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Evaluación de técnicas de clasificación para detección del
movimiento a partir de EEG

RESUMEN

El objetivo del presente proyecto ha sido evaluar diferentes técnicas de clasifi-
cación que permitan inferir, a partir de una actividad cerebral capturada con
EEG, la detección e intención de movimiento en pacientes con hemiplejia. Este
tipo de información es muy valiosa en terapias de rehabilitación ya que permite
automatizar parte del tratamiento con prótesis robóticas y evaluar de una forma
independiente y objetiva el grado de involucración del paciente en la tarea. Se
enmarca dentro del proyecto CONSOLIDER HYPER, que investiga en el uso
de técnicas de aprendizaje automático para el desarrollo de sistemas robóticos
aplicados a la rehabilitación. El uso de estas técnicas resulta necesario debido a
que las señales eléctricas obtenidas mediante los EEG suponen un enorme con-
junto de datos con un espacio de dimensiones muy amplio par realizar análisis
manual o por inspección visual.

En particular, se han estudiado dos aproximaciones diferentes para la clasifi-
cación del movimiento y de la intención del mismo. Por un lado, se han estudiado
clasificadores del EEG para cada instante de tiempo independientemente (por
puntos de trayectoria). Este tipo de técnicas son las más habituales en la ma-
yoŕıa de investigaciones de clasificación de señales capturadas por EEG, aunque
debemos destacar que en su mayor parte se realizan sobre pacientes sanos. La
novedad de este trabajo radica en su condición de haber sufrido un infarto ce-
rebral, lo cual complica el análisis. Hemos seleccionado maquinas lineales como
Análisis Discriminante (LDA) y no lineales como Máquinas de Soporte Vectorial
(SVM). La segunda aproximación, menos habitual en el campo del EEG, se ha
realizado analizando clasificadores que tienen en cosideración información de la
secuencia completa a analizar. Dentro de este área, nos hemos centrado en los el
Modelo Oculto de Márkov (HMM) y en el Campo Aleatorio Condicional (CRF).

Hemos trabajado con ondas cerebrales, grabadas con anterioridad, corres-
pondientes al movimiento y al reposo de pacientes que han sufrido infarto cere-
bral, estudiando los resultados tanto del lado con parálisis como del lado sano.
En este proyecto se ha realizado la extracción de las caracteŕısticas más ade-
cuadas para, a continuación, evaluar la eficiencia de los distintos algoritmos de
aprendizaje automático estudiados.
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3.3.2. SVM - Máquina de Soporte Vectorial . . . . . . . . . . . . 20
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1. Introducción

1.1. Contexto y motivación

Las interfaces cerebro-ordenador, en adelante BCI (del inglés Brain-Computer
Interfaces), son una tecnoloǵıa que permite la comunicación directa entre una
máquina y una persona mediante la captura de las señales eléctricas generadas
por el cerebro. A la hora de leer estas ondas existen varias aproximaciones, dos
de las más habituales son: los dispositivos invasivos, en los que se introducen
los electrodos en el propio cerebro mediante intervención quirúrgica obteniendo
una electrocorticograf́ıa (ECoG); y los no invasivos, donde la actividad eléctri-
ca se realiza desde el exterior mediante un electroencefalograma (EEG). En el
primer tipo la señal es mucho más clara y se puede conseguir mayor precisión,
pero a cambio supone más riesgos al precisar de una operación. Los métodos
no invasivos, a pesar de tener una peor resolución por la distorsión que supone
el cráneo, son los que se prefieren en la experimentación con humanos debi-
do a su simplicidad y para eludir los posibles riesgos riesgos inherentes a una
intervención.

El grupo de Robótica de la Universidad de Zaragoza está inmerso desde hace
unos años en la investigación y aplicación de técnicas BCI orientadas a la reha-
bilitación. En la actualidad participan en el proyecto CONSOLIDER-HYPER.
Este proyecto intenta avanzar en la investigación de aparatos neurorobóticos
(NR) y prótesis neuronales motorizadas (MNP), tanto para rehabilitación como
para recuperar la funcionalidad de los desórdenes motores en la actividades coti-
dianas. Los NR son prótesis robóticas que realizan el movimiento por śı mismas
y las NRP son un sistema capaz de electro-estimular los músculos del sujeto en
el que están implantadas para efectuar el movimiento. Dicho proyecto centra sus
actividades en nuevos implantes NR-MNP, que combinen estructuras biológicas
y artificiales para mejorar las grandes limitaciones de las actuales soluciones
de rehabilitación para los casos particulares de accidentes cerebro-vasculares,
parálisis cerebral y lesión de médula espinal.

Las personas que han sufrido infartos cerebrales y padecen daños severos
en un hemisferio del cerebro pueden perder la movilidad de un lado del cuerpo
pese a continuar teniendo los músculos en perfectas condiciones. En estos casos,
es posible volver a mover las extremidades aprendiendo de nuevo con el córtex
cerebral sano, para lo cual se requieren unas largas sesiones de rehabilitación.
Para el terapeuta encargado de esta rehabilitación disponer de una herramien-
ta que permita conocer el involucramiento real del paciente, y si realmente
está enviando las órdenes adecuadas desde el cerebro, es una información de
incalculable valor. El presente proyecto analiza diferentes modelos matemáticos
de clasificación para encontrar cuáles serán los más apropiados para construir
estas herramientas de asistencia en la rehabilitación.
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1.2. Objetivos

Las señales eléctricas obtenidas mediante los EEG suponen un enorme con-
junto de datos con un espacio de dimensiones tan amplio que hace muy com-
pleja la realización un análisis manual o por inspección visual en busca de las
caracteŕısticas que permitan diferenciar las diferentes acciones que las producen.
Normalmente lo que se hace es aplicar técnicas de procesado de la señal para
extraer las caracteŕısticas para clasificación y la detección de comandos. Una
de las dificultades que presentan es que estas señales son no estacionarias, es
decir, vaŕıan con el tiempo, lo que dificulta su análisis. También contienen una
gran cantidad de ruido –producido, por ejemplo, por otra actividad muscular
o cerebral distinta a la que se trata de encontrar– presentando mucha variabi-
lidad. Por todo ello se aplican algoritmos de aprendizaje automático que sean
capaces de extraer la información adecuada a la hora de tratar la señal para
decodificarla correctamente.

Figura 1: Representación de la onda capturada mediante EEG en diferentes canales
correspondiente a un sujeto con brazo y córtex sano. Se han seleccionado los 48
canales que presentan más variabilidad entre reposo y movimiento.

En nuestro proyecto trabajamos con ondas cerebrales correspondientes al
movimiento y al reposo de pacientes que hayan sufrido infarto cerebral, estu-
diando los resultados tanto del lado con parálisis como del lado sano. Además
de la complejidad antes reseñada, en este ámbito se complica más debido al es-
tado de los pacientes: no sólo tienen un brazo prácticamente incapacitado y que
apenas pueden mover (motivo por el cual necesitan tareas de rehabilitación),
sino que además el córtex dañado presenta una actividad más irregular que uno
sano. En las imágenes 1 y 2 se puede ver un ejemplo de cómo son estas señales
que se pretenden clasificar, donde se puede apreciar la enorme cantidad de rui-
do y la dificultad de discriminar el movimiento a partir de esta información.
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La figura 1 se corresponde con una selección de canales del córtex sano y la
figura 2 corresponda a canales del córtex dañado (en la sección 2.2.1 se explica
por qué hay distinto número de canales en cada imagen, lo cual todav́ıa no nos
interesa detallar).

Dado que las BCI son un campo relativamente reciente, todav́ıa no se ha
determinado qué modelos de aprendizaje automático –de todas las de aproxi-
maciones que existen– son los más adecuados para decodificar el electroencefa-
lograma que se produce durante el movimiento de los brazos en pacientes con
infarto cerebral. Es por ello que en este trabajo nos centraremos en la capa-
cidad de algunos modelos para diferenciar correctamente las ondas cerebrales
para ambos estados, estudiando los resultados tanto del lado con parálisis como
del lado sano. Estamos interesados en evaluar, por un lado, el porcentaje de
aciertos de cada modelo y, por otro, en el tiempo requerido para llevar a cabo
correctamente esta clasificación. Esta importancia en la latencia en la detección
del cambio del reposo al movimiento se debe a que esta información podŕıa ser
utilizada como asistencia en tareas de rehabilitación. Esto significa que el mode-
lo podŕıa ser la parte que tome las decisiones de rehabilitación en tiempo real en
un aparato neurorobótico o de una prótesis neuronal motorizada. Por lo tanto,
de existir demasiada latencia en la clasificación, el robot tendŕıa un retardo que
imposibilitaŕıa sus funciones.

Figura 2: Representación de la onda capturada mediante EEG en diferentes ca-
nales correspondiente a un sujeto con brazo incapacitado y córtex dañado. Se han
seleccionado los 8 canales que presentan más variabilidad entre reposo y movimien-
to.

Para decodificar correctamente las señales que genera la actividad cerebral
durante el movimiento, en el presente estudio se analizarán diferentes modelos
de aprendizaje automático. Algunas de estas técnicas (LDA y SVM) son las
más habituales en el campo de los EEG (véase [2]), y por ello representarán
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el primer paso para estudiar cómo se comportan estos modelos cuando el EEG
representa la actividad cerebral de pacientes con hemiplejia. En estas técnicas se
clasifica la señal para cada instante de tiempo independientemente, por lo que
una observación se clasificará en una misma categoŕıa sin importar su posición
o qué otras observaciones tiene a su alrededor. A este tipo de clasificación la de-
nominaremos estática en contraposición al siguiente tipo que vamos a proceder
a describir.

Las técnicas novedosas en el análisis de señales obtenidas por EEG, pero
de reconocido uso en otros campos, serán los modelos en grafo basados en la
propiedad de Márkov. Estos modelos (CRF y HMM), a diferencia de los ante-
riores, a la hora de clasificar no sólo utilizan la señal observada en un instante
determinado, sino que tienen en cuenta el orden de la secuencia. Dado que se
espera que la señal obtenida en un cierto instante esté relacionada con el resto
de ondas vecinas, estas técnicas de clasificación debeŕıan obtener mejores re-
sultados que las que son independientes del tiempo. A lo largo de este trabajo
nos referiremos a estos tipos de clasificación como dinámicos para resaltar este
comportamiento en el que una misma observación se clasificaŕıa en categoŕıas
distintas en función del momento en que se observe.

De este modo distinguiremos dos tipos de situaciones bien diferenciadas para
analizar la clasificación del movimiento. Por un lado partiremos del hecho de que
poseemos la señal completa EEG realizada en los experimentos y la utilizaremos
en su totalidad. A este tipo de análisis lo denominaremos clasificación de la tra-
yectoria completa, y sólo se puede ejecutar con posterioridad a la obtención total
de la señal. Por otro lado, simularemos la gradual adquisición de la señal que se
daŕıa en condiciones reales de rehabilitación, de modo que no se dispondrá desde
el principio de la clasificación de la señal EEG completa. Esto, como veremos
más adelante en la descripción matemática de los modelos dinámicos, supone
una diferencia sustancial en la clasificación. A esta última metodoloǵıa la deno-
minaremos clasificación por puntos de trayectoria y nos gustaŕıa enfatizar que
su ejecución seŕıa equivalente a decodificar la señal en tiempo real mientras se
está realizando el experimento.

Para sintetizar, podemos ver en la siguiente lista los objetivos que nos plan-
teamos resolver en este trabajo:

Objetivo: Clasificación del movimiento en pacientes que hayan sufrido infarto
cerebral mediante el análisis de la actividad cerebral capturada por EEG.

Subobjetivo 1: Casificación de la trayectoria completa para evaluación
de los modelos matemáticos. Se asumirá que se dispone de la señal
completa en el momento de clasificarla.

Subobjetivo 2: Clasificación por puntos de trayectoria para utilización
en rehabilitación. Se simulará utilizando en cada instante de tiempo
el subconjunto de la señal que se dispondŕıa en condiciones reales.
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1.3. Herramientas

Para la elaboración de este análisis se ha seleccionado el lenguaje de pro-
gramación Matlab ya que el grupo de la Universidad de Zaragoza con el que se
colabora ya está utilizando este lenguaje, por lo que todos los archivos con los
que se va a trabajar están en este formato y esto facilitará el intercambio de
resultados. El tipo de datos básico de Matlab es la matriz, siendo casi todo su
conjunto de instrucciones vectorial y, puesto que vamos a trabajar con enormes
cantidades de datos en formato matricial a las que deberemos aplicar operacio-
nes como normalización, filtrados, etc., este lenguaje supondrá una gran ayuda
a la hora de programar. Exactamente trabajaremos con la versión R2011a.

Dado lo extenso y complejo que supondŕıa desarrollar nuestras propias he-
rramientas para cada una de estas técnicas de clasificación, en cuyo caso nos
tendŕıamos que limitar a una o dos de ellas y no podŕıamos realizar una com-
paración detallada entre tantos modelos, se han buscado libreŕıas que las im-
plementen para uso en el propio Matlab y cuyos detalles se especificarán más
adelante. Sus nombres son: libSVM, pmtk3 y HCRF2.0b. Para LDA no se utili-
zan libreŕıas externas ya que el propio Matlab en su Statistics ToolBox incluye
el código necesario para generar este modelo. Aśı, durante la fase de documen-
tación para iniciar el proyecto, además de estudiar y comprender los modelos
de clasificación a estudiar, se tuvieron que buscar las libreŕıas adecuadas y pro-
barlas hasta entender su funcionamiento.

En el anexo B se puede consultar una descripción en detalle de la planifica-
ción seguida en la elaboración de este proyecto.

2. Descripción de los datos a estudiar

2.1. Captura de la señal

La obtención de datos para este análisis se realizó sobre pacientes con hemi-
plejia producida por haber sufrido un infarto cerebral. El protocolo completo de
experimentación más detallado puede verse en el anexo A ya que no se llevó a ca-
bo en este trabajo, pero en esta sección se explica lo fundamental para entender
el contexto de la memoria.

La grabación de la señal EEG se realiza a través de 64 electrodos situados en
el cráneo del sujeto. La detección del movimiento se realiza mediante detectores
de movimiento (EMG) y se verifica mediante inspección visual posterior, ya que
todos los experimentos se graban en v́ıdeo. En la imagen 3 se puede observar
una fotograf́ıa obtenida en mitad de uno de los experimentos y un esquema de
la situación en la cabeza de dichos electrodos.

Se realizaron dos experimentos equivalentes, uno en el que el paciente ejecu-
taba las acciones con el brazo sano, y otro en el que intentaba realizarlas con el
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Figura 3: Sujeto en mitad de experimento. Se pueden apreciar los detectores EEG
(en la cabeza) y EMG (en el brazo). Abajo a la izquierda, diagrama de la posición
de los electrodos en el cráneo del sujeto.

brazo dañado. En ambos casos se grabaron al mismo tiempo las ondas generadas
por cada córtex cerebral junto con la información generada por los detectores
situados en el brazo. Una vez finalizados, se extrajo la señal de ambos expe-
rimentos separando en cada paciente las cuatro combinaciones posibles (Bra-
zo Sano—Córtex Sano, Brazo Sano—Córtex Dañado, Brazo Dañado—Córtex
Sano, Brazo Dañado—Córtex Dañado). Será a partir de estos cuatro conjuntos
de datos sobre los que se analizarán los diferentes modelos de clasificación.

El experimento se ejecutó en cuatro bloques de seis minutos cada uno, con
cuarenta ejercicios por bloque, resultando un total de 160 ensayos (80 con cada
brazo). Después de cada bloque el paciente pod́ıa descansar tanto como fuera
necesario para evitar la fatiga. Cada grabación de EEG y EMG tiene una dura-
ción de nueve segundos, utilizando una referencia de tiempo desde los segundos
−3 a 6 con respecto a la aparición de la segunda señal (inicio del movimiento),
por lo que éste comienza en el instante cero. El movimiento se realiza en los tres
primeros segundos después del cero, mientras que los tres últimos son para la
relajación del sujeto y se descartan.

2.2. Tratamiento de la señal

La señal, tal y como se lee mediante EEG no es directamente utilizable, ya
que es conveniente realizar un procesado previo para aprovechar mejor determi-
nadas caracteŕısticas que faciliten identificar el movimiento y el reposo.
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2.2.1. Extracción de caracteŕısticas

En nuestros modelos matemáticos la información que se ha de analizar (va-
riables independientes) para determinar si se trata de movimiento o reposo van
a ser el conjunto de señales capturadas por EEG obtenidas en el experimen-
to descrito en la sección anterior. Pese capturar la actividad cerebral mediante
64 electrodos (canales), seŕıa impensable utilizarlos todos; no sólo por la enor-
me cantidad, que los haŕıa intratables, sino porque las zonas del córtex que no
controlan directamente la actividad motora no contienen información relevante
para tratar nuestro problema, de forma que añadiŕıan un ruido innecesario que
dificultaŕıa la decodificación. Por ello, para cada sujeto es necesario realizar una
selección de los canales que presentan variaciones más significativas entre reposo
y movimiento.

Figura 4: Gráfica r2 mostrando la variabilidad de cada canal y frecuencia entre
las dos condiciones. Por ejemplo, podemos ver que el canal C3 en F=20Hz presenta
las mayores diferencias significativas.
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Una vez finalizados dichos experimentos, y con la señal ya grabada, se le
aplicaron varios filtros para suavizar el ruido. Después se aplica una transfor-
mada wavelet para calcular la potencia espectral en cada banda de frecuencia
para cada canal (véase el anexo A para más detalle). Una vez se tiene la señal
convertida al dominio de la frecuencia se pasa a realizar un análisis r2 entre
las señales del estado de reposo y de movimiento para determinar qué canales
y en qué frecuencias presentan más variabilidad. Este análisis se realiza de for-
ma independiente para cada sujeto y con cada condición (córtex sano y córtex
dañado). Se puede ver un ejemplo de este análisis en la imagen 4. Aunque algu-
nos canales se compartan entre diversos sujetos –a fin de cuentas, todos están
centrados en la zona del córtex que ejecuta la actividad motora del brazo–, cada
uno de ellos tiene su propia selección que no tiene por qué coincidir con el resto.

Además, para cada sujeto se seleccionó un único canal que era el que teńıa la
variación más significativa de todos ellos. Cuando realicemos nuestra compara-
tiva de de modelos de aprendizaje efectuaremos dos análisis independientes, uno
utilizando esta selección de varios canales, y otro utilizando únicamente el mejor
(con todas sus frecuencias). El objetivo de utilizar un sólo canal es descubrir si
alguno de los otros que no presentan tanta variabilidad como éste puedan estar
añadiendo ruido que pueda inducir a una incorrecta clasificación.

A continuación vamos a detallar, para cada sujeto, cuáles son los canales
y las frecuencias que se han seleccionado, en los que se presentaba una mayor
variabilidad estad́ıstica a fin de facilitar la decodificación de la señal. Primero
vemos la tabla con los canales y las frecuencias seleccionados cuando decodi-
ficamos la señal generada por el córtex sano y, después, los correspondientes
al córtex dañado. El primer canal de cada enumeración se trata del que se ha
identificado como el mejor para ese sujeto.

Sujeto Canales Frecuencias (Hz)
41 C2, Cz, C4, CP2, P4, CPz, CP4, P2 12, 14, 16, 22, 24, 26
42 C1, C3, Cz, CP2, P3, CPz, CP4, P2 12, 18
43 CP2, Cz, C4, P4, C2, CPz, CP4, P2 20, 22, 24
44 CP1, CP2, C1, CP3 16, 20
45 CP2, Cz, C4, P4, C2, CPz, CP4, P2 18, 20
46 C3, Cz, CP3 12, 16, 22

Cuadro 1: Canales y frecuencias con mayor variabilidad en el movimiento por cada
sujeto para el córtex sano. En negrita, encabezando cada lista, el canal identificado
como mejor.

2.2.2. Muestreado de la señal

Una vez hemos filtrado y seleccionado las caracteŕısticas principales de la
señal, tenemos las ondas EEG ya dispuestas para su inmediato análisis, con un
marcador indicando el inicio del movimiento. Cada muestra dura aproximada-
mente 5.25 segundos que, con una frecuencia de muestreo de 160 Hz, resulta
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Sujeto Canales Frecuencias (Hz)
41 C1, C3, CP1, CP3 20, 22
42 C2, C4, CP2, CP4 12, 18
43 CP1, C3, C1, CP3 20, 22, 24
44 C2, C4 16, 20
45 CP1, C3, C1, CP3 18, 20
46 C4, C2 12, 16, 22

Cuadro 2: Canales y frecuencias con mayor variabilidad en el movimiento por
cada sujeto para el córtex dañado. En negrita, encabezando cada lista, el canal
identificado como mejor.

en un total de 840 lecturas para cada electrodo (y que finalmente tenemos en
los canales para cada frecuencia). Tratar una cantidad tan grande de datos es
muy costoso computacionalmente con algunos modelos (principalmente SVM y
CRF), por lo que se requiere discretizar la señal para trabajar con unos conjun-
tos más reducidos.

Figura 5: Ejemplo de discretización de la señal a intervalos de 0.25 segundos.
La ĺınea azul es la señal correspondiente a un canal en una de las frecuencias. Los
puntos rojos representan los únicos valores utilizados para su decodificación que se
utilizaŕıan tras la discretización.

Es por ello que se realizará un subsampleo, tomando muestras cada distintos
intervalos de tiempo. En la imagen 5 se puede apreciar un ejemplo con una señal
real discretizada a intervalos de 0.25 segundos, los cuales están marcados con
asteriscos rojos sobre la señal completa en azul (esta señal, real, representa los
valores de un único canal en una banda de frecuencia). Esos asteriscos repre-
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sentan los únicos puntos que se consideraŕıan de la señal completa a la hora de
evaluar los clasificadores.

Figura 6: Comparación de los diferentes tipos de submuestreado. La ĺınea negra
superior representa la señal completa. El tamaño del intervalo es i. Los triángulos
representan los puntos de la señal que se toman individualmente. Los fragmentos
verdes es el sistema por ventanas y los azules son las ventanas solapadas.

Ahora bien, esta reducción de la señal se ha realizado desde tres puntos de
vista diferentes. Por un lado, tomando los puntos independientemente a cada
intervalo i. Por otro, tomando toda la señal en la ventana entre dos puntos
consecutivos y calculando la media, aśı para el punto t se toma toda la secuencia
hasta t + i. El último punto también calcula la media sobre una ventana, pero
en este caso es de mayor tamaño y se va solapando con la última mitad de
la anterior, de forma que los datos se utilizan en dos ventanas consecutivas,
tomando para el punto t la ventana desde t − 1 hasta t + 1. En la imagen 6
puede verse una representación gráfica de estos sistemas que denominaremos,
respectivamente, por puntos, por ventanas y por ventanas solapadas.

Los otros modelos (LDA y HMM) permiten utilizar toda la señal, pero tam-
bién se han evaluado sus capacidades utilizando estos submuestreos, porque al
hacer la media de diferentes fragmentos de la señal en lugar de utilizarla punto
a punto, en realidad se está considerando más información y su comportamiento
ha de cambiar, ya que aglutina información de una secuencia de observaciones.

3. Clasificación del movimiento en señales cap-
turadas por EEG

En esta sección se describen los métodos utilizados para clasificación de
la señal EEG en movimiento o reposo. Para ello se utilizan las caracteŕısticas
extráıdas de la señal descritas en la sección anterior y se comparan diferentes
métodos de aprendizaje supervisado con el fin de evaluar cuáles son los más
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apropiados para identificar el movimiento de los brazos en pacientes que hayan
sufrido una hemiplejia.

Con el propósito de alcanzar estos objetivos, primero describiremos formal-
mente el problema de etiquetar un conjunto de datos bajo diferentes categoŕıas.
A continuación fundamentaremos cómo utilizar este reducido conjunto de datos
de forma que se aprovechen al máximo mediante la validación cruzada. Para
terminar, modelaremos matemáticamente cada uno de los métodos a analizar,
describiendo sus caracteŕısticas más importantes y cómo las hemos utilizado y
explotado en el marco de nuestra investigación.

3.1. El problema de clasificación y etiquetado de secuen-
cias

En los campos de la estad́ıstica y la inteligencia artificial el problema de
clasificación es dilema muy recurrente y que, pese a parecer muy simple de
definir, tiene multitud de soluciones y variantes. Se parte de una serie de n
observaciones X = x1, ..., xn que se corresponden con dos o más categoŕıas
pertenecientes al conjunto finito Υ. Consiste en encontrar una función f(x) que
pueda asignar a cada nueva observación x′i la etiqueta correcta yi ∈ Υ. Cada xi
puede ser una única variable o un número arbitrario d de ellas, bien discretas o
continuas, que se denominan variables independientes.

De entre los diferentes modelos que permiten calcular la f(x), en esta investi-
gación vamos a estudiar el Análisis Discriminante Lineal (LDA) y las Máquinas
de Soporte Vectorial (SVM), los cuales describiremos en detalle más adelante.

El etiquetado de secuencias es un caso particular del problema de clasifi-
cación en el que, en lugar de clasificar cada xi de forma independiente, se utilizan
algoritmos que utilicen la información de su posición en la secuencia comple-
ta X de forma que se encuentre conjunto de etiquetas Y = y1, ..., yn∀yi ∈ Υ
que mejor se corresponda con la secuencia global. Nótese que utilizaremos las
mayúsculas X e Y para referirnos a la secuencia completa y las minúsculas xi
e yi para cada elemento individual de dicha secuencia.

Puesto que la señales capturadas por EEG son no estacionarias, se ha créıdo
que el etiquetado de secuencias puede aportar más valor que la clasificación
de observaciones independientes. Entre los modelos que permiten etiquetar se-
cuencias en el presente trabajo se estudiarán modelos probabilistas que calculan
la P (Y |X). Las técnicas matemáticas seleccionadas a analizar son: el Modelo
Oculto de Markov (HMM) y el Campo Aleatorio Condicional (CRF). Dado su
carácter dependiente del tiempo, en el que una misma observación xi se podŕıa
clasificar bajo diferentes etiquetas en función de su posición en la secuencia
completa X se ha optado por denominar a estos modelos dinámicos, en contra-
posición de los anteriores que denominaremos estáticos.

En nuestro caso particular sólo contamos con dos estados Υ = {reposo,
movimiento} y nuestras observaciones X proceden de la lectura de las señales
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del EEG una vez procesadas y trasladadas al dominio de la frecuencia. Cada xi
representa un conjunto de d variables continuas que, dependiendo del caso, serán
un total de entre 2 < d < 48. Este tamaño d viene de los canales y frecuencias
indicados en la sección 2.2.1 que se utilizan en cada sujeto.

3.2. Validación cruzada de datos

Puesto que las observaciones (cada secuencia X capturada por EEG) dis-
ponibles para el trabajo son limitadas, hay que dividirlas en dos subconjuntos
no vaćıos disjuntos. Uno mayor, el de entrenamiento (train), se utilizará junto
con las etiquetas Y correspondientes como información inicial de los modelos
de inteligencia artificial para que estimen los pesos y valores oportunos que
permitan clasificar correctamente las observaciones. El segundo, el de test, se
reserva para, una vez completado el entrenamiento, probar la eficiencia de nues-
tro clasificador con observaciones para las cuales no estaba entrenado (ya que
no se han utilizado previamente). Esta separación garantiza que el clasificador
no esté sobre-entrenado para el conjunto de datos con el que se va a evaluar.

La validación cruzada de datos, más conocida por su nombre inglés cross-
validation, es una técnica muy utilizada en la evaluación de cualquier análisis
estad́ıstico del que se dispone un conjunto finito de datos con el objetivo de
exprimirlos al máximo, ya que permite replicar varios entrenamientos indepen-
dientes con esos mismos datos como si fuesen distintos. Además, previene el
caso de que una selección arbitraria de los subconjuntos de test y train no fuese
representativa del total, por lo que se realiza esta división K veces, con K pare-
jas de subconjuntos test-train. En cada una de estas divisiones el subconjunto
de test representa 1/K del total de observaciones, y se seleccionan de forma que
sean todas distintas, es decir, la unión de los K subconjuntos de test resulta
ser el conjunto completo original X. Con cada pareja de K subconjuntos de
test-train se entrena y evalúa el mismo modelo y, finalmente, se calcula la media
aritmética entre los resultados de clasificación. Esto es la variante conocida como
k-fold cross-validation. En este proyecto se utilizará en todos los casos K = 10,
de forma que el conjunto de test represente siempre el 10 % de las muestras.

3.3. Modelos estáticos

Primero vamos a estudiar los modelos estáticos que responden al problema
de clasificación. Como se ha indicado antes, y se deducirá de los modelos ma-
temáticos de estos algoritmos, no existe una diferencia real entre disponer o no
de la señal completa de observaciones X a la hora de clasificar un estado xi, pues
se etiquetará independientemente de los que existan en el resto de la secuencia.
Es por ello que con estos modelos se resuelve al mismo tiempo el subobjetivo 1
y el 2.
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3.3.1. LDA - Análisis Discriminante Lineal

Dentro de los métodos estáticos comenzaremos con el LDA (siglas en inglés
de Linear Discriminant Analysis), que es un método usado en estad́ıstica para
expresar una variable dependiente como la combinación lineal de otras variables
de forma que definan o separen dos o más categoŕıas. La combinación resultante
puede ser usada como un clasificador lineal. Se publicaron originalmenete por
Fisher en 1936 [3].

A diferencia de otros análisis estad́ısticos donde la variable dependiente pue-
de ser continua, en LDA la variable dependiente ha de ser de tipo cualitativo, es
decir, aquellas que tienen dos o más categoŕıas en las cuales no existe un orden
intŕınseco. En LDA también se asume que las variables independientes confor-
man una distribución normal multivariante y con las covarianzas homogéneas
entre los grupos.

Una forma de entender un modelo de clasificación lineal es verlo como una
reducción de la dimensionalidad. Suponiendo que tenemos que clasificar una
observación xi, que es un vector de dimensión d compuesto por los canales y
frecuencias seleccionados, lo proyectamos en una única dimensión mediante el
producto escalar el vector columna L, denominado de coeficientes lineales:

y′ = L · xi

Aśı, cada observación xi se mapea a un único valor y′, de modo que su
etiquetado se realizará en función de si supera o no, un determinado umbral.
Exactamente, en los LDA, lo que se hace es añadir un término constante K a la
ecuación para desplazar nuestro umbral de clasificación al 0. De este modo, el
problema de clasificar una observación xi como reposo o movimiento se reduce
a encontrar unos coeficientes K y L tales que se cumpla la ecuación 1. Ésta
será nuestra f(x) mencionada en el problema de clasificación.

Si 0 < K + L · xi entonces yi es reposo
Si 0 ≥ K + L · xi entonces yi es movimiento

(1)

Esto significa que la construcción de nuestro modelo LDA pasa por obtener
estos valores K y L adecuados que maximicen la separación de las clases al
proyectarlas sobre una dimensión. Sean m1, m2, S1, S2 los vectores de medias
y las matrices de covarianzas de las muestras X disponibles de cada clase Υ1

(reposo) y Υ2 (movimiento), y n1 y n2 el número de observaciones de cada una,
entonces la matriz de covarianzas ponderada Sp es:

Sp = (n1S1 + n2S2)/(n1 + n2 − 2)

Como buscamos maximizar la variabilidad entre las clases, (Lm2 − Lm1)2,
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y minimizar la variabilidad dentro de cada clase, LSpL
T , tenemos que maxi-

mizar la función 2 para obtener nuestros coeficientes lineales L. Nótese que el
supeŕındice T representa la traspuesta de un vector.

J(L) =
(Lm2 − Lm1)2

LSpLT
(2)

Para realizar la clasificación de la señal EEG mediante LDA en nuestro
trabajo se ha utilizado la función classify(train, test, labels) que incorpora el
propio Matlab en su Statistic Toolbox. Esta función devuelve, por un lado, los
coeficientes K y L calculados y, por otro, la clase bajo la que se clasifica cada
observación indicada en el parámetro test.

3.3.2. SVM - Máquina de Soporte Vectorial

Una SVM (por sus siglas en inglés: Support Vector Machine) es un modelo
estad́ıstico para un conjunto de métodos de aprendizaje supervisado que ana-
lizan y reconocen patrones, usados para clasificación y análisis de regresión. El
SVM buscará un hiperplano que tenga la máxima distancia a los puntos frontera
de cada grupo a clasificar. Este concepto es una de las principales diferencias
con un clasificador lineal convencional. Hemos visto que el LDA maximiza la
distancia entre las medias de cada clase, mientras que el SVM, además, utiliza
los puntos frontera, que son aquellas observaciones de cada categoŕıa que caen
más cerca del plano de clasificación, para ajustar el hiperplano de forma que su
distancia sea máxima a estos puntos, y no al núcleo de cada clase completa.

Un hiperplano se puede definir como un conjunto de puntos x que satisfagan:
w ·x− b = 0, donde w es el vector normal del hiperplano y b/‖w‖ es el desplaza-
miento del hiperplano desde el origen sobre w. Entonces, dado un conjunto de
entrenamiento de parejas observación-etiqueta (xi, yi), i = 1...l donde xi ∈ Rn

e y ∈ reposo,movimientol, debeŕıamos encontrar dos hiperplanos w · x− b = 1
w · x− b = −1 tales que podamos establecer para cada i, la función 3, que es la
que denominamos f(x) en nuestro problema de clasificación.

Si w · xi − b ≤ −1 entonces yi es reposo
Si w · xi − b ≥ 1 entonces yi es movimiento

(3)

Como sabemos que la distancia entre los dos hiperplanos que separan cada
clase es 2

‖w‖ el objetivo será minimizar ‖w‖, para lo cual hay diversos algoritmos

de optimización como los propuestos en [4] y [5].
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SVM no lineales

Lo más básico para separar dos grupos seŕıa una ĺınea recta, que es lo que se
propuso en el paper original [6] resultando un modelo equivalente a un clasifica-
dor lineal puro; sin embargo esto no es aplicable en muchas ocasiones de trabajo
real, por lo que en la práctica se utilizan las denominadas funciones kernel [7],
que son una variación en el espacio de dimensiones, para ampliar su funcionali-
dad. Entre los kernel más comunes podemos encontrar: funciones de base radial,
signmoideo, polinómico homogéneo y no homogéneo, tangente hiperbólica... En
nuestro proyecto nosotros utilizaremos las primeras, que se corresponden con la
ecuación 4.

K(xi, xj) = exp(−γ‖xi − xj‖2), forγ > 0. (4)

Otro investigador de la Universidad de Zaragoza ha estado estudiando las
máquinas de soporte vectorial a fin de obtener una clasificación satisfactoria
de esta misma señal mediante estos modelos. Para realizar el entrenamiento de
nuestro SVM se han utilizado los parámetros publicados en [8]) pues se han
considerado como los mejores para tratar con este tipo de señal. También se
determinó que se comportan mejor previa normalización de las observaciones X,
por lo que también se realizó. Espećıficamente, los parámetros utilizados para
el entrenamiento son los que estableció este investigador como más adecuados:
svmTrain(labels, signal, ’-s 0 -c 1 -t 2 -d 3 -e 0.00001 -b 1’). Esta función sale
de la libreŕıa LibSVM elaborada por Chih-Chung Chang y Chih-Jen Lin [9] y
que es utilizada para nuestro estudio de las Máquinas de Soporte Vectorial.

En su estudio inclúıa una variación en el estudio de los modelos, y es que
realizaba el entrenamiento segmentando la señal cada 0.75 segundos, mientras
que la señal utilizada para test variaba. En este proyecto en todo momento
se ha utilizado la misma segmentación (como se explica en 2.2) tanto para
entrenamiento como para test en todos los modelos, pues se han hecho pruebas
en los diferentes modelos con este sistema y su eficiencia bajaba, por lo que
no se ha considerado oportuno incluirlos aqúı. Pero a la hora de evaluar los
resultados de los SVM se ha considerado este sistema como algo extraordinario
ya que en este modelo śı que mejoran los resultados al aplicar esta divergencia
entre entrenamiento y test.

3.4. Modelos dinámicos

3.4.1. HMM - Modelo Oculto de Márkov

Un HMM (siglas inglesas de Hidden Markov Model) es un modelo estad́ıstico
en el que asumimos que el sistema a modelar es un proceso de Márkov con es-
tados no observables (ocultos). Un proceso de Márkov es un proceso estocástico
que satisface la propiedad de Márkov, la cual se cumple cuando la probabilidad
condicionada de los estados futuros depende únicamente del estado presente, y
no de la secuencia de eventos anteriores. Véase [10].
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En un modelo de Márkov, el estado es directamente visible por el observador,
en un modelo oculto el estado no es visible directamente, pero śı las salidas que
dependen de ese estado. Cada estado tiene una probabilidad sobre las posibles
salidas, por lo que la secuencia de salidas da información sobre la secuencia de
estados.

Figura 7: Ejemplo de red HMM (fuente: contribución libre a la wikipedia)

Los modelos ocultos de Márkov basan su funcionamiento en tres matrices:

Matriz de estado inicial (π): La cual indica la probabilidad de que el primer
elemento de la serie pertenezca a uno de los estados posibles y que será la
p(y1).

Matriz de transición de estados (A): que contiene las probabilidades aij
que existen de pasar de cada uno de los estados i a otro j (o permanecer
en el mismo): aij = p(Y = j|Y = i) y que también podemos describir
como p(yi|yi−1).

Matriz de probabilidad de observaciones (B): que indica la probabilidad
de observar un xi mientras estemos en un estado oculto yi (en inglés le
denominan emission probabilities): p(xi|yi).

De ese modo, la probabilidad de observar la secuencia Y de h estados ocultos
(en nuestro caso h = 2) a partir de una serie de observaciones X es:

p(Y |X) = p(y1)

h∏
i

p(yi|yi−1)p(xi|yi)

Esa matriz de probabilidades B se utiliza cuando las observaciones son una
variable discreta. Cuando trabajamos con variables continuas sobre una distri-
bución gaussiana –como es nuestro caso– se emplea la media y varianza de cada
estado, utilizando la función de densidad de probabilidad (pdf ) de esta distri-
bución que nos permita determinar la p(xi|yi). Para una distribución gaussiana
la pdf se calcula con la fórmula 5.

1

σ
√

2π
e−

1
2 ( x−µσ )

2

(5)
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Para realizar el análisis de este modelo hemos utilizado la libreŕıa pmtk3.0,
escrita por Matt Dunham, Kevin Murphy y otros autores que es un kit que so-
porta una gran variedad de modelos probabiĺısticos. Ésta nos ofrece el método
hmmFit(signal, n states, type) que nos permite un entrenamiento no super-
visado simplemente pasando como argumentos la señal, el número de estados
ocultos (dos en nuestro caso: reposo y movimiento/intención) y el tipo de dis-
tribución que más se ajusta a nuestra señal entre cuatro prefijados (en nuestro
caso sabemos que se trata de una distribución gaussiana). Este método nos de-
vuelve un objeto model con la información caracteŕıstica del modelo entrenado
que luego utilizaremos para realizar la clasificación.

Entrenamiento supervisado

Como explicamos anteriormente un HMM requiere de una matriz de proba-
bilidades de estado inicial, una matriz de transiciones entre estados y la infor-
mación de medias y covarianzas de los mismos. Todos estos son datos que se
pueden calcular previamente a partir de nuestro subconjunto de entrenamiento
ya que disponemos de la información suficiente que nos aportan las etiquetas Y .
Aśı pues, procedimos a extraer esta información para realizar un entrenamien-
to supervisado que mejore el porcentaje de clasificación. Los resultados que se
analizan en este proyecto son los obtenidos mediante este entrenamiento super-
visado, la diferencia obtenida comparado con el entrenamiento no supervisado
es suficiente como para no incluir este último en el contexto de nuestra investi-
gación. A continuación, se detallan los procesos que se siguieron para calcular
estos parámetros para nuestro HMM supervisado.

El primero y más sencillo es la matriz de probabilidad inicial. Todos los es-
tados comienzan en el estado de reposo, por lo que π = [10], siendo la primera
etiqueta la correspondiente al reposo y la segunda al movimiento. A continua-
ción, pasamos a calcular la matriz de transición de estados, cuyo formato general
podemos ver en el cuadro 3.

Estado i
\Estado i+1 reposo movimiento

reposo P (R→ R) 1− P (R→ R)
movimiento 1− P (M →M) P (M →M)

Cuadro 3: Formato de la matriz de transición de estados del HMM.

En nuestro caso, todos los ensayos se comienzan con el estado de reposo para,
tras un tiempo prefijado e igual en todos, pasar al movimiento –o a la intención
del mismo–, etiqueta en la cual finaliza cada experimento. Esto significa que
una única vez en cada ensayo se pasa de reposo a movimiento, y nunca al revés.
Esto significa que la probabilidad de estar en movimiento y pasar a reposo es 0.
De este modo, la matriz de transición seguirá el siguiente patrón:

A =

(
1− ε ε

0 1

)
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La probabilidad de estar en el estado de reposo y pasar al estado de movi-
miento en el ensayo j, se obtiene de sumar la cantidad de veces rj que aparece
la etiqueta de reposo en Yj = y1, ..., yn y hacer la inversa. Es decir, si hay rj
etiquetas de reposo seguidas, significa que en rj − 1 ocasiones nos quedamos en
el reposo y una única ocasión pasamos al movimiento ( 1

rj
).

Para obtener ε en los m ensayos que componen nuestro subconjunto de en-
trenamiento, vemos que el paso del reposo al movimiento sucede en m ocasiones
(una por cada ensayo), por lo que dividiremos este valor entre el sumatorio del
número de veces rj que aparece la etiqueta de reposo en cada ensayo j:

ε =
m∑m
j rj

Como en nuestro caso espećıfico el reposo dura lo mismo en cada experimento
(r0 = rj = . . . = rm) entonces

∑m
i rj = r ·m, de modo que no tenemos más que

sumar el número de veces r que aparece el estado de reposo en la señal con la que
entrenamos nuestro modelo y dividir, como vemos en la fórmula 6. El cálculo
de medias y covarianzas se supone trivial disponiendo de las observaciones X,
por lo que no se detalla en esta memoria.

ε =
1

r
(6)

Clasificación de variables ocultas

Una vez calculadas todas estas caracteŕısticas ya podemos proceder a la cla-
sificación de la señal. El método más común para estimar las variables ocultas
es el algoritmo de Viterbi [11], el cual analiza todas las X (la secuencia com-
pleta de t observaciones) para tratar de encontrar la secuencia más probable de
etiquetas Y que maximice la función de probabilidad como vemos en 7. Este
algoritmo se fundamenta en técnicas de forward-backward por lo que utiliza la
información de toda la secuencia para clasificar cada yi:

p(y1:t|x : 1 : t) (7)

Para realizar la clasificación de trayectoria completa (subobjetivo 1), en la
que se dispone de toda la secuencia en el momento de análisis, éste algoritmo es
exactamente lo que necesitamos. En la libreŕıa utilizada viene directamente im-
plementado mediante la funcion hmmMap(model, señal) que nos devolverá los
estados ocultos que se corresponden con los valores de la señal. En la varia-
ble model se han asignado previamente los valores de las caracteŕısticas antes
mencionadas como la matrices de transición de estados, varianzas, etc.

Pese a ser muy útil en otras situaciones como la anterior, no podemos utilizar
el algoritmo Viterbi para cumplir el subobjetivo 2 (clasificación por puntos
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de trayectoria). El motivo es que Viterbi toma toda la secuencia completa y
busca la mejor combinación de estados ocultos que maximice el porcentaje de
aciertos. En nuestro caso estamos estudiando la capacidad de este algoritmo de
aprendizaje para clasificar la señal en tiempo real –para que sea útil en tareas
de rehabilitación–, de modo que en una situación práctica no tendŕıamos la
secuencia completa de n observaciones X. Con este método, para la clasificación
del elemento yi utilizamos únicamente las observaciones x1:i obtenidas hasta ese
punto, maximizando la ecuación 8.

p(yi|x1:i) (8)

Para solucionar este problema tuvo que implementarse un método intermedio
que fuese simulando la gradual adquisición de los datos. Para conseguir esto,
en lugar de utilizar la señal completa X directamente sobre nuestra función
de clasificación, hubo que realizar n clasificaciones –una por observación en
la secuencia–, utilizando como entrada un subvector x1:i en cada iteración, y
asignando únicamente la última etiqueta obtenida a su yi correspondiente de la
secuencia completa Y , garantizando de este modo el cumplimiento de la fórmula
8. Este mismo proceso iterativo tuvo que ser utilizado en los CRF.

3.4.2. CRF - Campo Aleatorio Condicional

Un CRF (siglas de Conditional Random Field) es un método de modela-
do estad́ıstico aplicado a menudo al reconocimiento de patrones. Mientras un
clasificador ordinario predice una etiqueta para una única muestra sin tener en
cuenta las muestras vecinas, un CRF tiene en cuenta el contexto donde la en-
cuentra. Del mismo modo que en un HMM se tiene en consideración la categoŕıa
anterior para determinar la etiqueta presente, en un CRF se puede seleccionar
arbitrariamente qué otras observaciones de la secuencia se utilizarán. La otra
gran diferencia entre un HMM y un CRF es que en el primero la función de
transición entre estados ocultos es constante (la matriz de transición de estados
llamada A en la sección anterior) mientras que en el CRF se define mediante
unas funciones que pueden variar dependiendo de la secuencia de observaciones.

Desarrollados en 2001 por Lafferty, McCallum y Pereira (véase [12]) han
conseguido gran popularidad para etiquetar datos secuenciales como problemas
de visión por computador o secuencias biológicas, destacando principalmente en
el procesamiento del lenguaje natural.

Un CRF define un conjunto de observaciones X y variables aleatorias Y del
siguiente modo: Sea G = (V,E) un grafo tal que Y = (Yv)v∈V , de modo que
Y está indexado por los vértices de G. Entonces (X,Y ) es un CRF en el que,
cuando se condiciona en X, las variables aleatorias Yv cumplen la propiedad de
Márkov con respecto al grafo (w ∼ v indica que w y v son vecinos en G):

p(Yv|X,Yw, w 6= v) = p(Yv|X,Yw, w ∼ v)
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El grafo más simple es una cadena tal que G = (V = {1, 2, ..., n}, E =
{(i, i + 1)}). Pueden construirse tan complejos como se desee, pero en nuestra
investigación nos limitaremos a éstos, denominados en cadena (linear-chain
CRF en inglés). Esto significa que su modelo gráfico es el mismo que un HMM,
en el que cada xt está conectado con xt+1. No es necesario asumir que X tiene
la misma estructura que Y , aunque suele ser lo habitual y nuestro caso. Ademas
de la cadena simple incluiremos una variable w, llamada tamaño de ventana,
que indicará el número de vecinos con los que está conectada. Aśı, la arista del
vértice i en lugar de ser ei = {i+1} pasará a ser ei = {i−w,w−1+1, ..., i, ..., i+
w − 1, i+ w}.

Figura 8: Izquierda: Representacion gráfica de un HMM. Los nodos oscurecidos
se corresponden con las observaciones x1, x2 . . . xn. Los nodos claros a las variables
estado y1, y2 . . . yn. Derecha: Representación gráfica de un CRF. El nodo grande
se corresponde con toda la secuencia X. Como en el HMM, los nodos claros se
corresponden con las variables estado. Fuente [1]

Para calcular la probabilidad de una secuencia de etiquetas Y dadas unas
observaciones X los CRF utilizan dos conjuntos de lo que se denominan feature-
functions multiplicadas por sus pesos correspondientes (λj y µk) como vemos en
la ecuación 9. Las feature-functions son las que definen al modelo y el entrena-
miento consiste en encontrar los pesos apropiados para que obtener la secuencia
Y correcta.

P (Y |X) = exp(
∑
j

λjtj(yi−1, yi, x, i) +
∑
k

µksk(yi, x, i)) (9)

Donde tj(yi−1, yi, x, i) son las j feature-functions de transición y µksk(yi, x, i)
son las k feature-functions de estados. Se pueden implementar un número ar-
bitrario de j y k features, cada una utilizando distintos criterios, y esto será lo
que defina el tipo de CRF que se está utilizando. En nuestro modelo en cadena
las feature-functions se corresponden con las de la ecuación 10. Nótese que te-
nemos tantas como el doble del tamaño de ventana (una por cada observación
que tiene en cuenta en cada instante i), es decir k = 2w+ 1. Puede verse que en
el caso de la cadena simple, sin utilizar observaciones vecinas, se utilizaŕıa una
única feature-function con el valor de la propia observación xi.
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s1(yi, X, i)) = xi−w
s2(yi, X, i)) = xi−(w−1)
...
sk(yi, X, i)) = xi−(w−k+1)

(10)

Por lo tanto, en el modelo de CRF en cadena que estamos analizando, el
parámetro más importante que tenemos que estudiar, y sobre el que fue necesario
hacer más pruebas para obtener los mejores resultados, es el del tamaño de
ventana (wsize). Con el tamaño de la ventana se le indica al modelo que ha de
tomar tantos vecinos, hacia delante y atrás, como sea el valor del parámetro.
Aśı, para wsize = 2 además de la muestra correspondiente se tomarán las dos
muestras anteriores y posteriores (xi − 2, xi− 1, xi, xi+1, xi+2) para obtener el
estado Yi a partir de la muestra la posición xi.

Este empleo de las muestras vecinas es muy útil y lo que nos impulsó a utilizar
el CRF en esta investigación, pues lo convierte en una herramienta muy potente.
Sin embargo el utilizar las muestras siguientes para realizar la predicción tiene
el inconveniente de introducir un retardo en la clasificación, ya que hay que
esperar a que lleguen para tener una clasificación correcta. Aśı con una ventana
de tamaño 2, como en el ejemplo anterior, una vez hubiésemos léıdo la muestra
xt podŕıamos obtener el resultado de la clasificación de la etiqueta yt−2.

El coste computacional en tiempo de entrenar un CRF en cadena es cuadráti-
co sobre el número L de categoŕıas (Υ), lineal en el número F de feature-
functions (denominadas más arriba j y k ) y casi cuadrático en el tamaño T del
subconjunto de entrenamiento de observaciones (X). Es decir, O(L2FT 2) (para
la demostración matemática véase [13]). Este tamaño T seŕıan las 840 lecturas
que se capturan en cada experimento, multiplicado por los 2 < d < 48 canales-
frecuencias utilizados, multiplicado por el número de ensayos que se incluyan en
el subconjunto de entrenamiento. Por esto, como se explicó en 2.2, cada ensayo
cuenta con una cantidad demasiado grande de información para tratar entera,
por lo que se segmentó la señal para reducir el coste computacional.

También aqúı fue necesario realizar varias pruebas, combinándolo con di-
ferentes tamaños de ventana, para llegar a un compromiso aceptable entre el
porcentaje de aciertos y el retardo en obtener la clasificación, aśı como el tiempo
de entrenamiento. El estudio preliminar de los CRF nos mostró que no hab́ıa
diferencias significativas entre utilizar los diferentes métodos de segmentación
de la señal que hemos estado utilizando con el resto de modelos aśı que, dado
que los CRF tienen otro parámetro más interesante (las observaciones vecinas,
y que resulta ser ciertamente similar a nuestra segmentación por ventanas), de-
jamos de utilizar los métodos de agrupar los datos entre intervalos por ventanas
o ventanas solapadas, limitándonos a tomar los datos por puntos individuales
según los diferentes intervalos que definamos. A fin de cuentas los CRF ya hacen
esto de forma natural mediante la ventana de observaciones vecinas.

Esta latencia que produce la combinación de discretizar la señal y el tamaño
de ventana se entenderá mejor con un ejemplo. Si decidimos quedarnos con
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una lectura cada 0.0625 segundos (que equivale a una muestra de cada diez ya
que la señal tiene una frecuencia de 160Hz) y tenemos una ventana de tamaño
20 en nuestro CRF, resulta que no podremos clasificar una muestra dada hasta
0,0625 ·20 = 1,25 segundos desde el instante en que hayamos realizado la lectura
de la xi correspondiente a la etiqueta Yi. Dicho de otro modo, una vez leamos
del EEG la señal de xt podremos clasificar el estado yt−20 recibido 1.25 segundos
antes.

Además de los CRF comunes, más tarde se publicó otro paper definiendo
las modificaciones necesarias para que los CRF trabajasen más adecuadamente
cuando se asume que las observaciones están modeladas como una distribución
gaussiana. Las feature-function a utilizar pasar a ser tres por observación, las
cuales derivan de la función de densidad d probabilidad 5. Aqúı ponemos di-
rectamente cómo quedaŕıan las feature-functions, si quiere consultarse todos los
fundamentos teóricos puede acudirse al paper original en [1].

s1 = 1
s2 = xi
s3 = x2i

(11)

Para realizar el análisis de los CRF nosotros utilizamos la libreŕıa HCRF2.0
de Louis-Philippe Morency. Esta libreŕıa, escrita en C++ pero cuenta con una
interfaz para ejecutar desde Matlab, implementa el CRF original en cadena tal y
como fue descrito por Lafferty et al y por Sha y Pereira y dos versiones basadas
en éste: Hidden-state Conditional Random Fields (HCRF) y Latent-Dynamic
Conditional Random Fields (LDCRF).

Esta libreria ya viene implementada con aprendizaje supervisado, por lo que
no es necesario calcular previamente los parámetros del modelo ha ocurrido en el
caso de los HMM. Se ejecuta la función trainCRF(signal, labels, params) donde
labels es el valor de la secuencia de estados ocultos Y para cada signal. Dentro
de params se indican algunos parámetros como el tipo de CRF que se desea
entrenar. Se realizaron pruebas iniciales con algunos de los modelos alternativos
que implementa la libreŕıa, pero los resultados no eran tan satisfactorios como
con los CRF estándar, por lo que no se ahondó más en ellos ni se han considerado
de interés para incluir en esta memoria.

La libreŕıa que hemos utilizado implementa los CRF básicos publicados en
[12]. Los CRF diseñados para reconocimiento de distribuciones gaussianas no
estaban desarrollados en la libreŕıa, por lo que hubo que modificar el código
original para utilizar features gaussianas. Estas modificaciones consistieron en
introducir las fórmulas descritas en 11. Para ello se tuvo que modificar el núcleo
de la libreŕıa en C++ y la interfaz que comunica con Matlab para poder utilizar-
las. Por su complejidad se implementó únicamente la versión para un CRF en
cadena simple, por lo que no se permite la selección de una ventana de vecinos
para ampliar las observaciones.
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4. Resultados

En esta sección mostraremos los principales resultados de cada modelo junto
con algunos comentarios que se deducen de su observación. Es un resumen en
el que se incluirán las tablas y gráficas de los casos más destacados y de interés.
El resto pueden consultarse en el anexo C para ver los resultados detallados
divididos por modelos.

Hay que tener en cuenta que la cantidad de casos analizados ha sido in-
mensa. En cada uno de los seis sujetos se part́ıa de cuatro conjuntos de datos
(dependiendo del brazo y del córtex), de los cuales se tomaba una selección de los
canales más interesantes y, por otro lado, el canal con más variabilidad. En estos
48 casos se estudiaban cuatro modelos de aprendizaje, los cuales teńıan diferen-
tes parámetros y se seleccionaban diferentes intervalos de entrada, quedando
aproximadamente una docena por cada uno. Finalmente, todo ello estudiado en
los dos escenarios planteados en los subobjetivos. Todo esto suma cerca de 5000
casos distintos analizados, cuyo resumen se pasa a exponer en esta sección.

4.1. Definición de la organización de resultados

Vamos a dividir esta sección en dos apartados, uno para mostrar los resul-
tados de la clasificación de trayectoria completa y otro para la clasificación por
puntos de trayectoria, de modo que analicemos nuestros dos subobjetivos. En
estos apartados podremos ver unas tablas de doble entrada en las que cada fila
representará uno de los cuatro modelos estudiados (LDA, SVM, HMM, CRF) y
en cada columna se mostrarán los cuatro conjuntos de datos. Recordemos que
se realizaron dos experimentos, uno movimendo el brazo sano y otro moviendo
el brazo incapacitado. Las señales grabadas en cada experimento se separaron
en dos conjuntos: el correspondiente a los electrodos situados en el córtex sano
y el de los electrodos situados en el córtex dañado. De las combinaciones entre
ambos córtex y ambos brazos salen estos cuatro conjuntos de datos. En cada
uno de los 16 casos mostrados en estas tablas se muestran los porcentajes de
aciertos correspondientes al estado de reposo y al de movimiento (o intento de
movimiento).

Las gráficas que vamos a utilizar para mostrar la eficiencia de nuestros clasifi-
cadores están divididas en tres partes bien diferenciadas que pasamos a detallar.
En azul vamos a representar siempre el reposo (rest) y en rojo el movimiento
(move), o el intento del mismo (attempt). Primero vemos a qué se corresponde
la secuencia real que se ejecutó en el experimento según la información disponi-
ble en los marcadores, después observamos cómo se clasificó cada experimento
individual y, finalmente, agrupamos esta información en forma de histograma
para ver exactamente la cantidad de aciertos que obtuvimos. Adicionalmente se
agrega en esta última parte una ĺınea de puntos indicando el porcentaje medio de
aciertos en cada estado. Además, en la parte superior de cada gráfica podemos
ver un t́ıtulo con información sobre el modelo de entrenamiento y sus variables,
dado su reducido tamaño hemos pasado a escribir las partes más relevantes en

29



el pie de la figura en este trabajo.

4.2. Subobjetivo 1: Clasificación de trayectoria completa

Cuando disponemos de la señal completa observamos que los modelos dinámi-
cos (CRF y HMM) son considerablemente mejores que los estáticos (LDA y
SVM). Esto es aśı porque, como se detalló en la definición de estos modelos,
utilizan información de toda la secuencia de datos para maximizar los resultados
correctos. Los modelos estáticos, que no hacen uso activo de esta información,
no se ven beneficiados por ello. Aún aśı, no podemos considerar los resultados
de estos modelos como deficientes, pero quedan significativamente por detrás de
los métodos dinámicos.

ArmH-CorH ArmI-CorH ArmH-CorI ArmH-CorI
Rest Move Rest Attempt Rest Move Rest Attempt

LDA 67.23 80.62 61.19 71.00 59.21 67.50 59.06 64.83
SVM 71.48 72.25 67.40 63.82 63.17 62.29 61.82 67.70
HMM 72.23 86.07 68.69 81.62 69.06 74.86 62.91 76.04
CRF 70.97 97.50 88.00 93.73 89.31 92.77 88.64 92.46

Cuadro 4: Comparación de los mejores resultados de los cuatro modelos bajo las
cuatro condiciones de córtex y brazos para la clasificación de trayectoria completa.
Todos los valores son porcentajes calculados con la media de todos los sujetos.

Los modelos estáticos obtienen significativamente más aciertos utilizando
todos los canales seleccionados como mejores que únicamente el mejor de todos
ellos. Esta mejora de la clasificación es mucho más destacable en la categoŕıa de
reposo que en la de movimiento. También la mejora de aciertos en el uso de los
canales es menor en el córtex dañado que en el sano. Los dos modelos obtienen un
promedio similar, pero en general el LDA identifica mejor el reposo y el SVM el
movimiento (excepto con córtex dañado y brazo lesionado, que mejora el SVM).
Al no imponer restricciones temporales, veremos que estos modelos estáticos
aqúı presentan unos resultados mejores que en la clasificación por puntos de
trayectoria ya que algunos de los métodos de submuestreado permiten aglutinar
varias observaciones. En concreto, los mejores resultados –que son los mostrados
en la tabla 4–, de todos estos modelos se obtuvieron con el submuestreado de
ventanas solapadas por intervalos de 500 milisegundos. En todos los casos todos
los modelos se entrenaron y se testearon utilizando el mismo subsampleado.
Sin embargo, en el paper [8] se indicaba que se utilizaban distintos intervalos
para cada conjunto de entrenamiento y test. En nuestra investigación hemos
comparado ambos planteamientos y, efectivamente, los SVM con estos datos
presentan un mejor comportamiento cuando el conjunto de entrenamiento se
submuestrea a 750 milisegundos y empleando distintos subsampleados para el
test, siendo el mejor en este caso el citado anteriormente de 500 milisegundos.

En los modelos dinámicos, el HMM también obtiene en casi todos los casos
mejores resultados que con uno solo, aunque la diferencia es considerablemente
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menor que con los modelos estáticos (incluso en el caso del brazo lesionado llega
a ser ligeramente mejor un único canal). Los HMM son mejores en todos los
aspectos que los dos modelos estáticos comparados, se quedan muy cerca en
la clasificación del reposo, pero mejoran ostensiblemente en la parte del movi-
miento. Con los CRF, bajo todas las condiciones, se obtienen más aciertos con
el entrenamiento sobre el mejor canal para valores altos del parámetro wsize, y
conforme lo reducimos es otra vez la combinación de todos los canales la que
arroja mejores resultados. Esto puede ser debido a que un abuso en el número
de observaciones (muchos canales más las observaciones vecinas que utiliza el
CRF) suponga un exceso de información que impida una correcta clasificación.
Los resultados mostrados en la tabla 4 se corresponden, en el caso del HMM al
submuestreado de ventanas solapadas por intervalos de 500 milisegundos. En el
caso del CRF se submuestreó por puntos a 62.5 milisegundos y se aplicó una
ventana de tamaño 20 (lo que equivale a 1.25 segundos).

4.3. Subobjetivo 2: Clasificación por puntos de trayectoria

Aqúı la clasificación baja en todos los modelos porque nos autoimponemos
un ĺımite de 125 milisegundos en cuanto a la cantidad de observaciones que
permitimos acumular a nuestros modelos, ya que debemos obtener un etiquetado
rápido para que pueda ser útil en tareas de rehabilitación. Al ser tan limitada, los
modelos dinámicos ven mermadas sus capacidades, especialmente los CRF con
unos resultados muy negativos. Los HMM reducen su capacidad, equiparándose
a los modelos estáticos, aunque continúa haciéndolo mejor con el córtex dañado.
En la tabla 5 podemos ver los resultados que se obtienen para esta latencia de
125 milisegundos.

ArmH-CorH ArmI-CorH ArmH-CorI ArmH-CorI
Rest Move Rest Attempt Rest Move Rest Attempt

LDA 65.26 77.88 60.34 70.33 56.67 66.03 57.20 63.34
SVM 66.98 75.00 60.52 69.01 54.49 66.23 56.01 65.92
HMM 58.62 90.10 59.26 85.84 65.65 76.30 62.29 73.49
CRF 24.68 97.13 25.50 95.91 20.58 98.78 21.52 98.93

Cuadro 5: Comparación de los mejores resultados de los cuatro modelos bajo las
cuatro condiciones de córtex y brazos para la clasificación por puntos de trayectoria.
Todos los valores son porcentajes calculados con la media de todos los sujetos.

Al reducir el retardo, los resultados empeoran, pero el comportamiento de
los modelos estáticos sigue siendo muy similar al caso anterior, presentando una
cantidad de aciertos superior utilizando todos los canales que uno, y presentan-
do mejoras sensiblemente superiores en el reposo que en el movimiento. Al igual
que antes, el reconocimiento del brazo sano es mejor que el del brazo lesiona-
do, y el del córtex sano es mejor que el del dañado. Ambos continúan teniendo
resultados muy similares, e incluso más igualados que antes. Se difuminan más
las diferencias que presentaban en las que los LDA identificaban mejor el movi-
miento y los SVM el reposo, incluso se invierte ligeramente la tendencia para el
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córtex sano.

En el caso de los HMM, para el brazo sano se clasifica mejor el reposo con
todos los canales seleccionados, y para el brazo lesionado hay una sustancial
mejora al considerar sólo uno. En particular, con el caso del córtex sano mejora
un 10 % la detección del reposo (de 53.66 % con todos, al 59.26 % con uno). En
la clasificación del movimiento hay menos diferencias y, por lo general, existen
más aciertos al utilizar todos los canales. Los CRF, con tan poco margen pa-
ra aglutinar observaciones y sin tener conocimiento de la secuencia completa,
presentan un comportamiento pésimo, clasificando prácticamente las secuencias
completas como movimiento. Al contrario que en el apartado anterior, aqúı se
ven beneficiados del uso de todos los canales seleccionados, quizás para suplir
la carencia de observaciones que produce la baja latencia.

En ambos modelos dinámicos existe un claro predominio del etiquetado del
movimiento demasiado pronto. Esto puede deberse a que sus representaciones
internas de transición entre clases incluyan un sesgo que aumente la probabilidad
de que una secuencia evolucione al terminar hacia el movimiento. Como lo que
se hace aqúı es aumentar gradualmente las observaciones x1:i cada vez que se
quiere obtener la etiqueta yi, esta etiqueta siempre se identifica como la última
en cada clasificación.

4.4. Caso espećıfico: Córtex Sano

4.4.1. Evaluación de los modelos en clasificación por trayectoria com-
pleta

Veamos ahora los resultados de clasificación completos de cada experimento
para cada modelo. Dado el limitado espacio del que se dispone en esta memoria,
nos vamos a centrar únicamente en la condición de brazo sano y córtex sano
ya que, de lo contrario, nos extendeŕıamos demasiado. Unas pocas páginas más
atrás, en el apartado 4.1, hemos descrito el formato de estas gráficas por lo que
lo obviamos aqúı.

Primero tenemos los modelos estáticos, en los que se ve claramente su cla-
sificación de las observaciones de forma independiente donde cambia de estado
en varias ocasiones por cada experimento. En particular el LDA (figura 9) cla-
sifica mejor el movimiento que el SVM (figura 10). Con los HMM (figura 11) se
pretende evitar esto mismo, ya que en los parámetros con los que se diseña se
indica la imposibilidad de volver al reposo una vez se ha identificado el movi-
miento (mediante la matriz de transición de estados). Por eso vemos una gráfica
de clasificación más ”limpia”que en los modelos estáticos. Aún aśı, como puede
apreciarse, tiene el inconveniente de que si identifica una observación como mo-
vimiento demasiado pronto en la secuencia ya no puede corregirse como śı podŕıa
suceder en otros modelos.

Para terminar nos encontramos con los CRF (figura 12), que son realmente
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Figura 9: LDA en clasificación por trayectoria completa

Figura 10: SVM en clasificación por trayectoria completa

los modelos que mejor resuelven el problema de etiquetado de secuencias com-
pletas. Al utilizar la información de un gran número de observaciones anteriores
y posteriores a la que se desea clasificar, obtienen resultados muy precisos. En
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Figura 11: HMM en clasificación por trayectoria completa

Figura 12: CRF en clasificación por trayectoria completa

este caso en particular está evaluando 40 observaciones (20 anteriores y otras 20
posteriores). Si nos fijamos en el punto de transición entre estados, vemos que
todas las transiciones están muy cerca de donde debeŕıan.
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En nuestra investigación hemos contado con experimentos realizados por
6 sujetos distintos. Una particularidad que hay que tener en cuenta es que
cada uno tiene sus peculiaridades y que, pese a haber realizado una selección
independiente para los mejores canales de cada uno, hay algunos sujetos que
presentan unos ı́ndices de clasificación muy por debajo del resto. Esto puede
deberse a que tuvieran una menor involucración en los experimentos –hay que
realizarlos muy concentrado para no generar actividad cerebral ruidosa–, a que
tuviesen distintos grados de afección –ya en el córtex o en los brazos–, o a una
selección no tan correcta de los canales adecuados entre otros factores. En estas
gráficas se muestra la clasificación de las secuencias por sujetos y se pueden
apreciar algunos matices. Para nuestra evaluación hemos producido gráficas de
cada sujeto a mayor tamaño para facilitar la inspección visual, pero el espacio
del que aqúı disponemos es limitado por lo que se ha optado por mostrarlos de
esta manera todos juntos. En general, el sujeto dos y el sujeto cinco presentan
unos ı́ndices de clasificación por debajo del resto de compañeros, y los sujetos
uno y cuatro suelen obtener una mayor cantidad de aciertos en promedio.

4.4.2. Comparación de los clasificadores por puntos de trayectoria

Como se ha indicado anteriormente, para cumplir el subobjetivo 2 no sólo
buscamos un modelo con el mayor ı́ndice de clasificación, sino que además nos
interesa que obtenga el resultado en el menor tiempo posible. Aśı, estamos
dispuestos a sacrificar parte del porcentaje de aciertos de nuestro clasificador a
cambio de reducir este retardo (delay) todo lo posible.

A continuación se muestran unas tablas comparando los porcentajes de cla-
sificación de los diferentes modelos para los dos brazos con el córtex sano. Los
resultados eran mejores en todos los casos utilizando la selección de mejores
canales, aśı que los resultados se corresponden con ellos. Hay una excepción, en
la segunda tabla podremos ver que se han incluido también los resultados de los
HMM únicamente con el mejor canal, ya que los resultados eran mejores que
con todos.

Puesto que estamos considerando únicamente los resultados que se puedan
aplicar para un uso real de clasificación en tareas de rehabilitación, nos limitamos
a buscar los mejores modelos para un retardo máximo de 125 milisegundos,
a modo de comparación incluiremos los aciertos obtenidos sin retardo y con
250 milisegundos. Por ello en estas tablas no incluimos la comparación con los
CRF, pues los porcentajes de aciertos de reposo son menores del 30 %, y no
tiene sentido ocupar espacio con unos modelos que ya están automáticamente
descartados bajo estas condiciones.

Como puede verse en las tablas, aunque los HMM parezcan obtener una me-
dia conjunta buena, lo consiguen a costa de sobreestimar la parte de movimiento,
de modo que hay un exceso de falsos positivos que producen una gran cantidad
de fallos en el descanso. También podrá observarse que los SVM y LDA obtienen
resultados muy similares. Obtienen una media total prácticamente igual, pero
cada modelo identifica mejor un estado que el otro: en LDA hay mayor cantidad
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Delay LDA SVM HMM
Rest Attempt Rest Attempt Rest Attempt

0 64.69 77.43 67.13 74.92 46.41 93.19
0.125 65.48 78.50 72.14 70.73 59.46 89.86
0.25 66.22 79.14 71.48 72.25 65.48 88.25

Cuadro 6: Comparación en porcentaje de aciertos para diferentes retardos (en
segundos) - Arm Healthy Cortex Healthy - Todos los canales

Delay LDA SVM HMM HMM (*)
Rest Attempt Rest Attempt Rest Attempt Rest Attempt

0 60.03 69.57 60.52 68.23 38.99 90.25 40.69 85.84
0.125 60.77 70.59 67.74 61.52 53.39 86.75 58.77 85.91
0.25 61.18 70.54 67.40 63.82 58.51 85.66 63.58 89.37

Cuadro 7: Comparación en porcentaje de aciertos para diferentes retardos (en
segundos) - Arm Impaired Cortex Healthy - Modelos con todos los canales, excep-
to la segunda columna de HMM (indicado con asterisco) debido a la mejora de
clasificación con un único canal.

de aciertos para el movimiento y en SVM lo hay para el reposo. En conjunto
estos últimos podŕıa considerarse que son sensiblemente más precisos.

5. Conclusiones

En este proyecto se ha realizado un estudio de diversos modelos de inteligen-
cia artificial para detectar el movimiento, o su intención, en pacientes que han
sufrido un infarto cerebral a partir de la señal capturada a través de un elec-
troencefalograma. Esta señal hab́ıa sido capturada con anterioridad por otros
miembros de la Universidad de Zaragoza, por lo que todos los análisis se hicieron
en diferido.

Nos hemos centrado en cuatro modelos estad́ısticos que nos han parecido
de especial interés y que se pueden dividir en dos categoŕıas. La primera, con
métodos que podemos denominar estáticos, clasifica cada instante de la señal
de forma independiente del resto, no guardando en su estructura ningún tipo
de información temporal. De ella hemos seleccionado el Linear Discriminant
Analysis y las Support Vector Machines, por ser las más representativas y las
que más literatura presentan en el campo de la clasificación de ondas captura-
das por EEG. La segunda categoŕıa, y que es la que supone una novedad en
este campo con escasos estudios al respecto, son los modelos dinámicos, en los
que una observación se clasificará de modo distinto en función del resto de ob-
servaciones a su alrededor, siendo dependientes del tiempo. Quizás el modelo
más representativo de esta categoŕıa sea el Hidden Markov Model al que hemos
acompañado de otro más novedoso denominado Conditional Random Field.
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Nos hemos enfrentado a este problema desde dos escenarios bien distintos.
Por un lado hemos querido comprobar la eficiencia de estos modelos matemáti-
cos para discriminar el movimiento del reposo directamente sobre la señal com-
pleta. Aqúı únicamente tendremos en consideración el porcentaje de aciertos
obtenido en la clasificación. El segundo escenario va un paso más lejos, como
pensamos que es nuestro deber como investigadores, y pretende buscar aplica-
ciones prácticas más allá de la simple competición entre modelos estad́ısticos.
Con la intención de que se pueda utilizar en un hipotético caso de rehabilitación
como asistencia a un terapeuta informándole de la participación del paciente, se
simulará una gradual adquisición de datos como ocurriŕıa en una situación real
con estas señales que teńıamos ya capturadas. Esto es necesario porque, como se
ha indicado, los modelos dinámicos utilizan todas las observaciones disponibles
a la hora de realizar la clasificación, de forma que una misma observación xi se
etiquetaŕıa como un estado distinto en función de si disponemos de x1:i o x1:i+j

observaciones.

En el primer subobjetivo, disponiendo de toda la señal, los modelos dinámi-
cos son claramente la opción más eficiente, obteniendo unos porcentajes de cla-
sificación muy superiores a los modelos estáticos. Esto resultaba predecible te-
niendo en cuenta que estos modelos utilizan, por un lado, más información a
la hora de asignar la probabilidad de pertenencia a una clase para una cierta
observación y, por otro, realizan el etiquetado final de forma que se maximice la
probabilidad de la secuencia completa. En particular los CRF consiguen mejores
resultados que los HMM.

Para el segundo subobjetivo, la clasificación por puntos de trayectoria, los
modelos dinámicos pierden todo su potencial y encontramos mejores resultados
en los modelos estáticos, ambos en condiciones muy similares. Esto es aśı por-
que se ha primado la rapidez con la que se obteńıan las etiquetas clasificadas
al tener en cuenta que en una situación real un terapeuta necesitaŕıa una in-
formación lo más actualizada posible y por encima de los 250 milisegundos se
ha considerado excesivo. En este retraso no se tiene en cuenta la ejecución en
śı del algoritmo de clasificación, ya que una vez entrenado es despreciable, sino
la cantidad de observaciones requeridas para obtener una clasificación apropia-
da. Se ha comprobado que los modelos dinámicos necesitan un margen de más
de un segundo para obtener porcentajes de aciertos que puedan mejorar a los
modelos estáticos.

Pese a lo eficientes que demuestran ser los HMM y CRF utilizando la señal
completa, no se ha logrado un comportamiento atractivo con ellos a la hora
de utilizarlos en tiempo real, quizás por contar con unos datos muy escasos
para explotar estos modelos secuenciales. A pesar de todo, éste no es un campo
que deba dejarse de investigar. En este trabajo se ha asumido que los CRF
deben seguir una estructura lineal similar a los HMM; sin embargo esta es
una decisión totalmente arbitraria ya que son unos modelos que permiten, en
potencia, infinidad de combinaciones en cuanto a la estructura del grafo que los
define.

Esto permitiŕıa, por ejemplo, utilizar distintas funciones para tratar cada
canal, otorgándoles más peso a unos que a otros o diferentes comportamientos.
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También podŕıan extraerse las caracteŕısticas sólo de los vecinos anteriores, en
lugar de utilizar también los posteriores como en el modelo analizado, reducien-
do a cero los posibles retardos; distinta cantidad por delante que por detrás,
profundizar en la utilización de las function-features gaussianas, etc.

Como decimos, los resultados de este trabajo no deben detener la investiga-
ción en modelos de aprendizaje automático para datos secuenciales en tiempo
real, ni siquiera HMM o CRF. La última década ha sido especialmente proĺıfica
en el desarrollo de estos modelos y desde aqúı animamos a otros investigadores
a que analicen su utilidad en el campo de la clasificación de señales obtenidas
por EEG.

Algunos modelos alternativos de machine learning para secuencias de da-
tos que podŕıamos citar son: Hidden Markov SVM and LabelSequence Ada-
Boost (Altun & Hofmann, 2003), Cycling Dependency Networks (Toutanova
et al., 2003), Max-margin Markov Networs (Taskar et al., 2003), Conditional
Markov Models (Ratnaparkhi, 1996), Maximum-entropy Markov Models (Mc-
Callum et al., 2000), Discriminatively trained HMM (Collins, 2002), Stacket
Sequential Learning (Cohen, 2004), Constraint Satisfaction INference (Canisius
et al., 2006).

38



Referencias

[1] D. L. Vail, M. M. Veloso, and J. D. Lafferty, “Conditional random fields
for activity recognition,” in Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems, ser. AAMAS
’07. New York, NY, USA: ACM, 2007, pp. 235:1–235:8. [Online].
Available: http://doi.acm.org/10.1145/1329125.1329409

[2] F. Lotte, M. Congedo, A. Lecuyer, and F. Lamarche, “Topical review a
review of classification algorithms for eeg-based brain-computer interfaces,”
2007.

[3] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Annals of Eugenics, vol. 7, no. 7, pp. 179–188, 1936.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995, 10.1007/BF00994018. [Online]. Available:
http://dx.doi.org/10.1007/BF00994018

[5] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the 5th Annual Workshop on
Computational Learning Theory (COLT’92), D. Haussler, Ed. Pittsburgh,
PA, USA: ACM Press, July 1992, pp. 144–152. [Online]. Available:
http://doi.acm.org/10.1145/130385.130401

[6] V. Vapnik and A. Lerner, “Pattern recognition using generalized portrait
method,” Automation and Remote Control, vol. 24, 1963.

[7] M. A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical foun-
dations of the potential function method in pattern recognition learning,”
Automation and Remote Control, vol. 25, pp. 821–837, 1964.

[8] J. Antelis, L. Montesano, A. Murguialday, N. Birbaumer, and J. Minguez,
“Continuous decoding of intention to move from contralesional hemisphere
brain oscillations in severely affected chronic stroke patients,” in 34th An-
nual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBS), 2012.

[9] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machi-
nes,” ACM Transactions on Intelligent Systems and Technology, vol. 2, pp.
27:1–27:27, 2011, software available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm.

[10] L. R. Rabiner, “A tutorial on hidden markov models and selected applica-
tions in speech recognition,” in Proceedings of the IEEE, 1989, pp. 257–286.

[11] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Transactions on Information Theory,
vol. IT-13, no. 2, pp. 260–269, April 1967.

[12] Conditional Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data, ser. ICML ’01. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645530.655813

39

http://doi.acm.org/10.1145/1329125.1329409
http://dx.doi.org/10.1007/BF00994018
http://doi.acm.org/10.1145/130385.130401
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813


[13] C. Sutton and A. McCallum, “An introduction to conditional random
fields,” 2010, cite arxiv:1011.4088Comment: 90 pages. [Online]. Available:
http://arxiv.org/abs/1011.4088

[14] H. B, “An on-line transformation of eeg scalp potentials into orthogonal
source derivations,” Electroencephalogr Clin Neurophysiol, vol. 5, pp. 526–
30, 1975.

[15] C. Tallon-Baudry, O. Bertrand, C. Delpuech, and J. Permier, “Oscillatory
gamma-band (30-70 Hz) activity induced by a visual search task in hu-
mans.” J Neurosci, vol. 17, no. 2, pp. 722–734, Jan. 1997.

[16] B. Graimann and G. Pfurtscheller, “Quantification and visualization of
event-related changes in oscillatory brain activity in the time frequency
domain,” Progress in Brain Research, vol. 169, no. 159, pp. 79–97, 2006.

[17] D. J. McFarland and J. R. Wolpaw, “Trained modulation of sensorimotor
rhythms can affect reaction time,” Clinical Neurophysiology, vol. 5, p. 155,
2011. [Online]. Available: http://dx.doi.org/10.1016/j.clinph.2011.02.016

[18] G. Pfurtscheller and C. Neuper, “Future prospects of ERD/ERS in the
context of brain-computer interface (BCI) developments,” in Event-Related
Dynamics of Brain Oscillations, ser. Progress in Brain Research, C. Neuper
and W. Klimesch, Eds. Elsevier, 2006, vol. 159, pp. 433–437.

40

http://arxiv.org/abs/1011.4088
http://dx.doi.org/10.1016/j.clinph.2011.02.016


Anexos

A. Captura y procesamiento de la señal

La señal con la que se trabaja en este estudio ha sido capturada por el
Grupo de Robótica de la Universidad de Zaragoza siguiendo el protocolo que
se detalla a continuación. Nos facilitaron los datos ya procesados y en formato
adecuado para su lectura en Matlab mediante ficheros .mat. Aqúı se destaca la
información más relevante del protocolo de experimentación, la extracción de
datos y el procesado previo de la señal, pero para información más detallada
consúltese [8].

A.1. Sujetos

La obtención de datos para este análisis se realizó sobre pacientes con he-
miplejia producida por haber sufrido un infarto cerebral. El infarto cerebral es
un accidente cerebro-vascular causado por la falta de sangre (isquemia) —y en
consecuencia de ox́ıgeno— que, dependiendo de la severidad, puede dañar per-
manentemente un hemisferio cerebral produciendo la parálisis de la mitad del
cuerpo controlada por él mismo. Aśı pues, nuestros sujetos tienen una corteza
cerebral sana y otra dañado, al mismo tiempo que tienen las extremidades de
un lado del cuerpo paralizadas.

Concretamente fueron cuatro varones de edades entre 55 y 65 años con apo-
plej́ıa isquémica (dos en el hemisferio derecho y dos en el izquierdo) los que
participaron en este estudio. Todos los pacientes sufrieron el infarto al menos
dos años antes de los experimentos. Los pacientes eran incapaces de utilizar
la extremidad superior para ninguna actividad cotidiana, sin movilidad en los
dedos del lado con paresia (having no residual finger extension on the paretic
side). Todos los pacientes eran capaces de completar las tareas con el lado sano.

Se realizaron dos experimentos equivalentes, uno en el que el paciente eje-
cutaba las acciones con el brazo sano, y otro en el que intentaba realizarlas
con el brazo dañado. En ambos experimentos se grabaron al mismo tiempo las
ondas generadas por cada córtex cerebral. Una vez finalizados, se extrajo la
señal de ambos experimentos separando en cada paciente las cuatro combina-
ciones posibles (Brazo Sano—Córtex Sano, Brazo Sano—Córtex Dañado, Brazo
Dañado—Córtex Sano, Brazo Dañado—Córtex Dañado). Será a partir de estos
cuatro conjuntos de datos sobre los que se analizarán los diferentes modelos de
clasificación.
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A.2. Protocolo de experimentación

El protocolo experimental ha sido aprobado por el comité ético de la Facultad
de Medicina de la Universidad de Tubingen, y se obtuvo consentimiento escrito
de cada paciente.

Los pacientes se sentaban en una silla enfrente de una pantalla de ordenador
con los dos antebrazos descansando cómodamente en su regazo.

La tarea consist́ıa en mover el brazo sano, o intentar mover el incapacitado,
desde la posición inicial a un punto elegido por el sujeto entre los presentados
en una pantalla mediante ćırculos coloreados y volver a la posición inicial (véase
la figura 13).

El experimento comprende dos condiciones diferentes: la condición uno re-
presenta el movimiento del brazo sano, mientras que la condición dos se refiere
al intento de movimiento del brazo incapacitado.

Figura 13: Sujeto en mitad de experimento. Se pueden apreciar los detectores
EEG (en la cabeza) y EMG (en el brazo). Abajo a la izquierda, diagrama de la
posición de los electrodos en el cráneo del sujeto.

Los usuarios fueron guiados por señales visuales y sonoras. La primera señal
indicaba a los usuarios relajar el cuerpo y adoptar la posición inicial durante
tres segundos. La segunda señal marcaba el inicio del movimiento del brazo sano
y el intento de movimiento del brazo incapacitado. Después de tres segundos,
la tercera señal indicaba relajarse adoptando la posición inicial, parpadeando
y descansando durante otros tres segundos. Durante la fase de movimiento,
entre la segunda y tercera señales), se solicitaba a los sujetos evitar parpadear
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o compensar el movimiento con el torso u otras partes del cuerpo; lo cual era
controlado visualmente por el terapeuta y luego, tras los experimentos, mediante
inspección visual de los datos EMG.

El experimento se ejecutó en cuatro bloques de seis minutos cada uno. Cua-
renta ensayos se grabaron en cada bloque, resultando un total de 160 ensayos
(80 para cada condición). Después de cada bloque el paciente pod́ıa descansar
tanto como fuera necesario para evitar la fatiga.

A.3. Proceso de grabación

La actividad EEG fue grabada a través de 64 electrodos activos ordenados
de acuerdo al sistema internacional 10/10 utilizando un sistema actiCAP (de
Brain Products GmbH, Alemania), con masa en AFz y referenciado al lóbulo
de la oreja izquierda.

Dieciséis electrodos bipolares Ag/AgCl (ocho en cada brazo) de Myotronics-
Noromed (Tuwila, WA, USA) se emplearon para la adquisición de datos EMG
en la superficie y situados en los músculos involucrados en el movimiento: 1)
extensor ulnar del carpo (extensor carpi ulnaris); 2) extensor digitorum; 3) en el
flexor radial del carpo (flexor carpi radialis), palmar menor (plamaris longus),
flexor carpi ulnaris (flexión); 4) en la cabeza externa del b́ıceps (flexion); 5)
la cabeza externa del tŕıceps; 6) lado frontal del deltoides; 7) lado lateral del
deltoides; y 8) lado posterior del del deltoides sobre el músculo redondo menor
(teres minor) y el músculo intraespinoso. Los datos EEG y EMG se grabaron a
una tasa de sampleo de 2500 Hz sin filtrado.

A.4. Procesado previo del EEG y del EMG

Cada ensayo de EEG y EMG tiene una duración de nueve segundos, con la
referencia de tiempo tomada desde los segundos -3 a 6 con respecto a la apari-
ción de la segunda señal (inicio del movimiento), por lo que éste comienza en el
instante cero. Para cada ensayo el comienzo del movimiento se determinó utili-
zando las señales del EMG. Para cada sujeto, la señal EMG con mayor amplitud
y actividad más consistente (una baja amplitud en el periodo de relajación y
alta amplitud mantenida durante el periodo de movimiento) durante todos los
ensayos fue seleccionada por inspección visual. En cada ensayo, a la señal del
canal EMG elegido se le aplicó un filtrado paso-alto con una frecuencia de corte
de 10 Hz, y posteriormente se le aplicó la transformada de Hilbert para obtener
el comienzo del movimiento. Finalmente, todos los ensayos EEG y EMG fueron
recortados entre los segundos -3 y 3 en relación al comienzo del movimiento
basado en el EMG.

A las señales EEG se les aplicó un filtro paso-banda entre 0.5 y 60 Hz usando
un filtro desplazado a la fase cero y resampleado a 160 Hz. Para eliminar los
efectos de la conducción del volumen, se aplicó un filtrado espacial Laplaciano
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([14]) con la intención de obtener señales EEG libres de artefactos.

Figura 14: Esquema donde se aprecia la secuencia de estados rest (descanso) y
reaching movement (movimiento).

A.5. Tareas relacionadas con la modulación en potencia

La evolución temporal de la potencia espectral en diferentes bandas de fre-
cuencia de la actividad EEG libre de artefactos se calculó con un análisis de
frecuencia temporal usando las ond́ıculas complejas de Morlet (complex Mor-
let‘s wavelet) [15]. La representación en la frecuencia temporal (TFR) se cal-
culó para todos los ensayos en cada condición de 2 a 40 Hz con una resolución
de frecuencia de 1 Hz. Posteriormente, la relevancia estad́ıstica del porcentaje
de incremento/disminución de la potencia espectral en relación al punto de refe-
rencia en el intervalo de -3 a 0 segundos se calculó con un análisis de remuestreo
([16]) con un nivel de significancia de α = 0,01.

A.6. Selección de caracteŕısticas

Los canales localizados en el córtex motor sano y y los frequency bins en las
franjas (α y β) que muestran una desincronización significativa en la ventana
temporal de 0 a 3 segundos fueron identificados individualmente por inspección
visual en cada sujeto.

La potencia espectral de estas parejas de canal-frecuencia se calculó usando
un modelo autoregresivo de orden 16o [17] sobre una ventana de tamaño δw
para la actividad EEG, obteniendo las caracteŕısticas xt en el tiempo t para la
detección de intención de movimiento. Las caracteŕısticas basadas en la potencia
espectral de los canales en el córtex motor y en las franjas relacionados con la
zona motor han sido usados en otros trabajos para la detección de movimientos
ejecutados o imaginados de diferentes partes de las extremidades [18]. Sin em-
bargo, en esta investigación se utilizan simplemente los canales del córtex motor
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opuesto a la zona lesionada para decodificar ambas condiciones (movimientos
del lado sano e intentos de mover el lado paralizado).
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B. Planificación

Este proyecto estuvo desarrollándose a tiempo completo de febrero a junio.
Durante este tiempo se realizó la mayor parte del trabajo, desde la documenta-
ción a la ejecución y pruebas con todos los modelos.

Documentación sobre EEG y clasificación de estas señales.

Documentación sobre el caso particular de pacientes con hemiplejia y los
experimentos de lectura del EEG.

Documentación de modelos de clasificación estáticos (LDA y SVM).

Aprendizaje del uso de las libreŕıas para modelos estáticos.

Primeros contactos replicando experimentos realizados sobre sujetos sanos.

Implementación de código para tratar adecuadamente nuestros conjuntos
de datos para entrenar y testear los modelos estáticos con las libreŕıas.

Ejecuciones probando el comportamiento de los modelos con diferentes
parámetos.

Documentación de modelos de clasificación dinámicos (HMM y CRF).

Aprendizaje del uso de las libreŕıas para modelos dinámicos.

Implementación de código para tratar adecuadamente nuestros conjuntos
de datos para entrenar y testear los modelos dinámicos con las libreŕıas.

Ejecuciones probando el comportamiento de los modelos con diferentes
parámetos.

Implementación de bateŕıas de pruebas para todos los modelos y códi-
go para automatizar los entrenamientos y obtener información de salida
consistente entre todos los modelos.

A partir de entonces, y con el grueso del trabajo realizado, el presente in-
vestigador se incorporó a jornada completa a trabajar en una empresa privada.
Aśı, desde julio hasta noviembre, primero se dedicó a entrenar los diferentes mo-
delos con los parámetros que se hab́ıan considerado de mayor importancia en
el estudio previo. Una vez obtenidos, siguió un proceso de evaluación y estudio
de los mismos para, finalmente, terminar realizando la presente memoria que
resume y engloba todo el trabajo realizado en este proyecto.
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C. Resultados completos por modelo

En este apartado vamos a mostrar los resultados detallados obtenidos en
todos los modelos mediante la media de aciertos de los seis sujetos estudiados.

El formato de todas las tablas va a ser el mismo para todos los tres primeros
modelos. La primera columna representa cómo se seleccionan los datos según se
describió en la sección 2.2: puntos es que se toma una muestra individual cada
vez, ventanas es que se considera toda la ventana entre dos puntos haciendo
la media, y solapadas es similar al anterior pero permitiendo solapamiento de
ventanas.

La segunda columna llamada delay, indica la distancia entre cada lectura que
se toma según el tipo y es, por tanto, el retraso en segundos con el que se puede
clasificar una muestra ya léıda. Esto también se ha explicado detalladamente
en la sección 2.2 y como sabemos es un criterio básico a la hora de estimar la
eficacia de un clasificador, puesto que necesitamos conocer la etiqueta de los
estados cuanto antes. Las tres siguientes columnas son la media obtenida en
cada estado por separado y la media total. Obsérvese que esta última media no
es la media aritmética de las anteriores, puesto que cada estado tiene distinto
tamaño.

Como se describe en 3.4.2 los CRF en cadena permiten incluir la información
de los nodos vecinos para realizar la clasificación. En la libreŕıa que utilizamos a
este parámetro se le denomina tamaño de ventana y hace referencia al número
de nodos vecinos en ambas direcciones que se utilizarán. Para no liarnos con
el sistema de segmentación de la señal, le llamaremos wSize. Entonces aqúı el
delay dependerá de cuántos vecinos utilizamos por delante, que coincide con
wSize, y a qué intervalo hemos decidido tomar estos puntos. De ese modo,
delay = wsize ∗ intervalo.

Por este motivo los CRF necesitan un formato de tabla distinto a los ante-
riores, en el que se muestran las tres variables de la última fórmula en las tres
primeras columnas. Se han realizado combinaciones entre el número de vecinos
(de 5 a 30) y los intervalos de muestreo de la señal (desde utilizar toda la señal
a intervalos de 0.25 segundos), quedando diferentes delays de ±1.25, ±0.9375 y
±0.625, etc. segundos. Puesto que algunas combinaciones distintas de intervalo
y wsize pueden dar lugar a un mismo delay, estos se han agrupado, pues a
fin de cuentas utilizan grosso modo un subconjunto similar de observaciones (y
esto se hace evidente cuando se observa que todos los modelos con mismo delay
comparten un porcentaje de aciertos similar).
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C.1. LDA

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 58.02 73.33 66.76
Puntos 0.03125 58.05 73.38 66.76
Puntos 0.0625 58.14 73.32 66.72
Puntos 0.125 58.21 73.42 66.70
Puntos 0.1875 58.25 73.48 66.65
Puntos 0.25 58.04 73.76 66.61
Puntos 0.5 58.37 74.37 67.10
Ventanas 0.03125 58.02 73.53 66.88
Ventanas 0.0625 58.13 73.58 66.96
Ventanas 0.125 58.09 73.89 67.12
Ventanas 0.1875 58.15 74.28 67.37
Ventanas 0.25 58.31 74.51 67.56
Ventanas 0.5 59.73 75.34 69.10
V. Solapadas 0.03125 58.13 73.63 66.95
V. Solapadas 0.0625 58.09 73.91 67.05
V. Solapadas 0.125 58.26 74.28 67.25
V. Solapadas 0.1875 58.45 74.63 67.44
V. Solapadas 0.25 58.40 74.81 67.42
V. Solapadas 0.5 62.23 75.75 69.74

Cuadro 8: LDA - Arm Healthy Cortex Healthy - Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 64.69 77.43 71.96
Puntos 0.03125 64.76 77.40 71.94
Puntos 0.0625 64.68 77.53 71.94
Puntos 0.125 64.75 77.47 71.85
Puntos 0.1875 64.47 77.65 71.74
Puntos 0.25 64.64 77.10 71.43
Puntos 0.5 64.45 77.01 71.30
Ventanas 0.03125 64.77 77.62 72.11
Ventanas 0.0625 65.06 77.79 72.33
Ventanas 0.125 65.26 77.88 72.47
Ventanas 0.1875 65.41 78.69 73.00
Ventanas 0.25 65.94 78.42 73.07
Ventanas 0.5 66.61 79.75 74.50
V. Solapadas 0.03125 65.10 77.79 72.32
V. Solapadas 0.0625 65.24 77.98 72.45
V. Solapadas 0.125 65.48 78.50 72.78
V. Solapadas 0.1875 65.90 78.69 73.00
V. Solapadas 0.25 66.22 79.14 73.33
V. Solapadas 0.5 67.23 80.62 74.67

Cuadro 9: LDA - Arm Healthy Cortex Healthy - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 54.75 65.11 60.66
Puntos 0.03125 54.82 65.02 60.62
Puntos 0.0625 55.04 64.96 60.64
Puntos 0.125 55.13 64.84 60.55
Puntos 0.1875 54.51 65.28 60.45
Puntos 0.25 55.79 64.72 60.66
Puntos 0.5 55.87 65.20 60.96
Ventanas 0.03125 54.85 65.13 60.72
Ventanas 0.0625 54.80 65.47 60.90
Ventanas 0.125 54.84 65.38 60.86
Ventanas 0.1875 55.12 65.84 61.25
Ventanas 0.25 55.30 65.64 61.21
Ventanas 0.5 55.41 68.12 63.04
V. Solapadas 0.03125 54.75 65.42 60.82
V. Solapadas 0.0625 54.73 65.47 60.82
V. Solapadas 0.125 54.84 65.67 60.92
V. Solapadas 0.1875 54.73 65.98 60.98
V. Solapadas 0.25 54.30 66.42 60.96
V. Solapadas 0.5 57.60 67.16 62.91

Cuadro 10: LDA - Arm Impaired Cortex Healthy - Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 60.03 69.57 65.47
Puntos 0.03125 60.07 69.65 65.51
Puntos 0.0625 60.16 69.76 65.58
Puntos 0.125 60.24 69.59 65.46
Puntos 0.1875 60.54 69.27 65.35
Puntos 0.25 60.16 69.65 65.34
Puntos 0.5 60.12 69.23 65.09
Ventanas 0.03125 60.04 69.74 65.58
Ventanas 0.0625 60.13 69.89 65.71
Ventanas 0.125 60.34 70.33 66.05
Ventanas 0.1875 60.45 70.42 66.15
Ventanas 0.25 60.74 70.62 66.38
Ventanas 0.5 60.52 71.07 66.85
V. Solapadas 0.03125 60.28 69.94 65.77
V. Solapadas 0.0625 60.48 70.31 66.05
V. Solapadas 0.125 60.77 70.59 66.28
V. Solapadas 0.1875 61.25 70.61 66.45
V. Solapadas 0.25 61.18 70.54 66.33
V. Solapadas 0.5 61.19 71.00 66.64

Cuadro 11: LDA - Arm Impaired Cortex Healthy - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 56.00 57.19 56.68
Puntos 0.03125 56.07 57.13 56.67
Puntos 0.0625 55.84 57.00 56.49
Puntos 0.125 55.81 57.23 56.60
Puntos 0.1875 55.65 57.01 56.40
Puntos 0.21875 55.98 57.72 56.92
Puntos 0.25 55.81 56.42 56.14
Puntos 0.5 56.12 56.63 56.40
Ventanas 0.03125 56.02 57.26 56.73
Ventanas 0.0625 56.12 57.45 56.88
Ventanas 0.125 56.20 57.65 57.03
Ventanas 0.1875 56.18 57.66 57.03
Ventanas 0.21875 55.87 57.83 56.98
Ventanas 0.25 56.11 57.91 57.14
Ventanas 0.5 56.25 58.61 57.66
V. Solapadas 0 56.00 57.21 56.69
V. Solapadas 0.03125 56.17 57.40 56.87
V. Solapadas 0.0625 56.25 57.57 57.00
V. Solapadas 0.125 56.40 57.56 57.05
V. Solapadas 0.1875 56.45 57.86 57.23
V. Solapadas 0.21875 56.56 57.95 57.32
V. Solapadas 0.25 56.78 57.57 57.21
V. Solapadas 0.5 57.65 58.41 58.07

Cuadro 12: LDA - Arm Healthy Cortex Injured - Mejor canal
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 56.58 65.45 61.64
Puntos 0.03125 56.71 65.59 61.76
Puntos 0.0625 56.36 65.72 61.65
Puntos 0.125 56.86 65.49 61.68
Puntos 0.1875 56.73 65.80 61.73
Puntos 0.21875 56.40 65.62 61.39
Puntos 0.25 56.81 64.93 61.24
Puntos 0.5 57.33 66.25 62.19
Ventanas 0.03125 56.56 65.54 61.69
Ventanas 0.0625 56.49 65.85 61.84
Ventanas 0.125 56.67 66.03 62.02
Ventanas 0.1875 56.47 66.19 62.03
Ventanas 0.21875 56.79 66.28 62.15
Ventanas 0.25 56.85 66.26 62.23
Ventanas 0.5 57.34 67.50 63.43
V. Solapadas 0 56.53 65.41 61.60
V. Solapadas 0.03125 56.54 65.71 61.76
V. Solapadas 0.0625 56.74 65.86 61.91
V. Solapadas 0.125 56.78 65.82 61.85
V. Solapadas 0.1875 57.34 65.91 62.10
V. Solapadas 0.21875 57.58 66.28 62.32
V. Solapadas 0.25 57.38 66.38 62.33
V. Solapadas 0.5 59.21 67.50 63.81

Cuadro 13: LDA - Arm Healthy Cortex Injured - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 52.62 62.77 58.42
Puntos 0.03125 52.62 62.93 58.48
Puntos 0.0625 52.80 62.91 58.51
Puntos 0.125 52.91 62.58 58.31
Puntos 0.1875 52.41 63.03 58.27
Puntos 0.21875 52.68 63.42 58.50
Puntos 0.25 52.79 62.37 58.02
Puntos 0.5 53.33 63.50 58.88
Ventanas 0.03125 52.67 63.05 58.60
Ventanas 0.0625 52.69 63.15 58.67
Ventanas 0.125 52.78 63.14 58.70
Ventanas 0.1875 52.22 63.33 58.57
Ventanas 0.21875 52.70 64.21 59.21
Ventanas 0.25 52.93 63.36 58.89
Ventanas 0.5 53.17 63.57 59.41
V. Solapadas 0 52.65 62.88 58.49
V. Solapadas 0.03125 52.71 63.25 58.71
V. Solapadas 0.0625 52.54 63.55 58.78
V. Solapadas 0.125 52.33 63.97 58.86
V. Solapadas 0.1875 52.29 64.26 58.94
V. Solapadas 0.21875 52.06 64.20 58.68
V. Solapadas 0.25 52.89 64.65 59.36
V. Solapadas 0.5 54.32 64.75 60.11

Cuadro 14: LDA - Arm Impaired Cortex Injured - Mejor canal
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 57.20 63.26 60.66
Puntos 0.03125 57.24 63.40 60.74
Puntos 0.0625 57.47 63.22 60.72
Puntos 0.125 57.46 62.98 60.54
Puntos 0.1875 56.74 63.68 60.57
Puntos 0.21875 57.59 64.02 61.07
Puntos 0.25 56.75 62.43 59.84
Puntos 0.5 58.08 62.91 60.71
Ventanas 0.03125 57.21 63.43 60.77
Ventanas 0.0625 57.01 63.52 60.73
Ventanas 0.125 56.93 63.64 60.76
Ventanas 0.1875 57.20 64.47 61.36
Ventanas 0.21875 56.91 64.47 61.18
Ventanas 0.25 57.17 63.97 61.06
Ventanas 0.5 57.50 64.86 61.91
V. Solapadas 0 57.19 63.29 60.67
V. Solapadas 0.03125 57.03 63.54 60.73
V. Solapadas 0.0625 57.25 63.72 60.92
V. Solapadas 0.125 57.07 64.22 61.08
V. Solapadas 0.1875 57.50 64.40 61.33
V. Solapadas 0.21875 57.75 64.61 61.49
V. Solapadas 0.25 58.10 64.50 61.62
V. Solapadas 0.5 59.06 64.83 62.26

Cuadro 15: LDA - Arm Impaired Cortex Injured - Todos los mejores canales
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C.2. SVM

Tipo Delay Reposo Movimiento Media ambos
Puntos 0.0625 47.25 82.38 67.09
Puntos 0.125 47.99 81.93 66.93
Puntos 0.1875 50.08 80.18 66.68
Puntos 0.25 50.43 80.65 66.92
Ventanas 0.03125 46.96 82.97 67.54
Ventanas 0.0625 47.39 82.82 67.63
Ventanas 0.125 47.31 82.96 67.68
Ventanas 0.1875 47.84 83.00 67.93
Ventanas 0.25 48.70 82.81 68.19
V. Solapadas 0.03125 48.08 82.37 67.59
V. Solapadas 0.0625 48.83 81.96 67.59
V. Solapadas 0.125 50.78 81.04 67.75
V. Solapadas 0.1875 52.70 79.54 67.61
V. Solapadas 0.25 54.88 78.69 67.97

Cuadro 16: SVM - Arm Healthy Cortex Healthy - Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0.0625 58.40 81.26 71.31
Puntos 0.125 59.46 81.58 71.81
Puntos 0.1875 59.56 81.49 71.66
Puntos 0.25 60.39 81.12 71.70
Ventanas 0.03125 58.20 80.58 70.99
Ventanas 0.0625 58.47 81.54 71.65
Ventanas 0.125 58.88 82.45 72.35
Ventanas 0.1875 59.27 82.33 72.44
Ventanas 0.25 60.34 82.74 73.14
V. Solapadas 0.03125 59.10 79.96 70.97
V. Solapadas 0.0625 60.22 80.66 71.80
V. Solapadas 0.125 61.62 81.10 72.55
V. Solapadas 0.1875 63.15 80.98 73.06
V. Solapadas 0.25 64.30 80.54 73.23

Cuadro 17: SVM - Arm Healthy Cortex Healthy - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0.0625 34.73 83.26 62.13
Puntos 0.125 35.09 82.91 61.78
Puntos 0.1875 36.07 82.18 61.51
Puntos 0.25 37.64 80.79 61.18
Ventanas 0.03125 34.57 83.76 62.68
Ventanas 0.0625 34.78 84.01 62.91
Ventanas 0.125 35.03 83.84 62.92
Ventanas 0.1875 34.87 84.28 63.11
Ventanas 0.25 34.51 85.00 63.36
V. Solapadas 0.03125 35.61 83.09 62.62
V. Solapadas 0.0625 36.65 82.93 62.86
V. Solapadas 0.125 38.59 82.25 63.08
V. Solapadas 0.1875 39.27 82.12 61.00

Cuadro 18: SVM - Arm Impaired Cortex Healthy - Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0.03125 48.49 78.58 65.58
Puntos 0.0625 48.70 79.55 66.12
Puntos 0.125 49.30 80.06 66.47
Puntos 0.1875 49.95 78.98 65.96
Puntos 0.25 50.77 79.14 66.25
Ventanas 0.03125 48.60 78.47 65.66
Ventanas 0.0625 47.93 79.92 66.21
Ventanas 0.125 47.59 80.98 66.67
Ventanas 0.1875 47.10 81.60 66.81
Ventanas 0.25 47.43 82.41 67.42
V. Solapadas 0.03125 49.60 77.89 65.69
V. Solapadas 0.0625 49.42 78.98 66.16
V. Solapadas 0.125 50.18 79.57 66.67
V. Solapadas 0.1875 51.85 78.83 66.84
V. Solapadas 0.25 53.07 78.31 66.95

Cuadro 19: SVM - Arm Impaired Cortex Healthy - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0.03125 26.72 84.40 59.48
Puntos 0.0625 27.43 84.14 59.46
Puntos 0.125 28.83 83.08 59.11
Puntos 0.1875 32.03 81.31 59.22
Puntos 0.21875 36.47 77.54 58.72
Puntos 0.25 31.39 81.42 58.68
Puntos 0.5 34.95 79.86 59.45
Ventanas 0.0625 24.61 85.86 59.61
Ventanas 0.125 24.30 86.38 59.77
Ventanas 0.1875 23.59 86.65 59.62
Ventanas 0.21875 26.77 84.82 59.58
Ventanas 0.25 24.07 86.11 59.52
Ventanas 0.5 18.54 91.38 62.25
V. Solapadas 0.0625 27.42 84.22 59.58
V. Solapadas 0.125 29.57 82.78 59.42
V. Solapadas 0.1875 33.15 80.43 59.42
V. Solapadas 0.21875 38.52 76.56 59.27
V. Solapadas 0.25 36.57 77.82 59.26
V. Solapadas 0.5 37.08 78.20 59.93

Cuadro 20: SVM - Arm Healthy Cortex Injured - Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0.03125 37.91 81.67 62.77
Puntos 0.0625 38.46 81.77 62.92
Puntos 0.125 39.66 80.96 62.71
Puntos 0.1875 41.61 80.53 63.08
Puntos 0.21875 45.39 76.81 62.41
Puntos 0.25 41.31 79.58 62.18
Puntos 0.5 44.95 78.02 62.99
Ventanas 0.0625 38.20 81.91 63.17
Ventanas 0.125 38.42 82.38 63.54
Ventanas 0.1875 38.57 82.85 63.87
Ventanas 0.21875 41.62 81.50 64.16
Ventanas 0.25 39.18 82.50 63.93
Ventanas 0.5 33.75 88.36 66.52
V. Solapadas 0.0625 40.25 80.66 63.13
V. Solapadas 0.125 41.99 79.87 63.24
V. Solapadas 0.1875 44.25 78.79 63.44
V. Solapadas 0.21875 47.70 77.13 63.75
V. Solapadas 0.25 45.74 77.99 63.47
V. Solapadas 0.5 46.40 78.37 64.16

Cuadro 21: SVM - Arm Healthy Cortex Injured - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0.0625 30.70 83.47 60.50
Puntos 0.125 32.23 82.68 60.39
Puntos 0.1875 33.34 81.14 59.71
Puntos 0.21875 37.61 78.14 59.56
Puntos 0.25 34.70 82.03 60.52
Puntos 0.5 33.95 82.84 60.62
Ventanas 0.0625 30.56 84.51 61.39
Ventanas 0.125 30.69 84.53 61.45
Ventanas 0.1875 31.07 84.72 61.73
Ventanas 0.21875 32.29 83.79 61.40
Ventanas 0.25 30.94 84.25 61.40
Ventanas 0.5 26.61 88.05 63.47
V. Solapadas 0.0625 31.81 83.64 61.16
V. Solapadas 0.125 33.94 82.53 61.20
V. Solapadas 0.1875 36.63 81.09 61.33
V. Solapadas 0.21875 40.52 79.49 61.78
V. Solapadas 0.25 38.93 80.49 61.79
V. Solapadas 0.5 38.33 81.91 62.54

Cuadro 22: SVM - Arm Impaired Cortex Injured - Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0.0625 41.36 78.77 62.49
Puntos 0.125 42.05 78.82 62.57
Puntos 0.1875 42.08 78.08 61.94
Puntos 0.21875 47.02 74.56 61.94
Puntos 0.25 42.97 77.93 62.04
Puntos 0.5 43.00 80.34 63.37
Ventanas 0.0625 41.23 79.07 62.85
Ventanas 0.125 41.16 80.02 63.37
Ventanas 0.1875 41.19 80.82 63.83
Ventanas 0.21875 43.08 79.93 63.91
Ventanas 0.25 41.27 80.52 63.70
Ventanas 0.5 36.19 85.45 65.75
V. Solapadas 0.0625 42.86 77.77 62.63
V. Solapadas 0.125 44.42 77.78 63.13
V. Solapadas 0.1875 45.81 77.02 63.15
V. Solapadas 0.21875 48.95 75.62 63.50
V. Solapadas 0.25 47.77 76.32 63.47
V. Solapadas 0.5 47.81 78.08 64.62

Cuadro 23: SVM - Arm Impaired Cortex Injured - Todos los mejores canales
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SVM train a 0.75 y test variado

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 61.39 70.74 66.72
Puntos 0.03125 61.48 70.73 66.73
Puntos 0.0625 61.32 70.87 66.72
Puntos 0.125 61.40 70.70 66.59
Puntos 0.25 60.50 71.35 66.42
Ventanas 0.03125 51.37 79.40 67.39
Ventanas 0.0625 51.31 79.68 67.52
Ventanas 0.125 51.19 80.04 67.67
Ventanas 0.25 51.13 80.15 67.71
V. Solapadas 0.03125 64.06 67.63 66.09
V. Solapadas 0.0625 64.24 68.08 66.42
V. Solapadas 0.125 64.32 68.83 66.85
V. Solapadas 0.25 64.35 69.26 67.05

Cuadro 24: SVM (train 0.75 - test variado) - Arm Healthy Cortex Healthy - Mejor
canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 67.13 74.92 71.58
Puntos 0.03125 67.00 74.97 71.53
Puntos 0.0625 67.00 75.06 71.55
Puntos 0.125 66.98 75.00 71.46
Puntos 0.25 66.31 74.30 70.67
Ventanas 0.03125 62.13 79.08 71.82
Ventanas 0.0625 62.09 79.52 72.05
Ventanas 0.125 62.32 80.05 72.45
Ventanas 0.25 62.19 80.95 72.91
V. Solapadas 0.03125 72.31 68.58 70.19
V. Solapadas 0.0625 72.31 69.13 70.51
V. Solapadas 0.125 72.14 70.73 71.35
V. Solapadas 0.25 71.48 72.25 71.90

Cuadro 25: SVM (train 0.75 - test variado) - Arm Healthy Cortex Healthy - Todos
los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 55.94 63.02 59.98
Puntos 0.03125 55.80 63.00 59.89
Puntos 0.0625 55.54 63.29 59.92
Puntos 0.125 55.17 63.57 59.86
Puntos 0.25 56.08 62.46 59.56
Ventanas 0.03125 37.45 81.16 62.43
Ventanas 0.0625 37.41 81.64 62.68
Ventanas 0.125 37.32 82.07 62.89
Ventanas 0.25 37.63 82.20 63.10
V. Solapadas 0.03125 59.48 61.78 60.79
V. Solapadas 0.0625 58.52 60.67 59.74
V. Solapadas 0.125 58.35 61.82 60.29
V. Solapadas 0.25 58.35 62.78 60.79

Cuadro 26: SVM (train 0.75 - test variado) - Arm Impaired Cortex Healthy -
Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 60.52 68.23 64.92
Puntos 0.03125 60.46 68.31 64.92
Puntos 0.0625 60.54 68.59 65.09
Puntos 0.125 60.52 69.01 65.26
Puntos 0.25 60.72 68.42 64.92
Ventanas 0.03125 50.26 77.64 65.91
Ventanas 0.0625 49.79 78.20 66.02
Ventanas 0.125 49.82 78.88 66.42
Ventanas 0.25 49.30 79.58 66.60
V. Solapadas 0.03125 68.45 59.29 63.24
V. Solapadas 0.0625 68.24 60.26 63.72
V. Solapadas 0.125 67.74 61.52 64.25
V. Solapadas 0.25 67.40 63.82 65.43

Cuadro 27: SVM (train 0.75 - test variado) - Arm Impaired Cortex Healthy -
Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Punto 0.03125: 54.18 60.25 57.63
Punto 0.0625: 53.96 60.25 57.51
Punto 0.125: 53.82 60.18 57.37
Punto 0.25: 53.27 60.22 57.06
Punto 0.5: 55.00 60.69 58.10
Ventana 0.03125: 30.50 81.48 59.63
Ventana 0.0625: 30.43 81.67 59.71
Ventana 0.125: 30.52 82.08 59.98
Ventana 0.25: 29.58 82.27 59.69
Ventana 0.5: 30.88 83.68 62.56
V. Solapada 0.03125: 55.36 59.58 57.76
V. Solapada 0.0625: 55.71 59.81 58.03
V. Solapada 0.125: 55.87 60.16 58.28
V. Solapada 0.25: 56.25 60.66 58.67
V. Solapada 0.5: 57.44 60.25 59.00

Cuadro 28: SVM (train 0.75 - test variado) - Arm Healthy Cortex Injured - Mejor
canal

Tipo Delay Reposo Movimiento Media ambos
Punto 0.03125: 54.88 66.27 61.35
Punto 0.0625: 54.75 66.34 61.30
Punto 0.125: 54.49 66.23 61.04
Punto 0.25: 54.18 65.92 60.58
Punto 0.5: 55.83 66.38 61.59
Ventana 0.03125: 42.40 78.87 63.24
Ventana 0.0625: 42.40 79.27 63.46
Ventana 0.125: 42.43 79.66 63.70
Ventana 0.25: 43.03 80.38 64.37
Ventana 0.5: 44.68 81.45 66.75
V. Solapada 0.03125: 61.91 59.13 60.33
V. Solapada 0.0625: 61.86 59.82 60.71
V. Solapada 0.125: 61.77 60.37 60.98
V. Solapada 0.25: 61.22 61.34 61.29
V. Solapada 0.5: 63.17 62.29 62.68

Cuadro 29: SVM (train 0.75 - test variado) - Arm Healthy Cortex Injured - Todos
los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Punto 0.03125: 53.92 61.86 58.43
Punto 0.0625: 53.69 61.76 58.25
Punto 0.125: 53.46 61.66 58.04
Punto 0.25: 53.43 61.33 57.74
Punto 0.5: 54.12 61.59 58.20
Ventana 0.03125: 34.02 81.69 61.26
Ventana 0.0625: 34.17 82.03 61.52
Ventana 0.125: 34.16 82.43 61.75
Ventana 0.25: 33.84 83.21 62.05
Ventana 0.5: 33.85 83.57 63.68
V. Solapada 0.03125: 55.48 60.73 58.46
V. Solapada 0.0625: 55.46 61.32 58.78
V. Solapada 0.125: 55.57 61.99 59.17
V. Solapada 0.25: 55.34 62.72 59.40
V. Solapada 0.5: 57.03 62.79 60.23

Cuadro 30: SVM (train 0.75 - test variado) - Arm Impaired Cortex Injured - Mejor
canal

Tipo Delay Reposo Movimiento Media ambos
Punto 0.03125: 55.99 65.86 61.60
Punto 0.0625: 55.97 65.73 61.48
Punto 0.125: 56.01 65.92 61.55
Punto 0.25: 55.83 65.74 61.24
Punto 0.5: 56.50 65.83 61.59
Ventana 0.03125: 41.34 79.37 63.07
Ventana 0.0625: 41.20 79.56 63.12
Ventana 0.125: 41.16 79.90 63.30
Ventana 0.25: 41.20 80.59 63.71
Ventana 0.5: 42.86 80.76 65.60
V. Solapada 0.03125: 57.71 65.04 61.88
V. Solapada 0.0625: 57.91 65.41 62.16
V. Solapada 0.125: 58.04 65.82 62.40
V. Solapada 0.25: 59.39 66.02 63.04
V. Solapada 0.5: 61.82 67.70 65.09

Cuadro 31: SVM (train 0.75 - test variado) - Arm Impaired Cortex Injured - Todos
los mejores canales
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C.3. HMM

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 39.25 94.03 70.51
Puntos 0.03125 46.81 92.62 72.83
Puntos 0.0625 51.56 91.87 74.32
Puntos 0.125 56.19 91.37 75.82
Puntos 0.1875 60.09 91.56 77.45
Puntos 0.25 61.70 91.47 77.94
Puntos 0.5 66.58 92.46 80.70
Ventanas 0.03125 46.53 92.66 72.89
Ventanas 0.0625 51.23 91.87 74.45
Ventanas 0.125 56.56 91.15 76.32
Ventanas 0.1875 59.93 90.93 77.64
Ventanas 0.25 61.71 91.00 78.45
Ventanas 0.5 67.96 91.84 82.29
V. Solapadas 0.03125 46.23 92.68 72.65
V. Solapadas 0.0625 51.00 91.84 74.12
V. Solapadas 0.125 56.26 91.09 75.80
V. Solapadas 0.1875 59.67 90.77 76.95
V. Solapadas 0.25 61.75 90.77 77.71
V. Solapadas 0.5 69.16 91.20 81.41

Cuadro 32: HMM - Arm Healthy Cortex Healthy - Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 46.41 93.19 73.11
Puntos 0.03125 51.84 91.76 74.52
Puntos 0.0625 54.94 91.10 75.36
Puntos 0.125 58.50 90.23 76.21
Puntos 0.1875 60.32 90.13 76.76
Puntos 0.25 62.68 90.01 77.59
Puntos 0.5 67.04 90.27 79.71
Ventanas 0.03125 51.56 91.76 74.53
Ventanas 0.0625 54.72 91.09 75.50
Ventanas 0.125 58.62 90.26 76.70
Ventanas 0.1875 61.09 89.76 77.47
Ventanas 0.25 62.91 89.27 77.97
Ventanas 0.5 69.94 89.40 81.62
V. Solapadas 0.03125 51.63 91.75 74.45
V. Solapadas 0.0625 55.05 91.05 75.43
V. Solapadas 0.125 59.46 89.86 76.51
V. Solapadas 0.1875 62.76 89.00 77.33
V. Solapadas 0.25 65.48 88.25 78.01
V. Solapadas 0.5 73.02 86.83 80.69

Cuadro 33: HMM - Arm Healthy Cortex Healthy - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 40.69 85.84 66.46
Puntos 0.03125 49.54 84.26 69.26
Puntos 0.0625 54.36 84.36 71.30
Puntos 0.125 59.26 85.84 74.09
Puntos 0.1875 61.42 89.50 76.91
Puntos 0.25 63.62 89.63 77.81
Puntos 0.5 68.20 91.21 80.75
Ventanas 0.03125 49.19 84.35 69.28
Ventanas 0.0625 53.96 84.58 71.46
Ventanas 0.125 58.77 85.91 74.28
Ventanas 0.1875 61.73 87.83 76.65
Ventanas 0.25 63.58 89.37 78.32
Ventanas 0.5 67.65 91.84 82.16
V. Solapadas 0.03125 48.99 84.32 69.09
V. Solapadas 0.0625 53.83 84.44 71.16
V. Solapadas 0.125 58.33 86.51 74.14
V. Solapadas 0.1875 61.44 88.41 76.42
V. Solapadas 0.25 63.07 89.43 77.57
V. Solapadas 0.5 69.06 89.95 80.67

Cuadro 34: HMM - Arm Impaired Cortex Healthy - Mejor canal

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 38.99 90.25 68.24
Puntos 0.03125 45.03 88.38 69.65
Puntos 0.0625 48.27 87.57 70.46
Puntos 0.125 53.45 86.36 71.82
Puntos 0.1875 55.65 86.40 72.62
Puntos 0.25 57.50 85.65 72.85
Puntos 0.5 61.95 87.43 75.85
Ventanas 0.03125 44.73 88.54 69.76
Ventanas 0.0625 48.39 87.50 70.74
Ventanas 0.125 52.66 86.73 72.13
Ventanas 0.1875 55.57 86.11 73.02
Ventanas 0.25 57.33 86.02 73.73
Ventanas 0.5 62.39 87.29 77.33
V. Solapadas 0.03125 44.82 88.62 69.74
V. Solapadas 0.0625 48.63 87.61 70.71
V. Solapadas 0.125 53.39 86.75 72.10
V. Solapadas 0.1875 56.52 86.26 73.04
V. Solapadas 0.25 58.51 85.66 73.44
V. Solapadas 0.5 66.45 85.16 76.85

Cuadro 35: HMM - Arm Impaired Cortex Healthy - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 46.63 76.50 63.68
Puntos 0.03125 56.90 73.79 66.49
Puntos 0.0625 62.29 72.52 68.07
Puntos 0.125 66.67 73.32 70.38
Puntos 0.1875 70.44 73.20 71.96
Puntos 0.21875 71.68 73.95 72.91
Puntos 0.25 72.12 74.68 73.52
Puntos 0.5 75.66 79.65 77.84
Ventanas 0.03125 56.73 73.69 66.42
Ventanas 0.0625 61.82 72.70 68.04
Ventanas 0.125 66.92 72.66 70.20
Ventanas 0.1875 69.82 73.12 71.71
Ventanas 0.21875 71.35 73.28 72.44
Ventanas 0.25 71.87 74.18 73.19
Ventanas 0.5 76.25 79.30 78.08
V. Solapadas 0 46.66 76.48 63.68
V. Solapadas 0.03125 56.45 73.71 66.27
V. Solapadas 0.0625 61.75 72.54 67.86
V. Solapadas 0.125 67.14 71.99 69.86
V. Solapadas 0.1875 70.64 72.37 71.60
V. Solapadas 0.21875 72.22 72.41 72.32
V. Solapadas 0.25 72.75 72.76 72.76
V. Solapadas 0.5 77.13 77.08 77.10

Cuadro 36: HMM - Arm Healthy Cortex Injured - Mejor canal
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 48.50 81.12 67.12
Puntos 0.03125 56.31 78.46 68.89
Puntos 0.0625 60.87 76.94 69.94
Puntos 0.125 65.83 75.74 71.36
Puntos 0.1875 68.76 74.92 72.16
Puntos 0.21875 69.50 75.40 72.69
Puntos 0.25 70.60 75.13 73.07
Puntos 0.5 74.37 77.98 76.34
Ventanas 0.03125 56.20 78.61 69.01
Ventanas 0.0625 60.55 77.32 70.13
Ventanas 0.125 65.65 76.30 71.74
Ventanas 0.1875 68.55 76.13 72.88
Ventanas 0.21875 69.93 75.72 73.20
Ventanas 0.25 70.90 76.11 73.87
Ventanas 0.5 74.58 79.34 77.43
V. Solapadas 0 48.46 81.15 67.12
V. Solapadas 0.03125 56.03 78.53 68.83
V. Solapadas 0.0625 60.56 77.11 69.93
V. Solapadas 0.125 65.98 75.75 71.46
V. Solapadas 0.1875 69.09 75.27 72.53
V. Solapadas 0.21875 70.70 74.51 72.78
V. Solapadas 0.25 71.36 74.84 73.28
V. Solapadas 0.5 76.87 76.20 76.50

Cuadro 37: HMM - Arm Healthy Cortex Injured - Todos los mejores canales
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 44.64 76.69 62.93
Puntos 0.03125 53.01 73.53 64.66
Puntos 0.0625 57.43 72.76 66.08
Puntos 0.125 62.07 72.44 67.86
Puntos 0.1875 64.75 73.05 69.33
Puntos 0.21875 65.56 75.08 70.72
Puntos 0.25 66.68 75.32 71.40
Puntos 0.5 70.95 83.57 77.84
Ventanas 0.03125 52.80 73.71 64.75
Ventanas 0.0625 57.32 72.98 66.27
Ventanas 0.125 62.29 73.49 68.69
Ventanas 0.1875 65.08 75.22 70.87
Ventanas 0.21875 65.95 75.83 71.53
Ventanas 0.25 66.92 77.01 72.68
Ventanas 0.5 71.04 86.84 80.52
V. Solapadas 0 44.53 76.68 62.88
V. Solapadas 0.03125 52.61 73.85 64.70
V. Solapadas 0.0625 56.82 73.07 66.02
V. Solapadas 0.125 61.94 73.36 68.35
V. Solapadas 0.1875 65.10 74.45 70.30
V. Solapadas 0.21875 66.39 75.08 71.13
V. Solapadas 0.25 67.22 75.96 72.03
V. Solapadas 0.5 71.40 81.87 77.22

Cuadro 38: HMM - Arm Impaired Cortex Injured - Mejor canal
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 41.74 81.93 64.68
Puntos 0.03125 49.50 78.79 66.14
Puntos 0.0625 53.75 77.27 67.03
Puntos 0.125 58.94 76.00 68.46
Puntos 0.1875 61.85 75.63 69.46
Puntos 0.21875 61.40 76.12 69.37
Puntos 0.25 63.43 76.56 70.59
Puntos 0.5 68.50 80.97 75.30
Ventanas 0.03125 49.49 78.61 66.13
Ventanas 0.0625 53.98 77.13 67.20
Ventanas 0.125 58.85 76.51 68.94
Ventanas 0.1875 61.78 76.80 70.37
Ventanas 0.21875 62.95 77.16 70.98
Ventanas 0.25 64.09 77.30 71.64
Ventanas 0.5 70.15 82.98 77.85
V. Solapadas 0 41.65 81.95 64.66
V. Solapadas 0.03125 49.35 78.63 66.01
V. Solapadas 0.0625 53.81 76.99 66.93
V. Solapadas 0.125 58.88 75.94 68.45
V. Solapadas 0.1875 62.13 75.97 69.82
V. Solapadas 0.21875 63.27 75.26 69.81
V. Solapadas 0.25 64.83 75.43 70.66
V. Solapadas 0.5 70.98 77.79 74.76

Cuadro 39: HMM - Arm Impaired Cortex Injured - Todos los mejores canales
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HMM - Completo - Viterbi

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 56.10 88.19 74.41
Puntos 0.03125 55.81 87.89 74.03
Puntos 0.0625 54.84 87.80 73.45
Puntos 0.125 55.36 87.41 73.25
Puntos 0.1875 55.41 87.60 73.17
Puntos 0.25 55.04 87.48 72.73
Puntos 0.5 57.25 89.89 75.05
Ventanas 0.03125 56.46 87.66 74.29
Ventanas 0.0625 56.63 87.31 74.16
Ventanas 0.125 56.25 87.66 74.20
Ventanas 0.1875 56.45 87.57 74.24
Ventanas 0.25 56.08 87.89 74.26
Ventanas 0.5 58.80 90.06 77.56
V. Solapadas 0.03125 56.31 87.13 73.84
V. Solapadas 0.0625 56.50 86.79 73.65
V. Solapadas 0.125 56.23 86.73 73.34
V. Solapadas 0.1875 56.21 86.52 73.05
V. Solapadas 0.25 56.34 87.04 73.22
V. Solapadas 0.5 58.12 88.12 74.79

Cuadro 40: HMM - Arm Healthy Cortex Healthy - Mejor canal - Viterbi
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 66.26 86.28 77.69
Puntos 0.03125 66.31 86.44 77.75
Puntos 0.0625 66.51 85.85 77.43
Puntos 0.125 66.90 86.00 77.56
Puntos 0.1875 66.87 86.60 77.75
Puntos 0.25 67.64 86.52 77.94
Puntos 0.5 70.08 86.77 79.18
Ventanas 0.03125 66.44 86.30 77.79
Ventanas 0.0625 66.69 85.95 77.70
Ventanas 0.125 66.72 86.52 78.04
Ventanas 0.1875 67.25 86.17 78.06
Ventanas 0.25 67.56 86.49 78.38
Ventanas 0.5 72.23 86.07 80.54
V. Solapadas 0.03125 66.55 86.05 77.65
V. Solapadas 0.0625 67.07 85.86 77.71
V. Solapadas 0.125 67.37 85.83 77.72
V. Solapadas 0.1875 69.07 85.29 78.08
V. Solapadas 0.25 69.35 84.43 77.64
V. Solapadas 0.5 72.18 82.87 78.12

Cuadro 41: HMM - Arm Healthy Cortex Healthy - Todos los mejores canales -
Viterbi

Tipo Delay Reposo Movimiento Media ambos
Puntos 0 60.34 77.38 70.06
Puntos 0.03125 59.87 76.01 69.04
Puntos 0.0625 60.07 74.83 68.40
Puntos 0.125 59.64 73.81 67.55
Puntos 0.1875 56.66 74.68 66.60
Puntos 0.25 57.43 76.37 67.76
Puntos 0.5 56.20 81.52 70.01
Ventanas 0.03125 59.60 75.77 68.84
Ventanas 0.0625 59.61 74.96 68.38
Ventanas 0.125 59.94 74.35 68.17
Ventanas 0.1875 57.22 75.57 67.70
Ventanas 0.25 56.45 77.10 68.25
Ventanas 0.5 55.36 85.62 73.52
V. Solapadas 0.03125 59.50 75.51 68.61
V. Solapadas 0.0625 60.12 73.66 67.79
V. Solapadas 0.125 58.37 73.92 67.09
V. Solapadas 0.1875 57.82 74.37 67.02
V. Solapadas 0.25 57.54 75.83 67.60
V. Solapadas 0.5 54.16 85.87 71.78

Cuadro 42: HMM - Arm Impaired Cortex Healthy - Mejor canal - Viterbi
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 59.21 81.93 72.18
Puntos 0.03125 60.93 82.03 72.92
Puntos 0.0625 60.94 82.01 72.84
Puntos 0.125 62.99 81.80 73.49
Puntos 0.1875 62.01 81.66 72.85
Puntos 0.25 63.81 80.22 72.76
Puntos 0.5 66.00 82.25 74.86
Ventanas 0.03125 61.13 81.23 72.62
Ventanas 0.0625 61.57 81.21 72.79
Ventanas 0.125 61.75 81.58 73.09
Ventanas 0.1875 62.25 81.47 73.23
Ventanas 0.25 63.17 81.99 73.92
Ventanas 0.5 65.78 83.64 76.50
V. Solapadas 0.03125 61.49 81.35 72.79
V. Solapadas 0.0625 62.33 81.71 73.31
V. Solapadas 0.125 62.81 80.99 73.01
V. Solapadas 0.1875 62.91 81.84 73.43
V. Solapadas 0.25 63.98 81.25 73.47
V. Solapadas 0.5 68.69 81.62 75.87

Cuadro 43: HMM - Arm Impaired Cortex Healthy - Todos los mejores canales -
Viterbi
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 62.14 68.52 65.78
Puntos 0.03125 61.89 67.54 65.10
Puntos 0.0625 62.57 64.92 63.90
Puntos 0.125 61.23 65.81 63.79
Puntos 0.1875 61.37 64.02 62.83
Puntos 0.21875 61.59 63.17 62.44
Puntos 0.25 60.41 64.49 62.64
Puntos 0.5 58.66 71.07 65.43
Ventanas 0.03125 62.21 67.36 65.15
Ventanas 0.0625 62.31 66.06 64.45
Ventanas 0.125 61.37 66.31 64.19
Ventanas 0.1875 60.05 67.26 64.17
Ventanas 0.21875 60.22 66.85 63.97
Ventanas 0.25 60.23 67.67 64.48
Ventanas 0.5 59.16 74.44 68.33
V. Solapadas 0 62.05 68.52 65.74
V. Solapadas 0.03125 62.09 67.56 65.20
V. Solapadas 0.0625 62.33 66.21 64.53
V. Solapadas 0.125 61.82 65.45 63.86
V. Solapadas 0.1875 61.44 65.37 63.62
V. Solapadas 0.21875 62.14 63.71 63.00
V. Solapadas 0.25 61.13 65.81 63.70
V. Solapadas 0.5 60.72 69.58 65.64

Cuadro 44: HMM - Arm Healthy Cortex Injured - Mejor canal - Viterbi
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 67.59 70.95 69.51
Puntos 0.03125 67.68 70.18 69.10
Puntos 0.0625 68.29 69.30 68.86
Puntos 0.125 68.03 69.20 68.68
Puntos 0.1875 68.79 68.88 68.84
Puntos 0.21875 66.85 70.38 68.76
Puntos 0.25 68.47 67.56 67.98
Puntos 0.5 68.33 70.65 69.60
Ventanas 0.03125 67.60 70.57 69.30
Ventanas 0.0625 67.74 70.19 69.14
Ventanas 0.125 67.41 69.43 68.57
Ventanas 0.1875 67.70 69.44 68.69
Ventanas 0.21875 68.54 70.44 69.61
Ventanas 0.25 67.56 70.32 69.14
Ventanas 0.5 69.06 74.86 72.54
V. Solapadas 0 67.50 70.72 69.34
V. Solapadas 0.03125 68.09 69.65 68.97
V. Solapadas 0.0625 68.20 68.88 68.58
V. Solapadas 0.125 67.89 69.24 68.65
V. Solapadas 0.1875 67.50 69.19 68.44
V. Solapadas 0.21875 67.41 70.08 68.87
V. Solapadas 0.25 67.59 69.75 68.78
V. Solapadas 0.5 68.54 70.75 69.76

Cuadro 45: HMM - Arm Healthy Cortex Injured- Todos los mejores canales -
Viterbi
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 57.87 68.26 63.80
Puntos 0.03125 57.89 66.82 62.96
Puntos 0.0625 58.50 66.03 62.75
Puntos 0.125 57.88 65.29 62.02
Puntos 0.1875 57.19 64.94 61.47
Puntos 0.21875 58.42 62.94 60.87
Puntos 0.25 59.37 63.05 61.38
Puntos 0.5 58.70 68.40 63.99
Ventanas 0.03125 57.58 67.09 63.01
Ventanas 0.0625 57.82 65.55 62.24
Ventanas 0.125 58.54 64.40 61.88
Ventanas 0.1875 58.97 63.77 61.71
Ventanas 0.21875 58.91 63.01 61.23
Ventanas 0.25 58.98 63.94 61.81
Ventanas 0.5 57.34 76.49 68.83
V. Solapadas 0 57.82 68.26 63.78
V. Solapadas 0.03125 57.08 67.18 62.83
V. Solapadas 0.0625 58.28 65.18 62.19
V. Solapadas 0.125 58.31 63.68 61.32
V. Solapadas 0.1875 58.55 63.86 61.50
V. Solapadas 0.21875 58.54 64.20 61.62
V. Solapadas 0.25 58.31 64.60 61.77
V. Solapadas 0.5 58.54 71.87 65.94

Cuadro 46: HMM - Arm Impaired Cortex Injured - Mejor canal - Viterbi
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Tipo Delay Reposo Movimiento Media ambos
Puntos 0 61.06 72.24 67.44
Puntos 0.03125 60.20 71.13 66.41
Puntos 0.0625 60.15 70.29 65.88
Puntos 0.125 61.05 69.19 65.59
Puntos 0.1875 61.53 70.57 66.52
Puntos 0.21875 60.96 70.35 66.05
Puntos 0.25 62.22 70.13 66.54
Puntos 0.5 64.66 72.43 68.90
Ventanas 0.03125 59.88 71.52 66.53
Ventanas 0.0625 59.72 70.71 66.00
Ventanas 0.125 60.13 70.18 65.87
Ventanas 0.1875 61.37 70.02 66.31
Ventanas 0.21875 61.35 70.92 66.76
Ventanas 0.25 61.64 70.38 66.63
Ventanas 0.5 62.91 76.04 70.79
V. Solapadas 0 61.01 72.05 67.32
V. Solapadas 0.03125 59.98 71.05 66.28
V. Solapadas 0.0625 60.31 70.25 65.94
V. Solapadas 0.125 60.86 70.14 66.07
V. Solapadas 0.1875 61.44 70.00 66.19
V. Solapadas 0.21875 61.77 69.89 66.20
V. Solapadas 0.25 62.10 71.02 67.01
V. Solapadas 0.5 63.43 74.37 69.51

Cuadro 47: HMM - Arm Impaired Cortex Injured- Todos los mejores canales -
Viterbi
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C.4. CRF

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 69.70 97.72 85.27

10 0.125 70.02 98.09 85.68
20 0.0625 70.97 97.50 85.95
5 0.25 68.10 97.58 84.18

0.9375 62.53 97.26 82.14
10 0.09375 62.60 97.76 82.34
15 0.0625 62.85 97.52 82.43
30 0.03125 62.14 96.51 81.66

0.625 51.80 98.08 77.88
10 0.0625 51.58 98.13 77.87
20 0.03125 53.50 97.57 78.54
5 0.125 50.33 98.53 77.23

0.3125 29.37 99.06 68.84
10 0.03125 30.63 98.92 69.42
5 0.0625 28.12 99.19 68.25
5 0.03125 16.66 99.65 63.80

0.125 20 0 20.55 99.13 65.40
0.0625 10 0 10.96 99.61 61.56

Cuadro 48: CRF - Arm Healthy Cortex Healthy - Mejor canal

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 64.87 91.42 79.66

10 0.125 65.46 91.02 79.72
20 0.0625 60.54 92.51 78.59
5 0.25 68.60 90.74 80.68

0.9375 55.98 92.28 76.49
10 0.09375 59.95 91.11 77.45
15 0.0625 56.23 92.30 76.60
30 0.03125 51.76 93.43 75.43

0.625 50.39 93.66 74.80
10 0.0625 50.91 93.23 74.81
20 0.03125 44.90 94.00 72.79
5 0.125 55.37 93.76 76.80

0.3125 35.24 95.49 69.36
10 0.03125 35.66 94.68 69.19
5 0.0625 34.82 96.30 69.54

0.15625 5 0.03125 24.68 97.13 65.83
0.0625 10 0 20.92 96.70 64.17

Cuadro 49: CRF - Arm Healthy Cortex Healthy - Todos los mejores canales
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Delay winSize intervalo Reposo Movimiento Media ambos
1.25 78.40 94.98 87.71

10 0.125 69.48 97.77 85.27
20 0.0625 86.53 92.67 90.00
40 0.03125 69.60 95.76 84.46
5 0.25 88.00 93.73 91.12

0.9375 54.22 97.43 78.25
10 0.09375 64.05 97.62 82.90
15 0.0625 48.421 97.44 73.50
30 0.03125 59.20 97.13 80.75

0.625 44.37 98.79 75.52
10 0.0625 49.89 98.30 77.23
20 0.03125 46.64 98.48 76.09
5 0.125 37.95 99.09 72.03

0.3125 22.69 99.74 66.33
10 0.03125 21.73 99.81 66.09
5 0.0625 23.65 99.66 66.57

0.15625 5 0.03125 12.32 99.88 62.06
0.125 20 0 12.41 99.59 62.17
0.0625 4.818650 99.91 58.80

0 0.0625 2.719595 100.00 57.65
10 0 6.917705 99.82 59.94

Cuadro 50: CRF - Arm Impaired Cortex Healthy - Mejor canal

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 64.25 90.52 78.97

10 0.125 66.19 89.03 78.94
20 0.0625 63.93 89.95 78.62
40 0.03125 58.35 93.27 78.19
5 0.25 68.52 89.84 80.15

0.9375 56.36 91.58 76.26
10 0.09375 59.98 90.41 77.06
15 0.0625 54.80 91.36 75.45
30 0.03125 54.31 92.96 76.27

0.625 46.41 93.14 72.76
10 0.0625 47.33 92.57 72.88
20 0.03125 43.03 94.09 72.03
5 0.125 48.88 92.76 73.37

0.3125 38.27 93.59 69.61
10 0.03125 37.11 93.75 69.28
5 0.0625 39.44 93.44 69.93

0.15625 5 0.03125 25.50 95.91 65.50
0.0625 10 0 20.47 96.03 63.60

Cuadro 51: CRF - Arm Impaired Cortex Healthy - Todos los mejores canales
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Delay winSize intervalo Reposo Movimiento Media ambos
1.25 5 0.25 58.25 97.36 79.58

10 0.125 57.65 97.58 79.94
0.9375 10 0.09375 44.59 98.39 74.79
0.625 10 0.0625 30.67 98.89 69.19

5 0.125 31.80 99.17 69.40
0.3125 5 0.0625 15.81 99.76 63.22

Cuadro 52: CRF - ArmHealthy CortexInjured - Mejor canal

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 61.74 90.67 77.89

5 0.25 64.04 92.17 79.38
0.9375 10 0.09375 51.72 93.89 75.39
0.625 5 0.125 40.37 96.84 71.88

10 0.0625 38.33 95.97 70.88
0.3125 5 0.0625 21.58 98.78 65.17

Cuadro 53: CRF - ArmHealthy CortexInjured - Todos los mejores canales

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 56.61 97.33 79.34

5 0.25 57.66 97.69 79.49
0.9375 10 0.09375 46.60 98.41 75.69

15 0.0625 48.41 97.45 76.11
0.625 5 0.125 33.21 99.14 70.01
0.3125 5 0.0625 16.64 99.63 63.50

Cuadro 54: CRF - ArmImpaired CortexInjured 1Ch CRF

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 61.25 90.27 77.45

5 0.25 64.58 91.97 79.52
0.9375 10 0.09375 55.33 92.22 76.04
0.625 10 0.0625 44.33 94.82 72.84

5 0.125 43.80 96.06 72.97
0.3125 5 0.0625 24.52 98.93 66.54

Cuadro 55: CRF - ArmImpaired CortexInjured - Todos los mejores canales
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CRF - Completo - Viterbi

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 70.02 98.09 85.68

20 0.0625 70.97 97.50 85.95
5 0.25 68.10 97.58 84.18

0.9375 10 0.09375 62.60 97.76 82.34
15 0.0625 62.85 97.52 82.43
30 0.03125 62.14 96.51 81.66

0.625 10 0.0625 51.58 98.13 77.87
20 0.03125 53.50 97.57 78.54
5 0.125 50.33 98.53 77.23

0.3125 10 0.03125 30.63 98.92 69.42
5 0.0625 28.12 99.19 68.25

0.15625 5 0.03125 16.66 99.65 63.80
0.125 20 0 20.55 99.13 65.40
0.0625 10 0 10.96 99.61 61.56

Cuadro 56: CRF - Arm Healthy Cortex Healthy - Mejor canal - Viterbi

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 65.46 91.02 79.72

20 0.0625 60.54 92.51 78.59
5 0.25 68.60 90.74 80.68

0.9375 10 0.09375 59.95 91.11 77.45
15 0.0625 56.23 92.30 76.60
30 0.03125 51.76 93.43 75.43

0.625 10 0.0625 50.91 93.23 74.81
20 0.03125 44.90 94.00 72.79
5 0.125 55.37 93.76 76.80

0.3125 10 0.03125 35.66 94.68 69.19
5 0.0625 34.82 96.30 69.54

0.15625 5 0.03125 24.68 97.13 65.83
0.0625 10 0 20.92 96.70 64.17

Cuadro 57: CRF - Arm Healthy Cortex Healthy - Todos los mejores canales -
Viterbi
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Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 69.48 97.77 85.27

20 0.0625 86.53 92.67 90.00
40 0.03125 69.60 95.76 84.46
5 0.25 88.00 93.73 91.12

0.9375 10 0.09375 64.05 97.62 82.90
15 0.0625 84.42 92.73 89.11
30 0.03125 59.20 97.13 80.75

0.625 10 0.0625 49.89 98.30 77.23
20 0.03125 46.64 98.48 76.09
5 0.125 37.33 99.10 71.81

0.3125 10 0.03125 21.73 99.81 66.09
5 0.0625 23.65 99.66 66.57

0.15625 5 0.03125 12.32 99.88 62.06
0.125 20 0 12.41 99.59 62.17
0.0625 10 0 6.917705 99.82 59.94

Cuadro 58: CRF - Arm Impaired Cortex Healthy - Mejor canal - Viterbi

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 66.19 89.03 78.94

20 0.0625 63.93 89.95 78.62
40 0.03125 58.35 93.27 78.19
5 0.25 68.52 89.84 80.15

0.9375 10 0.09375 59.98 90.41 77.06
15 0.0625 54.80 91.36 75.45
30 0.03125 54.31 92.96 76.27

0.625 10 0.0625 47.33 92.57 72.88
20 0.03125 43.03 94.09 72.03
5 0.125 48.88 92.76 73.37

0.3125 10 0.03125 37.11 93.75 69.28
5 0.0625 39.44 93.44 69.93

0.15625 5 0.03125 25.50 95.91 65.50
0.0625 10 0 20.47 96.03 63.60

Cuadro 59: CRF - Arm Impaired Cortex Healthy - Todos los mejores canales -
Viterbi
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Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 88.09 92.91 90.78

5 0.25 89.31 92.77 91.20
0.9375 10 0.09375 87.69 93.00 90.67
0.625 10 0.0625 86.56 92.61 89.98

5 0.125 87.39 92.77 90.39
0.3125 5 0.0625 87.42 94.14 91.22

Cuadro 60: CRF - ArmHealthy CortexInjured - Mejor canal - Viterbi

Delay winSize intervalo Reposo Movimiento Media ambos
5 0.25 83.31 87.30 85.49

1.25 10 0.125 81.41 86.52 84.26
0.9375 10 0.09375 80.80 86.82 84.18
0.625 5 0.125 81.80 87.21 84.82

10 0.0625 80.83 86.90 84.26
0.3125 5 0.0625 82.38 88.30 85.72

Cuadro 61: CRF - ArmHealthy CortexInjured - Todos los mejores canales - Viterbi

Delay winSize intervalo Reposo Movimiento Media ambos

1.25 10 0.125 87.10 92.03 89.85
5 0.25 88.64 92.46 90.72

0.9375 10 0.09375 87.23 92.18 90.01
0.625 5 0.125 86.94 93.59 90.65

Cuadro 62: CRF - ArmImpaired CortexInjured - Mejor canal - Viterbi

Delay winSize intervalo Reposo Movimiento Media ambos
1.25 10 0.125 80.10 85.99 83.39

5 0.25 82.35 86.57 84.65
0.9375 10 0.09375 79.85 86.06 83.34
0.625 5 0.125 81.38 87.58 84.84

10 0.0625 78.75 86.36 83.04

Cuadro 63: CRF - ArmImpaired CortexInjured - Todos los mejores canales - Viterbi
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