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Evaluacién de técnicas de clasificacion para deteccion del

movimiento a partir de EEG
RESUMEN

El objetivo del presente proyecto ha sido evaluar diferentes técnicas de clasifi-
cacién que permitan inferir, a partir de una actividad cerebral capturada con
EEG, la deteccién e intencion de movimiento en pacientes con hemiplejia. Este
tipo de informacién es muy valiosa en terapias de rehabilitacién ya que permite
automatizar parte del tratamiento con protesis robéticas y evaluar de una forma
independiente y objetiva el grado de involucracién del paciente en la tarea. Se
enmarca dentro del proyecto CONSOLIDER HYPER, que investiga en el uso
de técnicas de aprendizaje automatico para el desarrollo de sistemas robdticos
aplicados a la rehabilitacién. El uso de estas técnicas resulta necesario debido a
que las senales eléctricas obtenidas mediante los EEG suponen un enorme con-
junto de datos con un espacio de dimensiones muy amplio par realizar analisis
manual o por inspeccién visual.

En particular, se han estudiado dos aproximaciones diferentes para la clasifi-
cacién del movimiento y de la intencién del mismo. Por un lado, se han estudiado
clasificadores del EEG para cada instante de tiempo independientemente (por
puntos de trayectoria). Este tipo de técnicas son las mds habituales en la ma-
yoria de investigaciones de clasificacién de senales capturadas por EEG, aunque
debemos destacar que en su mayor parte se realizan sobre pacientes sanos. La
novedad de este trabajo radica en su condicién de haber sufrido un infarto ce-
rebral, lo cual complica el analisis. Hemos seleccionado maquinas lineales como
Andlisis Discriminante (LDA) y no lineales como Méquinas de Soporte Vectorial
(SVM). La segunda aproximacién, menos habitual en el campo del EEG, se ha
realizado analizando clasificadores que tienen en cosideraciéon informacién de la
secuencia completa a analizar. Dentro de este area, nos hemos centrado en los el
Modelo Oculto de Mérkov (HMM) y en el Campo Aleatorio Condicional (CRF).

Hemos trabajado con ondas cerebrales, grabadas con anterioridad, corres-
pondientes al movimiento y al reposo de pacientes que han sufrido infarto cere-
bral, estudiando los resultados tanto del lado con paralisis como del lado sano.
En este proyecto se ha realizado la extraccién de las caracteristicas mas ade-
cuadas para, a continuacién, evaluar la eficiencia de los distintos algoritmos de
aprendizaje automaético estudiados.
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1. Introduccion

1.1. Contexto y motivacion

Las interfaces cerebro-ordenador, en adelante BCI (del inglés Brain-Computer
Interfaces), son una tecnologia que permite la comunicacién directa entre una
maquina y una persona mediante la captura de las senales eléctricas generadas
por el cerebro. A la hora de leer estas ondas existen varias aproximaciones, dos
de las mds habituales son: los dispositivos invasivos, en los que se introducen
los electrodos en el propio cerebro mediante intervencién quirurgica obteniendo
una electrocorticografia (ECoG); y los no invasivos, donde la actividad eléctri-
ca se realiza desde el exterior mediante un electroencefalograma (EEG). En el
primer tipo la senal es mucho maés clara y se puede conseguir mayor precision,
pero a cambio supone més riesgos al precisar de una operacién. Los métodos
no invasivos, a pesar de tener una peor resolucién por la distorsién que supone
el craneo, son los que se prefieren en la experimentaciéon con humanos debi-
do a su simplicidad y para eludir los posibles riesgos riesgos inherentes a una
intervencion.

El grupo de Robética de la Universidad de Zaragoza estd inmerso desde hace
unos anos en la investigacion y aplicacién de técnicas BCI orientadas a la reha-
bilitacién. En la actualidad participan en el proyecto CONSOLIDER-HYPER.
Este proyecto intenta avanzar en la investigacién de aparatos neurorobdticos
(NR) y protesis neuronales motorizadas (MNP), tanto para rehabilitacién como
para recuperar la funcionalidad de los desérdenes motores en la actividades coti-
dianas. Los NR son protesis robéticas que realizan el movimiento por si mismas
y las NRP son un sistema capaz de electro-estimular los musculos del sujeto en
el que estan implantadas para efectuar el movimiento. Dicho proyecto centra sus
actividades en nuevos implantes NR-MNP, que combinen estructuras biolégicas
y artificiales para mejorar las grandes limitaciones de las actuales soluciones
de rehabilitacién para los casos particulares de accidentes cerebro-vasculares,
paralisis cerebral y lesién de médula espinal.

Las personas que han sufrido infartos cerebrales y padecen danos severos
en un hemisferio del cerebro pueden perder la movilidad de un lado del cuerpo
pese a continuar teniendo los musculos en perfectas condiciones. En estos casos,
es posible volver a mover las extremidades aprendiendo de nuevo con el cortex
cerebral sano, para lo cual se requieren unas largas sesiones de rehabilitacién.
Para el terapeuta encargado de esta rehabilitacién disponer de una herramien-
ta que permita conocer el involucramiento real del paciente, y si realmente
estd enviando las 6rdenes adecuadas desde el cerebro, es una informacién de
incalculable valor. El presente proyecto analiza diferentes modelos matematicos
de clasificacién para encontrar cudles seran los mas apropiados para construir
estas herramientas de asistencia en la rehabilitacién.



1.2. Objetivos

Las senales eléctricas obtenidas mediante los EEG suponen un enorme con-
junto de datos con un espacio de dimensiones tan amplio que hace muy com-
pleja la realizacién un analisis manual o por inspeccién visual en busca de las
caracteristicas que permitan diferenciar las diferentes acciones que las producen.
Normalmente lo que se hace es aplicar técnicas de procesado de la senal para
extraer las caracteristicas para clasificacion y la deteccién de comandos. Una
de las dificultades que presentan es que estas senales son no estacionarias, es
decir, varian con el tiempo, lo que dificulta su andlisis. También contienen una
gran cantidad de ruido —producido, por ejemplo, por otra actividad muscular
o cerebral distinta a la que se trata de encontrar— presentando mucha variabi-
lidad. Por todo ello se aplican algoritmos de aprendizaje automatico que sean
capaces de extraer la informacién adecuada a la hora de tratar la senal para
decodificarla correctamente.

Suieto 1 - Arm Healthy - Cortex Healthy

EEG powerspectra

Figura 1: Representacion de la onda capturada mediante EEG en diferentes canales
correspondiente a un sujeto con brazo y cdrtex sano. Se han seleccionado los 48
canales que presentan mas variabilidad entre reposo y movimiento.

En nuestro proyecto trabajamos con ondas cerebrales correspondientes al
movimiento y al reposo de pacientes que hayan sufrido infarto cerebral, estu-
diando los resultados tanto del lado con paralisis como del lado sano. Ademés
de la complejidad antes resenada, en este ambito se complica més debido al es-
tado de los pacientes: no sélo tienen un brazo practicamente incapacitado y que
apenas pueden mover (motivo por el cual necesitan tareas de rehabilitacién),
sino que ademads el cértex danado presenta una actividad mas irregular que uno
sano. En las imégenes 1 y 2 se puede ver un ejemplo de cémo son estas senales
que se pretenden clasificar, donde se puede apreciar la enorme cantidad de rui-
do y la dificultad de discriminar el movimiento a partir de esta informacién.



La figura 1 se corresponde con una selecciéon de canales del cértex sano y la
figura 2 corresponda a canales del cértex daniado (en la seccién 2.2.1 se explica
por qué hay distinto nimero de canales en cada imagen, lo cual todavia no nos
interesa detallar).

Dado que las BCI son un campo relativamente reciente, todavia no se ha
determinado qué modelos de aprendizaje automético —de todas las de aproxi-
maciones que existen— son los mas adecuados para decodificar el electroencefa-
lograma que se produce durante el movimiento de los brazos en pacientes con
infarto cerebral. Es por ello que en este trabajo nos centraremos en la capa-
cidad de algunos modelos para diferenciar correctamente las ondas cerebrales
para ambos estados, estudiando los resultados tanto del lado con parélisis como
del lado sano. Estamos interesados en evaluar, por un lado, el porcentaje de
aciertos de cada modelo y, por otro, en el tiempo requerido para llevar a cabo
correctamente esta clasificacién. Esta importancia en la latencia en la deteccion
del cambio del reposo al movimiento se debe a que esta informacién podria ser
utilizada como asistencia en tareas de rehabilitacion. Esto significa que el mode-
lo podria ser la parte que tome las decisiones de rehabilitacién en tiempo real en
un aparato neurorobotico o de una prétesis neuronal motorizada. Por lo tanto,
de existir demasiada latencia en la clasificacién, el robot tendria un retardo que
imposibilitaria sus funciones.

Sujeto 1 - Aym Injured - Cortex Injured

EEG powerspectra
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Figura 2: Representacion de la onda capturada mediante EEG en diferentes ca-
nales correspondiente a un sujeto con brazo incapacitado y cdrtex dafiado. Se han
seleccionado los 8 canales que presentan mas variabilidad entre reposo y movimien-
to.

Para decodificar correctamente las senales que genera la actividad cerebral
durante el movimiento, en el presente estudio se analizardn diferentes modelos
de aprendizaje automdtico. Algunas de estas técnicas (LDA y SVM) son las
més habituales en el campo de los EEG (véase [2]), y por ello representaran



el primer paso para estudiar cémo se comportan estos modelos cuando el EEG
representa la actividad cerebral de pacientes con hemiplejia. En estas técnicas se
clasifica la senal para cada instante de tiempo independientemente, por lo que
una observacion se clasificard en una misma categoria sin importar su posicion
0 qué otras observaciones tiene a su alrededor. A este tipo de clasificacién la de-
nominaremos estatica en contraposicién al siguiente tipo que vamos a proceder
a describir.

Las técnicas novedosas en el andlisis de senales obtenidas por EEG, pero
de reconocido uso en otros campos, seran los modelos en grafo basados en la
propiedad de Mdrkov. Estos modelos (CRF y HMM), a diferencia de los ante-
riores, a la hora de clasificar no sélo utilizan la senal observada en un instante
determinado, sino que tienen en cuenta el orden de la secuencia. Dado que se
espera que la senal obtenida en un cierto instante esté relacionada con el resto
de ondas vecinas, estas técnicas de clasificacion deberian obtener mejores re-
sultados que las que son independientes del tiempo. A lo largo de este trabajo
nos referiremos a estos tipos de clasificacién como dindmicos para resaltar este
comportamiento en el que una misma observacion se clasificaria en categorias
distintas en funcién del momento en que se observe.

De este modo distinguiremos dos tipos de situaciones bien diferenciadas para
analizar la clasificacién del movimiento. Por un lado partiremos del hecho de que
poseemos la sefial completa EEG realizada en los experimentos y la utilizaremos
en su totalidad. A este tipo de andlisis lo denominaremos clasificacion de la tra-
yectoria completa, y sélo se puede ejecutar con posterioridad a la obtencién total
de la senal. Por otro lado, simularemos la gradual adquisicién de la senal que se
darfa en condiciones reales de rehabilitacion, de modo que no se dispondré desde
el principio de la clasificacién de la sefial EEG completa. Esto, como veremos
més adelante en la descripcion matematica de los modelos dindmicos, supone
una diferencia sustancial en la clasificacién. A esta ltima metodologia la deno-
minaremos clasificacion por puntos de trayectoria y nos gustaria enfatizar que
su ejecucion seria equivalente a decodificar la senal en tiempo real mientras se
esta realizando el experimento.

Para sintetizar, podemos ver en la siguiente lista los objetivos que nos plan-
teamos resolver en este trabajo:

Objetivo: Clasificaciéon del movimiento en pacientes que hayan sufrido infarto
cerebral mediante el analisis de la actividad cerebral capturada por EEG.

Subobjetivo 1: Casificacién de la trayectoria completa para evaluacién
de los modelos matemaéticos. Se asumird que se dispone de la senal
completa en el momento de clasificarla.

Subobjetivo 2: Clasificacién por puntos de trayectoria para utilizacién
en rehabilitacién. Se simulara utilizando en cada instante de tiempo
el subconjunto de la senal que se dispondria en condiciones reales.
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1.3. Herramientas

Para la elaboracién de este andlisis se ha seleccionado el lenguaje de pro-
gramacién Matlab ya que el grupo de la Universidad de Zaragoza con el que se
colabora ya estd utilizando este lenguaje, por lo que todos los archivos con los
que se va a trabajar estdn en este formato y esto facilitara el intercambio de
resultados. El tipo de datos basico de Matlab es la matriz, siendo casi todo su
conjunto de instrucciones vectorial y, puesto que vamos a trabajar con enormes
cantidades de datos en formato matricial a las que deberemos aplicar operacio-
nes como normalizacidn, filtrados, etc., este lenguaje supondra una gran ayuda
a la hora de programar. Exactamente trabajaremos con la versién R2011a.

Dado lo extenso y complejo que supondria desarrollar nuestras propias he-
rramientas para cada una de estas técnicas de clasificacion, en cuyo caso nos
tendriamos que limitar a una o dos de ellas y no podriamos realizar una com-
paracién detallada entre tantos modelos, se han buscado librerias que las im-
plementen para uso en el propio Matlab y cuyos detalles se especificardn méas
adelante. Sus nombres son: libSVM, pmtk3 y HCRF2.0b. Para LDA no se utili-
zan librerias externas ya que el propio Matlab en su Statistics ToolBox incluye
el c6digo necesario para generar este modelo. Asi, durante la fase de documen-
tacion para iniciar el proyecto, ademds de estudiar y comprender los modelos
de clasificacion a estudiar, se tuvieron que buscar las librerias adecuadas y pro-
barlas hasta entender su funcionamiento.

En el anexo B se puede consultar una descripcién en detalle de la planifica-
cion seguida en la elaboracién de este proyecto.

2. Descripcion de los datos a estudiar

2.1. Captura de la senal

La obtencién de datos para este andlisis se realiz6 sobre pacientes con hemi-
plejia producida por haber sufrido un infarto cerebral. El protocolo completo de
experimentacién més detallado puede verse en el anexo A ya que no se llevé a ca-
bo en este trabajo, pero en esta seccién se explica lo fundamental para entender
el contexto de la memoria.

La grabacion de la senal EEG se realiza a través de 64 electrodos situados en
el craneo del sujeto. La deteccién del movimiento se realiza mediante detectores
de movimiento (EMQG) y se verifica mediante inspeccién visual posterior, ya que
todos los experimentos se graban en video. En la imagen 3 se puede observar
una fotografia obtenida en mitad de uno de los experimentos y un esquema de
la situacion en la cabeza de dichos electrodos.

Se realizaron dos experimentos equivalentes, uno en el que el paciente ejecu-
taba las acciones con el brazo sano, y otro en el que intentaba realizarlas con el
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Figura 3: Sujeto en mitad de experimento. Se pueden apreciar los detectores EEG
(en la cabeza) y EMG (en el brazo). Abajo a la izquierda, diagrama de la posicién
de los electrodos en el craneo del sujeto.

brazo danado. En ambos casos se grabaron al mismo tiempo las ondas generadas
por cada cértex cerebral junto con la informaciéon generada por los detectores
situados en el brazo. Una vez finalizados, se extrajo la sefial de ambos expe-
rimentos separando en cada paciente las cuatro combinaciones posibles (Bra-
zo Sano—Cértex Sano, Brazo Sano—Cértex Danado, Brazo Danado—Cortex
Sano, Brazo Danado—Coértex Dafiado). Serd a partir de estos cuatro conjuntos
de datos sobre los que se analizaran los diferentes modelos de clasificacion.

El experimento se ejecuté en cuatro bloques de seis minutos cada uno, con
cuarenta ejercicios por bloque, resultando un total de 160 ensayos (80 con cada
brazo). Después de cada bloque el paciente podia descansar tanto como fuera
necesario para evitar la fatiga. Cada grabacién de EEG y EMG tiene una dura-
cién de nueve segundos, utilizando una referencia de tiempo desde los segundos
—3 a 6 con respecto a la aparicién de la segunda sefial (inicio del movimiento),
por lo que éste comienza en el instante cero. El movimiento se realiza en los tres
primeros segundos después del cero, mientras que los tres ultimos son para la
relajacién del sujeto y se descartan.

2.2. Tratamiento de la senal

La senal, tal y como se lee mediante EEG no es directamente utilizable, ya
que es conveniente realizar un procesado previo para aprovechar mejor determi-
nadas caracteristicas que faciliten identificar el movimiento y el reposo.
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2.2.1. Extraccién de caracteristicas

En nuestros modelos matematicos la informacién que se ha de analizar (va-
riables independientes) para determinar si se trata de movimiento o reposo van
a ser el conjunto de senales capturadas por EEG obtenidas en el experimen-
to descrito en la seccién anterior. Pese capturar la actividad cerebral mediante
64 electrodos (canales), seria impensable utilizarlos todos; no sélo por la enor-
me cantidad, que los haria intratables, sino porque las zonas del cértex que no
controlan directamente la actividad motora no contienen informacién relevante
para tratar nuestro problema, de forma que anadirian un ruido innecesario que
dificultaria la decodificacién. Por ello, para cada sujeto es necesario realizar una
seleccién de los canales que presentan variaciones més significativas entre reposo
y movimiento.

Channel

o

S8R

|
L,
I5]

AN
2

i

I
1 de

i

Frequency (Hz)
Figura 4: Grdfica > mostrando la variabilidad de cada canal y frecuencia entre

las dos condiciones. Por ejemplo, podemos ver que el canal C3 en F=20Hz presenta
las mayores diferencias significativas.
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Una vez finalizados dichos experimentos, y con la senal ya grabada, se le
aplicaron varios filtros para suavizar el ruido. Después se aplica una transfor-
mada wavelet para calcular la potencia espectral en cada banda de frecuencia
para cada canal (véase el anexo A para més detalle). Una vez se tiene la senal
convertida al dominio de la frecuencia se pasa a realizar un analisis r? entre
las senales del estado de reposo y de movimiento para determinar qué canales
y en qué frecuencias presentan mas variabilidad. Este anélisis se realiza de for-
ma independiente para cada sujeto y con cada condicién (cortex sano y cértex
danado). Se puede ver un ejemplo de este andlisis en la imagen 4. Aunque algu-
nos canales se compartan entre diversos sujetos —a fin de cuentas, todos estan
centrados en la zona del cértex que ejecuta la actividad motora del brazo—, cada
uno de ellos tiene su propia selecciéon que no tiene por qué coincidir con el resto.

Ademas, para cada sujeto se seleccion6 un unico canal que era el que tenia la
variacién maés significativa de todos ellos. Cuando realicemos nuestra compara-
tiva de de modelos de aprendizaje efectuaremos dos analisis independientes, uno
utilizando esta seleccién de varios canales, y otro utilizando tinicamente el mejor
(con todas sus frecuencias). El objetivo de utilizar un sélo canal es descubrir si
alguno de los otros que no presentan tanta variabilidad como éste puedan estar
anadiendo ruido que pueda inducir a una incorrecta clasificacién.

A continuacién vamos a detallar, para cada sujeto, cudles son los canales
y las frecuencias que se han seleccionado, en los que se presentaba una mayor
variabilidad estadistica a fin de facilitar la decodificacién de la senal. Primero
vemos la tabla con los canales y las frecuencias seleccionados cuando decodi-
ficamos la senal generada por el cortex sano y, después, los correspondientes
al cértex danado. El primer canal de cada enumeracién se trata del que se ha
identificado como el mejor para ese sujeto.

Sugeto Canales Frecuencias (Hz)
41 | C2, Cz C4, CP2, P4, CPz CP4, P2 | 12, 14, 16, 22, 24, 26
42 | C1, C3, Cz, CP2, P3, CPz, CP4, P2 12, 18
43 | CP2, Cz, C4, P4, C2, CPz, CP4, P2 20, 22, 24
44 CP1, CP2, C1, CP3 16, 20
45 | CP2, Cz, C4, P4, C2, CPz, CP4, P2 18, 20
46 C3, Cz, CP3 12, 16, 22

Cuadro 1: Canales y frecuencias con mayor variabilidad en el movimiento por cada
sujeto para el cértex sano. En negrita, encabezando cada lista, el canal identificado
como mejor.

2.2.2. Muestreado de la senal

Una vez hemos filtrado y seleccionado las caracteristicas principales de la
senal, tenemos las ondas EEG ya dispuestas para su inmediato andlisis, con un
marcador indicando el inicio del movimiento. Cada muestra dura aproximada-
mente 5.25 segundos que, con una frecuencia de muestreo de 160 Hz, resulta
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Sujeto Canales Frecuencias (Hz)
41 | C1, C3, CP1, CP3 20, 22
42 | C2, C4, CP2, CP4 12, 18
43 | CP1, C3, C1, CP3 20, 22, 24
44 C2, C4 16, 20
45 | CcP1,C3, C1, CP3 18, 20
46 C4, C2 12, 16, 22

Cuadro 2: Canales y frecuencias con mayor variabilidad en el movimiento por
cada sujeto para el cortex dafiado. En negrita, encabezando cada lista, el canal
identificado como mejor.

en un total de 840 lecturas para cada electrodo (y que finalmente tenemos en
los canales para cada frecuencia). Tratar una cantidad tan grande de datos es
muy costoso computacionalmente con algunos modelos (principalmente SVM y
CRF), por lo que se requiere discretizar la senal para trabajar con unos conjun-
tos més reducidos.

Figura 5: Ejemplo de discretizacion de la sefial a intervalos de 0.25 segundos.
La linea azul es la sefial correspondiente a un canal en una de las frecuencias. Los
puntos rojos representan los tinicos valores utilizados para su decodificacion que se
utilizarian tras la discretizacion.

Es por ello que se realizara un subsampleo, tomando muestras cada distintos
intervalos de tiempo. En la imagen 5 se puede apreciar un ejemplo con una senal
real discretizada a intervalos de 0.25 segundos, los cuales estan marcados con
asteriscos rojos sobre la sefial completa en azul (esta sefal, real, representa los
valores de un udnico canal en una banda de frecuencia). Esos asteriscos repre-
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sentan los Unicos puntos que se considerarian de la senal completa a la hora de
evaluar los clasificadores.

Figura 6: Comparacién de los diferentes tipos de submuestreado. La linea negra
superior representa la sefial completa. El tamanfo del intervalo es i. Los tridngulos
representan los puntos de la sefal que se toman individualmente. Los fragmentos
verdes es el sistema por ventanas y los azules son las ventanas solapadas.

Ahora bien, esta reduccion de la senal se ha realizado desde tres puntos de
vista diferentes. Por un lado, tomando los puntos independientemente a cada
intervalo ¢. Por otro, tomando toda la senal en la ventana entre dos puntos
consecutivos y calculando la media, asi para el punto ¢ se toma toda la secuencia
hasta t + ¢. El iltimo punto también calcula la media sobre una ventana, pero
en este caso es de mayor tamano y se va solapando con la tdltima mitad de
la anterior, de forma que los datos se utilizan en dos ventanas consecutivas,
tomando para el punto t la ventana desde ¢ — 1 hasta ¢ + 1. En la imagen 6
puede verse una representacién grafica de estos sistemas que denominaremos,
respectivamente, por puntos, por ventanas y por ventanas solapadas.

Los otros modelos (LDA y HMM) permiten utilizar toda la senal, pero tam-
bién se han evaluado sus capacidades utilizando estos submuestreos, porque al
hacer la media de diferentes fragmentos de la senal en lugar de utilizarla punto
a punto, en realidad se estd considerando mas informacion y su comportamiento
ha de cambiar, ya que aglutina informacién de una secuencia de observaciones.

3. Clasificacion del movimiento en senales cap-
turadas por EEG

En esta seccién se describen los métodos utilizados para clasificacion de
la senal EEG en movimiento o reposo. Para ello se utilizan las caracteristicas
extraidas de la senal descritas en la seccidon anterior y se comparan diferentes
métodos de aprendizaje supervisado con el fin de evaluar cudles son los méas
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apropiados para identificar el movimiento de los brazos en pacientes que hayan
sufrido una hemiplejia.

Con el propésito de alcanzar estos objetivos, primero describiremos formal-
mente el problema de etiquetar un conjunto de datos bajo diferentes categorias.
A continuacién fundamentaremos cémo utilizar este reducido conjunto de datos
de forma que se aprovechen al maximo mediante la validaciéon cruzada. Para
terminar, modelaremos matematicamente cada uno de los métodos a analizar,
describiendo sus caracteristicas mas importantes y cémo las hemos utilizado y
explotado en el marco de nuestra investigacion.

3.1. El problema de clasificacion y etiquetado de secuen-
cias

En los campos de la estadistica y la inteligencia artificial el problema de
clasificacion es dilema muy recurrente y que, pese a parecer muy simple de
definir, tiene multitud de soluciones y variantes. Se parte de una serie de n
observaciones X = x1,...,x, que se corresponden con dos o mas categorias
pertenecientes al conjunto finito Y. Consiste en encontrar una funcién f(z) que
pueda asignar a cada nueva observacién z} la etiqueta correcta y; € Y. Cada x;
puede ser una unica variable o un ntimero arbitrario d de ellas, bien discretas o
continuas, que se denominan variables independientes.

De entre los diferentes modelos que permiten calcular la f(z), en esta investi-
gacién vamos a estudiar el Anélisis Discriminante Lineal (LDA) y las Mdquinas
de Soporte Vectorial (SVM), los cuales describiremos en detalle mas adelante.

El etiquetado de secuencias es un caso particular del problema de clasifi-
cacion en el que, en lugar de clasificar cada x; de forma independiente, se utilizan
algoritmos que utilicen la informacion de su posicién en la secuencia comple-
ta X de forma que se encuentre conjunto de etiquetas Y = yq,...,y,Vy; € T
que mejor se corresponda con la secuencia global. Nétese que utilizaremos las
mayusculas X e Y para referirnos a la secuencia completa y las mintdsculas x;
e y; para cada elemento individual de dicha secuencia.

Puesto que la senales capturadas por EEG son no estacionarias, se ha creido
que el etiquetado de secuencias puede aportar mas valor que la clasificacion
de observaciones independientes. Entre los modelos que permiten etiquetar se-
cuencias en el presente trabajo se estudiaran modelos probabilistas que calculan
la P(Y]X). Las técnicas mateméticas seleccionadas a analizar son: el Modelo
Oculto de Markov (HMM) y el Campo Aleatorio Condicional (CRF). Dado su
caracter dependiente del tiempo, en el que una misma observacion z; se podria
clasificar bajo diferentes etiquetas en funcién de su posicién en la secuencia
completa X se ha optado por denominar a estos modelos dindmicos, en contra-
posicién de los anteriores que denominaremos estaticos.

En nuestro caso particular sélo contamos con dos estados T = {reposo,
movimiento} y nuestras observaciones X proceden de la lectura de las senales
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del EEG una vez procesadas y trasladadas al dominio de la frecuencia. Cada z;
representa un conjunto de d variables continuas que, dependiendo del caso, seran
un total de entre 2 < d < 48. Este tamano d viene de los canales y frecuencias
indicados en la seccion 2.2.1 que se utilizan en cada sujeto.

3.2. Validacién cruzada de datos

Puesto que las observaciones (cada secuencia X capturada por EEG) dis-
ponibles para el trabajo son limitadas, hay que dividirlas en dos subconjuntos
no vacios disjuntos. Uno mayor, el de entrenamiento (train), se utilizard junto
con las etiquetas Y correspondientes como informacién inicial de los modelos
de inteligencia artificial para que estimen los pesos y valores oportunos que
permitan clasificar correctamente las observaciones. El segundo, el de test, se
reserva para, una vez completado el entrenamiento, probar la eficiencia de nues-
tro clasificador con observaciones para las cuales no estaba entrenado (ya que
no se han utilizado previamente). Esta separacién garantiza que el clasificador
no esté sobre-entrenado para el conjunto de datos con el que se va a evaluar.

La validacién cruzada de datos, méas conocida por su nombre inglés cross-
validation, es una técnica muy utilizada en la evaluacién de cualquier analisis
estadistico del que se dispone un conjunto finito de datos con el objetivo de
exprimirlos al maximo, ya que permite replicar varios entrenamientos indepen-
dientes con esos mismos datos como si fuesen distintos. Ademds, previene el
caso de que una seleccién arbitraria de los subconjuntos de test y train no fuese
representativa del total, por lo que se realiza esta divisiéon K veces, con K pare-
jas de subconjuntos test-train. En cada una de estas divisiones el subconjunto
de test representa 1/K del total de observaciones, y se seleccionan de forma que
sean todas distintas, es decir, la unién de los K subconjuntos de test resulta
ser el conjunto completo original X. Con cada pareja de K subconjuntos de
test-train se entrena y evalia el mismo modelo y, finalmente, se calcula la media
aritmética entre los resultados de clasificacién. Esto es la variante conocida como
k-fold cross-validation. En este proyecto se utilizard en todos los casos K = 10,
de forma que el conjunto de test represente siempre el 10 % de las muestras.

3.3. Modelos estaticos

Primero vamos a estudiar los modelos estaticos que responden al problema
de clasificacién. Como se ha indicado antes, y se deducird de los modelos ma-
teméaticos de estos algoritmos, no existe una diferencia real entre disponer o no
de la senal completa de observaciones X a la hora de clasificar un estado x;, pues
se etiquetard independientemente de los que existan en el resto de la secuencia.
Es por ello que con estos modelos se resuelve al mismo tiempo el subobjetivo 1
y el 2.

18



3.3.1. LDA - Andlisis Discriminante Lineal

Dentro de los métodos estdticos comenzaremos con el LDA (siglas en inglés
de Linear Discriminant Analysis), que es un método usado en estadistica para
expresar una variable dependiente como la combinacién lineal de otras variables
de forma que definan o separen dos o mas categorias. La combinacién resultante
puede ser usada como un clasificador lineal. Se publicaron originalmenete por
Fisher en 1936 [3].

A diferencia de otros andlisis estadisticos donde la variable dependiente pue-
de ser continua, en LDA la variable dependiente ha de ser de tipo cualitativo, es
decir, aquellas que tienen dos o més categorias en las cuales no existe un orden
intrinseco. En LDA también se asume que las variables independientes confor-
man una distribucién normal multivariante y con las covarianzas homogéneas
entre los grupos.

Una forma de entender un modelo de clasificacion lineal es verlo como una
reduccién de la dimensionalidad. Suponiendo que tenemos que clasificar una
observacion x;, que es un vector de dimensiéon d compuesto por los canales y
frecuencias seleccionados, lo proyectamos en una unica dimensién mediante el
producto escalar el vector columna L, denominado de coeficientes lineales:

y=L-x

Asi, cada observacién z; se mapea a un tnico valor g, de modo que su
etiquetado se realizard en funcién de si supera o no, un determinado umbral.
Exactamente, en los LDA, lo que se hace es anadir un término constante K a la
ecuacién para desplazar nuestro umbral de clasificacién al 0. De este modo, el
problema de clasificar una observacién x; como reposo o movimiento se reduce
a encontrar unos coeficientes K y L tales que se cumpla la ecuacion 1. Esta
serd nuestra f(x) mencionada en el problema de clasificacion.

Si O<K+L-x entonces y; es reposo
Si 0> K+ L-z; entonces y; es movimiento

(1)

Esto significa que la construcciéon de nuestro modelo LDA pasa por obtener
estos valores K y L adecuados que maximicen la separacién de las clases al
proyectarlas sobre una dimension. Sean mq, meo, S1, So los vectores de medias
y las matrices de covarianzas de las muestras X disponibles de cada clase T3
(reposo) y Yo (movimiento), y n1 y ng el nimero de observaciones de cada una,
entonces la matriz de covarianzas ponderada S, es:

Sp = (1151 +n2S2)/(n1 +ne — 2)

Como buscamos maximizar la variabilidad entre las clases, (Lmg — Lm;)?,
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y minimizar la variabilidad dentro de cada clase, LSpLT, tenemos que maxi-
mizar la funcién 2 para obtener nuestros coeficientes lineales L. Nétese que el
superindice T representa la traspuesta de un vector.

(ng — Lm1)2

) = S 2)

Para realizar la clasificacién de la senal EEG mediante LDA en nuestro
trabajo se ha utilizado la funcién classify(train, test, labels) que incorpora el
propio Matlab en su Statistic Toolbox. Esta funcién devuelve, por un lado, los
coeficientes K y L calculados y, por otro, la clase bajo la que se clasifica cada
observacion indicada en el pardmetro test.

3.3.2. SVM - Maquina de Soporte Vectorial

Una SVM (por sus siglas en inglés: Support Vector Machine) es un modelo
estadistico para un conjunto de métodos de aprendizaje supervisado que ana-
lizan y reconocen patrones, usados para clasificacion y anélisis de regresion. El
SVM buscara un hiperplano que tenga la maxima distancia a los puntos frontera
de cada grupo a clasificar. Este concepto es una de las principales diferencias
con un clasificador lineal convencional. Hemos visto que el LDA maximiza la
distancia entre las medias de cada clase, mientras que el SVM, ademas, utiliza
los puntos frontera, que son aquellas observaciones de cada categoria que caen
mas cerca del plano de clasificacion, para ajustar el hiperplano de forma que su
distancia sea maxima a estos puntos, y no al nicleo de cada clase completa.

Un hiperplano se puede definir como un conjunto de puntos = que satisfagan:
w-x—b =0, donde w es el vector normal del hiperplano y b/||w|| es el desplaza-
miento del hiperplano desde el origen sobre w. Entonces, dado un conjunto de
entrenamiento de parejas observacién-etiqueta (x;,y;), ¢ = 1...I donde x; € R™
e y € reposo, movimiento', deberfamos encontrar dos hiperplanos w -z —b =1
w-x — b= —1 tales que podamos establecer para cada i, la funcién 3, que es la
que denominamos f(x) en nuestro problema de clasificacién.

Si o wer;—b< -1 entonces y; €s reposo
Si w-x; —b>1 entonces y; es movimiento

3)

Como sabemos que la distancia entre los dos hiperplanos que separan cada
clase es ”3)—” el objetivo serd minimizar ||w||, para lo cual hay diversos algoritmos

de optimizacién como los propuestos en [4] y [5].
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SVM no lineales

Lo mas bésico para separar dos grupos seria una linea recta, que es lo que se
propuso en el paper original [6] resultando un modelo equivalente a un clasifica-
dor lineal puro; sin embargo esto no es aplicable en muchas ocasiones de trabajo
real, por lo que en la practica se utilizan las denominadas funciones kernel [7],
que son una variacion en el espacio de dimensiones, para ampliar su funcionali-
dad. Entre los kernel mas comunes podemos encontrar: funciones de base radial,
signmoideo, polinémico homogéneo y no homogéneo, tangente hiperbdlica... En
nuestro proyecto nosotros utilizaremos las primeras, que se corresponden con la
ecuacion 4.

K (21, 25) = exp(—Alle; - a]]%), fory > 0. (4)

Otro investigador de la Universidad de Zaragoza ha estado estudiando las
méquinas de soporte vectorial a fin de obtener una clasificacién satisfactoria
de esta misma senal mediante estos modelos. Para realizar el entrenamiento de
nuestro SVM se han utilizado los pardmetros publicados en [8]) pues se han
considerado como los mejores para tratar con este tipo de senal. También se
determiné que se comportan mejor previa normalizacion de las observaciones X,
por lo que también se realizé. Especificamente, los pardmetros utilizados para
el entrenamiento son los que establecié este investigador como més adecuados:
svmTrain(labels, signal, -s 0 -c¢ 1 -t 2 -d 3 -e 0.00001 -b 1°). Esta funcién sale
de la librerfa LibSVM elaborada por Chih-Chung Chang y Chih-Jen Lin [9] y
que es utilizada para nuestro estudio de las Maquinas de Soporte Vectorial.

En su estudio incluia una variaciéon en el estudio de los modelos, y es que
realizaba el entrenamiento segmentando la senal cada 0.75 segundos, mientras
que la senal utilizada para test variaba. En este proyecto en todo momento
se ha utilizado la misma segmentacién (como se explica en 2.2) tanto para
entrenamiento como para test en todos los modelos, pues se han hecho pruebas
en los diferentes modelos con este sistema y su eficiencia bajaba, por lo que
no se ha considerado oportuno incluirlos aqui. Pero a la hora de evaluar los
resultados de los SVM se ha considerado este sistema como algo extraordinario
ya que en este modelo si que mejoran los resultados al aplicar esta divergencia
entre entrenamiento y test.

3.4. Modelos dinamicos
3.4.1. HMM - Modelo Oculto de Markov

Un HMM (siglas inglesas de Hidden Markov Model) es un modelo estadistico
en el que asumimos que el sistema a modelar es un proceso de Markov con es-
tados no observables (ocultos). Un proceso de Mérkov es un proceso estocéstico
que satisface la propiedad de Markov, la cual se cumple cuando la probabilidad
condicionada de los estados futuros depende unicamente del estado presente, y
no de la secuencia de eventos anteriores. Véase [10].
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En un modelo de Méarkov, el estado es directamente visible por el observador,
en un modelo oculto el estado no es visible directamente, pero si las salidas que
dependen de ese estado. Cada estado tiene una probabilidad sobre las posibles
salidas, por lo que la secuencia de salidas da informacion sobre la secuencia de
estados.

Figura 7: Ejemplo de red HMM (fuente: contribucién libre a la wikipedia)

Los modelos ocultos de Mérkov basan su funcionamiento en tres matrices:

» Matriz de estado inicial (7): La cual indica la probabilidad de que el primer
elemento de la serie pertenezca a uno de los estados posibles y que sera la

p(y1)-

» Matriz de transicién de estados (A): que contiene las probabilidades a;;
que existen de pasar de cada uno de los estados i a otro j (o permanecer
en el mismo): a;; = p(Y = j|Y = i) y que también podemos describir
como p(y;|yi—1)-

= Matriz de probabilidad de observaciones (B): que indica la probabilidad
de observar un z; mientras estemos en un estado oculto y; (en inglés le
denominan emission probabilities): p(x;|y;).

De ese modo, la probabilidad de observar la secuencia Y de h estados ocultos
(en nuestro caso h = 2) a partir de una serie de observaciones X es:

h
p(Y|X) = p(yn) [ [ p(wilyi—1)p(ily:)

K2

Esa matriz de probabilidades B se utiliza cuando las observaciones son una
variable discreta. Cuando trabajamos con variables continuas sobre una distri-
bucién gaussiana —como es nuestro caso— se emplea la media y varianza de cada
estado, utilizando la funcién de densidad de probabilidad (pdf) de esta distri-
bucién que nos permita determinar la p(z;|y;). Para una distribucién gaussiana
la pdf se calcula con la férmula 5.
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Para realizar el anélisis de este modelo hemos utilizado la libreria pmtk3.0,
escrita por Matt Dunham, Kevin Murphy y otros autores que es un kit que so-
porta una gran variedad de modelos probabilisticos. Esta nos ofrece el método
hmmPFit(signal, n_states, type) que nos permite un entrenamiento no super-
visado simplemente pasando como argumentos la senal, el nimero de estados
ocultos (dos en nuestro caso: reposo y movimiento/intencién) y el tipo de dis-
tribucién que mds se ajusta a nuestra senal entre cuatro prefijados (en nuestro
caso sabemos que se trata de una distribucién gaussiana). Este método nos de-
vuelve un objeto model con la informacién caracteristica del modelo entrenado
que luego utilizaremos para realizar la clasificacion.

Entrenamiento supervisado

Como explicamos anteriormente un HMM requiere de una matriz de proba-
bilidades de estado inicial, una matriz de transiciones entre estados y la infor-
macién de medias y covarianzas de los mismos. Todos estos son datos que se
pueden calcular previamente a partir de nuestro subconjunto de entrenamiento
ya que disponemos de la informacion suficiente que nos aportan las etiquetas Y.
Asi pues, procedimos a extraer esta informacién para realizar un entrenamien-
to supervisado que mejore el porcentaje de clasificacién. Los resultados que se
analizan en este proyecto son los obtenidos mediante este entrenamiento super-
visado, la diferencia obtenida comparado con el entrenamiento no supervisado
es suficiente como para no incluir este dltimo en el contexto de nuestra investi-
gacién. A continuacién, se detallan los procesos que se siguieron para calcular
estos parametros para nuestro HMM supervisado.

El primero y mas sencillo es la matriz de probabilidad inicial. Todos los es-
tados comienzan en el estado de reposo, por lo que 7 = [10], siendo la primera
etiqueta la correspondiente al reposo y la segunda al movimiento. A continua-
cién, pasamos a calcular la matriz de transicién de estados, cuyo formato general
podemos ver en el cuadro 3.

Estado Z_\Estado e reposo movimiento
reposo P(R— R) 1-P(R— R)
movimiento 1-P(M—>M) P(M— M)

Cuadro 3: Formato de la matriz de transicion de estados del HMM.

En nuestro caso, todos los ensayos se comienzan con el estado de reposo para,
tras un tiempo prefijado e igual en todos, pasar al movimiento —o a la intencién
del mismo—, etiqueta en la cual finaliza cada experimento. Esto significa que
una unica vez en cada ensayo se pasa de reposo a movimiento, y nunca al revés.
Esto significa que la probabilidad de estar en movimiento y pasar a reposo es 0.
De este modo, la matriz de transicién seguird el siguiente patrén:

1—¢ ¢
(1)
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La probabilidad de estar en el estado de reposo y pasar al estado de movi-
miento en el ensayo j, se obtiene de sumar la cantidad de veces r; que aparece
la etiqueta de reposo en Y; = yi,...,y, y hacer la inversa. Es decir, si hay r;
etiquetas de reposo seguidas, significa que en r; — 1 ocasiones nos quedamos en
el reposo y una tnica ocasién pasamos al movimiento (%)

Para obtener € en los m ensayos que componen nuestro subconjunto de en-
trenamiento, vemos que el paso del reposo al movimiento sucede en m ocasiones
(una por cada ensayo), por lo que dividiremos este valor entre el sumatorio del
nimero de veces r; que aparece la etiqueta de reposo en cada ensayo j:

m

Y

3

Como en nuestro caso especifico el reposo dura lo mismo en cada experimento
(ro =r; =...=ry) entonces y . r; = r-m, de modo que no tenemos mds que
sumar el nimero de veces r que aparece el estado de reposo en la senal con la que
entrenamos nuestro modelo y dividir, como vemos en la férmula 6. El cédlculo
de medias y covarianzas se supone trivial disponiendo de las observaciones X,
por lo que no se detalla en esta memoria.

S| =

Clasificacion de variables ocultas

Una vez calculadas todas estas caracteristicas ya podemos proceder a la cla-
sificacion de la senal. El método mas comun para estimar las variables ocultas
es el algoritmo de Viterbi [11], el cual analiza todas las X (la secuencia com-
pleta de t observaciones) para tratar de encontrar la secuencia més probable de
etiquetas Y que maximice la funcién de probabilidad como vemos en 7. Este
algoritmo se fundamenta en técnicas de forward-backward por lo que utiliza la
informacién de toda la secuencia para clasificar cada y;:

p(yr|lz:1:t) (7)

Para realizar la clasificacién de trayectoria completa (subobjetivo 1), en la
que se dispone de toda la secuencia en el momento de analisis, éste algoritmo es
exactamente lo que necesitamos. En la libreria utilizada viene directamente im-
plementado mediante la funcion hmmMap(model, serial) que nos devolverd los
estados ocultos que se corresponden con los valores de la senal. En la varia-
ble model se han asignado previamente los valores de las caracteristicas antes
mencionadas como la matrices de transicion de estados, varianzas, etc.

Pese a ser muy 1til en otras situaciones como la anterior, no podemos utilizar
el algoritmo Viterbi para cumplir el subobjetivo 2 (clasificacién por puntos
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de trayectoria). El motivo es que Viterbi toma toda la secuencia completa y
busca la mejor combinacién de estados ocultos que maximice el porcentaje de
aciertos. En nuestro caso estamos estudiando la capacidad de este algoritmo de
aprendizaje para clasificar la senal en tiempo real —para que sea ttil en tareas
de rehabilitacién—, de modo que en una situaciéon practica no tendriamos la
secuencia completa de n observaciones X. Con este método, para la clasificacién
del elemento y; utilizamos tinicamente las observaciones x.; obtenidas hasta ese
punto, maximizando la ecuacién 8.

p(yilT1:4) (8)

Para solucionar este problema tuvo que implementarse un método intermedio
que fuese simulando la gradual adquisicién de los datos. Para conseguir esto,
en lugar de utilizar la senal completa X directamente sobre nuestra funcién
de clasificacion, hubo que realizar n clasificaciones —una por observacién en
la secuencia—, utilizando como entrada un subvector x1.; en cada iteracién, y
asignando tUnicamente la iltima etiqueta obtenida a su y; correspondiente de la
secuencia completa Y, garantizando de este modo el cumplimiento de la férmula
8. Este mismo proceso iterativo tuvo que ser utilizado en los CRF.

3.4.2. CRF - Campo Aleatorio Condicional

Un CRF (siglas de Conditional Random Field) es un método de modela-
do estadistico aplicado a menudo al reconocimiento de patrones. Mientras un
clasificador ordinario predice una etiqueta para una tnica muestra sin tener en
cuenta las muestras vecinas, un CRF tiene en cuenta el contexto donde la en-
cuentra. Del mismo modo que en un HMM se tiene en consideracién la categoria
anterior para determinar la etiqueta presente, en un CRF se puede seleccionar
arbitrariamente qué otras observaciones de la secuencia se utilizaran. La otra
gran diferencia entre un HMM y un CRF es que en el primero la funcién de
transicién entre estados ocultos es constante (la matriz de transicién de estados
llamada A en la seccién anterior) mientras que en el CRF se define mediante
unas funciones que pueden variar dependiendo de la secuencia de observaciones.

Desarrollados en 2001 por Lafferty, McCallum y Pereira (véase [12]) han
conseguido gran popularidad para etiquetar datos secuenciales como problemas
de visién por computador o secuencias bioldgicas, destacando principalmente en
el procesamiento del lenguaje natural.

Un CRF define un conjunto de observaciones X y variables aleatorias Y del
siguiente modo: Sea G = (V, E) un grafo tal que ¥ = (Y, ),ev, de modo que
Y estd indexado por los vértices de G. Entonces (X,Y) es un CRF en el que,
cuando se condiciona en X, las variables aleatorias Y, cumplen la propiedad de
Mérkov con respecto al grafo (w ~ v indica que w y v son vecinos en G):

p(Yv‘Xay’wuw 7& ’U) :p(Y’U|X7Yw;w ~ ’U)
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El grafo més simple es una cadena tal que G = (V = {1,2,..,n},E =
{(¢,i+ 1)}). Pueden construirse tan complejos como se desee, pero en nuestra
investigacién nos limitaremos a éstos, denominados en cadena (linear-chain
CRF en inglés). Esto significa que su modelo grafico es el mismo que un HMM,
en el que cada z; estd conectado con x4y1. No es necesario asumir que X tiene
la misma estructura que Y, aunque suele ser lo habitual y nuestro caso. Ademas
de la cadena simple incluiremos una variable w, llamada tamano de ventana,
que indicard el nimero de vecinos con los que estd conectada. Asi, la arista del
vértice i en lugar de ser e; = {i+1} pasard aser e; = {i—w,w—1+1,...,4,...,i+
w—1,i+ w}.

ST N

Figura 8: Izquierda: Representacion grafica de un HMM. Los nodos oscurecidos
se corresponden con las observaciones x1,xs ... xy,. Los nodos claros a las variables
estado y1,Yys ...yn. Derecha: Representacion grafica de un CRF. El nodo grande
se corresponde con toda la secuencia X. Como en el HMM, los nodos claros se
corresponden con las variables estado. Fuente [1]

Para calcular la probabilidad de una secuencia de etiquetas Y dadas unas
observaciones X los CRF utilizan dos conjuntos de lo que se denominan feature-
functions multiplicadas por sus pesos correspondientes (A; y fx) como vemos en
la ecuacién 9. Las feature-functions son las que definen al modelo y el entrena-
miento consiste en encontrar los pesos apropiados para que obtener la secuencia
Y correcta.

P(Y|X) = exp(>_ Ajti (Wi1, 50w, 8) + Y s (i, 2,4)) (9)
i P

Donde t;(y;—1, yi, x, %) son las j feature-functions de transicién y prsi(y;, x, t)
son las k feature-functions de estados. Se pueden implementar un nimero ar-
bitrario de j y k features, cada una utilizando distintos criterios, y esto sera lo
que defina el tipo de CRF que se estd utilizando. En nuestro modelo en cadena
las feature-functions se corresponden con las de la ecuacion 10. Nétese que te-
nemos tantas como el doble del tamafio de ventana (una por cada observacién
que tiene en cuenta en cada instante i), es decir k = 2w + 1. Puede verse que en
el caso de la cadena simple, sin utilizar observaciones vecinas, se utilizaria una
Unica feature-function con el valor de la propia observacion z;.
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sl(yiaXai)) = Ti—w

sZ(yiuXai>) = Ti—(w-1) (10)

sk(Yi, X,1)) = Tiz(w—k+1)

Por lo tanto, en el modelo de CRF en cadena que estamos analizando, el
parametro mas importante que tenemos que estudiar, y sobre el que fue necesario
hacer méas pruebas para obtener los mejores resultados, es el del tamano de
ventana (wsize). Con el tamano de la ventana se le indica al modelo que ha de
tomar tantos vecinos, hacia delante y atras, como sea el valor del parametro.
Asi, para wsize = 2 ademads de la muestra correspondiente se tomaran las dos
muestras anteriores y posteriores (a:i -2,z — 1,2, %41, xi+2) para obtener el
estado Y; a partir de la muestra la posicion z;.

Este empleo de las muestras vecinas es muy 1til y lo que nos impulsé a utilizar
el CRF en esta investigacién, pues lo convierte en una herramienta muy potente.
Sin embargo el utilizar las muestras siguientes para realizar la prediccién tiene
el inconveniente de introducir un retardo en la clasificacién, ya que hay que
esperar a que lleguen para tener una clasificacién correcta. Asi con una ventana
de tamafio 2, como en el ejemplo anterior, una vez hubiésemos leido la muestra
x; podriamos obtener el resultado de la clasificacién de la etiqueta y;_o.

El coste computacional en tiempo de entrenar un CRF en cadena es cuadrati-
co sobre el nimero L de categorfas (), lineal en el ntimero F de feature-
functions (denominadas més arriba j y k) y casi cuadratico en el tamafio T del
subconjunto de entrenamiento de observaciones (X). Es decir, O(L?FT?) (para
la demostracién matemética véase [13]). Este tamano T serfan las 840 lecturas
que se capturan en cada experimento, multiplicado por los 2 < d < 48 canales-
frecuencias utilizados, multiplicado por el niimero de ensayos que se incluyan en
el subconjunto de entrenamiento. Por esto, como se explico en 2.2, cada ensayo
cuenta con una cantidad demasiado grande de informacién para tratar entera,
por lo que se segmento la senal para reducir el coste computacional.

También aqui fue necesario realizar varias pruebas, combindndolo con di-
ferentes tamanos de ventana, para llegar a un compromiso aceptable entre el
porcentaje de aciertos y el retardo en obtener la clasificacién, asi como el tiempo
de entrenamiento. El estudio preliminar de los CRF nos mostré que no habia
diferencias significativas entre utilizar los diferentes métodos de segmentacion
de la senal que hemos estado utilizando con el resto de modelos asi que, dado
que los CRF tienen otro pardmetro mds interesante (las observaciones vecinas,
y que resulta ser ciertamente similar a nuestra segmentacién por ventanas), de-
jamos de utilizar los métodos de agrupar los datos entre intervalos por ventanas
o ventanas solapadas, limitdndonos a tomar los datos por puntos individuales
segun los diferentes intervalos que definamos. A fin de cuentas los CRF ya hacen
esto de forma natural mediante la ventana de observaciones vecinas.

Esta latencia que produce la combinacién de discretizar la senal y el tamano
de ventana se entenderda mejor con un ejemplo. Si decidimos quedarnos con
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una lectura cada 0.0625 segundos (que equivale a una muestra de cada diez ya
que la senal tiene una frecuencia de 160Hz) y tenemos una ventana de tamaio
20 en nuestro CRF, resulta que no podremos clasificar una muestra dada hasta
0,0625-20 = 1,25 segundos desde el instante en que hayamos realizado la lectura
de la x; correspondiente a la etiqueta Y;. Dicho de otro modo, una vez leamos
del EEG la senal de x; podremos clasificar el estado y;_o¢ recibido 1.25 segundos
antes.

Ademas de los CRF comunes, mas tarde se publicé otro paper definiendo
las modificaciones necesarias para que los CRF trabajasen mas adecuadamente
cuando se asume que las observaciones estan modeladas como una distribucion
gaussiana. Las feature-function a utilizar pasar a ser tres por observacion, las
cuales derivan de la funcién de densidad d probabilidad 5. Aqui ponemos di-
rectamente cémo quedarian las feature-functions, si quiere consultarse todos los
fundamentos tedéricos puede acudirse al paper original en [1].

S1 = 1
S9 = Iy (11)
S3 = 1‘22

Para realizar el andlisis de los CRF nosotros utilizamos la libreria HCRF2.0
de Louis-Philippe Morency. Esta libreria, escrita en C++ pero cuenta con una
interfaz para ejecutar desde Matlab, implementa el CRF original en cadena tal y
como fue descrito por Lafferty et al y por Sha y Pereira y dos versiones basadas
en éste: Hidden-state Conditional Random Fields (HCRF) y Latent-Dynamic
Conditional Random Fields (LDCRF).

Esta libreria ya viene implementada con aprendizaje supervisado, por lo que
no es necesario calcular previamente los pardmetros del modelo ha ocurrido en el
caso de los HMM. Se ejecuta la funcién train CRF (signal, labels, params) donde
labels es el valor de la secuencia de estados ocultos Y para cada signal. Dentro
de params se indican algunos pardmetros como el tipo de CRF que se desea
entrenar. Se realizaron pruebas iniciales con algunos de los modelos alternativos
que implementa la libreria, pero los resultados no eran tan satisfactorios como
con los CRF estandar, por lo que no se ahond6 més en ellos ni se han considerado
de interés para incluir en esta memoria.

La libreria que hemos utilizado implementa los CRF bésicos publicados en
[12]. Los CRF disefiados para reconocimiento de distribuciones gaussianas no
estaban desarrollados en la libreria, por lo que hubo que modificar el cédigo
original para utilizar features gaussianas. Estas modificaciones consistieron en
introducir las férmulas descritas en 11. Para ello se tuvo que modificar el nticleo
de la libreria en C++ y la interfaz que comunica con Matlab para poder utilizar-
las. Por su complejidad se implementé tinicamente la versién para un CRF en
cadena simple, por lo que no se permite la seleccién de una ventana de vecinos
para ampliar las observaciones.
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4. Resultados

En esta secciéon mostraremos los principales resultados de cada modelo junto
con algunos comentarios que se deducen de su observacion. Es un resumen en
el que se incluiran las tablas y gréaficas de los casos mas destacados y de interés.
El resto pueden consultarse en el anexo C para ver los resultados detallados
divididos por modelos.

Hay que tener en cuenta que la cantidad de casos analizados ha sido in-
mensa. En cada uno de los seis sujetos se partia de cuatro conjuntos de datos
(dependiendo del brazo y del cértex), de los cuales se tomaba una seleccién de los
canales mas interesantes y, por otro lado, el canal con més variabilidad. En estos
48 casos se estudiaban cuatro modelos de aprendizaje, los cuales tenfan diferen-
tes parametros y se seleccionaban diferentes intervalos de entrada, quedando
aproximadamente una docena por cada uno. Finalmente, todo ello estudiado en
los dos escenarios planteados en los subobjetivos. Todo esto suma cerca de 5000
casos distintos analizados, cuyo resumen se pasa a exponer en esta seccién.

4.1. Definicion de la organizacion de resultados

Vamos a dividir esta seccion en dos apartados, uno para mostrar los resul-
tados de la clasificacién de trayectoria completa y otro para la clasificacién por
puntos de trayectoria, de modo que analicemos nuestros dos subobjetivos. En
estos apartados podremos ver unas tablas de doble entrada en las que cada fila
representard uno de los cuatro modelos estudiados (LDA, SVM, HMM, CRF) y
en cada columna se mostraran los cuatro conjuntos de datos. Recordemos que
se realizaron dos experimentos, uno movimendo el brazo sano y otro moviendo
el brazo incapacitado. Las senales grabadas en cada experimento se separaron
en dos conjuntos: el correspondiente a los electrodos situados en el cértex sano
y el de los electrodos situados en el cortex danado. De las combinaciones entre
ambos cortex y ambos brazos salen estos cuatro conjuntos de datos. En cada
uno de los 16 casos mostrados en estas tablas se muestran los porcentajes de
aciertos correspondientes al estado de reposo y al de movimiento (o intento de
movimiento).

Las graficas que vamos a utilizar para mostrar la eficiencia de nuestros clasifi-
cadores estan divididas en tres partes bien diferenciadas que pasamos a detallar.
En azul vamos a representar siempre el reposo (rest) y en rojo el movimiento
(mowve), o el intento del mismo (attempt). Primero vemos a qué se corresponde
la secuencia real que se ejecutd en el experimento segin la informacién disponi-
ble en los marcadores, después observamos cémo se clasificé cada experimento
individual y, finalmente, agrupamos esta informaciéon en forma de histograma
para ver exactamente la cantidad de aciertos que obtuvimos. Adicionalmente se
agrega en esta ultima parte una linea de puntos indicando el porcentaje medio de
aciertos en cada estado. Ademds, en la parte superior de cada grafica podemos
ver un titulo con informacién sobre el modelo de entrenamiento y sus variables,
dado su reducido tamafio hemos pasado a escribir las partes mas relevantes en
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el pie de la figura en este trabajo.

4.2. Subobjetivo 1: Clasificacion de trayectoria completa

Cuando disponemos de la senal completa observamos que los modelos dinami-
cos (CRF y HMM) son considerablemente mejores que los estéticos (LDA y
SVM). Esto es asi porque, como se detall6 en la definicién de estos modelos,
utilizan informacién de toda la secuencia de datos para maximizar los resultados
correctos. Los modelos estdticos, que no hacen uso activo de esta informacién,
no se ven beneficiados por ello. Atn asi, no podemos considerar los resultados
de estos modelos como deficientes, pero quedan significativamente por detréas de
los métodos dinamicos.

ArmH-CorH ArmI-CorH ArmH-Corl ArmH-Corl

Rest Move | Rest Attempt || Rest Move | Rest Attempt

LDA | 67.23 80.62 | 61.19 71.00 59.21  67.50 | 59.06 64.83

SVM | 71.48 72.25 | 67.40 63.82 63.17 62.29 | 61.82 67.70

HMM | 72.23 86.07 | 68.69 81.62 69.06 74.86 | 62.91 76.04

CRF | 70.97 97.50 | 88.00 93.73 89.31 92.77 | 88.64 92.46

Cuadro 4: Comparacion de los mejores resultados de los cuatro modelos bajo las
cuatro condiciones de cortex y brazos para la clasificacion de trayectoria completa.
Todos los valores son porcentajes calculados con la media de todos los sujetos.

Los modelos estéticos obtienen significativamente maés aciertos utilizando
todos los canales seleccionados como mejores que tnicamente el mejor de todos
ellos. Esta mejora de la clasificacién es mucho mas destacable en la categoria de
reposo que en la de movimiento. También la mejora de aciertos en el uso de los
canales es menor en el cértex danado que en el sano. Los dos modelos obtienen un
promedio similar, pero en general el LDA identifica mejor el reposo y el SVM el
movimiento (excepto con cértex danado y brazo lesionado, que mejora el SVM).
Al no imponer restricciones temporales, veremos que estos modelos estaticos
aqui presentan unos resultados mejores que en la clasificacién por puntos de
trayectoria ya que algunos de los métodos de submuestreado permiten aglutinar
varias observaciones. En concreto, los mejores resultados —que son los mostrados
en la tabla 4-, de todos estos modelos se obtuvieron con el submuestreado de
ventanas solapadas por intervalos de 500 milisegundos. En todos los casos todos
los modelos se entrenaron y se testearon utilizando el mismo subsampleado.
Sin embargo, en el paper [8] se indicaba que se utilizaban distintos intervalos
para cada conjunto de entrenamiento y test. En nuestra investigacion hemos
comparado ambos planteamientos y, efectivamente, los SVM con estos datos
presentan un mejor comportamiento cuando el conjunto de entrenamiento se
submuestrea a 750 milisegundos y empleando distintos subsampleados para el
test, siendo el mejor en este caso el citado anteriormente de 500 milisegundos.

En los modelos dindmicos, el HMM también obtiene en casi todos los casos
mejores resultados que con uno solo, aunque la diferencia es considerablemente
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menor que con los modelos estéticos (incluso en el caso del brazo lesionado llega
a ser ligeramente mejor un tnico canal). Los HMM son mejores en todos los
aspectos que los dos modelos estaticos comparados, se quedan muy cerca en
la clasificacion del reposo, pero mejoran ostensiblemente en la parte del movi-
miento. Con los CRF, bajo todas las condiciones, se obtienen més aciertos con
el entrenamiento sobre el mejor canal para valores altos del pardametro wsize, y
conforme lo reducimos es otra vez la combinacién de todos los canales la que
arroja mejores resultados. Esto puede ser debido a que un abuso en el nimero
de observaciones (muchos canales més las observaciones vecinas que utiliza el
CRF) suponga un exceso de informacién que impida una correcta clasificacion.
Los resultados mostrados en la tabla 4 se corresponden, en el caso del HMM al
submuestreado de ventanas solapadas por intervalos de 500 milisegundos. En el
caso del CRF se submuestred por puntos a 62.5 milisegundos y se aplicé una
ventana de tamano 20 (lo que equivale a 1.25 segundos).

4.3. Subobjetivo 2: Clasificacién por puntos de trayectoria

Aqui la clasificacién baja en todos los modelos porque nos autoimponemos
un limite de 125 milisegundos en cuanto a la cantidad de observaciones que
permitimos acumular a nuestros modelos, ya que debemos obtener un etiquetado
répido para que pueda ser 1til en tareas de rehabilitacién. Al ser tan limitada, los
modelos dindmicos ven mermadas sus capacidades, especialmente los CRF con
unos resultados muy negativos. Los HMM reducen su capacidad, equiparandose
a los modelos estaticos, aunque contintia haciéndolo mejor con el cértex danado.
En la tabla 5 podemos ver los resultados que se obtienen para esta latencia de
125 milisegundos.

ArmH-CorH ArmI-CorH ArmH-Corl ArmH-Corl

Rest Move | Rest Attempt || Rest Move | Rest Attempt

LDA | 65.26 77.88 | 60.34 70.33 56.67 66.03 | 57.20 63.34

SVM | 66.98 75.00 | 60.52 69.01 54.49 66.23 | 56.01 65.92

HMM | 58.62 90.10 | 59.26 85.84 65.60 76.30 | 62.29 73.49

CRF | 24.68 97.13 | 25.50 95.91 20.58 98.78 | 21.52 98.93

Cuadro 5: Comparacion de los mejores resultados de los cuatro modelos bajo las
cuatro condiciones de cortex y brazos para la clasificacion por puntos de trayectoria.
Todos los valores son porcentajes calculados con la media de todos los sujetos.

Al reducir el retardo, los resultados empeoran, pero el comportamiento de
los modelos estéaticos sigue siendo muy similar al caso anterior, presentando una
cantidad de aciertos superior utilizando todos los canales que uno, y presentan-
do mejoras sensiblemente superiores en el reposo que en el movimiento. Al igual
que antes, el reconocimiento del brazo sano es mejor que el del brazo lesiona-
do, y el del cortex sano es mejor que el del dafiado. Ambos contintdan teniendo
resultados muy similares, e incluso méas igualados que antes. Se difuminan més
las diferencias que presentaban en las que los LDA identificaban mejor el movi-
miento y los SVM el reposo, incluso se invierte ligeramente la tendencia para el
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cértex sano.

En el caso de los HMM, para el brazo sano se clasifica mejor el reposo con
todos los canales seleccionados, y para el brazo lesionado hay una sustancial
mejora al considerar sélo uno. En particular, con el caso del cértex sano mejora
un 10 % la deteccién del reposo (de 53.66 % con todos, al 59.26 % con uno). En
la clasificacién del movimiento hay menos diferencias y, por lo general, existen
maés aciertos al utilizar todos los canales. Los CRF, con tan poco margen pa-
ra aglutinar observaciones y sin tener conocimiento de la secuencia completa,
presentan un comportamiento pésimo, clasificando practicamente las secuencias
completas como movimiento. Al contrario que en el apartado anterior, aqui se
ven beneficiados del uso de todos los canales seleccionados, quizas para suplir
la carencia de observaciones que produce la baja latencia.

En ambos modelos dindamicos existe un claro predominio del etiquetado del
movimiento demasiado pronto. Esto puede deberse a que sus representaciones
internas de transicién entre clases incluyan un sesgo que aumente la probabilidad
de que una secuencia evolucione al terminar hacia el movimiento. Como lo que
se hace aqui es aumentar gradualmente las observaciones x1.; cada vez que se
quiere obtener la etiqueta y;, esta etiqueta siempre se identifica como la dltima
en cada clasificacién.

4.4. Caso especifico: Cortex Sano

4.4.1. Evaluacién de los modelos en clasificaciéon por trayectoria com-
pleta

Veamos ahora los resultados de clasificacion completos de cada experimento
para cada modelo. Dado el limitado espacio del que se dispone en esta memoria,
nos vamos a centrar unicamente en la condicién de brazo sano y cértex sano
ya que, de lo contrario, nos extenderiamos demasiado. Unas pocas paginas mas
atras, en el apartado 4.1, hemos descrito el formato de estas gréaficas por lo que
lo obviamos aqui.

Primero tenemos los modelos estaticos, en los que se ve claramente su cla-
sificacion de las observaciones de forma independiente donde cambia de estado
en varias ocasiones por cada experimento. En particular el LDA (figura 9) cla-
sifica mejor el movimiento que el SVM (figura 10). Con los HMM (figura 11) se
pretende evitar esto mismo, ya que en los pardmetros con los que se disena se
indica la imposibilidad de volver al reposo una vez se ha identificado el movi-
miento (mediante la matriz de transicién de estados). Por eso vemos una grafica
de clasificacién més ”"limpia” que en los modelos estaticos. Adn asi, como puede
apreciarse, tiene el inconveniente de que si identifica una observacién como mo-
vimiento demasiado pronto en la secuencia ya no puede corregirse como si podria
suceder en otros modelos.

Para terminar nos encontramos con los CRF (figura 12), que son realmente
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74.68% Todos sujetos ArmHealthy-CortexHealthy - LDA ventanasSolapadas - Intervalo 0.5

RE: MP TO MOVE

% x Class

-1.5 -1 -0.5 0 05 1 15 2
Time (s)

Figura 9: LDA en clasificacién por trayectoria completa

71.91% Todos sujetos ArmHealthy-CortexHealthy - SVM ventanasSolapadas (Train 0.75 - Test 0.25)

REST EMP TO MOVE

72.25%

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25
Time (s)

Figura 10: SVM en clasificacion por trayectoria completa

los modelos que mejor resuelven el problema de etiquetado de secuencias com-
pletas. Al utilizar la informacién de un gran nimero de observaciones anteriores
y posteriores a la que se desea clasificar, obtienen resultados muy precisos. En
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78.12% Todos sujetos ArmHealthy-CortexHealthy - HMM ventanasSolapadas - Intervalo 0.5 viterbi

RE: MP TO MOVE

72.19%

-1.5 -1 -0.5 0 05 1 15 2
Time (s)

Figura 11: HMM en clasificacion por trayectoria completa

90.45% Todos sujetos ArmHealthy-CortexHealthy chan C2 - CRF - WinSize 20 - Intervalo 0.0825 viterbi

REST MP TO MOVE

B86.67%

% x Class

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25 3
Time (s)

Figura 12: CRF en clasificacién por trayectoria completa

este caso en particular estd evaluando 40 observaciones (20 anteriores y otras 20
posteriores). Si nos fijamos en el punto de transicién entre estados, vemos que
todas las transiciones estdn muy cerca de donde deberian.
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En nuestra investigacién hemos contado con experimentos realizados por
6 sujetos distintos. Una particularidad que hay que tener en cuenta es que
cada uno tiene sus peculiaridades y que, pese a haber realizado una selecciéon
independiente para los mejores canales de cada uno, hay algunos sujetos que
presentan unos indices de clasificacion muy por debajo del resto. Esto puede
deberse a que tuvieran una menor involucracién en los experimentos —hay que
realizarlos muy concentrado para no generar actividad cerebral ruidosa—, a que
tuviesen distintos grados de afeccién —ya en el cértex o en los brazos—, o a una
seleccién no tan correcta de los canales adecuados entre otros factores. En estas
graficas se muestra la clasificacién de las secuencias por sujetos y se pueden
apreciar algunos matices. Para nuestra evaluacién hemos producido gréficas de
cada sujeto a mayor tamano para facilitar la inspeccién visual, pero el espacio
del que aqui disponemos es limitado por lo que se ha optado por mostrarlos de
esta manera todos juntos. En general, el sujeto dos y el sujeto cinco presentan
unos indices de clasificacién por debajo del resto de companeros, y los sujetos
uno y cuatro suelen obtener una mayor cantidad de aciertos en promedio.

4.4.2. Comparacién de los clasificadores por puntos de trayectoria

Como se ha indicado anteriormente, para cumplir el subobjetivo 2 no sélo
buscamos un modelo con el mayor indice de clasificacién, sino que ademés nos
interesa que obtenga el resultado en el menor tiempo posible. Asi, estamos
dispuestos a sacrificar parte del porcentaje de aciertos de nuestro clasificador a
cambio de reducir este retardo (delay) todo lo posible.

A continuacién se muestran unas tablas comparando los porcentajes de cla-
sificacién de los diferentes modelos para los dos brazos con el cértex sano. Los
resultados eran mejores en todos los casos utilizando la seleccién de mejores
canales, asi que los resultados se corresponden con ellos. Hay una excepcion, en
la segunda tabla podremos ver que se han incluido también los resultados de los
HMM tnicamente con el mejor canal, ya que los resultados eran mejores que
con todos.

Puesto que estamos considerando tnicamente los resultados que se puedan
aplicar para un uso real de clasificacion en tareas de rehabilitacion, nos limitamos
a buscar los mejores modelos para un retardo maximo de 125 milisegundos,
a modo de comparacién incluiremos los aciertos obtenidos sin retardo y con
250 milisegundos. Por ello en estas tablas no incluimos la comparacién con los
CRF, pues los porcentajes de aciertos de reposo son menores del 30%, y no
tiene sentido ocupar espacio con unos modelos que ya estdn autométicamente
descartados bajo estas condiciones.

Como puede verse en las tablas, aunque los HMM parezcan obtener una me-
dia conjunta buena, lo consiguen a costa de sobreestimar la parte de movimiento,
de modo que hay un exceso de falsos positivos que producen una gran cantidad
de fallos en el descanso. También podré observarse que los SVM y LDA obtienen
resultados muy similares. Obtienen una media total practicamente igual, pero
cada modelo identifica mejor un estado que el otro: en LDA hay mayor cantidad
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Delay LDA SVM HMM

Rest Attempt | Rest Attempt | Rest Attempt
0 64.69 77.43 67.13 74.92 46.41 93.19
0.125 | 65.48 78.50 72.14 70.73 59.46 89.86
0.25 66.22 79.14 71.48 72.25 65.48 88.25

Cuadro 6: Comparacién en porcentaje de aciertos para diferentes retardos (en
segundos) - Arm Healthy Cortex Healthy - Todos los canales

Delay LDA SVM HMM HMM ()

Rest Attempt | Rest Attempt | Rest Attempt | Rest Attempt

0 60.03 69.57 60.52 68.23 38.99 90.25 40.69 85.84
0.125 | 60.77 70.59 67.74 61.52 53.39 86.75 58.77 85.91
0.25 61.18 70.54 67.40 63.82 58.51 85.66 63.58 89.37

Cuadro 7: Comparacién en porcentaje de aciertos para diferentes retardos (en
segundos) - Arm Impaired Cortex Healthy - Modelos con todos los canales, excep-
to la segunda columna de HMM (indicado con asterisco) debido a la mejora de
clasificacion con un tnico canal.

de aciertos para el movimiento y en SVM lo hay para el reposo. En conjunto
estos tultimos podria considerarse que son sensiblemente mas precisos.

5. Conclusiones

En este proyecto se ha realizado un estudio de diversos modelos de inteligen-
cia artificial para detectar el movimiento, o su intencién, en pacientes que han
sufrido un infarto cerebral a partir de la senal capturada a través de un elec-
troencefalograma. Esta senial habia sido capturada con anterioridad por otros
miembros de la Universidad de Zaragoza, por lo que todos los andlisis se hicieron
en diferido.

Nos hemos centrado en cuatro modelos estadisticos que nos han parecido
de especial interés y que se pueden dividir en dos categorias. La primera, con
métodos que podemos denominar estdticos, clasifica cada instante de la senal
de forma independiente del resto, no guardando en su estructura ninguin tipo
de informacion temporal. De ella hemos seleccionado el Linear Discriminant
Analysis y las Support Vector Machines, por ser las mas representativas y las
que mas literatura presentan en el campo de la clasificacién de ondas captura-
das por EEG. La segunda categoria, y que es la que supone una novedad en
este campo con escasos estudios al respecto, son los modelos dindmicos, en los
que una observacién se clasificard de modo distinto en funcién del resto de ob-
servaciones a su alrededor, siendo dependientes del tiempo. Quizéas el modelo
maés representativo de esta categoria sea el Hidden Markov Model al que hemos
acompaifiado de otro mds novedoso denominado Conditional Random Field.
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Nos hemos enfrentado a este problema desde dos escenarios bien distintos.
Por un lado hemos querido comprobar la eficiencia de estos modelos matemati-
cos para discriminar el movimiento del reposo directamente sobre la senal com-
pleta. Aqui Unicamente tendremos en consideracién el porcentaje de aciertos
obtenido en la clasificacion. El segundo escenario va un paso mas lejos, como
pensamos que es nuestro deber como investigadores, y pretende buscar aplica-
ciones practicas mas alld de la simple competiciéon entre modelos estadisticos.
Con la intencién de que se pueda utilizar en un hipotético caso de rehabilitacién
como asistencia a un terapeuta informandole de la participacién del paciente, se
simulara una gradual adquisicién de datos como ocurriria en una situacion real
con estas senales que teniamos ya capturadas. Esto es necesario porque, como se
ha indicado, los modelos dindmicos utilizan todas las observaciones disponibles
a la hora de realizar la clasificacién, de forma que una misma observacién z; se
etiquetaria como un estado distinto en funcién de si disponemos de x1.; 0 T1:4;
observaciones.

En el primer subobjetivo, disponiendo de toda la senal, los modelos dinami-
cos son claramente la opcién mas eficiente, obteniendo unos porcentajes de cla-
sificacién muy superiores a los modelos estaticos. Esto resultaba predecible te-
niendo en cuenta que estos modelos utilizan, por un lado, mas informacién a
la hora de asignar la probabilidad de pertenencia a una clase para una cierta
observacion y, por otro, realizan el etiquetado final de forma que se maximice la
probabilidad de la secuencia completa. En particular los CRF consiguen mejores
resultados que los HMM.

Para el segundo subobjetivo, la clasificacién por puntos de trayectoria, los
modelos dindmicos pierden todo su potencial y encontramos mejores resultados
en los modelos estaticos, ambos en condiciones muy similares. Esto es asi por-
que se ha primado la rapidez con la que se obtenian las etiquetas clasificadas
al tener en cuenta que en una situacién real un terapeuta necesitaria una in-
formacién lo mas actualizada posible y por encima de los 250 milisegundos se
ha considerado excesivo. En este retraso no se tiene en cuenta la ejecuciéon en
si del algoritmo de clasificacion, ya que una vez entrenado es despreciable, sino
la cantidad de observaciones requeridas para obtener una clasificacién apropia-
da. Se ha comprobado que los modelos dindmicos necesitan un margen de mas
de un segundo para obtener porcentajes de aciertos que puedan mejorar a los
modelos estaticos.

Pese a lo eficientes que demuestran ser los HMM y CRF utilizando la senal
completa, no se ha logrado un comportamiento atractivo con ellos a la hora
de utilizarlos en tiempo real, quizds por contar con unos datos muy escasos
para explotar estos modelos secuenciales. A pesar de todo, éste no es un campo
que deba dejarse de investigar. En este trabajo se ha asumido que los CRF
deben seguir una estructura lineal similar a los HMM; sin embargo esta es
una decisién totalmente arbitraria ya que son unos modelos que permiten, en
potencia, infinidad de combinaciones en cuanto a la estructura del grafo que los
define.

Esto permitiria, por ejemplo, utilizar distintas funciones para tratar cada
canal, otorgdndoles mas peso a unos que a otros o diferentes comportamientos.
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También podrian extraerse las caracteristicas sélo de los vecinos anteriores, en
lugar de utilizar también los posteriores como en el modelo analizado, reducien-
do a cero los posibles retardos; distinta cantidad por delante que por detrés,
profundizar en la utilizacion de las function-features gaussianas, etc.

Como decimos, los resultados de este trabajo no deben detener la investiga-
ciéon en modelos de aprendizaje automatico para datos secuenciales en tiempo
real, ni siquiera HMM o CRF. La ultima década ha sido especialmente prolifica
en el desarrollo de estos modelos y desde aqui animamos a otros investigadores
a que analicen su utilidad en el campo de la clasificacion de senales obtenidas
por EEG.

Algunos modelos alternativos de machine learning para secuencias de da-
tos que podriamos citar son: Hidden Markov SVM and LabelSequence Ada-
Boost (Altun & Hofmann, 2003), Cycling Dependency Networks (Toutanova
et al., 2003), Max-margin Markov Networs (Taskar et al., 2003), Conditional
Markov Models (Ratnaparkhi, 1996), Maximum-entropy Markov Models (Mc-
Callum et al., 2000), Discriminatively trained HMM (Collins, 2002), Stacket
Sequential Learning (Cohen, 2004), Constraint Satisfaction INference (Canisius
et al., 2006).
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Anexos

A. Captura y procesamiento de la senal

La senal con la que se trabaja en este estudio ha sido capturada por el
Grupo de Robética de la Universidad de Zaragoza siguiendo el protocolo que
se detalla a continuacion. Nos facilitaron los datos ya procesados y en formato
adecuado para su lectura en Matlab mediante ficheros .mat. Aqui se destaca la
informacién maés relevante del protocolo de experimentacién, la extraccién de
datos y el procesado previo de la senal, pero para informacién més detallada
consultese [8].

A.1. Sujetos

La obtencién de datos para este andlisis se realiz6 sobre pacientes con he-
miplejia producida por haber sufrido un infarto cerebral. El infarto cerebral es
un accidente cerebro-vascular causado por la falta de sangre (isquemia) —y en
consecuencia de oxigeno— que, dependiendo de la severidad, puede danar per-
manentemente un hemisferio cerebral produciendo la parélisis de la mitad del
cuerpo controlada por él mismo. Asi pues, nuestros sujetos tienen una corteza
cerebral sana y otra danado, al mismo tiempo que tienen las extremidades de
un lado del cuerpo paralizadas.

Concretamente fueron cuatro varones de edades entre 55 y 65 afios con apo-
plejia isquémica (dos en el hemisferio derecho y dos en el izquierdo) los que
participaron en este estudio. Todos los pacientes sufrieron el infarto al menos
dos anos antes de los experimentos. Los pacientes eran incapaces de utilizar
la extremidad superior para ninguna actividad cotidiana, sin movilidad en los
dedos del lado con paresia (having no residual finger extension on the paretic
side). Todos los pacientes eran capaces de completar las tareas con el lado sano.

Se realizaron dos experimentos equivalentes, uno en el que el paciente eje-
cutaba las acciones con el brazo sano, y otro en el que intentaba realizarlas
con el brazo danado. En ambos experimentos se grabaron al mismo tiempo las
ondas generadas por cada cortex cerebral. Una vez finalizados, se extrajo la
senal de ambos experimentos separando en cada paciente las cuatro combina-
ciones posibles (Brazo Sano—Cértex Sano, Brazo Sano—Coértex Daniado, Brazo
Danado—Cdrtex Sano, Brazo Danado—Coértex Danado). Serd a partir de estos
cuatro conjuntos de datos sobre los que se analizaran los diferentes modelos de
clasificacién.
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A.2. Protocolo de experimentacion

El protocolo experimental ha sido aprobado por el comité ético de la Facultad
de Medicina de la Universidad de Tubingen, y se obtuvo consentimiento escrito
de cada paciente.

Los pacientes se sentaban en una silla enfrente de una pantalla de ordenador
con los dos antebrazos descansando cémodamente en su regazo.

La tarea consistia en mover el brazo sano, o intentar mover el incapacitado,
desde la posicién inicial a un punto elegido por el sujeto entre los presentados
en una pantalla mediante circulos coloreados y volver a la posicién inicial (véase
la figura 13).

El experimento comprende dos condiciones diferentes: la condicién uno re-
presenta el movimiento del brazo sano, mientras que la condicién dos se refiere
al intento de movimiento del brazo incapacitado.

.o
; e
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Figura 13: Sujeto en mitad de experimento. Se pueden apreciar los detectores
EEG (en la cabeza) y EMG (en el brazo). Abajo a la izquierda, diagrama de la
posicion de los electrodos en el craneo del sujeto.

Los usuarios fueron guiados por senales visuales y sonoras. La primera senal
indicaba a los usuarios relajar el cuerpo y adoptar la posicién inicial durante
tres segundos. La segunda sefial marcaba el inicio del movimiento del brazo sano
y el intento de movimiento del brazo incapacitado. Después de tres segundos,
la tercera senal indicaba relajarse adoptando la posicién inicial, parpadeando
y descansando durante otros tres segundos. Durante la fase de movimiento,
entre la segunda y tercera senales), se solicitaba a los sujetos evitar parpadear
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o compensar el movimiento con el torso u otras partes del cuerpo; lo cual era
controlado visualmente por el terapeuta y luego, tras los experimentos, mediante
inspeccion visual de los datos EMG.

El experimento se ejecutd en cuatro bloques de seis minutos cada uno. Cua-
renta ensayos se grabaron en cada bloque, resultando un total de 160 ensayos
(80 para cada condicién). Después de cada bloque el paciente podia descansar
tanto como fuera necesario para evitar la fatiga.

A.3. Proceso de grabacién

La actividad EEG fue grabada a través de 64 electrodos activos ordenados
de acuerdo al sistema internacional 10/10 utilizando un sistema actiCAP (de
Brain Products GmbH, Alemania), con masa en AFz y referenciado al 16bulo
de la oreja izquierda.

Dieciséis electrodos bipolares Ag/AgCl (ocho en cada brazo) de Myotronics-
Noromed (Tuwila, WA, USA) se emplearon para la adquisicién de datos EMG
en la superficie y situados en los musculos involucrados en el movimiento: 1)
extensor ulnar del carpo (extensor carpi ulnaris); 2) extensor digitorum; 3) en el
flexor radial del carpo (flexor carpi radialis), palmar menor (plamaris longus),
flexor carpi ulnaris (flexién); 4) en la cabeza externa del biceps (flexion); 5)
la cabeza externa del triceps; 6) lado frontal del deltoides; 7) lado lateral del
deltoides; y 8) lado posterior del del deltoides sobre el misculo redondo menor
(teres minor) y el musculo intraespinoso. Los datos EEG y EMG se grabaron a
una tasa de sampleo de 2500 Hz sin filtrado.

A.4. Procesado previo del EEG y del EMG

Cada ensayo de EEG y EMG tiene una duracién de nueve segundos, con la
referencia de tiempo tomada desde los segundos -3 a 6 con respecto a la apari-
ci6n de la segunda senal (inicio del movimiento), por lo que éste comienza en el
instante cero. Para cada ensayo el comienzo del movimiento se determiné utili-
zando las senales del EMG. Para cada sujeto, la senal EMG con mayor amplitud
y actividad méds consistente (una baja amplitud en el periodo de relajacién y
alta amplitud mantenida durante el periodo de movimiento) durante todos los
ensayos fue seleccionada por inspeccién visual. En cada ensayo, a la senal del
canal EMG elegido se le aplicé un filtrado paso-alto con una frecuencia de corte
de 10 Hz, y posteriormente se le aplico la transformada de Hilbert para obtener
el comienzo del movimiento. Finalmente, todos los ensayos EEG y EMG fueron
recortados entre los segundos -3 y 3 en relacién al comienzo del movimiento
basado en el EMG.

A las senales EEG se les aplicé un filtro paso-banda entre 0.5 y 60 Hz usando

un filtro desplazado a la fase cero y resampleado a 160 Hz. Para eliminar los
efectos de la conduccién del volumen, se aplicé un filtrado espacial Laplaciano

43



([14]) con la intencién de obtener sefiales EEG libres de artefactos.

Trial i Trial i+1

St Sy
=]
,"'@sz- ar,es{
I\ y A y J
Rest Reaching movement Time out
(3s) (3s) (3s)

Figura 14: Esquema donde se aprecia la secuencia de estados rest (descanso) y
reaching movement (movimiento).

A.5. Tareas relacionadas con la modulacion en potencia

La evolucién temporal de la potencia espectral en diferentes bandas de fre-
cuencia de la actividad EEG libre de artefactos se calculé con un analisis de
frecuencia temporal usando las ondiculas complejas de Morlet (complex Mor-
let‘s wavelet) [15]. La representacién en la frecuencia temporal (TFR) se cal-
cul6 para todos los ensayos en cada condicién de 2 a 40 Hz con una resolucion
de frecuencia de 1 Hz. Posteriormente, la relevancia estadistica del porcentaje
de incremento/disminucién de la potencia espectral en relacién al punto de refe-
rencia en el intervalo de -3 a 0 segundos se calculé con un anélisis de remuestreo
([16]) con un nivel de significancia de o = 0,01.

A.6. Seleccién de caracteristicas

Los canales localizados en el cértex motor sano y y los frequency bins en las
franjas (o y B) que muestran una desincronizacién significativa en la ventana
temporal de 0 a 3 segundos fueron identificados individualmente por inspecciéon
visual en cada sujeto.

La potencia espectral de estas parejas de canal-frecuencia se calculé usando
un modelo autoregresivo de orden 16° [17] sobre una ventana de tamafio d,
para la actividad EEG, obteniendo las caracteristicas z; en el tiempo t para la
deteccién de intencion de movimiento. Las caracteristicas basadas en la potencia
espectral de los canales en el cortex motor y en las franjas relacionados con la
zona motor han sido usados en otros trabajos para la deteccién de movimientos
ejecutados o imaginados de diferentes partes de las extremidades [18]. Sin em-
bargo, en esta investigacion se utilizan simplemente los canales del cértex motor
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opuesto a la zona lesionada para decodificar ambas condiciones (movimientos
del lado sano e intentos de mover el lado paralizado).
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B. Planificacion

Este proyecto estuvo desarrollandose a tiempo completo de febrero a junio.
Durante este tiempo se realizé la mayor parte del trabajo, desde la documenta-
cion a la ejecucién y pruebas con todos los modelos.

= Documentacion sobre EEG y clasificacion de estas senales.

= Documentacion sobre el caso particular de pacientes con hemiplejia y los
experimentos de lectura del EEG.

» Documentacién de modelos de clasificacién estéticos (LDA y SVM).
» Aprendizaje del uso de las librerias para modelos estéticos.
= Primeros contactos replicando experimentos realizados sobre sujetos sanos.

= Implementacion de codigo para tratar adecuadamente nuestros conjuntos
de datos para entrenar y testear los modelos estaticos con las librerias.

= Ejecuciones probando el comportamiento de los modelos con diferentes
parametos.

» Documentacién de modelos de clasificacién dinamicos (HMM y CRF).
s Aprendizaje del uso de las librerias para modelos dinamicos.

= Implementacién de cédigo para tratar adecuadamente nuestros conjuntos
de datos para entrenar y testear los modelos dindmicos con las librerias.

= Ejecuciones probando el comportamiento de los modelos con diferentes
parametos.

= Implementacién de baterias de pruebas para todos los modelos y cédi-
go para automatizar los entrenamientos y obtener informacién de salida
consistente entre todos los modelos.

A partir de entonces, y con el grueso del trabajo realizado, el presente in-
vestigador se incorporé a jornada completa a trabajar en una empresa privada.
Asi, desde julio hasta noviembre, primero se dedic6 a entrenar los diferentes mo-
delos con los pardmetros que se habian considerado de mayor importancia en
el estudio previo. Una vez obtenidos, siguié un proceso de evaluacién y estudio
de los mismos para, finalmente, terminar realizando la presente memoria que
resume y engloba todo el trabajo realizado en este proyecto.
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C. Resultados completos por modelo

En este apartado vamos a mostrar los resultados detallados obtenidos en
todos los modelos mediante la media de aciertos de los seis sujetos estudiados.

El formato de todas las tablas va a ser el mismo para todos los tres primeros
modelos. La primera columna representa cémo se seleccionan los datos segin se
describié en la seccién 2.2: puntos es que se toma una muestra individual cada
vez, ventanas es que se considera toda la ventana entre dos puntos haciendo
la media, y solapadas es similar al anterior pero permitiendo solapamiento de
ventanas.

La segunda columna llamada delay, indica la distancia entre cada lectura que
se toma segun el tipo y es, por tanto, el retraso en segundos con el que se puede
clasificar una muestra ya leida. Esto también se ha explicado detalladamente
en la seccién 2.2 y como sabemos es un criterio basico a la hora de estimar la
eficacia de un clasificador, puesto que necesitamos conocer la etiqueta de los
estados cuanto antes. Las tres siguientes columnas son la media obtenida en
cada estado por separado y la media total. Obsérvese que esta ultima media no
es la media aritmética de las anteriores, puesto que cada estado tiene distinto
tamano.

Como se describe en 3.4.2 los CRF en cadena permiten incluir la informacion
de los nodos vecinos para realizar la clasificacion. En la libreria que utilizamos a
este parametro se le denomina tamano de ventana y hace referencia al nimero
de nodos vecinos en ambas direcciones que se utilizaran. Para no liarnos con
el sistema de segmentacién de la senal, le llamaremos wSize. Entonces aqui el
delay dependera de cuantos vecinos utilizamos por delante, que coincide con
wSize, v a qué intervalo hemos decidido tomar estos puntos. De ese modo,
delay = wsize x intervalo.

Por este motivo los CRF necesitan un formato de tabla distinto a los ante-
riores, en el que se muestran las tres variables de la tltima férmula en las tres
primeras columnas. Se han realizado combinaciones entre el nimero de vecinos
(de 5 a 30) y los intervalos de muestreo de la senal (desde utilizar toda la serial
a intervalos de 0.25 segundos), quedando diferentes delays de +1.25, £0.9375 y
40.625, etc. segundos. Puesto que algunas combinaciones distintas de intervalo
y wsize pueden dar lugar a un mismo delay, estos se han agrupado, pues a
fin de cuentas utilizan grosso modo un subconjunto similar de observaciones (y
esto se hace evidente cuando se observa que todos los modelos con mismo delay
comparten un porcentaje de aciertos similar).
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C.1. LDA

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 58.02 73.33 66.76
Puntos 0.03125 58.05 73.38 66.76
Puntos 0.0625 58.14 73.32 66.72
Puntos 0.125 58.21 73.42 66.70
Puntos 0.1875 58.25 73.48 66.65
Puntos 0.25 58.04 73.76 66.61
Puntos 0.5 58.37 74.37 67.10
Ventanas 0.03125 58.02 73.53 66.88
Ventanas 0.0625 58.13 73.58 66.96
Ventanas 0.125 58.09 73.89 67.12
Ventanas 0.1875 58.15 74.28 67.37
Ventanas 0.25 58.31 74.51 67.56
Ventanas 0.5 59.73 75.34 69.10
V. Solapadas 0.03125 58.13 73.63 66.95
V. Solapadas  0.0625 58.09 73.91 67.05
V. Solapadas 0.125 58.26 74.28 67.25
V. Solapadas 0.1875 58.45 74.63 67.44
V. Solapadas 0.25 58.40 74.81 67.42
V. Solapadas 0.5 62.23 75.75 69.74

Cuadro 8: LDA - Arm Healthy Cortex Healthy - Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 64.69 77.43 71.96
Puntos 0.03125 64.76 77.40 71.94
Puntos 0.0625 64.68 77.53 71.94
Puntos 0.125 64.75 77.47 71.85
Puntos 0.1875 64.47 77.65 71.74
Puntos 0.25 64.64 77.10 71.43
Puntos 0.5 64.45 77.01 71.30
Ventanas 0.03125 64.77 77.62 72.11
Ventanas 0.0625 65.06 77.79 72.33
Ventanas 0.125 65.26 77.88 72.47
Ventanas 0.1875 65.41 78.69 73.00
Ventanas 0.25 65.94 78.42 73.07
Ventanas 0.5 66.61 79.75 74.50
V. Solapadas 0.03125 65.10 77.79 72.32
V. Solapadas  0.0625 65.24 77.98 72.45
V. Solapadas 0.125 65.48 78.50 72.78
V. Solapadas 0.1875 65.90 78.69 73.00
V. Solapadas  0.25 66.22 79.14 73.33
V. Solapadas 0.5 67.23 80.62 74.67

Cuadro 9: LDA - Arm Healthy Cortex Healthy - Todos los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 54.75 65.11 60.66
Puntos 0.03125 54.82 65.02 60.62
Puntos 0.0625 55.04 64.96 60.64
Puntos 0.125 55.13 64.84 60.55
Puntos 0.1875 54.51 65.28 60.45
Puntos 0.25 55.79 64.72 60.66
Puntos 0.5 55.87 65.20 60.96
Ventanas 0.03125 54.85 65.13 60.72
Ventanas 0.0625 54.80 65.47 60.90
Ventanas 0.125 54.84 65.38 60.86
Ventanas 0.1875 55.12 65.84 61.25
Ventanas 0.25 55.30 65.64 61.21
Ventanas 0.5 55.41 68.12 63.04
V. Solapadas  0.03125 54.75 65.42 60.82
V. Solapadas  0.0625 54.73 65.47 60.82
V. Solapadas 0.125 54.84 65.67 60.92
V. Solapadas 0.1875 54.73 65.98 60.98
V. Solapadas 0.25 54.30 66.42 60.96
V. Solapadas 0.5 57.60 67.16 62.91

Cuadro 10: LDA - Arm Impaired Cortex Healthy - Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 60.03 69.57 65.47
Puntos 0.03125 60.07 69.65 65.51
Puntos 0.0625 60.16 69.76 65.58
Puntos 0.125 60.24 69.59 65.46
Puntos 0.1875 60.54 69.27 65.35
Puntos 0.25 60.16 69.65 65.34
Puntos 0.5 60.12 69.23 65.09
Ventanas 0.03125 60.04 69.74 65.58
Ventanas 0.0625 60.13 69.89 65.71
Ventanas 0.125 60.34 70.33 66.05
Ventanas 0.1875 60.45 70.42 66.15
Ventanas 0.25 60.74 70.62 66.38
Ventanas 0.5 60.52 71.07 66.85
V. Solapadas  0.03125 60.28 69.94 65.77
V. Solapadas 0.0625 60.48 70.31 66.05
V. Solapadas  0.125 60.77 70.59 66.28
V. Solapadas 0.1875 61.25 70.61 66.45
V. Solapadas  0.25 61.18 70.54 66.33
V. Solapadas 0.5 61.19 71.00 66.64

Cuadro 11: LDA - Arm Impaired Cortex Healthy - Todos los mejores canales

49



Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 56.00 57.19 56.68
Puntos 0.03125 56.07 57.13 56.67
Puntos 0.0625 55.84 57.00 56.49
Puntos 0.125 55.81 57.23 56.60
Puntos 0.1875 55.65 57.01 56.40
Puntos 0.21875 55.98 57.72 56.92
Puntos 0.25 55.81 56.42 56.14
Puntos 0.5 56.12 56.63 56.40
Ventanas 0.03125 56.02 57.26 56.73
Ventanas 0.0625 56.12 57.45 56.88
Ventanas 0.125 56.20 57.65 57.03
Ventanas 0.1875 56.18 57.66 57.03
Ventanas 0.21875 55.87 57.83 56.98
Ventanas 0.25 56.11 57.91 57.14
Ventanas 0.5 56.25 58.61 57.66
V. Solapadas 0 56.00 57.21 56.69
V. Solapadas  0.03125 56.17 57.40 56.87
V. Solapadas  0.0625 56.25 57.57 57.00
V. Solapadas  0.125 56.40 57.56 57.05
V. Solapadas 0.1875 56.45 57.86 57.23
V. Solapadas  0.21875 56.56 57.95 57.32
V. Solapadas 0.25 56.78 57.57 57.21
V. Solapadas 0.5 57.65 58.41 58.07

Cuadro 12: LDA - Arm Healthy Cortex Injured - Mejor canal
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 56.58 65.45 61.64
Puntos 0.03125 56.71 65.59 61.76
Puntos 0.0625 56.36 65.72 61.65
Puntos 0.125 56.86 65.49 61.68
Puntos 0.1875 56.73 65.80 61.73
Puntos 0.21875 56.40 65.62 61.39
Puntos 0.25 56.81 64.93 61.24
Puntos 0.5 57.33 66.25 62.19
Ventanas 0.03125 56.56 65.54 61.69
Ventanas 0.0625 56.49 65.85 61.84
Ventanas 0.125 56.67 66.03 62.02
Ventanas 0.1875 56.47 66.19 62.03
Ventanas 0.21875 56.79 66.28 62.15
Ventanas 0.25 56.85 66.26 62.23
Ventanas 0.5 57.34 67.50 63.43
V. Solapadas 0 56.53 65.41 61.60
V. Solapadas 0.03125 56.54 65.71 61.76
V. Solapadas  0.0625 56.74 65.86 61.91
V. Solapadas 0.125 56.78 65.82 61.85
V. Solapadas 0.1875 57.34 65.91 62.10
V. Solapadas  0.21875 57.58 66.28 62.32
V. Solapadas  0.25 57.38 66.38 62.33
V. Solapadas 0.5 59.21 67.50 63.81

Cuadro 13: LDA - Arm Healthy Cortex Injured - Todos los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 52.62 62.77 58.42
Puntos 0.03125 52.62 62.93 58.48
Puntos 0.0625 52.80 62.91 58.51
Puntos 0.125 52.91 62.58 58.31
Puntos 0.1875 52.41 63.03 58.27
Puntos 0.21875 52.68 63.42 58.50
Puntos 0.25 52.79 62.37 58.02
Puntos 0.5 53.33 63.50 58.88
Ventanas 0.03125 52.67 63.05 58.60
Ventanas 0.0625 52.69 63.15 58.67
Ventanas 0.125 52.78 63.14 58.70
Ventanas 0.1875 52.22 63.33 58.57
Ventanas 0.21875 52.70 64.21 59.21
Ventanas 0.25 52.93 63.36 58.89
Ventanas 0.5 53.17 63.57 59.41
V. Solapadas 0 52.65 62.88 58.49
V. Solapadas  0.03125 52.71 63.25 58.71
V. Solapadas  0.0625 52.54 63.55 58.78
V. Solapadas 0.125 52.33 63.97 58.86
V. Solapadas 0.1875 52.29 64.26 58.94
V. Solapadas  0.21875 52.06 64.20 58.68
V. Solapadas  0.25 52.89 64.65 59.36
V. Solapadas 0.5 54.32 64.75 60.11

Cuadro 14: LDA - Arm Impaired Cortex Injured - Mejor canal
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 57.20 63.26 60.66
Puntos 0.03125 57.24 63.40 60.74
Puntos 0.0625 57.47 63.22 60.72
Puntos 0.125 57.46 62.98 60.54
Puntos 0.1875 56.74 63.68 60.57
Puntos 0.21875 57.59 64.02 61.07
Puntos 0.25 56.75 62.43 59.84
Puntos 0.5 58.08 62.91 60.71
Ventanas 0.03125 57.21 63.43 60.77
Ventanas 0.0625 57.01 63.52 60.73
Ventanas 0.125 56.93 63.64 60.76
Ventanas 0.1875 57.20 64.47 61.36
Ventanas 0.21875 56.91 64.47 61.18
Ventanas 0.25 57.17 63.97 61.06
Ventanas 0.5 57.50 64.86 61.91
V. Solapadas 0 57.19 63.29 60.67
V. Solapadas 0.03125 57.03 63.54 60.73
V. Solapadas  0.0625 57.25 63.72 60.92
V. Solapadas 0.125 57.07 64.22 61.08
V. Solapadas 0.1875 57.50 64.40 61.33
V. Solapadas  0.21875 57.75 64.61 61.49
V. Solapadas  0.25 58.10 64.50 61.62
V. Solapadas 0.5 59.06 64.83 62.26

Cuadro 15: LDA - Arm Impaired Cortex Injured - Todos los mejores canales

53



C.2. SVM

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0.0625 47.25 82.38 67.09
Puntos 0.125 47.99 81.93 66.93
Puntos 0.1875 50.08 80.18 66.68
Puntos 0.25 50.43 80.65 66.92
Ventanas 0.03125 46.96 82.97 67.54
Ventanas 0.0625 47.39 82.82 67.63
Ventanas 0.125 47.31 82.96 67.68
Ventanas 0.1875 47.84 83.00 67.93
Ventanas 0.25 48.70 82.81 68.19
V. Solapadas  0.03125 48.08 82.37 67.59
V. Solapadas  0.0625 48.83 81.96 67.59
V. Solapadas  0.125 50.78 81.04 67.75
V. Solapadas 0.1875 52.70 79.54 67.61
V. Solapadas 0.25 54.88 78.69 67.97

Cuadro 16: SVM - Arm Healthy Cortex Healthy - Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0.0625 58.40 81.26 71.31
Puntos 0.125 59.46 81.58 71.81
Puntos 0.1875 59.56 81.49 71.66
Puntos 0.25 60.39 81.12 71.70
Ventanas 0.03125 58.20 80.58 70.99
Ventanas 0.0625 58.47 81.54 71.65
Ventanas 0.125 58.88 82.45 72.35
Ventanas 0.1875 59.27 82.33 72.44
Ventanas 0.25 60.34 82.74 73.14
V. Solapadas  0.03125 59.10 79.96 70.97
V. Solapadas  0.0625 60.22 80.66 71.80
V. Solapadas  0.125 61.62 81.10 72.55
V. Solapadas  0.1875 63.15 80.98 73.06
V. Solapadas 0.25 64.30 80.54 73.23

Cuadro 17: SVM - Arm Healthy Cortex Healthy - Todos los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0.0625 34.73 83.26 62.13
Puntos 0.125 35.09 82.91 61.78
Puntos 0.1875 36.07 82.18 61.51
Puntos 0.25 37.64 80.79 61.18
Ventanas 0.03125 34.57 83.76 62.68
Ventanas 0.0625 34.78 84.01 62.91
Ventanas 0.125 35.03 83.84 62.92
Ventanas 0.1875 34.87 84.28 63.11
Ventanas 0.25 34.51 85.00 63.36
V. Solapadas  0.03125 35.61 83.09 62.62
V. Solapadas  0.0625 36.65 82.93 62.86
V. Solapadas 0.125 38.59 82.25 63.08
V. Solapadas 0.1875 39.27 82.12 61.00

Cuadro 18: SVM - Arm Impaired Cortex Healthy - Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0.03125 48.49 78.58 65.58
Puntos 0.0625 48.70 79.55 66.12
Puntos 0.125 49.30 80.06 66.47
Puntos 0.1875 49.95 78.98 65.96
Puntos 0.25 50.77 79.14 66.25
Ventanas 0.03125 48.60 78.47 65.66
Ventanas 0.0625 47.93 79.92 66.21
Ventanas 0.125 47.59 80.98 66.67
Ventanas 0.1875 47.10 81.60 66.81
Ventanas 0.25 47.43 82.41 67.42
V. Solapadas  0.03125 49.60 77.89 65.69
V. Solapadas 0.0625 49.42 78.98 66.16
V. Solapadas 0.125 50.18 79.57 66.67
V. Solapadas 0.1875 51.85 78.83 66.84
V. Solapadas 0.25 53.07 78.31 66.95

Cuadro 19: SVM - Arm Impaired Cortex Healthy - Todos los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0.03125 26.72 84.40 59.48
Puntos 0.0625 27.43 84.14 59.46
Puntos 0.125 28.83 83.08 59.11
Puntos 0.1875 32.03 81.31 59.22
Puntos 0.21875 36.47 77.54 58.72
Puntos 0.25 31.39 81.42 58.68
Puntos 0.5 34.95 79.86 59.45
Ventanas 0.0625 24.61 85.86 59.61
Ventanas 0.125 24.30 86.38 59.77
Ventanas 0.1875 23.59 86.65 59.62
Ventanas 0.21875 26.77 84.82 59.58
Ventanas 0.25 24.07 86.11 59.52
Ventanas 0.5 18.54 91.38 62.25
V. Solapadas 0.0625 27.42 84.22 59.58
V. Solapadas 0.125 29.57 82.78 59.42
V. Solapadas 0.1875 33.15 80.43 59.42
V. Solapadas 0.21875 38.52 76.56 59.27
V. Solapadas 0.25 36.57 77.82 59.26
V. Solapadas 0.5 37.08 78.20 59.93

Cuadro 20: SVM - Arm Healthy Cortex Injured - Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0.03125 37.91 81.67 62.77
Puntos 0.0625 38.46 81.77 62.92
Puntos 0.125 39.66 80.96 62.71
Puntos 0.1875 41.61 80.53 63.08
Puntos 0.21875 45.39 76.81 62.41
Puntos 0.25 41.31 79.58 62.18
Puntos 0.5 44.95 78.02 62.99
Ventanas 0.0625 38.20 81.91 63.17
Ventanas 0.125 38.42 82.38 63.54
Ventanas 0.1875 38.57 82.85 63.87
Ventanas 0.21875 41.62 81.50 64.16
Ventanas 0.25 39.18 82.50 63.93
Ventanas 0.5 33.75 88.36 66.52
V. Solapadas  0.0625 40.25 80.66 63.13
V. Solapadas 0.125 41.99 79.87 63.24
V. Solapadas 0.1875 44.25 78.79 63.44
V. Solapadas  0.21875 47.70 77.13 63.75
V. Solapadas 0.25 45.74 77.99 63.47
V. Solapadas 0.5 46.40 78.37 64.16

Cuadro 21: SVM - Arm Healthy Cortex Injured - Todos los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0.0625 30.70 83.47 60.50
Puntos 0.125 32.23 82.68 60.39
Puntos 0.1875 33.34 81.14 59.71
Puntos 0.21875 37.61 78.14 59.56
Puntos 0.25 34.70 82.03 60.52
Puntos 0.5 33.95 82.84 60.62
Ventanas 0.0625 30.56 84.51 61.39
Ventanas 0.125 30.69 84.53 61.45
Ventanas 0.1875 31.07 84.72 61.73
Ventanas 0.21875 32.29 83.79 61.40
Ventanas 0.25 30.94 84.25 61.40
Ventanas 0.5 26.61 88.05 63.47
V. Solapadas  0.0625 31.81 83.64 61.16
V. Solapadas  0.125 33.94 82.53 61.20
V. Solapadas 0.1875 36.63 81.09 61.33
V. Solapadas 0.21875 40.52 79.49 61.78
V. Solapadas 0.25 38.93 80.49 61.79
V. Solapadas 0.5 38.33 81.91 62.54

Cuadro 22: SVM - Arm Impaired Cortex Injured - Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0.0625 41.36 78.77 62.49
Puntos 0.125 42.05 78.82 62.57
Puntos 0.1875 42.08 78.08 61.94
Puntos 0.21875 47.02 74.56 61.94
Puntos 0.25 42.97 77.93 62.04
Puntos 0.5 43.00 80.34 63.37
Ventanas 0.0625 41.23 79.07 62.85
Ventanas 0.125 41.16 80.02 63.37
Ventanas 0.1875 41.19 80.82 63.83
Ventanas 0.21875 43.08 79.93 63.91
Ventanas 0.25 41.27 80.52 63.70
Ventanas 0.5 36.19 85.45 65.75
V. Solapadas 0.0625 42.86 7777 62.63
V. Solapadas 0.125 44.42 77.78 63.13
V. Solapadas 0.1875 45.81 77.02 63.15
V. Solapadas 0.21875 48.95 75.62 63.50
V. Solapadas  0.25 47.77 76.32 63.47
V. Solapadas 0.5 47.81 78.08 64.62

Cuadro 23: SVM - Arm Impaired Cortex Injured - Todos los mejores canales
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SVM train a 0.75 y test variado

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 61.39 70.74 66.72
Puntos 0.03125 61.48 70.73 66.73
Puntos 0.0625 61.32 70.87 66.72
Puntos 0.125 61.40 70.70 66.59
Puntos 0.25 60.50 71.35 66.42
Ventanas 0.03125 51.37 79.40 67.39
Ventanas 0.0625 51.31 79.68 67.52
Ventanas 0.125 51.19 80.04 67.67
Ventanas 0.25 51.13 80.15 67.71
V. Solapadas  0.03125 64.06 67.63 66.09
V. Solapadas 0.0625 64.24 68.08 66.42
V. Solapadas  0.125 64.32 68.83 66.85
V. Solapadas  0.25 64.35 69.26 67.05

Cuadro 24: SVM (train 0.75 - test variado) - Arm Healthy Cortex Healthy - Mejor
canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 67.13 74.92 71.58
Puntos 0.03125 67.00 74.97 71.53
Puntos 0.0625 67.00 75.06 71.55
Puntos 0.125 66.98 75.00 71.46
Puntos 0.25 66.31 74.30 70.67
Ventanas 0.03125 62.13 79.08 71.82
Ventanas 0.0625 62.09 79.52 72.05
Ventanas 0.125 62.32 80.05 72.45
Ventanas 0.25 62.19 80.95 72.91
V. Solapadas 0.03125 72.31 68.58 70.19
V. Solapadas 0.0625 72.31 69.13 70.51
V. Solapadas  0.125 72.14 70.73 71.35
V. Solapadas  0.25 71.48 72.25 71.90

Cuadro 25: SVM (train 0.75 - test variado) - Arm Healthy Cortex Healthy - Todos
los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 55.94 63.02 59.98
Puntos 0.03125 55.80 63.00 59.89
Puntos 0.0625 55.54 63.29 59.92
Puntos 0.125 55.17 63.57 59.86
Puntos 0.25 56.08 62.46 59.56
Ventanas 0.03125 37.45 81.16 62.43
Ventanas 0.0625 37.41 81.64 62.68
Ventanas 0.125 37.32 82.07 62.89
Ventanas 0.25 37.63 82.20 63.10
V. Solapadas  0.03125 59.48 61.78 60.79
V. Solapadas  0.0625 58.52 60.67 59.74
V. Solapadas  0.125 58.35 61.82 60.29
V. Solapadas 0.25 58.35 62.78 60.79

Cuadro 26: SVM (train 0.75 - test variado) - Arm Impaired Cortex Healthy -
Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 60.52 68.23 64.92
Puntos 0.03125 60.46 68.31 64.92
Puntos 0.0625 60.54 68.59 65.09
Puntos 0.125 60.52 69.01 65.26
Puntos 0.25 60.72 68.42 64.92
Ventanas 0.03125 50.26 77.64 65.91
Ventanas 0.0625 49.79 78.20 66.02
Ventanas 0.125 49.82 78.88 66.42
Ventanas 0.25 49.30 79.58 66.60
V. Solapadas 0.03125 68.45 59.29 63.24
V. Solapadas 0.0625 68.24 60.26 63.72
V. Solapadas 0.125 67.74 61.52 64.25
V. Solapadas 0.25 67.40 63.82 65.43

Cuadro 27: SVM (train 0.75 - test variado) - Arm Impaired Cortex Healthy -
Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Punto 0.03125: 54.18 60.25 57.63
Punto 0.0625: 53.96 60.25 57.51
Punto 0.125: 53.82 60.18 57.37
Punto 0.25: 53.27 60.22 57.06
Punto 0.5: 55.00 60.69 58.10
Ventana 0.03125: 30.50 81.48 59.63
Ventana 0.0625: 30.43 81.67 59.71
Ventana 0.125: 30.52 82.08 59.98
Ventana 0.25: 29.58 82.27 59.69
Ventana 0.5: 30.88 83.68 62.56
V. Solapada  0.03125: 55.36 59.58 57.76
V. Solapada  0.0625: 55.71 59.81 58.03
V. Solapada  0.125: 55.87 60.16 58.28
V. Solapada  0.25: 56.25 60.66 58.67
V. Solapada  0.5: 57.44 60.25 59.00

Cuadro 28: SVM (train 0.75 - test variado) - Arm Healthy Cortex Injured - Mejor
canal

Tipo Delay Reposo Movimiento Media ambos
Punto 0.03125: 54.88 66.27 61.35
Punto 0.0625: 54.75 66.34 61.30
Punto 0.125: 54.49 66.23 61.04
Punto 0.25: 54.18 65.92 60.58
Punto 0.5: 55.83 66.38 61.59
Ventana 0.03125: 42.40 78.87 63.24
Ventana 0.0625: 42.40 79.27 63.46
Ventana 0.125: 42.43 79.66 63.70
Ventana 0.25: 43.03 80.38 64.37
Ventana 0.5: 44.68 81.45 66.75
V. Solapada  0.03125: 61.91 59.13 60.33
V. Solapada  0.0625: 61.86 59.82 60.71
V. Solapada  0.125: 61.77 60.37 60.98
V. Solapada  0.25: 61.22 61.34 61.29
V. Solapada  0.5: 63.17 62.29 62.68

Cuadro 29: SVM (train 0.75 - test variado) - Arm Healthy Cortex Injured - Todos
los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Punto 0.03125: 53.92 61.86 58.43
Punto 0.0625: 53.69 61.76 58.25
Punto 0.125: 53.46 61.66 58.04
Punto 0.25: 53.43 61.33 57.74
Punto 0.5: 54.12 61.59 58.20
Ventana 0.03125: 34.02 81.69 61.26
Ventana 0.0625: 34.17 82.03 61.52
Ventana 0.125: 34.16 82.43 61.75
Ventana 0.25: 33.84 83.21 62.05
Ventana 0.5: 33.85 83.57 63.68
V. Solapada  0.03125: 55.48 60.73 58.46
V. Solapada  0.0625: 55.46 61.32 58.78
V. Solapada  0.125: 55.57 61.99 59.17
V. Solapada  0.25: 55.34 62.72 59.40
V. Solapada  0.5: 57.03 62.79 60.23

Cuadro 30: SVM (train 0.75 - test variado) - Arm Impaired Cortex Injured - Mejor
canal

Tipo Delay Reposo Movimiento Media ambos
Punto 0.03125: 55.99 65.86 61.60
Punto 0.0625: 55.97 65.73 61.48
Punto 0.125: 56.01 65.92 61.55
Punto 0.25: 55.83 65.74 61.24
Punto 0.5: 56.50 65.83 61.59
Ventana 0.03125: 41.34 79.37 63.07
Ventana 0.0625: 41.20 79.56 63.12
Ventana 0.125: 41.16 79.90 63.30
Ventana 0.25: 41.20 80.59 63.71
Ventana 0.5: 42.86 80.76 65.60
V. Solapada  0.03125: 57.71 65.04 61.88
V. Solapada  0.0625: 57.91 65.41 62.16
V. Solapada  0.125: 58.04 65.82 62.40
V. Solapada  0.25: 59.39 66.02 63.04
V. Solapada  0.5: 61.82 67.70 65.09

Cuadro 31: SVM (train 0.75 - test variado) - Arm Impaired Cortex Injured - Todos
los mejores canales
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C.3. HMM

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 39.25 94.03 70.51
Puntos 0.03125 46.81 92.62 72.83
Puntos 0.0625 51.56 91.87 74.32
Puntos 0.125 56.19 91.37 75.82
Puntos 0.1875 60.09 91.56 77.45
Puntos 0.25 61.70 91.47 77.94
Puntos 0.5 66.58 92.46 80.70
Ventanas 0.03125 46.53 92.66 72.89
Ventanas 0.0625 51.23 91.87 74.45
Ventanas 0.125 56.56 91.15 76.32
Ventanas 0.1875 59.93 90.93 77.64
Ventanas 0.25 61.71 91.00 78.45
Ventanas 0.5 67.96 91.84 82.29
V. Solapadas 0.03125 46.23 92.68 72.65
V. Solapadas  0.0625 51.00 91.84 74.12
V. Solapadas 0.125 56.26 91.09 75.80
V. Solapadas  0.1875 59.67 90.77 76.95
V. Solapadas 0.25 61.75 90.77 77.71
V. Solapadas 0.5 69.16 91.20 81.41

Cuadro 32: HMM - Arm Healthy Cortex Healthy - Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 46.41 93.19 73.11
Puntos 0.03125 51.84 91.76 74.52
Puntos 0.0625 54.94 91.10 75.36
Puntos 0.125 58.50 90.23 76.21
Puntos 0.1875 60.32 90.13 76.76
Puntos 0.25 62.68 90.01 77.59
Puntos 0.5 67.04 90.27 79.71
Ventanas 0.03125 51.56 91.76 74.53
Ventanas 0.0625 54.72 91.09 75.50
Ventanas 0.125 58.62 90.26 76.70
Ventanas 0.1875 61.09 89.76 77.47
Ventanas 0.25 62.91 89.27 77.97
Ventanas 0.5 69.94 89.40 81.62
V. Solapadas  0.03125 51.63 91.75 74.45
V. Solapadas 0.0625 55.05 91.05 75.43
V. Solapadas 0.125 59.46 89.86 76.51
V. Solapadas 0.1875 62.76 89.00 77.33
V. Solapadas 0.25 65.48 88.25 78.01
V. Solapadas 0.5 73.02 86.83 80.69

Cuadro 33: HMM - Arm Healthy Cortex Healthy - Todos los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 40.69 85.84 66.46
Puntos 0.03125 49.54 84.26 69.26
Puntos 0.0625 54.36 84.36 71.30
Puntos 0.125 59.26 85.84 74.09
Puntos 0.1875 61.42 89.50 76.91
Puntos 0.25 63.62 89.63 77.81
Puntos 0.5 68.20 91.21 80.75
Ventanas 0.03125 49.19 84.35 69.28
Ventanas 0.0625 53.96 84.58 71.46
Ventanas 0.125 58.77 85.91 74.28
Ventanas 0.1875 61.73 87.83 76.65
Ventanas 0.25 63.58 89.37 78.32
Ventanas 0.5 67.65 91.84 82.16
V. Solapadas  0.03125 48.99 84.32 69.09
V. Solapadas 0.0625 53.83 84.44 71.16
V. Solapadas 0.125 58.33 86.51 74.14
V. Solapadas 0.1875 61.44 88.41 76.42
V. Solapadas 0.25 63.07 89.43 77.57
V. Solapadas 0.5 69.06 89.95 80.67

Cuadro 34: HMM - Arm Impaired Cortex Healthy - Mejor canal

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 38.99 90.25 68.24
Puntos 0.03125 45.03 88.38 69.65
Puntos 0.0625 48.27 87.57 70.46
Puntos 0.125 53.45 86.36 71.82
Puntos 0.1875 55.65 86.40 72.62
Puntos 0.25 57.50 85.65 72.85
Puntos 0.5 61.95 87.43 75.85
Ventanas 0.03125 44.73 88.54 69.76
Ventanas 0.0625 48.39 87.50 70.74
Ventanas 0.125 52.66 86.73 72.13
Ventanas 0.1875 55.57 86.11 73.02
Ventanas 0.25 57.33 86.02 73.73
Ventanas 0.5 62.39 87.29 77.33
V. Solapadas 0.03125 44.82 88.62 69.74
V. Solapadas  0.0625 48.63 87.61 70.71
V. Solapadas 0.125 53.39 86.75 72.10
V. Solapadas 0.1875 56.52 86.26 73.04
V. Solapadas 0.25 58.51 85.66 73.44
V. Solapadas 0.5 66.45 85.16 76.85

Cuadro 35: HMM - Arm Impaired Cortex Healthy - Todos los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 46.63 76.50 63.68
Puntos 0.03125 56.90 73.79 66.49
Puntos 0.0625 62.29 72.52 68.07
Puntos 0.125 66.67 73.32 70.38
Puntos 0.1875 70.44 73.20 71.96
Puntos 0.21875 71.68 73.95 72.91
Puntos 0.25 72.12 74.68 73.52
Puntos 0.5 75.66 79.65 77.84
Ventanas 0.03125 56.73 73.69 66.42
Ventanas 0.0625 61.82 72.70 68.04
Ventanas 0.125 66.92 72.66 70.20
Ventanas 0.1875 69.82 73.12 71.71
Ventanas 0.21875 71.35 73.28 72.44
Ventanas 0.25 71.87 74.18 73.19
Ventanas 0.5 76.25 79.30 78.08
V. Solapadas 0 46.66 76.48 63.68
V. Solapadas  0.03125 56.45 73.71 66.27
V. Solapadas  0.0625 61.75 72.54 67.86
V. Solapadas  0.125 67.14 71.99 69.86
V. Solapadas 0.1875 70.64 72.37 71.60
V. Solapadas 0.21875 72.22 72.41 72.32
V. Solapadas 0.25 72.75 72.76 72.76
V. Solapadas 0.5 77.13 77.08 77.10

Cuadro 36: HMM - Arm Healthy Cortex Injured - Mejor canal
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 48.50 81.12 67.12
Puntos 0.03125 56.31 78.46 68.89
Puntos 0.0625 60.87 76.94 69.94
Puntos 0.125 65.83 75.74 71.36
Puntos 0.1875 68.76 74.92 72.16
Puntos 0.21875 69.50 75.40 72.69
Puntos 0.25 70.60 75.13 73.07
Puntos 0.5 74.37 77.98 76.34
Ventanas 0.03125 56.20 78.61 69.01
Ventanas 0.0625 60.55 77.32 70.13
Ventanas 0.125 65.65 76.30 71.74
Ventanas 0.1875 68.55 76.13 72.88
Ventanas 0.21875 69.93 75.72 73.20
Ventanas 0.25 70.90 76.11 73.87
Ventanas 0.5 74.58 79.34 77.43
V. Solapadas 0 48.46 81.15 67.12
V. Solapadas  0.03125 56.03 78.53 68.83
V. Solapadas  0.0625 60.56 77.11 69.93
V. Solapadas 0.125 65.98 75.75 71.46
V. Solapadas 0.1875 69.09 75.27 72.53
V. Solapadas  0.21875 70.70 74.51 72.78
V. Solapadas  0.25 71.36 74.84 73.28
V. Solapadas 0.5 76.87 76.20 76.50

Cuadro 37: HMM - Arm Healthy Cortex Injured - Todos los mejores canales
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 44.64 76.69 62.93
Puntos 0.03125 53.01 73.53 64.66
Puntos 0.0625 57.43 72.76 66.08
Puntos 0.125 62.07 72.44 67.86
Puntos 0.1875 64.75 73.05 69.33
Puntos 0.21875 65.56 75.08 70.72
Puntos 0.25 66.68 75.32 71.40
Puntos 0.5 70.95 83.57 77.84
Ventanas 0.03125 52.80 73.71 64.75
Ventanas 0.0625 57.32 72.98 66.27
Ventanas 0.125 62.29 73.49 68.69
Ventanas 0.1875 65.08 75.22 70.87
Ventanas 0.21875 65.95 75.83 71.53
Ventanas 0.25 66.92 77.01 72.68
Ventanas 0.5 71.04 86.84 80.52
V. Solapadas 0 44.53 76.68 62.88
V. Solapadas 0.03125 52.61 73.85 64.70
V. Solapadas  0.0625 56.82 73.07 66.02
V. Solapadas 0.125 61.94 73.36 68.35
V. Solapadas 0.1875 65.10 74.45 70.30
V. Solapadas  0.21875 66.39 75.08 71.13
V. Solapadas  0.25 67.22 75.96 72.03
V. Solapadas 0.5 71.40 81.87 77.22

Cuadro 38: HMM - Arm Impaired Cortex Injured - Mejor canal
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 41.74 81.93 64.68
Puntos 0.03125 49.50 78.79 66.14
Puntos 0.0625 53.75 77.27 67.03
Puntos 0.125 58.94 76.00 68.46
Puntos 0.1875 61.85 75.63 69.46
Puntos 0.21875 61.40 76.12 69.37
Puntos 0.25 63.43 76.56 70.59
Puntos 0.5 68.50 80.97 75.30
Ventanas 0.03125 49.49 78.61 66.13
Ventanas 0.0625 53.98 77.13 67.20
Ventanas 0.125 58.85 76.51 68.94
Ventanas 0.1875 61.78 76.80 70.37
Ventanas 0.21875 62.95 77.16 70.98
Ventanas 0.25 64.09 77.30 71.64
Ventanas 0.5 70.15 82.98 77.85
V. Solapadas 0 41.65 81.95 64.66
V. Solapadas  0.03125 49.35 78.63 66.01
V. Solapadas  0.0625 53.81 76.99 66.93
V. Solapadas 0.125 58.88 75.94 68.45
V. Solapadas 0.1875 62.13 75.97 69.82
V. Solapadas  0.21875 63.27 75.26 69.81
V. Solapadas  0.25 64.83 75.43 70.66
V. Solapadas 0.5 70.98 77.79 74.76

Cuadro 39: HMM - Arm Impaired Cortex Injured - Todos los mejores canales
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HMM - Completo - Viterbi

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 56.10 88.19 74.41
Puntos 0.03125 55.81 87.89 74.03
Puntos 0.0625 54.84 87.80 73.45
Puntos 0.125 55.36 87.41 73.25
Puntos 0.1875 55.41 87.60 73.17
Puntos 0.25 55.04 87.48 72.73
Puntos 0.5 57.25 89.89 75.05
Ventanas 0.03125 56.46 87.66 74.29
Ventanas 0.0625 56.63 87.31 74.16
Ventanas 0.125 56.25 87.66 74.20
Ventanas 0.1875 56.45 87.57 74.24
Ventanas 0.25 56.08 87.89 74.26
Ventanas 0.5 58.80 90.06 77.56
V. Solapadas 0.03125 56.31 87.13 73.84
V. Solapadas  0.0625 56.50 86.79 73.65
V. Solapadas 0.125 56.23 86.73 73.34
V. Solapadas 0.1875 56.21 86.52 73.05
V. Solapadas 0.25 56.34 87.04 73.22
V. Solapadas 0.5 58.12 88.12 74.79

Cuadro 40: HMM - Arm Healthy Cortex Healthy - Mejor canal - Viterbi
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 66.26 86.28 77.69
Puntos 0.03125 66.31 86.44 77.75
Puntos 0.0625 66.51 85.85 77.43
Puntos 0.125 66.90 86.00 77.56
Puntos 0.1875 66.87 86.60 77.75
Puntos 0.25 67.64 86.52 77.94
Puntos 0.5 70.08 86.77 79.18
Ventanas 0.03125 66.44 86.30 77.79
Ventanas 0.0625 66.69 85.95 77.70
Ventanas 0.125 66.72 86.52 78.04
Ventanas 0.1875 67.25 86.17 78.06
Ventanas 0.25 67.56 86.49 78.38
Ventanas 0.5 72.23 86.07 80.54
V. Solapadas  0.03125 66.55 86.05 77.65
V. Solapadas  0.0625 67.07 85.86 77.71
V. Solapadas  0.125 67.37 85.83 77.72
V. Solapadas 0.1875 69.07 85.29 78.08
V. Solapadas 0.25 69.35 84.43 77.64
V. Solapadas 0.5 72.18 82.87 78.12

Cuadro 41: HMM - Arm Healthy Cortex Healthy - Todos los mejores canales -
Viterbi

Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 60.34 77.38 70.06
Puntos 0.03125 59.87 76.01 69.04
Puntos 0.0625 60.07 74.83 68.40
Puntos 0.125 59.64 73.81 67.55
Puntos 0.1875 56.66 74.68 66.60
Puntos 0.25 57.43 76.37 67.76
Puntos 0.5 56.20 81.52 70.01
Ventanas 0.03125 59.60 75.77 68.84
Ventanas 0.0625 59.61 74.96 68.38
Ventanas 0.125 59.94 74.35 68.17
Ventanas 0.1875 57.22 75.57 67.70
Ventanas 0.25 56.45 77.10 68.25
Ventanas 0.5 55.36 85.62 73.52
V. Solapadas 0.03125 59.50 75.51 68.61
V. Solapadas  0.0625 60.12 73.66 67.79
V. Solapadas  0.125 58.37 73.92 67.09
V. Solapadas 0.1875 57.82 74.37 67.02
V. Solapadas 0.25 57.54 75.83 67.60
V. Solapadas 0.5 54.16 85.87 71.78

Cuadro 42: HMM - Arm Impaired Cortex Healthy - Mejor canal - Viterbi
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 59.21 81.93 72.18
Puntos 0.03125 60.93 82.03 72.92
Puntos 0.0625 60.94 82.01 72.84
Puntos 0.125 62.99 81.80 73.49
Puntos 0.1875 62.01 81.66 72.85
Puntos 0.25 63.81 80.22 72.76
Puntos 0.5 66.00 82.25 74.86
Ventanas 0.03125 61.13 81.23 72.62
Ventanas 0.0625 61.57 81.21 72.79
Ventanas 0.125 61.75 81.58 73.09
Ventanas 0.1875 62.25 81.47 73.23
Ventanas 0.25 63.17 81.99 73.92
Ventanas 0.5 65.78 83.64 76.50
V. Solapadas  0.03125 61.49 81.35 72.79
V. Solapadas 0.0625 62.33 81.71 73.31
V. Solapadas 0.125 62.81 80.99 73.01
V. Solapadas 0.1875 62.91 81.84 73.43
V. Solapadas 0.25 63.98 81.25 73.47
V. Solapadas 0.5 68.69 81.62 75.87

Cuadro 43: HMM - Arm Impaired Cortex Healthy - Todos los mejores canales -
Viterbi
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 62.14 68.52 65.78
Puntos 0.03125 61.89 67.54 65.10
Puntos 0.0625 62.57 64.92 63.90
Puntos 0.125 61.23 65.81 63.79
Puntos 0.1875 61.37 64.02 62.83
Puntos 0.21875 61.59 63.17 62.44
Puntos 0.25 60.41 64.49 62.64
Puntos 0.5 58.66 71.07 65.43
Ventanas 0.03125 62.21 67.36 65.15
Ventanas 0.0625 62.31 66.06 64.45
Ventanas 0.125 61.37 66.31 64.19
Ventanas 0.1875 60.05 67.26 64.17
Ventanas 0.21875 60.22 66.85 63.97
Ventanas 0.25 60.23 67.67 64.48
Ventanas 0.5 59.16 74.44 68.33
V. Solapadas 0 62.05 68.52 65.74
V. Solapadas  0.03125 62.09 67.56 65.20
V. Solapadas 0.0625 62.33 66.21 64.53
V. Solapadas 0.125 61.82 65.45 63.86
V. Solapadas 0.1875 61.44 65.37 63.62
V. Solapadas  0.21875 62.14 63.71 63.00
V. Solapadas  0.25 61.13 65.81 63.70
V. Solapadas 0.5 60.72 69.58 65.64

Cuadro 44: HMM - Arm Healthy Cortex Injured - Mejor canal - Viterbi
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 67.59 70.95 69.51
Puntos 0.03125 67.68 70.18 69.10
Puntos 0.0625 68.29 69.30 68.86
Puntos 0.125 68.03 69.20 68.68
Puntos 0.1875 68.79 68.88 68.84
Puntos 0.21875 66.85 70.38 68.76
Puntos 0.25 68.47 67.56 67.98
Puntos 0.5 68.33 70.65 69.60
Ventanas 0.03125 67.60 70.57 69.30
Ventanas 0.0625 67.74 70.19 69.14
Ventanas 0.125 67.41 69.43 68.57
Ventanas 0.1875 67.70 69.44 68.69
Ventanas 0.21875 68.54 70.44 69.61
Ventanas 0.25 67.56 70.32 69.14
Ventanas 0.5 69.06 74.86 72.54
V. Solapadas 0 67.50 70.72 69.34
V. Solapadas 0.03125 68.09 69.65 68.97
V. Solapadas 0.0625 68.20 68.88 68.58
V. Solapadas 0.125 67.89 69.24 68.65
V. Solapadas 0.1875 67.50 69.19 68.44
V. Solapadas  0.21875 67.41 70.08 68.87
V. Solapadas 0.25 67.59 69.75 68.78
V. Solapadas 0.5 68.54 70.75 69.76

Cuadro 45: HMM - Arm Healthy Cortex Injured- Todos los mejores canales -
Viterbi
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 57.87 68.26 63.80
Puntos 0.03125 57.89 66.82 62.96
Puntos 0.0625 58.50 66.03 62.75
Puntos 0.125 57.88 65.29 62.02
Puntos 0.1875 57.19 64.94 61.47
Puntos 0.21875 58.42 62.94 60.87
Puntos 0.25 59.37 63.05 61.38
Puntos 0.5 58.70 68.40 63.99
Ventanas 0.03125 57.58 67.09 63.01
Ventanas 0.0625 57.82 65.55 62.24
Ventanas 0.125 58.54 64.40 61.88
Ventanas 0.1875 58.97 63.77 61.71
Ventanas 0.21875 58.91 63.01 61.23
Ventanas 0.25 58.98 63.94 61.81
Ventanas 0.5 57.34 76.49 68.83
V. Solapadas 0 57.82 68.26 63.78
V. Solapadas 0.03125 57.08 67.18 62.83
V. Solapadas  0.0625 58.28 65.18 62.19
V. Solapadas 0.125 58.31 63.68 61.32
V. Solapadas  0.1875 58.55 63.86 61.50
V. Solapadas  0.21875 58.54 64.20 61.62
V. Solapadas 0.25 58.31 64.60 61.77
V. Solapadas 0.5 58.54 71.87 65.94

Cuadro 46: HMM - Arm Impaired Cortex Injured - Mejor canal - Viterbi
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Tipo Delay | Reposo Movimiento Media ambos
Puntos 0 61.06 72.24 67.44
Puntos 0.03125 60.20 71.13 66.41
Puntos 0.0625 60.15 70.29 65.88
Puntos 0.125 61.05 69.19 65.59
Puntos 0.1875 61.53 70.57 66.52
Puntos 0.21875 60.96 70.35 66.05
Puntos 0.25 62.22 70.13 66.54
Puntos 0.5 64.66 72.43 68.90
Ventanas 0.03125 59.88 71.52 66.53
Ventanas 0.0625 59.72 70.71 66.00
Ventanas 0.125 60.13 70.18 65.87
Ventanas 0.1875 61.37 70.02 66.31
Ventanas 0.21875 61.35 70.92 66.76
Ventanas 0.25 61.64 70.38 66.63
Ventanas 0.5 62.91 76.04 70.79
V. Solapadas 0 61.01 72.05 67.32
V. Solapadas 0.03125 59.98 71.05 66.28
V. Solapadas  0.0625 60.31 70.25 65.94
V. Solapadas 0.125 60.86 70.14 66.07
V. Solapadas 0.1875 61.44 70.00 66.19
V. Solapadas  0.21875 61.77 69.89 66.20
V. Solapadas 0.25 62.10 71.02 67.01
V. Solapadas 0.5 63.43 74.37 69.51

Cuadro 47: HMM - Arm Impaired Cortex Injured- Todos los mejores canales -
Viterbi

74



C.4. CRF

Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 69.70 97.72 85.27
10 0.125 70.02 98.09 85.68
20 0.0625 70.97 97.50 85.95
5 0.25 68.10 97.58 84.18
0.9375 62.53 97.26 82.14
10 0.09375 62.60 97.76 82.34
15 0.0625 62.85 97.52 82.43
30 0.03125 62.14 96.51 81.66
0.625 51.80 98.08 77.88
10 0.0625 51.58 98.13 77.87
20 0.03125 53.50 97.57 78.54
5 0.125 50.33 98.53 77.23
0.3125 29.37 99.06 68.84
10 0.03125 30.63 98.92 69.42
5 0.0625 28.12 99.19 68.25
5 0.03125 16.66 99.65 63.80
0.125 20 0 20.55 99.13 65.40
0.0625 10 0 10.96 99.61 61.56

Cuadro 48: CRF - Arm Healthy Cortex Healthy - Mejor canal

Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 64.87 91.42 79.66
10 0.125 65.46 91.02 79.72
20 0.0625 60.54 92.51 78.59
5 0.25 68.60 90.74 80.68
0.9375 55.98 92.28 76.49
10 0.09375 59.95 91.11 77.45
15 0.0625 56.23 92.30 76.60
30 0.03125 51.76 93.43 75.43
0.625 50.39 93.66 74.80
10 0.0625 50.91 93.23 74.81
20 0.03125 44.90 94.00 72.79
5 0.125 55.37 93.76 76.80
0.3125 35.24 95.49 69.36
10 0.03125 35.66 94.68 69.19
5 0.0625 34.82 96.30 69.54
0.15625 5 0.03125 24.68 97.13 65.83
0.0625 10 0 20.92 96.70 64.17

Cuadro 49: CRF - Arm Healthy Cortex Healthy - Todos los mejores canales
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Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 78.40 94.98 87.71
10 0.125 69.48 97.77 85.27
20 0.0625 86.53 92.67 90.00
40 0.03125 69.60 95.76 84.46
5 0.25 88.00 93.73 91.12
0.9375 54.22 97.43 78.25
10 0.09375 64.05 97.62 82.90
15 0.0625 48.421 97.44 73.50
30 0.03125 59.20 97.13 80.75
0.625 44.37 98.79 75.52
10 0.0625 49.89 98.30 77.23
20 0.03125 46.64 98.48 76.09
5 0.125 37.95 99.09 72.03
0.3125 22.69 99.74 66.33
10 0.03125 21.73 99.81 66.09
5 0.0625 23.65 99.66 66.57
0.15625 5 0.03125 12.32 99.88 62.06
0.125 20 0 12.41 99.59 62.17
0.0625 4.818650 99.91 58.80
0 0.0625 2.719595 100.00 57.65
10 0 6.917705 99.82 59.94
Cuadro 50: CRF - Arm Impaired Cortex Healthy - Mejor canal
Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 64.25 90.52 78.97
10 0.125 66.19 89.03 78.94
20 0.0625 63.93 89.95 78.62
40 0.03125 58.35 93.27 78.19
5 0.25 68.52 89.84 80.15
0.9375 56.36 91.58 76.26
10 0.09375 59.98 90.41 77.06
15 0.0625 54.80 91.36 75.45
30 0.03125 54.31 92.96 76.27
0.625 46.41 93.14 72.76
10 0.0625 47.33 92.57 72.88
20 0.03125 43.03 94.09 72.03
5 0.125 48.88 92.76 73.37
0.3125 38.27 93.59 69.61
10 0.03125 37.11 93.75 69.28
5 0.0625 39.44 93.44 69.93
0.15625 5 0.03125 25.50 95.91 65.50
0.0625 10 0 20.47 96.03 63.60

Cuadro 51: CRF - Arm Impaired Cortex Healthy - Todos los mejores canales
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Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 5 0.25 58.25 97.36 79.58

10 0.125 57.65 97.58 79.94
0.9375 10 0.09375 44.59 98.39 74.79
0.625 10 0.0625 30.67 98.89 69.19

5 0.125 31.80 99.17 69.40
0.3125 5 0.0625 15.81 99.76 63.22

Cuadro 52: CRF - ArmHealthy CortexInjured - Mejor canal
Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 61.74 90.67 77.89

5 0.25 64.04 92.17 79.38
0.9375 10 0.09375 51.72 93.89 75.39
0.625 5 0.125 40.37 96.84 71.88

10 0.0625 38.33 95.97 70.88
0.3125 5 0.0625 21.58 98.78 65.17

Cuadro 53: CRF - ArmHealthy CortexInjured - Todos los mejores canales

Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 56.61 97.33 79.34

5 0.25 57.66 97.69 79.49
0.9375 10 0.09375 46.60 98.41 75.69

15 0.0625 48.41 97.45 76.11
0.625 5 0.125 33.21 99.14 70.01
0.3125 5 0.0625 16.64 99.63 63.50

Cuadro 54: CRF - Armimpaired CortexInjured 1Ch CRF
Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 61.25 90.27 77.45

5 0.25 64.58 91.97 79.52
0.9375 10 0.09375 55.33 92.22 76.04
0.625 10 0.0625 44.33 94.82 72.84

5 0.125 43.80 96.06 72.97
0.3125 5 0.0625 24.52 98.93 66.54

Cuadro 55: CRF - Armimpaired CortexInjured - Todos los mejores canales
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CRF - Completo - Viterbi

Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 70.02 98.09 85.68
20 0.0625 70.97 97.50 85.95
5 0.25 68.10 97.58 84.18
0.9375 10 0.09375 62.60 97.76 82.34
15 0.0625 62.85 97.52 82.43
30 0.03125 62.14 96.51 81.66
0.625 10 0.0625 51.58 98.13 77.87
20 0.03125 53.50 97.57 78.54
5 0.125 50.33 98.53 77.23
0.3125 10 0.03125 30.63 98.92 69.42
5 0.0625 28.12 99.19 68.25
0.15625 5 0.03125 16.66 99.65 63.80
0.125 20 0 20.55 99.13 65.40
0.0625 10 0 10.96 99.61 61.56

Cuadro 56: CRF - Arm Healthy Cortex Healthy - Mejor canal - Viterbi

Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 65.46 91.02 79.72
20 0.0625 60.54 92.51 78.59
5 0.25 68.60 90.74 80.68
0.9375 10 0.09375 59.95 91.11 77.45
15 0.0625 56.23 92.30 76.60
30 0.03125 51.76 93.43 75.43
0.625 10 0.0625 50.91 93.23 74.81
20 0.03125 44.90 94.00 72.79
5 0.125 55.37 93.76 76.80
0.3125 10 0.03125 35.66 94.68 69.19
5 0.0625 34.82 96.30 69.54
0.15625 5 0.03125 24.68 97.13 65.83
0.0625 10 0 20.92 96.70 64.17

Cuadro 57: CRF - Arm Healthy Cortex Healthy - Todos los mejores canales -
Viterbi
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Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 69.48 97.77 85.27
20 0.0625 86.53 92.67 90.00
40 0.03125 69.60 95.76 84.46
5 0.25 88.00 93.73 91.12
0.9375 10 0.09375 64.05 97.62 82.90
15 0.0625 84.42 92.73 89.11
30 0.03125 59.20 97.13 80.75
0.625 10 0.0625 49.89 98.30 77.23
20 0.03125 46.64 98.48 76.09
5 0.125 37.33 99.10 71.81
0.3125 10 0.03125 21.73 99.81 66.09
5 0.0625 23.65 99.66 66.57
0.15625 5 0.03125 12.32 99.88 62.06
0.125 20 0 12.41 99.59 62.17
0.0625 10 0 6.917705 99.82 59.94

Cuadro 58: CRF - Arm Impaired Cortex Healthy - Mejor canal - Viterbi

Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 66.19 89.03 78.94
20 0.0625 63.93 89.95 78.62
40 0.03125 58.35 93.27 78.19
5 0.25 68.52 89.84 80.15
0.9375 10 0.09375 59.98 90.41 77.06
15 0.0625 54.80 91.36 75.45
30 0.03125 54.31 92.96 76.27
0.625 10 0.0625 47.33 92.57 72.88
20 0.03125 43.03 94.09 72.03
5 0.125 48.88 92.76 73.37
0.3125 10 0.03125 37.11 93.75 69.28
5 0.0625 39.44 93.44 69.93
0.15625 5 0.03125 25.50 95.91 65.50
0.0625 10 0 20.47 96.03 63.60

Cuadro 59: CRF - Arm Impaired Cortex Healthy - Todos los mejores canales -

Viterbi
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Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 88.09 92.91 90.78

5 0.25 89.31 92.77 91.20
0.9375 10 0.09375 87.69 93.00 90.67
0.625 10 0.0625 86.56 92.61 89.98

5 0.125 87.39 92.77 90.39
0.3125 5 0.0625 87.42 94.14 91.22

Cuadro 60: CRF - ArmHealthy CortexInjured - Mejor canal - Viterbi

Delay winSize intervalo | Reposo Movimiento Media ambos
5 0.25 83.31 87.30 85.49
1.25 10 0.125 81.41 86.52 84.26
0.9375 10 0.09375 80.80 86.82 84.18
0.625 5 0.125 81.80 87.21 84.82
10 0.0625 80.83 86.90 84.26
0.3125 5 0.0625 82.38 88.30 85.72

Cuadro 61: CRF - ArmHealthy CortexInjured - Todos los mejores canales - Viterbi

’ Delay winSize intervalo \ Reposo Movimiento Media ambos ‘
1.25 10 0.125 87.10 92.03 89.85
5 0.25 88.64 92.46 90.72
0.9375 10 0.09375 87.23 92.18 90.01
0.625 5 0.125 86.94 93.59 90.65

Cuadro 62: CRF - Armlmpaired CortexInjured - Mejor canal - Viterbi

Delay winSize intervalo | Reposo Movimiento Media ambos
1.25 10 0.125 80.10 85.99 83.39

5 0.25 82.35 86.57 84.65
0.9375 10 0.09375 79.85 86.06 83.34
0625 5 0.125 81.38 87.58 84.84

10 0.0625 78.75 86.36 83.04

Cuadro 63: CRF - ArmImpaired CortexInjured - Todos los mejores canales - Viterbi
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