediante difracción de rayos X se seleccionó una cantidad representativa 

de 150 gr aproximadamente de cada muestra. Las muestras se encontraban disgregadas por lo 

que no se llevó a cabo una trituración previa manual. Una parte representativa se molió de 

manera mecánica con un molino de aros de acero. Posteriormente a la molienda, se llevó a cabo 
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su cuarteo manual para obtener una muestra representativa para realizar el análisis de muestra 

total. El resto de la muestra disgregada se utilizó para la obtención de la fracción arcilla. 

Para llevar a cabo el análisis de muestra total, la muestra representativa se tamizó a través de 

un tamiz con una luz de malla de 53 μm. También se realizó una molienda manual mediante un 

mortero de ágata hasta que toda la muestra seleccionada había pasado por dicho tamiz. 

Posteriormente, con una pequeña cantidad de la muestra de ese material tamizado (conseguida 

mediante cuarteo manual), se preparó el portaobjetos de aluminio para su posterior análisis en 

el difractómetro de rayos X, siglándose el portaobjetos de manera correcta. 

Para extraer la fracción de tamaño arcilla, se añadió agua destilada a la muestra reservada para 

ello para ponerla en suspensión con la ayuda de la batidora Heidolph rzr1 durante 30 minutos. 

5 minutos después de finalizar la agitación, se separó la fracción <20 μm por decantación 

aplicando la ley de Stokes y a partir de ella, se separó la fracción <2 μm mediante centrifugación 

utilizando una centrifugadora Hettich Universal 320 con un programa de una duración de 3 

minutos y 36 segundos a 580 rpm. Transcurrido este tiempo se separó la fracción <2 μm por 

decantación. Con la fracción de tamaño arcilla obtenida se prepararon agregados orientados 

que fueron secados al aire y posteriormente, fueron analizados mediante Difracción de rayos X. 

La cristalinidad de la caolinita se calculó a partir de la medida de la anchura a la mitrad de la 

altura (FWHM) de la reflexión a 7Å, a partir de los agregados orientados secados al aire. 

Como las muestras no presentaban carbonatos, no se llevó a cabo el ataque ácido de las mismas 

con HCl. De la misma manera, al no detectarse fases potencialmente hinchables, tampoco se 

realizó la solvatación de las muestras con etilenglicol. 

Algunas de las muestras fueron separadas en varias submuestras, por presentar características 

de color o texturales específicas, que también han sido analizadas en detalle. Las submuestras 

Smd-1r y Smd-1b corresponden al nivel de la muestra Smd-1, siendo la muestra Smd-1r de color 

rojizo y la muestra Smd-1b de color más blanquecino. Por otra parte, la submuestra Smd-2bp 

corresponde a los pisolitos que se encuentran en la muestra Smd-2b 

Microscopía óptica 

 

Se han estudiado 4 muestras mediante microscopía óptica de luz trasmitida y reflejada mediante 

el microscopio petrográfico OLYMPUS BX41, con el fin de obtener información mineralógica y 

textural de las muestras. Para la realización de este trabajo, ya se disponía de láminas delgado-

pulidas de algunas de las muestras tomadas previamente, no correspondiéndose a ninguna de 

las dos muestras tomadas para este trabajo. Estas láminas delgado-pulidas fueron preparadas 

por el Servicio de Preparación de Rocas y Materiales duros de los Servicios de Apoyo a la 

Investigación de la Universidad de Zaragoza. Estas muestras son representativas de los 

materiales objeto de estudio. 
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Microscopía electrónica 

 

Se analizaron 8 muestras (4 fragmentos de roca original y 4 láminas delgado-pulidas) mediante 

el microscopio electrónico de barrido de emisión de campo (FESEM). La caracterización de las 

muestras se realizó llevando a cabo observaciones de imágenes de electrones secundarios (SE), 

de electrones retrodispersados (BSE) y análisis de rayos X de energía dispersiva (EDS), con el fin 

de obtener información sobre la textura y composición química de las fases minerales presentes. 

El objetivo del estudio fue la identificación de las fases presentes y sus relaciones texturales, con 

el fin de obtener información sobre sus condiciones de formación. 

Las observaciones se realizaron con un microscopio Carl Zeiss MERLIN equipado con un detector 

Oxford (EDS) en el servicio de Microscopía Electrónica de materiales de la Universidad de 

Zaragoza. Las imágenes SE se obtuvieron con un voltaje de 15 kV y una corriente de sonda de 

600 pA. Las imágenes BSE se obtuvieron mediante dos detectores distintos: un detector 

selectivo de ángulos (AsB) y uno selectivo de energía (EsB). El voltaje utilizado con el detector 

AsB fue de 15 kV y una corriente de sonda de 600 pA. En el caso del detector EsB, el voltaje fue 

de 4 kV y una corriente de sonda de 1 nA. Todas las muestras fueron recubiertas en carbono 

para la obtención de imágenes tanto SE como BSE. 

Geoquímica 

 

Se ha analizado una muestra para conocer su composición química en lo que a elementos 

mayores se refiere y con el fin de clasificarla desde el punto de vista geoquímico. El análisis 

químico de elementos mayores de la muestra global se realizó mediante Fluorescencia de rayos 

X (XRF) en Actlabs Laboratories (Canadá) con límites de detección de 0.01% excepto para MnO, 

cuyo límite de detección es de 0.001%. 

RESULTADOS 

Trabajo de campo 

 

Los materiales objeto de estudio constituyen un depósito bauxítico de aproximadamente 6m de 

espesor. En la base del afloramiento se pueden observar bloques métricos de caliza jurásica con 

un color blanquecino-amarillento. Sobre este nivel de caliza, se encuentra el depósito bauxítico 

de color rojo predominantemente (Fig. 4), pero se puede observar un nivel más blanquecino en 

la mitad del depósito (muestra Smd-2b) y hacia el techo se pueden observar coloraciones más 

violáceas. A lo largo del depósito no se observa ninguna estructura sedimentaria, pero si se 

observan a simple vista abundantes pisolitos. Las muestras en el afloramiento se disgregan con 

más facilidad en la base que en la parte media-superior. Por último, en el techo del afloramiento 

se encuentran las arenas del Santoniense, presentando un color amarillento. Las condiciones 

actuales del afloramiento no permiten apreciar con precisión la morfología del depósito, debido 

a labores de extracción minera que se han producido en esta zona. 
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Visu 

 

Todas las muestras son, litológicamente, arcillas. Mayoritariamente presentan coloraciones 

rojizas (Fig. 6a), salvo una que presenta un color más blanquecino (Fig. 6b), pero en su superficie 

se pueden encontrar coloraciones anaranjadas o blanquecinas, en el caso de las muestras 

rojizas, y rosáceas a marrón verdosas, en la muestra blanquecina, probablemente por alteración 

reciente. El color rojizo es debido a la presencia de hematites que, como se verá en el siguiente 

apartado, está presente en cantidades importantes en todas las muestras. Su tamaño de grano 

es tan pequeño que no se puede observar ningún cristal, salvo en alguna muestra en que se 

pueden apreciar cristales milimétricos de pirita. En general, todas las muestras se fracturan con 

facilidad, aunque hay muestras más coherentes que otras y no se observa ninguna estructura 

sedimentaria en ellas. 

La característica textural más evidente en todas ellas es la presencia de pisolitos. Generalmente, 

estos pisolitos (Fig. 6c) presentan coloraciones pardo-rojizas, con un tono más oscuro que la 

matriz arcillosa. En alguna ocasión se pueden observar los pisolitos con unas coloraciones 

blanquecinas, probablemente debido a que se encuentren alterados. En la muestra de color 

blanquecino, los pisolitos presentan distintas coloraciones, desde rojo claro hasta blanquecinas, 

incluso hay alguno verdoso. 

La mayoría de los pisolitos presenta una morfología esférica y contornos redondeados, pudiendo 

haber pisolitos más irregulares. El tamaño medio está en torno a 2-3 mm y el tamaño máximo 

en torno a 7-8 mm. 

 

Figura 6: Aspecto de visu de las muestras estudiadas. a: bauxita de coloración rojiza con coloraciones anaranjadas o 
blanquecinas con un tamaño de grano fino. b: Bauxita de color blanquecino con coloraciones rosáceas en el exterior. 

c: Pisolitos pardo-rojizos que se encuentran en la matriz arcillosa 
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Difracción de Rayos-X 

 

En la Tabla 1 se muestra la composición mineralógica de las muestras estudiadas. Las fases 

principales son caolinita, bohemita y hematites. El contenido en caolinita varía entre 20 y 46 %. 

En el caso de la boehmita varía de 7 a 47 %, si bien en una muestra está ausente, coincidiendo 

con el mayor contenido en caolinita en dicha muestra. Por su parte, el contenido en hematites 

varía entre 16 y 38 %. Acompañando a estas fases principales aparecen goethita, anatasa, rutilo, 

gibbsita, cuarzo, calcita y diásporo como accesorios. Hay variaciones en la vertical en cuanto a 

los contenidos de las fases principales: en la base del perfil, predominan caolinita y bohemita, 

mientras que hematites es menos abundante. Conforme avanzamos hacia el techo del perfil, la 

caolinita se mantiene constante y el contenido en bohemita y hematites es variable, salvo en 

una de las muestras en el techo del perfil, formada principalmente por caolinita y hematites, 

encontrándose la bohemita ausente. 

La submuestra rojiza (SMd-1r) correspondiente al nivel Smd-1, presenta una mayor 

concentración en Hematites que la muestra blanquecina (Smd-1b), pero esta última presenta 

una mayor concentración de Bohemita, ambas presentando una concentración similar de 

Caolinita. Respecto a los pisolitos presentes en la muestra Smd-2b (muestra Smd-2bp), éstos 

muestran una concentración similar de caolinita y hematites con respecto a la muestra Smd-2b 

y, sin embargo, la concentración de bohemita es muy inferior y la concentración de goethita es 

superior.  

Respecto a la fracción inferior a 2μm (Tabla 1), todas las muestras están formadas 

exclusivamente por caolinita. 

La cristalinidad (FWHM) de la caolinita se muestra en la Tabla 2. Presenta pocas variaciones a lo 

largo del perfil, observándose un ligero aumento de la misma hacia techo del perfil, aunque no 

se puede hablar de notables cambios en todo el perfil. 
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Tabla 1: Composición mineralógica de la muestra total y de la fracción <2μm. Kln: Caolinita, Bhm: Bohemita, Hem: 

Hematites, Gt: Goetita, Ant: Anatasa, Rt: Rutilo, Gbs: Gibbsita, Qtz: Cuarzo, Cal: Calcita, Dsp: Diasporo, Ind: Indicios, 

:<5% 

 
  

Muestra Global Muestra <2μm 

Muestra Litología Kln Bhm Hem Gt Ant Rt Gbs Qtz Cal Dsp Kln 

Smd-0 Arcilla 35 40 17 6 Ind Ind - - - - 100 

Smd-0' Arcilla 35 40 16 5 Ind Ind - - - - 100 

Smd-1r Arcilla 26 22 26 - Ind Ind 7 - Ind 10 100 

Smd-1b Arcilla 27 47 18 - Ind Ind - - - - 100 

Smd-2 Arcilla 22 36 34 - Ind 5 - - - - 100 

Smd-2b Arcilla 32 22 26 10 - - 7 - Ind - 100 

Smd-

2bp 
Arcilla 26 7 28 25 - Ind - 11 - - 100 

Smd-3 Arcilla 25 23 38 6 Ind - - - Ind - 100 

Smd-4 Arcilla 22 38 34 - Ind Ind - - - - 100 

Smd-5 Arcilla 46 - 30 - Ind Ind 8 Ind 5 - 100 

Smd-6 Arcilla 20 38 35 - Ind - - Ind   - 100 

 

 
Cristalinidad 

Kln(7Å) 

Muestra Litología AO 

Smd-0 Arcilla 0,3 

Smd-0' Arcilla 0,3 

Smd-1 Arcilla 0,4 

Smd-2 Arcilla 0,4 

Smd-2b Arcilla 0,4 

Smd-3 Arcilla 0,2 

Smd-4 Arcilla 0,3 

Smd-5 Arcilla 0,2 

Smd-6 Arcilla 0,2 

 

 

 

 

 

 

 

Tabla 2: Valores de cristalinidad de caolinita en la fracción <2μm 
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Microscopía óptica 

 

Las muestras estudiadas se caracterizan por presentar abundantes pisolitos inmersos en una 

matriz arcillosa, sin estar en contacto unos con otros, salvo en algún caso en que se encuentran 

en contacto (Fig. 7a). La matriz arcillosa presenta un tamaño de grano por debajo del nivel de 

resolución del microscopio óptico. Además, la abundante presencia de óxidos y oxihidróxidos 

de hierro dificulta su observación y descripción. Por estos motivos, el estudio de microscopía 

óptica se ha centrado en el estudio de los abundantes pisolitos que se encuentran en las 

muestras. No obstante, se ha realizado una breve descripción de algunos rasgos texturales de la 

matriz observados al microscopio. 

La matriz es fundamentalmente rojiza, debido a la presencia de óxidos y oxihidróxidos de hierro, 

pero existen zonas donde se pueden observar diferentes tonalidades debido a variaciones en el 

contenido de dichas fases. En la zona donde hay una menor presencia de óxidos y oxihidróxidos 

de hierro, se observan coloraciones anaranjadas o amarillentas (dependiendo del mayor o 

menor contenido en esas fases, respectivamente), mientras que las zonas que presentan una 

mayor concentración en óxidos y oxihidróxidos de hierro presentan coloraciones rojizo-

marronáceas y son más opacas. En estas zonas la coloración diferente se encuentra distribuida 

de manera irregular. 

Con respecto a los pisolitos, su clasificación en cuanto al tamaño se ha hecho siguiendo los 

términos propuestos por Bardossy (1982): macropisoides (≥5mm), pisoides (1-5mm), ooides 

(100-1000 μm) y micro-ooides (<100 μm). En las muestras estudiadas predominan ooides, 

pisoides y micro-ooides, por este orden, mientras que los macropisoides se encuentran de 

manera muy ocasional. 

La morfología de los pisolitos es fundamente esferoidal (Fig. 7a), pudiendo haber alguno con 

morfología más irregular (Fig. 7b) o alargada (Fig. 7a). En luz transmitida, los diferentes pisolitos 

pueden presentar coloraciones variadas debido a la mayor abundancia de óxidos y oxihidróxidos 

de hierro e incluso se observan algunos completamente opacos debido a una elevada 

concentración en estas fases (Fig. 7a). En los pisolitos que presentan una menor concentración 

de óxidos de hierro, se puede observar su estructura interna, pudiéndose distinguir un núcleo y 

una serie de envueltas concéntricas (Fig. 7a). No obstante, debido al alto contenido en óxidos y 

oxihidróxidos de hierro, las descripciones de los pisolitos se han realizado utilizando luz 

reflejada. 

Los micro-ooides (Fig. 7c) no presentan estructuración interna y son de aspecto terroso o 

masivo, con un tamaño de grano similar al de la matriz.  Además, se pueden reconocer algunas 

partículas detríticas en su interior dispuestas al azar. Algunos de los micro-ooides presentan una 

corteza externa muy rica en óxidos de hierro, probablemente muy rica en hematites dadas sus 

características observables en luz reflejada, observándose al microscopio de luz transmitida 

completamente opaca. 

Los ooides se pueden encontrar formados por un núcleo terroso con un tamaño de grano similar 

al que se puede encontrar en la matriz, incluyendo en su interior partículas irregulares de 

pequeño tamaño, pudiendo contener también fragmentos de micro-ooides. También se pueden 

observar ooides que presentan una partícula irregular que actúa como núcleo rodeada de una 
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serie de envueltas concéntricas marcadas por diferencias en cuanto a la proporción de óxidos e 

hidróxidos de hierro (Fig. 7c). En ambos tipos de ooides, se puede encontrar una corteza externa 

muy rica en óxidos de hierro. 

Los pisoides y macropisoides están formados por un núcleo que puede consistir en fragmentos 

de ooides o micro-ooides (Fig. 7d), presentan carácter terroso-masivo que puede contener 

fragmentos de ooides o micro-ooides y partículas irregulares (Fig. 7b) o puede estar formado 

por ooides o micro-ooides. En el caso de los macropisoides, estos pueden presentar un pisoide 

como núcleo, observándose en ellos una estructura interna y pudiéndose observar en su parte 

más externa una corteza rica en oxihidróxidos de hierro. 

Además de observarse pisolitos completos, también se puede observar fragmentos de pisolitos 

dispuestos al azar en la matriz (Fig. 7e). Estos fragmentos pueden ser tanto una porción de las 

envueltas concéntricas, como parte del núcleo junto a sus envueltas, como parece ser el caso 

en la figura 7e. 

También se pueden observar fracturas en los pisolitos, dispuestas en forma radial y también en 

la matriz (Fig. 7f). La mayoría de las fracturas que se encuentran en los distintos pisolitos afectan 

únicamente al núcleo y las sucesivas envueltas que lo forman, sin afectar a la corteza opaca 

externa (Fig. 7g). Además de las fracturas, se pueden observar huecos con una distribución 

concéntrica a favor de las envueltas concéntricas (Fig. 7h). 
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Figura 7: Imágenes de microscopía óptica de las muestras estudiadas. a: Micro-ooides y ooides que se encuentran en 
la matriz arcillosa de manera granosostenida. Se pueden observar con una morfología esferoidal y alargada, tanto 

opacos como observándose su estructura interna; luz transmitida (LT), nícoles paralelos (NP), x5. b: Pisoide con 
morfología irregular, formado por un núcleo terroso-masivo, incluyendo ooides, micro-ooides en su interior; luz 

reflejada (LR), NP, x5. c: Micro-ooides y ooides formados por un núcleo terroso y ooide formado por un núcleo, junto 
a envueltas concéntricas; LR, NP, x5. d: Fragmento de pisoide que presenta como núcleo fragmentos de ooides y 
micro-ooides; LR, NP, x5. e: Fragmento de un pisolito que se encuentra dispuesto al azar en la matriz; LT, nícoles 
cruzados (NC), x10. f: Fracturas afectando a los pisolitos y a la matriz, dispuestas al azar; LR, NP, x5. g: Fracturas 

distribuidas al azar que afectan al núcleo y a las envueltas de los pisoides; LR, NP, x5. h: Huecos distribuidos favor de 
las envueltas concéntricas, LR, NP, x5 
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Microscopía electrónica 

 

Las imágenes de electrones secundarios (SE) de las muestras estudiadas muestran que, en la 

matriz, la caolinita y los hidróxidos de Al (mayoritariamente boehmita, teniendo en cuenta los 

resultados de difracción de rayos X), son los minerales más abundantes. Estos dos minerales se 

disponen al azar, no observándose ninguna distribución preferente. 

La caolinita se presenta predominantemente como cristales idiomorfos a subidiomorfos, 

frecuentemente con contorno hexagonal, de tamaño nanométrico que, en ocasiones, puede 

alcanzar hasta 1.5 μm de diámetro (Fig. 9a). En algunos casos, también se observa caolinita 

nanométrica de subidiomorfa a alotriomorfa, con contornos irregulares (Fig. 9b). También se 

puede observar caolinita formando agregados de tipo “book”, con diámetros entre 200 y 400 

nm, pudiendo llegar hasta 3 μm (Fig. 9c) 

Los hidróxidos de Al se presentan frecuentemente como cristales nanométricos de hábito 

prismático (Fig. 9b y d). En algunos casos, aunque con menor frecuencia, también se han 

observado cristales planares idiomorfos a subidiomorfos con secciones romboidales (Fig. 9e) o 

próximas a hexagonales (Fig. 9f), también de tamaño nanométrico. Ocasionalmente, los 

hidróxidos de Al pueden aparecer asociados a agregados de tipo “book” de caolinita, 

presentándose entre las láminas de caolinita de dichos agregados (Fig. 9c). 

Además de los minerales citados anteriormente, también se pueden observar abundantes 

óxidos de hierro. Estos minerales presentan normalmente una morfología redondeada y 

contornos más o menos irregulares con un diámetro promedio de 200 nm, encontrándose 

dispersos o formando agregados o acumulaciones (Fig. 9g). 

Las imágenes de electrones secundarios también han permitido observar ocasionalmente 

cristales de illita. Se trata de cristales alotriomorfos de hábito laminar y contorno irregular de 

hasta 600 nm de diámetro aproximadamente. También se han observado escasos cristales 

subidiomorfos a alotriomorfos de plagioclasa, presentando hábito tabular y tamaño aproximado 

de 2.5 μm a lo largo de su eje mayor (Fig. 9h).  

Las imágenes de electrones retrodispersados (BSE) han permitido observar la abundante 

caolinita e hidróxidos de Al que forman mayoritariamente la matriz junto con, en menor medida, 

óxidos de hierro y titanio. Ocasionalmente también se ha observado calcita y circón. 

La caolinita que forma parte de la matriz se observa fundamentalmente como cristales 

individuales laminares de tipo “platy” de tamaño nanométrico o formando agregados laminares 

de hasta 2 μm de diámetro (Fig. 10a). También se pueden observar agregados de caolinita de 

tipo “book” con espesores de hasta aproximadamente 3.5 μm (Fig. 10b). En ocasiones, se ha 

observado caolinita rellenando cavidades (Fig. 10c) 

Los hidróxidos de Al también presentan un tamaño de grano muy pequeño, inferior a 1 μm (Fig. 

10d), y pueden presentar diversas morfologías. Mayoritariamente aparecen como cristales 

nanométricos de secciones alargadas finamente intermezclados con caolinita a la que, en 

ocasiones, parecen cementar (Fig. 10d). Por otra parte, menos frecuentemente, también se han 

observado cristales de mayor tamaño y sección romboidal rellenando cavidades (Fig. 10e).  
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Los óxidos de hierro se observan con tamaño nanométrico y pueden presentarse alotriomorfos 

o subidiomorfos con secciones alargadas. Aparecen finamente diseminados en la matriz entre 

la caolinita y los hidróxidos de Al (Fig. 10d), pudiendo existir zonas donde hay mayor o menor 

contenido de óxidos de Fe (Fig. 10f). También se pueden encontrar óxidos de hierro rellenando 

cavidades y fisuras, observándose texturas de tipo botrioidal o creciendo en empalizada, 

perpendicularmente a las fisuras (Fig. 10c). En cuanto a los óxidos de Ti, aparecen diseminados 

por la matriz, observándose de alotriomorfos a subidiomorfos, en este último caso presentando 

secciones alargadas o hexagonales y dimensiones desde aproximadamente 600 nm a 1.5 μm. La 

calcita, muy escasa, se observa como cristales subidiomorfos o con secciones subcirculares, con 

un diámetro aproximado de 600 nm, dispersa en la matriz al azar (Fig. 10f). 

La distribución de las distintas fases en la matriz no es homogénea, sino que hay zonas donde la 

presencia de un mineral es más abundante que en otras, siendo esta distribución 

completamente al azar. Ocasionalmente, se ha observado una distribución mineralógica zonada 

en la matriz en las proximidades de los pisolitos presentes: en zonas más alejadas aparece 

caolinita junto a hidróxidos de Al y escasos óxidos de Ti, mientras que en zonas más próximas a 

los pisolitos hay mayor abundancia de hidróxidos de Al que de caolinita y, en contacto con los 

pisolitos, aparecen exclusivamente hidróxidos de Al. 

Las observaciones mediante electrones retrodispersados (BSE) de los pisolitos han puesto de 

manifiesto que pueden presentar diferente estructuración interna y que están formados por las 

mismas fases minerales que se encuentran en la matriz. En general, en los pisolitos predominan 

los óxidos de hierro y los hidróxidos de Al son más abundantes que la caolinita. Como ya se ha 

puesto de manifiesto al microscopio óptico, los pisolitos de menor tamaño (ooides y micro-

ooides) o bien no presentan ningún tipo de estructura interna (es decir, son masivos) o 

presentan algo parecido a un núcleo más una especie de corteza grosera que suele ser más rica 

en óxidos de Fe (Fig. 11a). Son, por tanto, fundamentalmente masivos y presentan una textura 

similar a la de la matriz. 

Por otra parte, los pisolitos de mayor tamaño (pisoides y macropisoides y, quizás, algún ooide 

de los más grandes) suelen presentar un núcleo y una serie de envueltas concéntricas (Fig. 11 

a), aunque también los hay sin ningún tipo de estructura interna. En algunos casos, se observa, 

además, una corteza recubriendo a los pisolitos. 

El núcleo suele ser masivo e incluir otros pisolitos y partículas detríticas (Fig. 11a). Es frecuente 

observar la presencia abundante de óxidos de hierro, en forma de cristales de secciones 

alargadas, dispersos o formando acumulaciones. Junto a los óxidos de Fe se encuentran 

abundantes hidróxidos de Al, en forma de cristales de secciones irregulares o alargadas y 

caolinita, frecuentemente formando agregados de tipo “book” (Fig. 11b). En ocasiones, cristales 

de óxidos de Fe se disponen entre las láminas de caolinita de los agregados tipo “book” (Fig. 

11b). Además, también se han observado algunos núcleos formados por un fragmento de una 

partícula detrítica, por un pisolito o incluyendo fragmentos de pisolitos fracturados (Fig. 11c). 
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Figura 9: Imágenes de electrones secundarios (SE). a: se observan cristales de caolinita, de idiomorfa a subidiomorfa 
de contorno hexagonal. b: cristales de caolinita de subidiomorfa a alotriomorfa con contornos irregulares y cristales 
de hidróxido de Al de hábito prismático. c:  agregado tipo “book” de caolinita con cristales nanométricos alotriomorfos 
de hidróxido de Al entre las láminas de caolinita. d: se observan cristales prismáticos de hidróxidos de Al. e: cristales 
de hidróxido de Al, de idiomorfos a subidiomorfos de sección romboidal. f: cristales de hidróxido de Al con contorno 
próximo a hexagonal. g: cristales de óxidos de hierro con una morfología redondeada. h: se observan cristales 
idiomorfos a subidiomorfos de hábito prismático y sección rómbica de hidróxido de Al, cristales idiomorfos a 
subidiomorfos de sección hexagonal de óxidos de hierro, un cristal subidiomorfo de plagioclasa e illita alotriomorfa. 
Kln: Caolinita, Al-H: Hidróxidos de Al, Ox. Fe: óxidos de hierro, Pl: Plagioclasa, Il: illita. 

a b 

c d 

e f 

g h 
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Figura 10: Imagen de electrones retrodispersados (BSE) de la matriz. a: cristales de caolinita de tipo “platy” y 
agregados laminares de caolinita. b: agregado de tipo “book” de caolinita. c: cristales de caolinita y óxidos de hierro 
rellenando cavidades (crecimiento en empalizada) y diseminados en la matriz. d: se observan cristales de hidróxidos 
de Al intermezclados con caolinita. e: cristales de hidróxidos de Al romboidales rellenando cavidades. f: agregados de 
tipo “book” de caolinita, cristales alotriomorfos a subidiomorfos de óxidos de hierro diseminados en la matriz y 
cristales de calcita subidiomorfos de sección circular. g: óxido de Ti, de alotriomorfo a subidiomorfo. Kln: Caolinita, 
Ox.Fe: óxidos de hierro, Al-H: hidróxidos de Al, Cal: calcita, Ox.Ti. óxidos de titanio. 

a b 

c d 

e f 

g 
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Las envueltas concéntricas que rodean al núcleo vienen determinadas por la diferente 

proporción de óxidos de Fe o hidróxidos de Al y en menor medida caolinita (Fig. 11d). En esta 

figura, las envueltas concéntricas más claras están formadas fundamentalmente por óxidos de 

hierro, fundamentalmente alotriomorfos, entre los que se observan hidróxidos de Al y óxidos 

de Ti. Las envueltas más oscuras, sin embargo, están formadas fundamentalmente por cristales 

nanométricos alotriomorfos de hidróxidos de Al. También se pueden encontrar óxidos de hierro 

entre los cristales de hidróxido de Al. Texturalmente, por tanto, los óxidos de hierro e hidróxidos 

de Al que se encuentran en las envueltas son similares a los que se observan en la matriz. 

En algunos casos, las sucesivas envueltas concéntricas que forman parte de un pisolito pueden 

englobar partículas o acumulaciones de determinadas fases minerales, a las que las envueltas 

parecen adaptarse (Fig. 11e). Estas partículas o acumulaciones pueden presentar una morfología 

redondeada y estar formadas por hidróxidos de Al (Fig. 11d), texturalmente similares a los 

observados en la matriz, presentando tamaños entre 20 y 25 μm a lo largo de su eje mayor. 

También se pueden observar partículas subcirculares formadas fundamentalmente por óxidos 

de hierro, con un diámetro de hasta 300 μm (Fig. 11e). Finalmente, también se pueden 

encontrar ocasionalmente cristales de circón (Fig. 11d) con sección circular y dímetro de hasta 

15 μm.  

Por último, en algunos casos, los pisolitos están recubiertos en su parte más externa por una 

corteza formada por hidróxidos de Al y óxidos de Fe en diferentes proporciones. 

En los casos en que la corteza está formada fundamentalmente por hidróxidos de Al (Fig. 11f), 

estos presentan una textura similar a la que se puede observar en la matriz. En ella también se 

pueden observar fragmentos fracturados de las envueltas que forman los pisolitos, caolinita y 

de manera ocasional, se pueden observar granos de circón. En otros casos, esta corteza está 

fundamentalmente formada por cristales alotriomorfos de óxidos de hierro (Fig. 11c). 

Los pisolitos pueden verse afectados por fracturas. Estas fracturas pueden afectar al núcleo de 

los pisolitos y estar dispuestas aleatoria y radialmente (Fig. 11g). También pueden encontrarse 

fracturas radiales que afectan a las envueltas concéntricas. Las fracturas en ambos casos pueden 

estar rellenas por las mismas fases minerales que se pueden observar en la matriz. En algún caso 

se han observado huecos, encontrándose a favor de las sucesivas envueltas concéntricas (Fig. 

11e). También se ha observado, como en microscopía óptica, fragmentos irregulares de 

pisolitos. 
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Geoquímica 

 

En la tabla 3 se muestra la concentración de elementos mayores de la muestra analizada. La 

composición química es compatible con los resultados obtenidos a partir de DRX. Hay un 

predominio de Al debido a la presencia de hidróxidos de Al (bohemita y en menor medida 

gibbsita) y de caolinita. Además, el contenido en Si está relacionado con la presencia de caolinita. 

Por otra parte, el alto contenido en hierro es debido a la presencia de hematites y goethita, 

componentes que dan el color característico rojizo a las muestras.  El resto de los elementos se 

encuentran en concentraciones muy bajas. Cabe destacar el contenido en Ti (próximo al 2 %) 

relacionado con la presencia de anatasa y rutilo. Los escasos contenidos en Ca y Mg estarían 

probablemente relacionados con la presencia de calcita. 

La proyección del contenido en Al, Si y Fe   en el diagrama ternario de Aleva (1994) (Fig. 8) 

indica que la muestra analizada se clasifica como bauxita. 

 

 

Muestra Litología SiO2 Al2O3 Fe2O3(T) MnO MgO CaO Na2O K2O TiO2 P2O5 LOI 

Smd-1 Arcilla 20,59 43,99 21,12 0,056 0,54 0,27 0 0,11 1,93 0,03 11,45 

 

 

 

 

 

 

 

Tabla 3: Concentraciones (%) de los elementos principales de la muestra estudiada. LOI: Loss On Ignition. 

Figura 8: Diagrama ternario Fe2O3-Al2O3-SiO2 modificado de Aleva (1994) de la clasificación química de la bauxita analizada 
(proyectada como un círculo negro con un punto rojo en su interior). 
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Figura 11: Imágenes de electrones retrodispersados (BSE) de los pisolitos de las muestras. a: Pisolito con núcleo masivo 
que contiene otros pisolitos. b: cristales de óxidos de hierro entre los cristales que forman los agregados tipo “book” 
de caolinita. c: pisolito fracturado con un núcleo que incluye un fragmento de un pisolito fracturado; también se 
observan partículas redondeadas de óxidos de hierro incluidas en las sucesivas envueltas concéntricas. d: análisis 
químico de las envueltas que rodean al núcleo de los pisolitos, donde se muestra la diferencia composicional de las 
distintas envueltas: cada línea de color corresponde a un elemento: Azul (Al), Si (Rosa) y amarillo (Fe); también se 
observan acumulaciones de morfología redondeada de hidróxidos de Al y cristales de circón. e: óxidos de Fe 
incorporados en las sucesivas envueltas concéntricas; también se observan huecos a favor de las envueltas 
concéntricas. f: corteza formada predominantemente por hidróxidos de Al junto con diferentes partículas que han 
quedado integradas en ella. g: se observa el núcleo y las diferentes envueltas que forman un pisolito fracturado. Kln: 
Caolinita, Ox.Fe: óxido de hierro. 
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DISCUSIÓN 
 

El estudio de depósitos bauxíticos resulta de gran interés, entre otros motivos, por el hecho de 

que se trata de materiales que son excelentes indicadores paleoclimáticos puesto que para su 

formación se necesitan unas condiciones muy específicas, como son un clima tropical a 

subtropical húmedo, con unas precipitaciones de 1200cm/año y temperaturas de 22ºC 

(Bardossy y Aleva, 1990) y una alternancia entre estaciones húmedas y secas, con 1 o 2 meses 

secos al año (Vera et al, 1987). En la actualidad, las zonas favorables para la bauxitización están 

en latitudes entre 30ºN y 30ºS (Bardossy y Dercourt, 1990). 

La aplicación de las diversas técnicas de estudio utilizadas en este trabajo ha permitido conocer 

que los materiales estudiados están formados por caolinita bohemita y hematites 

principalmente, y goethita, anatasa, rutilo, gibbsita, cuarzo, calcita y diásporo como minerales 

accesorios. Se trata por lo tanto de una mineralogía característica de materiales bauxíticos. 

Además, el análisis geoquímico de una de las muestras del afloramiento, representativa de los 

materiales estudiados, ha permitido su clasificación como bauxita en el diagrama de Aleva 

(1994). 

La caolinita se presenta predominantemente de idiomorfa a subidiomorfa, como cristales 

laminares tipo “platy” o como agregados laminares (Fig. 10a), de tamaño nanométrico y 

frecuentemente con contorno hexagonal (Fig. 9a). Esta forma de presentarse estaría indicando 

su carácter autigénico. No obstante, también se puede observar, menos frecuentemente, 

caolinita nanométrica subidiomorfa a alotriomorfa (Fig. 9b), que podría tener un origen 

detrítico, por lo que quizás no se pueda descartar que una pequeña proporción de la caolinita 

presente pueda tener un carácter heredado. También se han observado agregados de tipo 

“book” de caolinita (Fig. 9c) apoyando el carácter autigénico de la caolinita, dado que este tipo 

de agregados no resistirían el proceso de transporte desde el área fuente hasta el medio de 

depósito.  

Los hidróxidos de Al se han observado como cristales idiomorfos a subidiomorfos (Fig. 9b), lo 

que indicaría, como en el caso de la caolinita, su carácter autigénico. Estos hidróxidos de Al se 

han observado finamente mezclados con caolinita (Fig. 10d), a veces con apariencia de estar 

cementándola, y también entre las láminas de agregados de tipo “book” de caolinita (Fig. 9c). 

Estas características texturales parecen indicar que la formación de hidróxidos de Al podría ser, 

al menos en parte, posterior a la formación de caolinita. Por otra parte, se han observado dos 

morfologías distintas de hidróxidos de Al, en relación, quizás, con la presencia de dos fases 

distintas, tal como indican los resultados de rayos X: bohemita, más abundante, y gibbsita, de 

carácter accesorio. La morfología más frecuentemente observada consiste en cristales 

nanométricos de hábito prismático y secciones alargadas (Fig. 9d). Estas morfologías podrían 

corresponder a bohemita, la fase más abundante. Por otra parte, las morfologías laminares de 

secciones romboidales (Fig. 9e) y hexagonales (Fig. 9f), observadas menos frecuentemente, 

podrían corresponder a gibbsita, mucho menos abundante. 

Cabe mencionar también que tanto la caolinita como los hidróxidos de Al, además de observarse 

en la matriz de las muestras en los frecuentes pisolitos, se han observado también rellenando 

cavidades, característica que también ha sido descrita en las bauxitas kársticas estudiadas por 
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Yuste et al. (2015). Esto indicaría que la formación de ambas fases ha tenido lugar tanto a partir 

de la disolución de las fases previas presentes en el material de partida como por precipitación 

directa en espacios abiertos.  

Los óxidos de hierro se pueden observar con una morfología redondeada y contornos irregulares 

(Fig. 9g), lo que podría indicar su naturaleza detrítica. Sin embargo, se trata de fases típicamente 

que se forman in situ durante el proceso de bauxitización. Esto, junto al hecho de que se han 

observado finamente diseminados en la matriz entre la caolinita e hidróxidos de Al (Fig. 10d) 

apoya la idea de su formación in situ, es decir, que se trata de fases autigénicas. Quizás sus 

morfologías irregulares están en relación con su pequeño tamaño, siempre nanométrico, 

relacionado probablemente con una pobre cristalinidad. Es importante mencionar que, en 

ocasiones, los óxidos de Fe han sido observados entre láminas de agregados de caolinita, lo que 

estaría indicando una formación de estos, al menos en parte, con posterioridad a la formación 

de caolinita, como ya se ha comentado en el caso de los hidróxidos de Al. Por último, comentar 

que también se han observado óxidos de Fe en cavidades (Fig. 10c), como en el caso de caolinita 

e hidróxidos de Al. Esto apoyaría el carácter autigénico de los minerales característicos de este 

tipo de materiales (hidróxidos de Al, caolinita y óxidos y oxihidróxidos de Fe) en las muestras 

estudiadas. 

Bauluz et al. (2014), en el estudio de materiales similares en la Facies Weald, cuya formación 

también está relacionada con la existencia de procesos de meteorización química intensa, 

relacionan la formación de la caolinita con la intensa disolución de fases silicatadas como cuarzo, 

feldespato y plagioclasa, favoreciendo la recristalización de fases ricas en cationes relativamente 

inmóviles (Al, Si, Fe), como la caolinita, hidróxidos de Al e oxihidróxidos de hierro y la lixiviación 

de elementos móviles (K, Na, Ca). Bauluz et al. (2014) también indican que la presencia de 

caolinita, hidróxidos de Al y oxihidróxidos de Fe, sin la presencia de cuarzo o feldespato sugiere 

un desarrollo de disolución/cristalización con una alta relación fluido/roca. En las muestras 

estudiadas no se ha detectado cuarzo y solo, muy ocasionalmente, algún cristal de plagioclasa 

(Fig. 9h), lo que estaría de acuerdo con las ideas expuestas en este párrafo. 

Además de las fases anteriores mencionadas, se han observado cristales subidiomorfos con 

contornos irregulares de calcita, los ya mencionados cristales alotriomorfos de plagioclasa así 

como de illita, cristales de zircón y cristales de subidiomorfos a alotriomorfos de óxidos de Ti. 

Todas estas fases serían fases detríticas, relictos del material de partida a partir del cual se han 

formado las bauxitas estudiadas. 

Por último, ya se ha comentado que se ha observado de visu, muy ocasionalmente, pirita en una 

de las muestras estudiadas. En ocasiones, el origen de la pirita en materiales similares a los 

estudiados está relacionado con la descomposición de la materia orgánica (D’Argenio y 

Mindszenty, 1995). Sin embargo, no se ha observado materia orgánica en ningún nivel del 

afloramiento. Una posibilidad es que su origen esté relacionado con la filtración de agua marina 

procedente de la plataforma carbonatada en el sistema de cavidades kársticas generadas, que 

podría aportar el S, procedente del sulfato marino, para la formación de pirita. En cualquier caso, 

al haberse observado pirita de manera tan ocasional, podría considerarse esa posible filtración 

de agua marina como algo muy esporádico. Esta pirita se habría formado en un momento 

excepcional, bajo condiciones reductoras, mientras que el ambiente de formación del depósito 

bauxítico sería oxidante, como indica la presencia generalizada de hematites. No obstante, 
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excepcionalmente, quizás en zonas concretas del depósito, se habría favorecido la existencia de 

un ambiente reductor, momento en el cual se formaría la pirita.  

Respecto a las partículas pisolíticas observadas, muy abundantes en los materiales estudiados, 

se ha podido deducir que han sufrido varios episodios en su formación. Esto se debe a varios 

aspectos. Uno de ellos es que las partículas pisolíticas están formadas por diferentes envueltas 

concéntricas (Fig. 11d), con una proporción de hidróxidos de Al e oxihidróxidos de hierro 

diferente, indicando que, la formación de cada envuelta se realizó con unas condiciones físico-

químicas diferentes, evidenciando un cambio en las condiciones del medio. Cabe mencionar 

que, como se ha indicado en la sección de resultados, los hidróxidos de Al son más abundantes 

que la caolinita en los pisolitos y, asimismo, se ha observado en algunas muestras una zonación 

mineral de tal forma que hay una mayor abundancia de hidróxidos de Al en la matriz más 

próxima a los pisolitos. Es probable que la formación de los pisolitos se haya visto favorecida 

precisamente en zonas donde mayor abundancia de fases de Al (bohemita fundamentalmente) 

había. Otro punto a tener en cuenta sería la estructura interna observada en algunas de dichas 

partículas pisolíticas, ya que en el núcleo de alguna de ellas se pueden incluir otros pisolitos (Fig. 

11d). Esto estaría indicando, por lo tanto, que ha habido varios episodios de formación de 

pisolitos. 

En relación a la concentración de fases minerales que presentan las partículas pisolíticas, la 

muestra Smd-2bp presenta una mayor concentración en caolinita que bohemita, según los 

resultados de DRX. Sin embargo, las observaciones al SEM de las partículas pisolíticas indican 

que en dichas partículas suelen ser más abundante los hidróxidos de Al que la caolinita. Esto se 

puede deber a que, en el caso de los pisolitos de la muestra Smd-2bp, al tratarse de partículas 

pisolíticas presentes en un nivel caracterizado por su color más blanquecino y con un contenido 

relativamente mayor en caolinita que otros niveles, según datos de DRX, se haya favorecido que 

los pisolitos de dicho nivel contengan mayores contenidos en caolinita que bohemita, siendo 

esto una situación excepcional que se tendría que abordar con más profundidad. 

Según Bardossy (1982) para la formación de ooides y pisoides, el material tiene que estar 

permanentemente saturado en agua. En los pisoides y ooides observados en las muestras 

estudiadas parecen existir varias estructuras que estarían de acuerdo con la afirmación 

mencionada por el autor. Se pueden observar ooides y pisoides con una morfología alargada 

(Fig. 7a), lo que puede indicar que durante su formación estarían en un estado semiplástico. 

También se observan indicios de esto en las diversas envueltas concéntricas observadas. Es 

frecuente observar que estas envueltas se acomodan a las diferentes partículas incluidas en 

ellas, envolviéndolas y entrando a formar parte de la estructura (Fig. 11e). Esto se debería 

probablemente a que, en el momento de la formación de los pisolitos, presentaban un estado 

semiplástico debido a la saturación en agua que presentaba el medio. Por lo tanto, a partir de 

estas características se puede deducir que la formación de las partículas pisolíticas tuvo lugar, al 

menos mayoritariamente, in situ. 

No obstante, lo mencionado en el párrafo anterior, en relación con las fracturas observadas en 

algunos de los núcleos de ooides y pisoides, que en algunos casos tienen una distribución de 

tipo radial (Fig. 11g), éstas se deberían probablemente a la alternancia de periodos de sequía 

que habrían experimentado estos núcleos, entre periodos de saturación de agua. Esta 

alternancia de momentos de mayor humedad y momentos de menor presencia de agua, 
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favorecerían la formación de grietas de desecación como las observadas. Este rasgo también 

estaría, por tanto, indicando que el proceso de bauxitización parece haber tenido lugar en varios 

episodios con condiciones físico-químicas y de saturación de agua distintas, hipótesis similar 

también propuesta por Yuste et al. (2015) en bauxitas kársticas del Cretácico inferior en la zona 

del Maestrazgo (Teruel). 

Sin embargo, a pesar de las ideas expresadas anteriormente, que parecen indicar la formación 

in situ de los pisolitos, existen algunas evidencias de que las partículas pisolíticas también han 

sufrido un cierto transporte, ya que algunos de los pisolitos que se encuentran dispersos por la 

matriz se encuentran fracturados (Fig. 7e). También se ha observado algún pisolito fracturado 

incluido dentro del núcleo de otro pisolito (Fig. 11c). Estos casos evidencian un cierto transporte 

de algunos pisolitos, pero este transporte no habría sido muy intenso dado que son más 

abundantes los pisolitos no fracturados, sin evidencias de transporte. Una posibilidad a tener en 

cuenta es que, quizás al haberse formado el depósito en varios episodios o estadios, es posible 

que se haya producido un cierto retrabajamiento de los pisolitos entre los diferentes episodios, 

que ha quedado registrado en las características antes mencionadas. 

Otro aspecto que evidencia el poco transporte que han sufrido los materiales que constituyen 

el afloramiento objeto de estudio es la similitud en la textura entre la matriz y el núcleo de las 

partículas pisolíticas y de aquellas partículas que no presentan estructuración interna, lo que 

evidencia que no ha habido transporte o que, si lo hubiera habido, este sería poco intenso, más 

bien un retrabajamiento como se ha mencionado anteriormente. 

A partir de todo lo comentado hasta ahora se puede deducir que el depósito bauxítico se habría 

formado in situ, en varios episodios y habiendo registrado algunas evidencias de 

retrabajamiento. Su formación, por lo tanto, estaría indicando unas condiciones climáticas 

cálidas y húmedas en la zona de estudio durante la formación de las bauxitas, aunque con una 

cierta estacionalidad, como indica la alternancia de momentos de mayor y menor disponibilidad 

de agua. Este tipo de condiciones serían similares a las prevalecientes durante la formación de 

otros depósitos bauxíticos del NE de la Península Ibérica, como los de Fuentespalda (Teruel), del 

Cretácico inferior caracterizados por Yuste et al. (2015). 

En una reconstrucción paleogeográfica que realizó Dercourt et al. (1986), se muestra que el 

emplazamiento del afloramiento estudiado en este trabajo entre el Jurásico y el Cretácico y el 

tránsito Santoniense/Campaniense, se encontraba en una latitud próxima al ecuador, 

aproximadamente entre la latitud 10ºN y 5ºN. Por lo tanto, desde el techo de las dolomías del 

Jurásico, que forma la base del afloramiento, hasta las arenas de Santoniense, que forman el 

techo del afloramiento, la zona se encuentra en una paleolatitud favorable para la formación de 

bauxitas. En relación a la paleolatitud del yacimiento en el momento de su formación, según la 

clasificación de Köppen (1918) para los diferentes climas, se trataría de un clima tropical 

monzónico, por lo que se darían unas condiciones climáticas favorables para la formación de la 

bauxita. 
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CONCLUSIONES 
 

The different techniques used for the mineralogical and textural analysis indicate that the 

samples are made up of a mixture of authigenic and detrital phases. 

Detrital mineral phases include calcite, plagioclase, illite, zircon and Ti oxides, which would be 

present in the parental material from which the deposit was originated. 

The authigenic mineral phases include kaolinite, Al hydroxides and iron oxyhydroxides. These 

phases are characteristic of bauxite materials. The geochemical analysis of one of the studied 

samples also indicates that the study materials can be classified as bauxites. The observed 

textures show in most cases their authigenic character, having been formed in situ during the 

bauxitization process. But there are also certain textures that indicate that kaolinite could be, at 

least in part, detrital. Al hydroxides and Fe oxyhydroxides could have formed ,at least in part, 

after kaolinite formation. 

The bauxitization took place mainly in situ and occurred very probably in several episodes. These 

episodes would be characterized by different physical-chemical conditions, including changes in 

water saturation conditions. Nevertheless, several features indicate at least a certain re-working 

of the material, probably between the different episodes, mainly evidenced in the observed 

pisoliths. 

The bauxitization process took place as a consequence of very intense chemical weathering, due 

to the existence of monsoonal tropical climate, which favored the dissolution of previous Al- and 

Si-rich mineral phases (such as quartz, plagioclase and mica) and, consequently, the enrichment 

in inmobile elements (Al, Si and Fe) and the leaching of more mobile elements. 
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