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Raúl FERNÁNDEZ MELIC

Directores:

Dr. Fernando FALO

Dr. Pierpaolo BRUSCOLINI
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1. Introducción

Las células de los seres vivos albergan en su interior procesos dinámicos altamente

organizados tanto espacial como temporalmente [1] que juegan un papel fundamental en

el correcto desarrollo de las funciones biológicas y en la formación de estructuras. El en-

tendimiento preciso del desarrollo de estas dinámicas es fundamental para adquirir una

compresión global de procesos biológicos complejos a escalas mayores que la celular.

Muchos de estos procesos biológicos están asociados a dinámicas oscilantes en la con-

centración de ciertas especies presentes en el interior de las células. Existen numerosas

formas de provocar este tipo de oscilaciones, pero en este trabajo vamos a poner el foco en

los osciladores genéticos, cuyo principio de funcionamiento será brevemente descrito en la

siguiente sección. Uno de los osciladores genéticos que suscita más interés en la actualidad

es el reloj de segmentación, ya que es el responsable del proceso de somitogénesis; se trata

de uno de los procesos más importantes en el desarrollo embrionario de los vertebrados

y consiste en la segmentación del eje corporal del embrión en somitas, bloques de células

epiteliales que en última instancia formarán las costillas, vértebras y músculo esquelético

del cuerpo adulto del vertebrado [2]. En 1976, Cooke y Zeeman proponen el famoso mo-

delo ”Clock and Wavefront” [3], que presenta al reloj de segmentación como un proceso

que consta de dos partes principales:

En primer lugar depende del denominado ”reloj”, que consiste en una población de

osciladores celulares en fase, es decir, la concentración de una cierta especie a lo

largo del tiempo en el interior de una célula de la red oscila en fase con la misma

especie del resto de células de la red.

El segundo ingrediente del reloj de segmentación es un frente de ondas que recorre

el embrión y detiene la oscilación de las células, dando lugar a la formación de las

somitas.

El embrión cuenta con dos extremos, como se observa en la parte izquierda de la figura

1; el extremo anterior, por el que se van formando las somitas y el extremo posterior, por

el que el embrión se elonga [4]. La región en la que se encuentra la población celular

oscilando en fase es el ”Pre-somitic mesoderm”, conocido como PSM. El frente de ondas

se desplaza de la parte anterior a la posterior del embrión, congelando a su paso las

oscilaciones celulares del PSM y dando lugar a la creación de somitas. De esta forma se

traduce la información temporal de los osciladores en un patrón periódico espacial fijo

[5], ya que el tamaño de una somita corresponderá a la distancia que recorra el frente de

ondas durante un periodo de oscilación del reloj. La parte derecha de la figura 1 muestra

de forma visual el mecanismo ”Clock and Wavefront”.

Además del frente de ondas que viaja de la parte anterior a la posterior del embrión

deteniendo las oscilaciones del reloj y formando las somitas, se genera un segundo frente

de ondas de expresión génica como consecuencia de las oscilaciones en fase de las células
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Figura 1: Representación de las partes más relevantes del embrión durante el proceso de

somitogénesis (Izquierda)[5] y esquema conceptual del modelo ”Clock and Wavefront”

(Derecha) [6]

del PSM. Este segundo frente de ondas viaja en sentido opuesto al primero y se detiene

en la posición fronteriza de una futura somita [6]. Como ha sido descrito anteriormente,

la población celular del PSM ha de presentar oscilaciones sincronizadas, lo que fuerza

la presencia de un mecanismo de interacción entre células con el que poder compartir

información acerca de la fase de oscilación con el objetivo de acompasarse al ritmo del

resto de las células. Existen numerosas evidencias de que los osciladores genéticos del reloj

se sincronizan con sus vecinos v́ıa la interacción Delta-Notch [2] [7] [8] [9]. En las páginas

sucesivas del trabajo vamos a profundizar en como el reloj (uno de los dos elementos

principales que conforman el reloj de segmentación junto al frente de ondas) es capaz de,

v́ıa la interacción Delta-Notch, producir oscilaciones sincronizadas en la concentración de

una cierta especie presente en el interior celular de todas las células del PSM.

El objetivo último del trabajo es por tanto modelizar matemáticamente un modelo

consistente de reloj celular (basándonos en modelos previos), lograr sincronizar una po-

blación celular extensa y estudiar las tendencias y particularidades de esta sincronización

en función de los parámetros del modelo.

2. Circuitos genéticos oscilantes:

Conceptos generales

Para modelizar matemáticamente las oscilaciones en poblaciones celulares y su posible

sincronización existen dos aproximaciones:

Una opción es describir la dinámica del sistema en términos de variables de osci-

ladores genéricos, como la frecuencia o la fase [2]. Esta aproximación se basa en el
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modelo de Kuramoto; se trata a cada célula como un oscilador independiente y se

modeliza la interacción celular con un término proporcional a la diferencia de fases

entre un cierto oscilador y sus vecinos [11]. Aśı, el cambio de fase:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) (1)

siendo ω la frecuencia natural de cada oscilador y K la constante de acoplamiento.

Algunos avances importantes en el entendimiento de la somitogénesis se han hecho

a través de este acercamiento [12]

La segunda propuesta pretende que la dinámica del sistema sea descrita en términos

de concentraciones e interacciones entre protéınas [2] a través de circuitos genéticos.

Como se ha comentado en los párrafos introductorios la interacción entre células

viene dada por el mecanismo Delta-Notch.

Este art́ıculo pone el foco en el segundo acercamiento

2.1. Transcripción y traducción génica

Un gen es un segmento de ADN que codifica la información para la creación de una

cierta protéına. El proceso de conversión de esa información en una protéına funcional se

divide en 2 pasos principales [13]:

Transcripción: Mediante este proceso se copia la secuencia de ADN de un gen para

producir una molécula de ARN-mensajero (ARN-m). Este proceso es catalizado por

la ARN-polimerasa (ARN-p) y se inicia con la unión de esta al promotor, que se

encuentra al principio de un gen.

Traducción: Consiste en la conversión de la molécula de ARN-m que contiene la

información del gen en una secuencia de aminoácidos que constituye una protéına.

Las protéınas obtenidas mediante este proceso tienen una enorme variedad de funcio-

nes, pero hay una pequeña fracción de estas que se unen a fragmentos de ADN y regulan

la transcripción. Estas protéınas se denominan factores de transcripción.

2.2. Factores de transcripción

Se conoce como factores de transcripción (FT) a aquellas protéınas que se unen a

regiones espećıficas del ADN (los llamados ’sitios de unión’) con el fin de regular la tasa

con la que la ARN-p se une al promotor durante la etapa de transcripción. Modifican de

esta forma la tasa de producción de la protéına codificada en el gen al que se unen.

En función del efecto de la unión de un factor de transcripción a un promotor podemos

clasificarlos en dos tipos [14]:
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Conocemos como activadores a aquellos factores de transcripción que aumentan

la tasa de unión del ARN-p al promotor y por tanto, contribuyen a aumentar la

cantidad de ARNm producido. Se incrementa de esta forma la tasa de producción

de la protéına codificada en el gen al que se unen.

Por el contrario, los represores son aquellos factores de transcripción que contri-

buyen a disminuir la cantidad de ARN-p unido al promotor y por tanto, de ARNm

producido. Reducen por tanto la tasa de producción de la protéına codificada por

el gen al que se encuentran ligados.

Cuando la protéına codificada por un cierto gen activa o reprime la tasa de producción

de otra protéına codificada por un segundo gen, se dice que el primer gen activa o reprime

al segundo gen, y se representa gráficamente como indican las figuras 2 y 3.

Figura 2: Activación de la protéına de un gen mediante un factor de transcripción ac-

tivador. Una señal externa hace pasar al factor de transcripción del estado inactivo al

activo. En el estado activo, este se une al sitio de unión y produce un aumento en la tasa

de protéına producida por el gen. La activación se representa esquemáticamente con una

flecha [14].
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Figura 3: Represión de la protéına de un gen mediante un factor de transcripción represor.

Una señal externa induce el estado activo del represor y como consecuencia, este se une al

sitio de unión. Esto produce un descenso en la tasa de producción de la protéına codificada

por el gen. La represión se representa esquemáticamente con una flecha cortada [14].

Las complejas interacciones biológicas entre protéınas y genes pueden resumirse en

redes genéticas compuestas por nodos que representan genes y flechas que los unen, in-

dicando que las protéınas producto de un cierto gen actúan como reguladoras de las

protéınas codificadas por el gen al que apuntan. Además, los factores de transcripción

pueden regular su propia expresión, lo que da lugar a circuitos genéticos de realimenta-

ción positiva o negativa, en función de si la protéına se comporta como un activador o

como un represor.

Cuando la solución de las ecuaciones diferenciales que rigen la dinámica de una protéına

en el interior de una célula es un ciclo ĺımite, la concentración de esta protéına oscila

de forma estable en el tiempo y tenemos por tanto un circuito genético oscilante para

los parámetros de las ecuaciones que dan oscilaciones. Estas soluciones son especialmente

interesantes, ya que como adelantaba la introducción, la oscilación en fase de la con-

centración de una cierta protéına de todas las células que forman el PSM del embrión

de vertebrados es un requisito imprescindible para que el proceso de somitogénesis se

desarrolle de forma exitosa.

2.3. Reloj/Clock

El reloj de segmentación es un circuito de osciladores genéticos celulares que actúa

como un sistema de formación de patrones ŕıtmicos a nivel celular [2]. En los párrafos

introductorios se ha presentado como la pieza fundamental que nos ayuda a entender

como se da la formación de somitas en vertebrados y se han descrito brevemente sus dos

partes principales: el reloj y el frente de ondas. Las interacciones genéticas presentes en

el reloj para una población de dos células pueden representarse esquemáticamente como
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muestra la figura 4.

Figura 4: Representación esquemática del reloj en una población de 2 células. La especie

roja representa el ligando Delta y la amarilla Notch. En este esquema las flechas negras no

representan activación, sino que simplemente muestran la dirección en la que se produce

el mecanismo de interacción entre células [2].

Depende esencialmente de 3 especies: El ligando Delta, Notch y una protéına autorre-

primida que denominaremos protéına Her/Hes. Podemos dividir el modelo en dos partes

diferenciadas:

En primer lugar, cada célula individual del PSM cuenta con un ciclo de realimen-

tación negativa que da lugar a oscilaciones autosostenidas en la concentración de

la especie Her/Hes. La idea de que las células del PSM sean osciladores celulares

autosostenidos está ampliamente respaldada [9] [10]. Aunque este circuito da lugar a

oscilaciones en todas las células del tejido, estas no están sincronizadas entre distin-

tas células, por lo que se vuelve necesario un método de comunicación/interacción

celular.

La necesidad de un método de interacción celular que pueda dar lugar a sincroniza-

ción en las fases de los osciladores queda solventada con el mecanismo Delta-Notch,

la segunda de las partes fundamentales del reloj.

Con el objetivo de comprobar si este mecanismo es lo suficientemente robusto como para

explicar la sincronización en una población celular extensa, es necesario modelizar las

ecuaciones diferenciales del sistema y resolverlas numéricamente en busca de soluciones

que evidencien una sincronización celular global.

Vamos a comenzar analizando el procedimiento para la obtención de ecuaciones diferen-

ciales que rijan la dinámica de células que presenten sólo interacción Delta-Notch o sólo

un circuito de realimentación negativa, con el fin posterior de unir ambos resultados para

la descripción de un sistema celular regido por los circuitos genéticos presentes en el reloj.
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2.3.1. Circuito de realimentación negativa con delay

Vamos a analizar la ecuación diferencial que describe la evolución de la concentración

de una protéına que reprime el gen que la codifica (Figura 5).

Figura 5: Representación gráfica de un circuito de realimentación negativa [15].

La ecuación diferencial que nos da la evolución temporal de la concentración de la

protéına consiste en dos términos, uno de producción y otro de degradación. Generalmente

el término de producción se modeliza a través de una función de Hill, que nos da la cantidad

de protéına represora producida en función de la concentración de factor de transcripción.

Dado que en un circuito de realimentación negativa la protéına producida y el FT son

la misma especie, su producción está regulada por śı misma. Además, la protéına está

sometida a procesos de degradación, por lo que es necesario modelizar estas pérdidas con

un término que tenga en cuenta estos efectos. El término de degradación principalmente

engloba dos efectos: La pérdida de cierta especie como resultado de procesos metabólicos

y la disminución en la concentración de la especie como consecuencia de un aumento

en el volumen celular. En el caso de un circuito de realimentación negativa, la ecuación

diferencial que describe la concentración de la protéına puede expresarse [15]:

ẋ =
β

1 +
(
x
K

)n − γx (2)

El parámetro β expresa la máxima tasa de producción de la protéına, γ es la tasa de

degradación, K es la concentración de represor necesaria para obtener la mitad de la

represión posible y n es el coeficiente de Hill, que indica el ı́ndice de cooperatividad

del factor de transcripción, es decir, da una medida del número de monómeros que han

de unirse para dar lugar a una unión entre el factor de transcripción y el promotor de

un cierto gen. Las funciones de Hill tienen comportamiento sigmoideo, para n bajos la

pendiente es suave y el comportamiento es más brusco a medida que aumentamos n.

Cuando n es muy grande tenemos un comportamiento del tipo función lógica/escalón,

es decir, sólo tendremos represión superado un cierto umbral de concentración del FT,

dado por la constante K. Para entender con algo más de detalle por qué las funciones de

Hill represoras se modelizan matemáticamente de la forma expresada en el término de

producción de la ecuación (2) se recomienda la lectura del Apéndice A.

Sin embargo, esta ecuación tiene sólo una dimensión, por lo que desde el punto de vista

de los sistemas dinámicos no existe ninguna solución que de lugar a oscilaciones en la
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concentración de x. Podemos complicar el modelo de 2 formas para dar lugar a oscilaciones

[15]:

Al modelizar las ecuaciones de esta forma estamos sobresimplificando la dinámica

real biológica, en la que los procesos de transcripción y traducción presentan una

gran cantidad de especies intermedias entre la unión del FT al promotor y la conse-

cuente disminución de protéına. Una de estas especies es el ARNm, cuya dinámica

puede incluirse para añadir una dimensión extra a las ecuaciones y permitir solu-

ciones oscilantes:

ṁ =
αm

1 +
(
x
K

)n − γm (3)

ẋ = βm− γx (4)

En este caso m representa la concentración de ARNm producido y x la cantidad

de protéına represora. El factor β cuantifica la fracción de ARNm que se traduce

exitosamente a protéına.

Este proceso de adición de especies intermedias puede iterarse más veces para hacer

el modelo más realista con las dinámicas biológicas.

Aunque el modelo descrito es completamente válido para la obtención de oscilacio-

nes, cada nueva ecuación introducida incrementa el número de parámetros y dificulta

la búsqueda de ciclos ĺımites. Una alternativa más sencilla es modelizar las dinámi-

cas intermedias a través de la inclusión de un delay en el ciclo de realimentación, es

decir, hacemos que la evolución temporal de la concentración ẋ dependa de su valor

en un tiempo pasado xτ ≡ x(t− τ) en vez de que dependa de su valor actual x. Mo-

delizamos aśı el hecho de que la realimentación no sea inmediata como consecuencia

de las escalas temporales de las especies intermedias mediante la introducción de

este retraso. Aśı, la ecuación diferencial para la concentración de una protéına en

un circuito de realimentación negativa queda:

ẋ =
β

1 +
(
xτ
K

)n − γx (5)

Pero no todos los delays producen oscilaciones en la concentración, de hecho, existe

un τumbral por debajo del cuál no tendremos soluciones oscilatorias. La figura 6 muestra

las diferentes soluciones de la ecuación diferencial para diferentes valores de τ .

Para retrasos menores al valor de τumbral la concentración alcanza un valor de equili-

brio (Figura 6.1). A medida que τ crece (Figuras 6.2 y 6.3) el sistema acaba llegando a un

valor constante de concentración, pero precedido por oscilaciones amortiguadas. Cuando

sobrepasamos finalmente el valor de τumbral (Figura 6.4), observamos oscilaciones sosteni-

das y estables en la concentración de la protéına.

Otra caracteŕıstica curiosa de estos circuitos genéticos es que el valor de retraso a partir

del cuál vamos a obtener oscilaciones en la concentración de la protéına (τumbral) va a
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Figura 6: Evolución temporal de la protéına represora en un circuito de realimentación

negativa en función del retraso. El sistema presenta un coeficiente de Hill n=4. Figura

6.1: τ= 1 U.A. ; Figura 6.2: τ=2.5 U.A. ; Figura 6.3: τ=2.75 U.A. ; Figura 6.4: τ=3 U.A.

estar fuertemente influenciado por el exponente de Hill n, como puede comprobarse en la

figura 7. A medida que crece el ı́ndice de cooperatividad se obtiene una rápida cáıda en

el valor de delay umbral, por lo que cuánto mayor es n menor retraso es requerido para

que el sistema alcance oscilaciones estables.

Figura 7: Dependencia de τumbral con el exponente de Hill n
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2.3.2. Mecanismo de interacción Delta-Notch

La sincronización de una población celular requiere que cada célula disponga de un

método con el que obtener información acerca de la fase de sus vecinas, es decir, es im-

prescindible modelizar un método de interacción celular. Como hemos visto anteriormente

en el reloj, esta interacción celular viene dada por el mecanismo Delta-Notch, que se basa

en 2 sencillas premisas, ilustradas en la figura 8 para el caso de sólo dos células [16]:

El ligando Delta (di) de cada célula activa la producción del represor Notch de las

células adyacentes.

El represor Notch (ri) de cada célula inhibe la producción de ligando Delta de su

misma célula.

Figura 8: Interacción Delta-Notch en dos células

Para describir este sistema necesitamos por tanto 4 ecuaciones diferenciales, 2 para las

especies en la célula 1 y otras 2 para las especies en la célula 2. Las ecuaciones normalizadas

que rigen la dinámica de cada célula son las siguientes:

ddi
dt

= ν

[
βd

1 + rhi
− di

]
(6)

dri
dt

=
βr d

m
j

1 + dmj
− ri (7)

El parámetro βd está relacionado con la producción de ligando, βr con la producción

del represor y ν es el cociente de las tasas de degradación ligando-represor.

En el Anexo B se expone en detalle el procedimiento utilizado para llegar a las ecuaciones

normalizadas (6) y (7) y se muestran las soluciones obtenidas al resolverlas.

Cuando en vez de con dos células contamos con una red celular extensa, hay que tener

en cuenta algunos cambios. Una suposición razonable y común a la hora de describir

poblaciones celulares es la de red hexagonal. Las células en esta aproximación se describen

como hexágonos formando parte de una red regular, de forma que cada célula individual

cuenta con 6 vecinos. Como consecuencia del incremento del número de vecinos y por tanto

de las interacciones celulares, las ecuaciones diferenciales cambian. Ahora, el represor de

una cierta célula i ya no está activado únicamente por la Delta de su vecino adyacente,
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sino que sus 6 vecinos la activan. La ecuación diferencial del represor (7) sufre por tanto

la siguiente modificación [16]:

dri
dt

=
βr 〈dj〉m

1 + 〈dj〉m
− ri (8)

donde 〈dj〉 representa la media de concentración de ligando de los primeros vecinos de

la célula i:

〈dj〉 =
1

W

∑
j∈nn(i)

dj (9)

W representa el número de primeros vecinos.

Para que los bordes no supongan un problema de homogeneidad en la red y todas las

células cuenten con 6 vecinos se han implementado condiciones de contorno periódicas.

Simulando una red cuadrada 12x12 con interacción Delta-Notch entre células vecinas

alcanzamos un estado de equilibrio en el que algunas de las células acaban sólo con

concentración de Delta y otras sólo con Notch. Si representamos espacialmente las con-

centraciones de la especie Delta para un tiempo en el que se ha alcanzado el equilibrio

(Figura 9), podemos observar la formación de un patrón hexagonal perfecto, en el que

por cada célula que tiene sólo concentración de Delta (nodo amarillo), tenemos 2 células

con sólo concentración de Notch (nodo negro). Además se observa como cada célula con

concentración Delta tiene a sus 6 vecinos más próximos sólo con concentración Notch, lo

que da lugar al patrón hexagonal.

Figura 9: Representación espacial de las concentraciones de equilibrio de la especie Delta

en una red hexagonal 12x12 con mecanismo de interacción Delta-Notch

Para la obtención del patrón perfecto se han elegido condiciones iniciales especiales que

favorezcan el estado de equilibrio final. Si partimos de concentraciones de Delta y Notch

completamente aleatorias para todas las células de la red obtenemos el mismo resultado

pero con un patrón defectuoso en el que la estructura hexagonal es menos evidente y

en el que dejamos de tener un ratio de nodos amarillos:negros de 1:2 para pasar a tener
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ratios más pequeños en los que parte de los nodos que debeŕıan ser amarillos aparecen

negros. Conceptualmente sucede algo similar al caso de 2 células. Las diferencias en la

concentración tienden a amplificarse y a dejar células sólo con concentración de Delta y

otras sólo con Notch. Al hacer la red más grande y proponer que cada célula cuente con

6 vecinos con los que interacciona, el ratio de células que acaban en un estado o en otro

pasa de ser 1:1 (propio de redes lineales con interacciones en una dimensión) a ser 1:2

como consecuencia de modelizar una red hexagonal con interacciones en dos dimensiones.

2.4. Red con Real. negativa y mecanismo Delta-Notch

Una vez han sido descritas las formas de modelizar las dos partes principales del reloj

de forma individual vamos a obtener las ecuaciones diferenciales resultantes de combinar

estos dos efectos. El circuito genético que queremos describir puede visualizarse en la figura

11, aunque en nuestro caso no va a restringirse a la interacción entre 2 células sino a toda

una población celular. Ya hemos visto que cada célula del modelo cuenta con 3 especies

en su interior, el ligando Delta, que activa el Notch de otras células; la especie Notch,

que activa la protéına Her/Hes de su misma célula y la protéına Her/Hes, que reprime al

ligando Delta de su misma célula y a si mismo. El ligando Delta y Notch se modelizan a

través de las ecuaciones (6) y (7) respectivamente (se ha cambiado ligeramente la notación

para hacer expĺıcito que las nuevas ecuaciones describen al reloj celular y no al mecanismo

Delta-Notch, ya que para estas dos especies las ecuaciones resultantes al describir el reloj

no se modifican respecto a las vistas en el apartado anterior), pero la protéına Her/Hes

en el circuito celular no está únicamente autorreprimida sino que también está activada

por Notch. Para describir matemáticamente esta doble interacción vamos a hacer uso de

la solución propuesta por Hasty et al. [17] para resolver el problema del oscilador con

realimentación dual (ORD), expuesto en la figura 10. Este circuito está compuesto por

dos genes, denominados araC y lacI. El primero de ellos está activado por śı mismo y

reprimido por lacI mientras que el segundo está activado por araC y reprimido por śı

mismo. La situación del gen lacI en el circuito ORD es equivalente a la del gen Her/Hes

en el reloj celular, por lo que las ecuaciones que describen la evolución de la protéına lacI

en el ORD son a su vez válidas para Her/Hes.

Figura 10: Esquema del oscilador con realimentación dual [15].

Las ecuaciones del sistema pueden describirse por tanto de la siguiente forma:
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Figura 11: Modelo de 3 ecuaciones Figura 12: Modelo de 2 ecuaciones

Figura 13: Comparación entre el circuito genético que considera la dinámica de Notch y

el circuito genético que reemplaza a la especie Notch por un delay.

Ligando Delta :
dDi

dt
= ν

[
βd

1 +Hh
i

−Di
]

(10)

Notch :
dNi

dt
=
βN 〈Dj〉m

1 + 〈Dj〉m
−Ni (11)

Proteina Her/Hes :
dHi

dt
= pH

1 + α N2
i

[1 +N2
i ] [1 +H4

iτ ]
− γH Hi (12)

En la ecuación (12) Ni representa la concentración de Notch que activa la protéına

Her/Hes (Hi), α representa el fold-change de la activación y Hiτ ≡ Hi(t − τ) se refiere

a la concentración de la protéına en un tiempo τ anterior, como forma de modelizar el

retraso inherente a los ciclos de realimentación cuando se tiene en cuenta la dinámica del

ARNm.

Aunque estas ecuaciones son perfectamente válidas para buscar sincronización en la red,

va a resultar conveniente introducir una modificación que reducirá considerablemente la

complejidad del sistema y el número de parámetros implicados.

El ligando Delta de una cierta célula i activa el Notch de la célula vecina j, y a su vez

Notch activa la protéına Her/Hes de la célula j. El efecto total de estas dos interacciones en

cadena es la activación de la protéına Her/Hes a partir del ligando Delta, por lo que si mo-

delizamos esa doble activación (Di → Nj → Her/Hesj) como una sola activación (Di →
Her/Hesj) podemos prescindir de la especie Notch y simplificar por tanto enormemente

el sistema. Sin embargo, cuando simplificamos un paso del circuito genético, indirecta-

mente estamos atribuyendo una inmediatez en la creación de la protéına Her/Hes ficticia,

ya que la especie Notch introduce un retraso en el sistema de forma natural. Para que la

”eliminación” de la especie Notch no haga menos realista el modelo, se propone introducir

un segundo delay τ2 en las ecuaciones (A partir de ahora el retraso en la autorrepresión

de Her/Hes τ pasa a llamarse τ1 para hacer a los delays distinguibles). De esta forma, el

retraso natural que es inducido en el sistema en el paso (Di→ Nj → Her/Hesj) mediante

una especie Notch es sustituido por un delay en la activación simple (Di → Her/Hesj).

La figura 13 resume los circuitos genéticos antes y después de la modificación.

Tras la modificación las ecuaciones diferenciales adquieren la siguiente forma:
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Ligando Delta :
dDi

dt
= ν

[
βd

1 +Hh
i

−Di
]

(13)

Proteina Her/Hes :
dHi

dt
= pH

1 + α 〈Djτ2〉2

[1 + 〈Djτ2〉2]
[
1 +H4

iτ1

] − γH Hi (14)

En la ecuación (14), 〈Djτ2〉 ≡ 〈Dj(t− τ2)〉 sustituye a lo que anteriormente era Ni.

Con la modificación, ahora el término de producción de la protéına Her/Hes depende

directamente de la concentración de ligando Delta, que además es la concentración del

ligando en un tiempo τ2 anterior como consecuencia de la eliminación de la especie Notch.

Los delays τ1 de la autorrepresión de la protéına Her/Hes y τ2 de la activación del ligando

Delta a Her/Hes se han supuesto diferentes en las ecuaciones porque la escala temporal

del bucle de realimentación y del mecanismo Delta-Notch no tiene por que ser la misma;

sin embargo, serán considerados equivalentes (τ1≡τ2≡τ) en las simulaciones por sencillez.

3. Consideraciones previas a la simulación

3.1. Red con Real. Negativa sin interacción Delta-Notch

Antes de comenzar la resolución numérica de las ecuaciones (13) y (14) tenemos que

determinar los valores de los parámetros que en ausencia de interacción Delta-Notch dan

lugar a oscilaciones, ya que para la obtención de sincronización es necesario que la concen-

tración de protéına Her/Hes de cada célula oscile independientemente al resto. Además,

dado que los objetivos del trabajo giran entorno a la obtención de sincronización, es es-

pecialmente importante comprobar que el barrido en condiciones iniciales es lo suficiente-

mente eficaz como para asegurar que la sincronización obtenida se basa en los mecanismos

de interacción celular y no en la proximidad de los parámetros en las condiciones iniciales

de las diferentes células. Para solventar ambos problemas es conveniente generar una red

en la que estén modelizados los ciclos de realimentación negativa en cada célula pero no

los mecanismos de interacción celular Delta-Notch. En nuestras ecuaciones esto se con-

sigue haciendo α=1, ya que con ese valor la ecuación diferencial de la protéına Her/Hes

elimina la dependencia de parámetros de células vecinas (Djτ ) y se recupera la forma de

un circuito de realimentación negativa:

dHi

dt
=

pH
1 +H4

iτ

− γHHi ≡
dx

dt
=

β

1 +
(
xτ
K

)n − γx (15)

Por su parte, la ecuación diferencial del ligando Delta se mantiene invariable al no depen-

der de parámetros de células vecinas.

Con los parámetros adecuados podremos obtener oscilaciones en la concentración de ca-

da protéına individual y se deberá verificar que este grupo de osciladores independiente
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presenta homogeneidad y dispersión en las fases. De esta forma, cuando integremos las

ecuaciones del reloj y encontremos sincronización (osciladores en fase) podremos estar

seguros de que los responsables han sido los mecanismos de interacción celular. La figura

14 ha sido obtenida en una red integrada por las ecuaciones (13) y (15) (sin interac-

ción Delta-Notch) y confirma la necesaria homogeneidad en las fases de los osciladores

independientes.

Figura 14: Concentración en función del tiempo de las protéınas Her/Hes de cada una de

las 36 células de una red 6x6 en ausencia de interacción celular

3.2. Parámetro de orden

Para evaluar de forma cuantitativa la posible sincronización en nuestro sistema celular

es indispensable definir un parámetro de orden normalizado cuyo valor sea nulo en ausencia

total de sincronización y que valga la unidad cuando las concentraciones de protéına

Her/Hes de cada célula de la red oscilen completamente en fase. Un parámetro de orden

válido es el propuesto por Garćıa-Ojalvo, Elowitz y Strogatz en su intento por acoplar

circuitos genéticos represiladores mediante ”quorum sensing”[18]:

R =
〈M(t)2〉 − 〈M(t)〉2

〈b2i 〉 − 〈bi〉2
(16)

En esta ecuación bi representa la concentración en un cierto instante de tiempo de la

célula i-ésima, < − > hace referencia a un promedio temporal y ..... a un promedio a lo

largo de todas las células de la red. Además, se ha definido la señal media M(t) como:

M(t) =
1

N

N∑
i=0

bi(t) (17)

R es por tanto un cociente entre la desviación estándar de la señal promedio y la

desviación estándar de bi promediada sobre las células i.
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De esta forma, cuando la red exhiba sincronización, las concentraciones de diferentes célu-

las i serán las mismas en cada paso de tiempo e iguales a la concentración promedio M(t)

por lo que el cociente será exactamente 1. Cuando por el contrario la red no presente sin-

cronización, cada célula individual presentará una fase independiente del resto de células,

por lo que cuando N sea grande tendremos un valor de M(t) aproximadamente constante,

haciendo que su desviación estándar sea muy cercana a 0.

3.3. Discusión sobre los parámetros de las ecuaciones

Se han discutido con anterioridad los motivos por los que las ecuaciones (13) y (14)

representan una buena aproximación al reloj celular. Estas ecuaciones presentan una bue-

na cantidad de parámetros a determinar, pero no todos ellos son relevantes; nos interesa

evaluar la sincronización en función de aquellos parámetros relacionados con la interac-

ción celular. El resto de parámetros presentarán un valor constante a lo largo de todas

las simulaciones. Recordando lo visto en la sección 3.1, para lograr sincronización en la

red estos parámetros deben permitir oscilaciones independientes en la concentración de

la protéına de cada célula en ausencia de interacción celular (α=1), por lo que una elec-

ción válida es hacer uso de los parámetros utilizados para la obtención de la figura 14

(Apéndice D).

Tenemos por tanto sólo 2 variables que están relacionadas con el mecanismo Delta-Notch

simplificado propuesto en la figura 12:

El parámetro α, que representa el Fold Change de la activación de la protéına

Her/Hes por el ligando Delta, definido como:

α =
pbound(A 6= 0)

pbound(A = 0)
(18)

Este cociente relaciona la probabilidad de unión del ARNp al promotor (señal de

iniciación de la transcripción) cuando la cantidad de activador es no nula frente a

esta misma probabilidad en ausencia de activador. Como la presencia del activador

aumenta la probabilidad de unión de estas dos especies, en sistemas biológicos reales

esta cantidad será siempre mayor que la unidad.

En segundo lugar, el delay τ presente en Djτ también está relacionado con el me-

canismo de interacción celular, ya que como se comentaba en la sección (2.4), este

delay se introduce con el objetivo de modelizar de forma simplificada la dinámica

de la especie Notch, por lo que su valor guarda relación con la escala temporal del

mecanismo Delta-Notch.

En las simulaciones vamos a estudiar por tanto la sincronización global R en función

de diferentes valores de α y τ . También consideraremos diferentes tamaños de redes celu-
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lares cuadradas.

4. Simulaciones y resultados

En una población celular grande es común encontrar ligeras variaciones morfológicas

y composicionales entre células. Estas pequeñas diferencias hacen que las magnitudes

f́ısicas que definen el estado de las células vaŕıen algo entre ellas. Para hacer el modelo

algo más realista se ha introducido en las simulaciones un pequeño ruido estático en

los parámetros pH y βd, es decir, introducimos aleatoriamente en cada célula pequeñas

desviaciones respecto a los valores previamente fijados con el objetivo de modelizar esta

inhomogeneidad intŕınseca a los sistemas biológicos.

Vamos a comenzar mostrando una serie de gráficas en las que se representa el valor del

parámetro de orden R en función de α para diferentes valores de delay τ . La figura 15

representa una red celular 6x6. Para verificar si la sincronización es robusta cada uno de

los valores de Rpromedio mostrados en la gráfica son en realidad el resultado de un doble

promediado: Temporal (Se obtiene el valor de R en 3000 pasos de tiempo distintos y se

calcula su promedio) y en condiciones iniciales (Se calcula el promedio temporal para 200

condiciones iniciales diferentes y el cálculo de ese valor medio genera el Rpromedio mostrado

en la gráfica).

Figura 15: Red 6x6: Sincronización R frente a α para diferentes valores de delay τ

Analizando la imagen podemos concluir dos cosas:

En primer lugar observamos que para los 3 valores de delay propuestos encontramos

regiones de α para las que se obtiene una sincronización estable y robusta (R≈1).

El rango de valores de α que permiten una sincronización robusta depende cŕıtica-

mente del delay introducido.
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El comportamiento cualitativo de R vs α para un delay de 20 U.A. es equivalente

a lo que vemos para τ=6 y τ=12, solo que el rango de α propuesto en la gráfica no es

suficientemente grande como para visualizar su cáıda. Todos los delays siguen por tanto la

misma tendencia: Parten de una desincronización completa en α=1 (Para este valor de α

no hay interacción celular) y a medida que vamos subiendo α alcanzan muy rápidamente

la sincronización global en la red. Se mantienen sincronizados a lo largo de un rango de

valores de α y cuando alcanzan el αumbral (valor de α a partir del cuál R deja de ser

la unidad) van perdiendo sincronización de forma paulatina hasta alcanzar valores de R

cercanos a 0.

Los valores de αumbral para delays de τ=20 U.A. y superiores se muestran en el apéndice

E. Es importante comentar que la sincronización y en general cualquier estado de equili-

brio no se alcanza de forma inmediata sino que se requiere un cierto tiempo para pasar

de las condiciones iniciales a los valores de equilibrio. Para obtener valores de R promedio

cercanos a 1 se ha de termalizar el sistema antes de iniciar el cálculo de R para dar tiempo

a que el sistema alcance el estado globalmente sincronizado.

Veamos con un poco más de detalle el comportamiento de la red en cada una de las fases

que acabamos de describir. La figura 16 muestra una serie de gráficas con la evolución de

la concentración de la protéına Her/Hes en función del tiempo para cada una de las 36

células que componen la red. Cada gráfica muestra el estado del sistema para un valor de

α diferente.

En primer lugar, en el caso de α=1 vemos como, al no haber mecanismo de interacción

celular la sincronización no es posible y por tanto las fases de cada célula oscilan de for-

ma independiente al resto. Podemos visualizar pequeñas variaciones en las amplitudes de

oscilación de diferentes células como consecuencia de la inclusión de ruido estático. La

segunda figura ha sido simulada para un valor de α para el que encontramos sincroni-

zación global. Como consecuencia, las concentraciones aparecen completamente en fase.

Pasado el αumbral, la sincronización promedio empieza a caer lentamente. Seŕıa razonable

pensar que sólo existen dos estados extremos posibles en el sistema; el sincronizado global

(R=1) y el desincronizado global (R=0) y que cuando aumenta α se favorecen los estados

desincronizados, haciendo descender paulatinamente el promedio de R. Sin embargo, los

estados que se obtienen son realmente estados intermedios no completamente sincroniza-

dos ni completamente desincronizados. Como se observa en los histogramas de la figura

17, para un determinado α (superior al αumbral) los valores de sincronización R alcanzados

en las diferentes simulaciones tienden a un rango acotado de valores (ya no obtenemos

estados con sincronización global completa) y a medida que se incrementa el valor de α

este rango de valores de R se va acercando de forma gradual a 0.

Desde una perspectiva de concentraciones celulares, la pérdida de sincronización global

en la red se traduce en lo que se observa en las gráficas tercera, cuarta y quinta de la

figura 16. Para valores cercanos pero mayores a αumbral empieza a advertirse la formación

de subgrupos de oscilación en la red. Cada subgrupo oscila completamente en fase con
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los osciladores del mismo grupo pero las amplitudes de oscilación y las fases de oscilación

entre diferentes grupos comienza a separarse lentamente, lo que da lugar a una pequeña

pérdida de sincronización global. A medida que α se aleja más del αumbral los subgrupos

de oscilación presentan patrones de oscilación más complejos y las diferencias en amplitud

y fase se hacen más evidentes.

Figura 16: Evolución temporal de la concentración de las 36 células de una red 6x6 para

diferentes valores de α. Las simulaciones se han ejecutado con un delay τ=12 U.A. Figura

16.1: R=0.05; Figura 16.2: R=1; Figura 16.3: R=0.92; Figura 16.4: R=0,68; Figura 16.5:

R=0,49

El mayor desfase entre subgrupos es el responsable de que el valor de R promedio

descienda de forma monótona con el incremento de α.

Eventualmente para valores de α elevados se pierde la estructura de subgrupos y las con-

centraciones celulares oscilan de nuevo de forma casi independiente entre ellas.
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Figura 17: Histogramas de distribución de la sincronización R de los estados de equilibrio

para diferentes valores de α superiores al αumbral. Se ha utilizado para la simulación una

red 6x6 con delay τ=12 U.A.

La figura 18 sirve como ejemplo para visualizar la disposición espacial dinámica de

la concentración de Her/Hes adoptada por una red 12x12 cuando se supera ligeramente

el αumbral
1. Se puede observar con claridad la separación del sistema en subgrupos de

oscilación con diferentes fases.

Para este valor concreto de α se consiguen dos subgrupos independientes, uno de ellos

conformado por dos tercios de la red y el otro por el tercio restante. Las fases son cla-

ramente diferentes, pero además las amplitudes máximas alcanzadas por cada subgrupo

también lo son. Esto se observa más claramente en la figura 19, en la que se representa la

concentración de Her/Hes del mismo sistema celular de forma alternativa.

1Para los parámetros usados en la figura 18 (τ= 6 U.A. y red 12x12), estrictamente no se tiene un

αumbral ya que la sincronización promedio nunca alcanza R≈1; sin embargo, los estados de sincronización

intermedia que se obtienen tras pasar el valor de α en el que R promedio es máximo (R≈0.6) son cuali-

tativamente equivalentes a lo que se pretende mostrar y menos costosos de generar computacionalmente,

lo que justifica la decisión.
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Figura 18: Representación espacial de la evolución de la concentración de las 144 células de

una red 12x12 para un α ligeramente superior al αumbral. Las 6 figuras describen diferentes

fases del ciclo de oscilación de Her/Hes representado en la figura 19. Se ha usado un

valor de τ=6 U.A. y un α=12, aunque para valores superiores de τ el comportamiento

cualitativo es el mismo.

La riqueza en patrones de oscilación espaciales es grande y para diferentes valores de

α obtenemos diferente número de subgrupos de oscilación y con diferentes amplitudes,

como se adelantaba en la presentación de la figura 16.

Hasta ahora se han evaluado las tendencias que se pueden extraer del sistema cuando

se vaŕıa el retraso para un mismo tamaño de red. Para completar la discusión es preciso

analizar si las tendencias observadas al modificar τ son extrapolables a tamaños mayores

de red (Figura 20).
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Figura 19: Evolución de la concentración de Her/Hes de las 36 primeras células de una

red 12x12 para un α=12 (ligeramente superior al αumbral).

Figura 20: Sincronización R frente a α para diferentes valores de delay τ : Redes 12x12 y

18x18

Observamos diferencias notables en las gráficas como consecuencia de aumentar el

tamaño de la red, pero esto será analizado más en detalle posteriormente; nos centramos

ahora únicamente en los cambios generados por la modificación de τ . Dejando de lado

efectos del tamaño de red, tanto para la red 12x12 como para la 18x18 el efecto de

aumentar el delay en las ecuaciones es comparable con lo obtenido en la red 6x6: En los 3

casos aumentar el retraso supone una ampliación en el rango de valores de α para los que

se obtiene sincronización global, por lo que se puede concluir que independientemente del

tamaño de la red un aumento en el valor de τ supone una mejora notable en la obtención

de sincronización. Una vez caracterizado el papel de τ en la inducción de sincronización,

es conveniente reorganizar algunos de los resultados presentados para evaluar el efecto de

un aumento del tamaño de la población celular. Vamos a estudiar de nuevo como depende

la sincronización R del parámetro α, pero en este caso dejaremos fijo el valor de delay τ

y analizaremos los cambios que induce en el sistema un aumento en el tamaño de la red.

La figura 21 muestra los resultados:
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Figura 21: Sincronización R frente a α para diferentes valores de tamaño de red: delays

de 6, 12 y 20 U.A.

Observando las figuras podemos extraer varias conclusiones:

En primer lugar, cuando las ecuaciones presentan un delay τ=6 U.A. se observa

claramente como el aumento del tamaño de la red se traduce en una pérdida clara

de sincronización promedio. Además, también se puede deducir que un retraso de 6

U.A. es probablemente demasiado pequeño para inducir sincronización robusta en

redes mayores que la 6x6.

A diferencia de lo que sucede para valores de α superiores al αumbral, cuando para

α bajos obtenemos R promedio menores de 1, es como consecuencia de obtener el

promedio entre estados sincronizados (R=1) y no sincronizados (R=0), de forma que

un R=0.6 indica que aproximadamente el 60 % de las simulaciones han alcanzado

el estado sincronizado mientras que el resto no ha conseguido sincronizar.

Para delays τ=12 U.A. la influencia de aumentar el tamaño de la red es menos

distinguible. En este caso todos los tamaños presentan aproximadamente el mismo

valor de αumbral. Para valores superiores a αumbral si que se observa un valor de

sincronización menor a medida que aumenta el tamaño de red.

Para delays τ=20 U.A. el aumento de la red se traduce en un αumbral menor. Es

importante notar que un incremento pequeño en τ aumenta de forma muy notable

los valores de αumbral, como se observa en el apéndice E.

En general se puede concluir que un aumento en el tamaño de la red genera mayores

dificultades para sincronizarla. Como es lógico cuánto mayor es la red, mayor es el número
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de células y de interacciones celulares y por tanto más dif́ıcil conseguir que las concentra-

ciones de protéına Her/Hes de las células oscilen en fase. Esta mayor dificultad se hace

especialmente evidente en el caso de τ=6 U.A., al no ser este valor lo suficientemente

robusto para generar sincronización estable en redes grandes.

5. Conclusiones

A lo largo de este trabajo se ha hecho hincapié en la necesidad de obtener un entendi-

miento más profundo de los procesos biológicos que implican sincronización celular. Con

este fin se ha propuesto un modelo para el reloj celular, una de las dos partes funda-

mentales que componen el reloj de segmentación, con el objetivo de estudiar la oscilación

celular sincronizada que permite la somitogénesis. Los resultados obtenidos nos permiten

concluir:

En primer lugar, el modelo planteado para describir el reloj permite sincronizar de

forma exitosa las oscilaciones de concentración de protéına Her/Hes en una pobla-

ción celular extensa.

Los valores de los que depende esta sincronización son el Fold-Change de activación α

y el delay τ presente en Djτ , que nos da información acerca de la escala temporal del

mecanismo de interacción Delta-Notch. Obtenemos sincronización robusta (R≈1)

para un amplio rango de valores de α y τ .

El comportamiento cualitativo es siempre el mismo: Partiendo de una red desin-

cronizada (α=1) a medida que aumentamos α ganamos sincronización promedio R

hasta alcanzar el estado sincronizado global (R=1). El sistema se mantiene sincroni-

zado hasta alcanzar el αumbral, valor a partir del cual la red se organiza en subgrupos

con variaciones en amplitud y fase y se produce una desincronización gradual.

El valor de αumbral depende fuertemente de τ ; cuánto mayor es el retraso mayor es

la región de α en la que se alcanza sincronización.

El efecto de aumentar el tamaño de la red se traduce en una mayor dificultad en la

sincronización global de esta.

El efecto de incluir tanto ruido estático como estocástico en la simulación es similar.

En ambos casos un aumento en el ruido se traduce en una mayor dispersión en las

amplitudes y fases de la oscilación de cada célula, lo que hace que disminuya el valor

de la sincronización promedio R para un α dado y en términos generales, que se

dificulte el alcance de un estado sincronizado global. Un análisis algo más detallado

de la influencia de ambos tipos de ruido en el sistema se desarrolla en el apéndice

F.
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A. Funciones de Hill

Como ya se ha comentado, las funciones de Hill modelizan matemáticamente el término

de producción presente en la ecuación diferencial que rige la dinámica de la concentración

de una cierta protéına o especie intermedia. Esta producción será diferente dependiendo

de si el gen que produce esta protéına está activado o reprimido. Veamos en detalle cuál

es el procedimiento para llegar a la forma cualitativa de funciones de Hill reprimidas o

activadas por un único factor de transcripción [15].

Para iniciar la activación o represión de un cierto gen, el factor de transcripción ha de

unirse a una parte espećıfica del promotor (operador). Dependiendo de su naturaleza esta

unión aumentará o disminuirá el ritmo al que se une la ARNp al promotor y por tanto

modificará el ritmo de producción de la protéına que codifica el gen. La tasa de producción

de protéına dependerá por tanto de la cantidad de FT y de la probabilidad de que este

se encuentre unido al operador. Consideremos el caso de un gen con un único promotor y

un único operador y asumamos que el FT ha de dimerizarse previamente a su unión con

el operador. Podemos escribir en este caso:

FT + FT
kd⇀↽
k−d

FT2 (19)

Ou + FT2
kb⇀↽
k−b

Ob (20)

La ecuación (19) representa la dimerización del factor de transcripción: FT indica la

concentración de factor de transcripción, FT2 la concentración de factor de transcripción

dimerizado y kd y k−d las probabilidades por unidad de tiempo de dimerizar o romper la

unión respectivamente. La ecuación (20) establece la reacción qúımica en la que un FT

dimerizado se une a una región del operador libre para dar lugar a un operador ’unido’.

Ob y Ou representan la concentración de operador unido y sin unir. Si las reacciones están

en equilibrio, entonces:

kdF
2
T = k−dFT2 (21)

kbOuFT2 = k−bOb (22)

Además, se cumple que Ou + Ob = N , es decir, la concentración total de operador es

constante. Con el sistema de ecuaciones que acabamos de plantear podemos despejar las

concentraciones de operador unido Ob y de operador sin unir Ou en función del resto de

parámetros:

Ou =
N

1 +

[
TF
K

]2 (23)
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Ob =

N

[
TF
K

]2
1 +

[
TF
K

]2 (24)

Las ecuaciones (23) y (24) son funciones de Hill.

Como la tasa de producción de una cierta protéına TProd en un circuito genético depende

directamente de la concentración de operador al que se le ha unido el d́ımero de FT,

podemos expresar el término de producción como:

TProd = αuOu = αu
N

1 +

[
TF
K

]2 (25)

en el caso de una protéına expresada por un gen reprimido (por lo que sólo producirá

protéınas en aquella fracción de operadores que no estén unidos a un d́ımero de FT) o

como:

TProd = αbOb = αb

N

[
TF
K

]2
1 +

[
TF
K

]2 (26)

para una protéına expresada por un gen activado (por lo que sólo producirá protéınas

en aquella fracción de operadores que estén unidos a un d́ımero de FT).

Cuando la unión FT-Operador requiere de una dimerización previa de FT el exponente

del término TF
K

es 2, pero esto no es aśı de forma general. El exponente n será equivalente

al número de FT que tienen que polimerizar previamente a la unión con el operador. Este

ı́ndice expresa por tanto la cooperatividad necesaria en la unión y se denomina exponente

de Hill.

Aśı, las ecuaciones (25) y (26) generalizadas con un exponente de Hill arbitrario n re-

presentan el término de producción de la ecuación diferencial que rige la dinámica de la

concentración de una protéına expresada por un gen reprimido o activado.
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B. Delta-Notch 2 células: Ecuaciones y resultados

Se expone en este apéndice los pasos seguidos para dar lugar a las ecuaciones (6) y

(7). Para un desarrollo más detallado se recomienda mirar en profundidad el tutorial de

modelización de señalización Notch [16]. Escribiendo las ecuaciones del circuito genético

en la figura 8 para la célula i se obtiene lo siguiente:

dDi

dτ
=

αd

1 +
(
Ri
θr

)h − γdDi (27)

dRi

dτ
=

αrD
m
j

θmd +Dm
j

− γrRi (28)

donde γd, γr, αd, αr representan las tasas de degradación y tasas de máxima producción

de ambas especies respectivamente, θd y θr hacen referencia a los umbrales de concentra-

ción de Delta y Notch necesarios para alcanzar la mitad de la represión o activación en la

célula adyacente y m y h son los coeficientes de Hill de Notch y Delta respectivamente.

En ambas ecuaciones el primer término es el de producción (ya sea activada o reprimida)

y el segundo el término de degradación.

Sustituyendo i por j obtenemos las 2 ecuaciones diferenciales de la célula j.

Con el objetivo de reducir el gran número de parámetros presentes en las ecuaciones va a

resultar conveniente adimensionalizarlas. Teniendo en cuenta que T0, D0, R0 y t, di, ri son

las cantidades caracteŕısticas dimensionales y adimensionales respectivamente de tiempo,

ligando y represor, efectuamos los siguientes cambios de variable: τ=T0 t; Di = D0 di;

Ri = R0 r.

Además, escogiendo: T0=
1

γr
; D0=θd; R0 = θr

Aśı:
D0

T0

ddi
dt

=
αd

1 +
(
R0ri
R0

)h − γdD0di →
ddi
dt

=
αd

γrθd(1 + rhi )
− γd
γr
di (29)

→ ddi
dt

= ν

[
βd

1 + rhi
− di

]
(30)

donde hemos definido βd =
αd
γd θd

y ν =
γd
γr

[16].

Procediendo de forma análoga para adimensionalizar la ecuación diferencial del repre-

sor obtenemos:

dri
dt

=
βr d

m
j

1 + dmj
− ri (31)

donde se ha usado βr=
αr
γr θr

.
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Figura 22: Evolución temporal de la concentración de las especies Delta y Notch de las 2

células que conforman el sistema

Resolviendo las ecuaciones para el sistema simple de dos células obtenemos dos so-

luciones. Cuando las concentraciones iniciales de Delta y de Notch son similares se llega

a un equilibrio en el que las concentraciones de estas dos en cada célula es el mismo.

Sin embargo, una pequeña diferencia en estas concentraciones da lugar a un estado de

equilibrio distinto. Observando el circuito genético se observa que el Delta de la primera

célula activa el represor Notch de la célula vecina y a su vez, este reprime el Delta de

la célula vecina, lo que impide la proliferación del Delta de la primera célula. Por tanto,

una pequeña variación en las condiciones iniciales desequilibra el sistema y da lugar a un

proceso de amplificación de las diferencias en condiciones iniciales que tiende a un estado

en el que una de las células esta dominada por el ligando Delta mientras que su vecina

está dominada por Notch, como se observa en la figura 22.
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C. Métodos numéricos

A lo largo de las simulaciones se ha hecho uso de una gran cantidad de algoritmos;

algunos de los más importantes son los siguientes:

Como método de resolución numérica de las ecuaciones diferenciales que describen

la dinámica de la concentración de la protéına Her/Hes en la red celular se ha hecho

uso del conocido algoritmo de Runge-Kutta de Orden 4. El paso temporal h

elegido es de h = 0,01

Para asegurar la homogenización en los valores iniciales de ciertos parámetros como

la concentración de protéına Her/Hes en el interior de cada una de las células de

la red se necesita un algoritmo que genere números aleatorios sin correlaciones. Ha

sido utilizado el algoritmo de Parisi-Rapuano

Por último, para las simulaciones en las que se incluye ruido estocástico para simu-

lar una dinámica celular ruidosa (Apéndice F), se ha hecho uso del algoritmo de

Heun, cuya particularidad es que la estocasticidad es representada en la dinámi-

ca mediante la inclusión de ruido multiplicativo en vez de aditivo. Este algoritmo

calcula el valor de la concentración en un paso siguiente como:

x(t+ ∆t) = x+
1

2
[F (x) + F (x)]∆t+

1

2
[G(x) +G(x)]∆W (32)

Este paso requiere el cálculo previo del denominado predictor, definido como:

x = x+ F (x)∆t+G(x)∆W (33)

donde ∆ W:

∆W =
√

2C∆tZ (34)

con C el parámetro que cuantifica la magnitud del ruido térmico y Z un número

aleatorio con distribución gaussiana generado a partir del algoritmo de Box-

Muller. La inclusión de ruido estocástico modifica las ecuaciones diferenciales que

describen la dinámica del sistema, que se dividen ahora en 2 sumandos: El primero

de ellos se representa por F(x) y su valor corresponde al que adquiŕıa la ecuación

diferencial previamente a la adición de ruido, es decir, cuando integramos la dinámica

del ligando Delta o de la protéına Her/Hes, F(x) adquiere la forma de la función

representada en las ecuaciones (13) o (14) respectivamente. El segundo sumando se

describe como G(x) y es la parte de la ecuación diferencial que multiplica al ruido

ξ(t) en las nuevas ecuaciones. Tomará el valor mostrado a continuación en caso de

la resolución de la dinámica de Delta:

G(x) =

√
ν

[
βd

1 +Hh
i

+Di

]
(35)
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y el siguiente en caso de la resolución de la dinámica de la protéına Her/Hes:

G(x) =

√
pH

1 + α < Djτ2 >
2

[1 + α < Djτ2 >
2]
[
1 +H4

iτ1

] + γH Hi (36)
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D. Valores de parámetros usados en las simulaciones

Las ecuaciones diferenciales integradas en las simulaciones (Ecuaciones (13) y (14))

presentan una gran cantidad de parámetros cuyos valores han de ser fijados. Como ha

sido comentado anteriormente los valores usados se caracterizan por generar oscilaciones

desfasadas en ausencia de interacción celular (α=1), es decir, son valores que permiten las

oscilaciones individuales en la concentración de la protéına Her/Hes de cada célula. Para

algunos parámetros se va a presentar sin embargo un rango de valores posibles en vez de

un valor fijo. Esta dispersión respecto al valor principal representa la inclusión de ruido

estático en ese parámetro como forma de modelizar las inhomogeneidades intŕınsecas en

los sistemas celulares extensos (Apéndice F).

Paso temporal h: 0.01

Cociente de tasas de degradación ligando-represor ν =
γd
γr

= 1

Producción de ligando βd=
αd
γdθd

∈ [29-31]

Producción protéına Her/Hes pH ∈ [0.95-1]

Tasa degradación Her/Hes γH=0.1

Además de los parámetros fijos, las ecuaciones cuentan con parámetros cuyo valor se

modifica entre diferentes simulaciones. Para estos valores la notación ya no indica el efecto

del ruido estático sino la región de valores de estos parámetros que ha sido explorada en

las simulaciones:

Fold-Change de activación α ∈ [1-3000].

La región de valores de α explorada en profundidad sólo abarca α ∈ [1-100]

Delay autorrepresión Her/Hes τ1 ≡ Delay Notch τ2 ≡ τ = [600, 1200, 2000, 3500]·h
U.A.

Los retrasos y el tiempo en general están medidos en unidades de tiempo arbitrarias, es

decir, τ no tiene unidades de segundos. Para poder establecer el tiempo real en segundos

al que equivale una unidad arbitraria representada en las gráficas necesitamos conocer la

relación entre el valor de la tasa de degradación propuesta en las simulaciones (γH=0.1) y

su valor real. Conocida esa equivalencia podŕıamos calcular el periodo de las oscilaciones

en las simulaciones (en segundos) y compararlo con las escalas temporales t́ıpicas del

periodo de somitogénesis. Como no disponemos del dato de la tasa de degradación real

de la protéına Her/Hes podemos plantearlo al revés: Dada la equivalencia entre U.A. y

segundos podemos obtener una estimación de la tasa de degradación real y compararla

con escalas t́ıpicas reales de ese parámetro.
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La somitogénesis es un proceso biológico presente en una gran cantidad de especies, y

cada especie presenta un periodo de oscilación caracteŕıstico diferente: En los peces cebra

el periodo de las oscilaciones es del orden de 30 minutos mientras que en humanos se

prolonga hasta las 4/5 horas. Nuestro propósito no es hacer una predicción precisa y

exacta sino ver si los valores estimados de la tasa de degradación se acercan al orden de

magnitud t́ıpico de γ, por lo que vamos a tomar como periodo de somitogénesis t́ıpico

un valor intermedio entre los casos extremos propuestos, 120 minutos. Comparando este

valor con el número de U.A. promedio que representan un periodo en nuestras simulaciones

obtenemos la siguiente equivalencia:

1 U.A. ≈ 150 seg. (37)

Como además sabemos que la tasa de degradación propuesta en las simulaciones es

γH=0,1 U.A.−1, la estimación del valor de γreal queda:

γreal ≈ 2,5 h−1 (38)

Ya se ha comentado en párrafos anteriores que no tenemos un valor de la tasa de de-

gradación de la protéına Her/Hes para comparar con la estimación, pero γreal se encuentra

dentro del rango de valores t́ıpicos de tasa de degradación para una protéına.
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E. Valores de αumbral en función de τ y tamaño de red

Como hemos discutido en las secciones anteriores, el comportamiento cualitativo de

R vs α es el mismo para diferentes valores de delay τ , pero el αumbral a partir del que la

sincronización en la red deja de ser la unidad difiere enormemente entre diferentes valores

de delay, como se muestra en las siguientes tablas:

Red 6x6 τ = 6 (U.A.) τ = 12 (U.A.). τ = 20 (U.A.) τ = 35 (U.A.)

αumbral 10 20 ≈ 800 (1-4)·105

Para la red 12x12 y delay τ=6 no se llega a alcanzar la sincronización completa (R=1)

por lo que el parámetro αumbral en este caso carece de sentido. Sucede lo mismo para la

red 18x18 y τ= 6 U.A.

Red 12x12 τ = 6 (U.A.) τ = 12 (U.A.) τ = 20 (U.A.)

αumbral - 20 ≈ 500

Red 18x18 τ = 6 (U.A.) τ = 12 (U.A.)

αumbral - ≈ 20
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F. Ruido estático y estocástico

Cuando hablamos de introducir ruido en las ecuaciones podemos hacerlo de dos formas:

Ruido estático: A pesar de que las redes celulares que se plantean en el modelo están

compuestas únicamente por un tipo de célula, esto no significa que estas sean copias

idénticas unas de otras; de hecho, a pesar de su aparente homogeneidad existen

pequeñas diferencias composicionales que las hacen únicas. Es conveniente por tanto

modelizar estas pequeñas inhomogeneidades intŕınsecas a la red introduciendo en

las simulaciones mı́nimas desviaciones aleatorias respecto al valor fijado de ciertos

parámetros.

Ruido estocástico: Los sistemas biológicos son sistemas ruidosos por naturaleza de-

bido a la estocasticidad presente en las cinéticas celulares. El procedimiento para

introducir este tipo de ruido en las simulaciones es más sofisticado; para evaluar

las diferencias en el alcance de sincronización cuando se contempla o no ruido es-

tocástico se ha modelizado este ruido en la simulación mediante el algoritmo de

Heun.

En los resultados presentados en la sección (4) del trabajo las simulaciones inclúıan

ruido estático moderado (Apéndice D) y no inclúıan ruido estocástico. Este apéndice trata

de evaluar como la obtención de sincronización se ve modificada por valores mayores de

ruido estático y por la introducción de ruido estocástico.

F.1. Ruido estático

En esta simulación comparativa se han utilizado rangos de valores extensos (ruido

estático alto) en dos parámetros de las ecuaciones: Cada célula tendrá de forma aleatoria

un valor de βd entre 20 y 40 y un valor pH que oscila entre 0.6 y 1. Como observamos, en

esta simulación se incrementa considerablemente la magnitud del ruido estático respecto

a la utilizada en las simulaciones con las que se han obtenido los resultados de la sección

(4). La idea de este aumento radica en que en este caso estamos interesados únicamente

en discernir qué diferencias induce en la red y en la sincronización la presencia de ruido

estático, por lo que cuanto mayor sea su magnitud mejor idea nos podremos hacer de

como afecta al sistema.

En la figura 23 se muestra la evolución de la concentración de las 36 células de una red 6x6

para un valor de α para el que con valores más moderados de ruido estático se consegúıa

sincronización completa.

Como podemos comprobar, el efecto de aumentar el ruido estático no destruye la

sincronización pero aumenta la dispersión tanto en amplitudes de oscilación como en las

fases. Esta pequeña dispersión en las fases provoca que el valor promedio de sincronización

R descienda respecto a la simulación sin ruido, como podemos apreciar en la figura 24.
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Figura 23: Red 6x6: Concentración en función del tiempo de la protéına Her/Hes de las

36 células que componen la red. Se ha usado un valor de τ=12 U.A. y un α=6.

Figura 24: Red 12x12: Comparativa de la evolución de la sincronización R frente a α con

y sin introducción de ruido estático en las ecuaciones. Se ha usado un delay τ=12 U.A.

F.2. Ruido estocástico

Como se detallaba en el apéndice C, al integrar las ecuaciones diferenciales de la

dinámica resultantes tras la introducción de ruido multiplicativo en el sistema, el paráme-

tro que cuantifica el nivel de ruido estocástico es C. Para evaluar cómo vaŕıa el alcance de

sincronización en el sistema celular cuando consideramos este tipo de ruido es conveniente

comparar la evolución de la sincronización promedio frente a α para diferentes valores de

nivel de ruido C, como se detalla en la figura 25
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Figura 25: Red 12x12: Comparativa de la evolución de la sincronización R frente a α para

diferentes valores de nivel de ruido estocástico C. Se ha usado un delay τ=12 U.A.

Cuando C=0 no se introduce ruido en el sistema y se recuperan los resultados obteni-

dos en el caso ”Sin Ruido” de la gráfica 24. Como cab́ıa esperar, a medida que aumentamos

el nivel de ruido el sistema exhibe mayores dificultades para mantener las oscilaciones de

diferentes células en fase, aumenta la dispersión y disminuye la sincronización promedio,

es decir, se confirma el hecho intuitivo de que la introducción de ruido estocástico (al

igual que suced́ıa con el estático) dificulta las dinámicas que llevan a la sincronización de

la red celular.
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G. Códigos de las simulaciones

Para la obtención de los resultados expuestos se han desarrollado una buena cantidad

de programas en el lenguaje C. Muchos de ellos presentan partes de código comunes,

por lo que en esta sección no se va a presentar cada código de forma individual sino

que se va a mostrar de forma detallada el código más completo desarrollado indicando

sus subalgoritmos más relevantes. Generalmente para la obtención de resultados no se ha

utilizado este código en su forma completa, sino que se han desarrollado otros programas

que obtienen de forma más eficiente y espećıfica el resultado requerido. Además, en el

código presentado se resuelven las ecuaciones diferenciales definitivas (16) y (17). Como

es lógico, para la obtención de resultados previos a los presentados en la sección 4 las

ecuaciones diferenciales resueltas son distintas.

G.1. Programa principal

El programa principal calcula la evolución temporal de la concentración de la protéına

Her/Hes de cada una de las células que componen la red celular extensa. Tiene la opción

de registrar las concentraciones de todas las especies en el interior celular de cada una de

las células de la red, de calcular el parámetro de orden en cada instante de tiempo y de

generar a la vez que se ejecuta el programa un v́ıdeo en tiempo real en el que se observa

la evolución temporal de la concentración de Her/Hes de cada célula de forma visual. De

este tipo de videos se han obtenido por ejemplo, figuras como la 18.

G.1.1. Cabecera y definiciones

1 #include<s t d i o . h>

2 #include<s t d l i b . h>

3 #include<math . h>

4 #include<time . h>

5

6 #define V 1

7 // Cociente de l a s t a sa s de degradac ion l i gando - r e p r e s o r

8 #define BetaD 30

9 // Parametro r e l a c i onado con l a produccion de l l i gando

10 #define TTB 0.95

11 // Parametro r e l a c i onado con l a produccion de l a pro te ina Her/Hes

12 #define Alfa 12

13 // Fold Change de l a a c t i v a c i o n de Her/Hes

14 #define Gammah 0 .1

15 // C o e f i c i e n t e de degradac ion de l a pro t e ina Her/Hes

16 #define p 4
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17 // Coef . H i l l de l r e p r e s o r

18 #define h 0 .01

19 //Paso Temporal

20 #define Tiempo 800000

21 //Numero de pasos de tiempo h r e a l i z a d o s

22 #define Lx 12

23 //Numero de c e l u l a s en l a coordenada x

24 #define Ly 12

25 //Numero de c e l u l a s en l a coordenada y

26 #define N 144

27 //Numero t o t a l de c e l u l a s (N=Lx∗Ly)

28 #define a 1

29 //Lado de l hexagono (Cada c e l u l a se r ep r e s en ta por un hexagono )

30 #define tau 1200

31 // Des fase

32 #define Terma 400000

33 //Tiempo de t e r m a l i z a c i o n

34 #define NormRANu (2.3283063671E-10F

35 // Constante usada en

36

37 FILE∗ fL i g ;

38 FILE∗ fRep ;

39 FILE∗ gnuplotPipe ;

40 FILE∗ fCoord1NR ;

41 FILE∗ fPOrden ;

42 FILE∗ fR ;

G.1.2. Algoritmo de Parisi-Rapuano

1 \\Generador de numeros a l e a t o r i o s ent re 0 y 1 s i n c o r r e l a c i o n e s

2

3 unsigned int i r r [ 2 5 6 ] ;

4 unsigned int i r 1 ;

5 unsigned char ind ran , ig1 , ig2 , i g3 ;

6 extern f loat Random(void ) ;

7 extern void i n i r a n ( int SEMILLA ) ;

8

9 f loat Random(void )

10 {
11 f loat r ;

12 i g1=ind ran-24 ;

13 i g2=ind ran-55 ;
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14 i g3=ind ran-61 ;

15 i r r [ ind ran ]= i r r [ i g1 ]+ i r r [ i g2 ] ;

16 i r 1 =( i r r [ ind ran ] ˆ i r r [ i g3 ] ) ;

17 ind ran++;

18 r=i r 1 ∗NormRANu;

19

20 return r ;

21 }
22 void i n i r a n ( int SEMILLA)

23 {
24 int INI ,FACTOR,SUM, i ;

25 srand (SEMILLA) ;

26 INI=SEMILLA;

27 FACTOR=67397;

28 SUM=7364893;

29 for ( i =0; i <256; i++)

30 {
31 INI=(INI∗FACTOR+SUM) ;

32 i r r [ i ]=INI ;

33 }
34 ind ran=ig1=ig2=ig3 =0;

35 }

G.1.3. Runge-Kutta de Orden-4

1 // Nucleo de l a lgor i tmo u t i l i z a d o para r e s o l v e r de forma

2 // aproximada ecuac ione s d i f e r e n c i a l e s .

3

4 double FuncionLig (double rep , double l i g , double∗PBeta , int i )

5 // Subalgoritmo de evo luc i on de l l i gando Delta

6 {
7 double Lpunto ;

8 Lpunto= V∗ ( ( PBeta [ i ]/(1+pow( rep , p ) ) ) -lig ;

9

10 return Lpunto ;

11 }
12 double FuncionH (double rep , double repold ,

13 double l igm , double∗TasaTB , int i , double∗Alpha )

14 // Subalgoritmo de evo luc i on de l a pro t e ina Her/Hes

15 {
16 double Hpunto ;

17 Hpunto= TasaTB [ i ]∗ ( (1+( Alpha [ i ] ∗ ( l igm ∗ l igm ) ) ) /
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18 ((1+( l igm ∗ l igm ))∗(1+( repo ld ∗ repo ld ∗ repo ld ∗ repo ld ) ) ) ) -Gammah∗ rep ;

19 return Hpunto ;

20 }
21

22 double Runge-KuttaLigando (double rep , double l i g , double ∗PBeta , int i )

23 // Subalgoritmo de evo luc i on de l l i gando d e l t a por RK

24 {
25 double k1=0, k2=0, k3=0, k4=0;

26 double aux2 , aux3 , aux4 ;

27 double L i g f ;

28 L i g f =0;

29 k1=FuncionLig ( rep , l i g , PBeta , i ) ;

30 aux2=( l i g +(0.5∗k1∗h ) ) ;

31 k2=FuncionLig ( rep , aux2 , PBeta , i ) ;

32 aux3=( l i g +(0.5∗k2∗h ) ) ;

33 k3=FuncionLig ( rep , aux3 , PBeta , i ) ;

34 aux4=l i g+k3∗h ;

35 k4=FuncionLig ( rep , aux4 , PBeta , i ) ;

36 L i g f=l i g +(h ∗ ( ( k1+2∗k2+2∗k3+k4 ) / 6 ) ) ;

37 return L i g f ;

38 }
39

40

41 double Runge-KuttaRepresor (double rep , double repold ,

42 double l igm , double ∗TasaTB , int i , double∗Alpha )

43 // Subalgoritmo de evo luc i on de Her/Hes por RK

44 {
45 double k1 , k2 , k3 , k4 ;

46 double aux2 , aux3 , aux4 ;

47 double Repf ;

48 Repf=0;

49 k1=FuncionH ( rep , repold , ligm , TasaTB , i , Alpha ) ;

50 aux2=(rep +(0.5∗k1∗h ) ) ;

51 k2=FuncionH ( aux2 , repold , ligm , TasaTB , i , Alpha ) ;

52 aux3=(rep +(0.5∗k2∗h ) ) ;

53 k3=FuncionH ( aux3 , repold , ligm , TasaTB , i , Alpha ) ;

54 aux4=rep+k3∗h ;

55 k4=FuncionH ( aux4 , repold , ligm , TasaTB , i , Alpha ) ;

56

57 Repf=rep+ (h ∗ ( ( k1+2∗k2+2∗k3+k4 ) / 6 ) ) ;

58 return Repf ;

59

60 }
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G.1.4. Algoritmo que devuelve posiciones de los vecinos

Este algoritmo está diseñado para devolver los ı́ndices que codifican la posición de

los 6 vecinos de una cierta célula i. Para entender como funciona este subalgoritmo es

preciso visualizar previamente cuál es la indexación de la red celular. Esta indexación

es prácticamente equivalente a la mostrada en la figura 26, con la diferencia de que las

columnas pares son más bajas que las impares, es decir, si la red de la figura 26 subiera

cada célula de sus columnas impares una posición, se llegaŕıa a la indexación planteada en

este trabajo. Las condiciones que nos dirán si una cierta célula indexada i pertenece o no a

una cierta región de la red celular son largas y sutiles ya que estas dependen cŕıticamente

del tamaño de la red. El algoritmo tiene en cuenta estas sutilezas y será válido para

encontrar independientemente del tamaño de la red y de la posición de la célula en la red

los ı́ndices que indexan los 6 vecinos de una cierta célula i siempre y cuando la dimensión

de la red sea la misma en ambas direcciones y además sea par (6x6, 8x8, 12x12, 16x16,

etc).

Figura 26: Criterio utilizado para indexar la red celular hexagonal. En este ejemplo se

indexa mediante este criterio una red de dimensión 8x8 [19].

1 // Este subalgor i tmo r e c i b e un i n d i c e i que i n d i c a l a p o s i c i o n de una

2 // c i e r t a c e l u l a en l a red c e l u l a r y devuelve independientemente de l a

3 // p o s i c i o n de e s ta ( i n t e r i o r de l a red , extremo , esquina , e t c ) y de l

4 //tamano de l a red , l o s i n d i c e s de l a s p o s i c i o n e s de sus 6 c e l u l a s vec ina s .

5 //Recordamos que sea cua l sea l a p o s i c i o n de l a c e l u l a en l a red , e s ta
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6 // contara con 6 vec ino s ya que se e s ta haciendo uso de cond i c i one s de contorno

7 // p e r i o d i c a s .

8

9 void CondContorno ( int∗v1 , int∗v2 , int∗v3 , int∗v4 , int∗v5 , int∗v6 , int i )

10 {
11 int lx , l y ;

12 l y= ( int ) ( i /Lx ) ;

13 l x= i -( l y ∗Lx ) ;

14

15 i f ( lx>0 && lx<(Lx-1) && ly>0 && ly<(Ly-1)&& Resto ( lx /2)==0)

// Condicion y vec ino s para e l caso de c e l u l a en una columna i n t e r i o r par

16 {
17 ∗v1= i +1;

18 ∗v2= i - 1 ;

19 ∗v3= i+Lx ;

20 ∗v4= i -Lx ;

21 ∗v5=i -(Lx+1);

22 ∗v6=i -(Lx- 1 ) ;

23 }
24

25 else i f ( lx>0 && lx<(Lx-1) && ly>0 && ly<(Ly-1)&& Resto ( lx2!=0)

// Condicion y vec ino s para e l caso de c e l u l a en una columna i n t e r i o r impar

26 {
27 ∗v1= i +1;

28 ∗v2= i - 1 ;

29 ∗v3= i+Lx ;

30 ∗v4= i -Lx ;

31 ∗v5=i +(Lx+1);

32 ∗v6=i +(Lx- 1 ) ;

33 }
34

35 else i f ( ( l x==0 && i !=0 && i !=(N-Lx ) ) | |
36 ( l x==(Lx-1) && i !=(Lx-1) && i !=N-1) )

37 // Condicion y vec ino s para e l caso de c e l u l a en e l borde dcho . o i zq .

38 //de l a red ( Exceptuando esqu inas )

39 {
40 ∗v1= i +1;

41 ∗v2= i - 1 ;

42 ∗v3= i+Lx ;

43 ∗v4= i -Lx ;

44 ∗v5=i -(Lx- 1 ) ;

45 ∗v6=i +(Lx- 1 ) ;

46 }
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47

48 else i f ( ( l y==0 && i !=0 && i !=Lx-1 && Resto ( lx /2)==0))

// Condicion y vec ino s para e l caso de c e l u l a en e l borde i n f e r i o r

49 // columna par ( Exceptuando esqu inas )

50 {
51 ∗v1= i +1;

52 ∗v2= i - 1 ;

53 ∗v3= i+Lx ;

54 ∗v4= i +(N-Lx ) ;

55 ∗v5=i +(N-Lx+1);

56 ∗v6=i +(N-Lx- 1 ) ;

57 }
58

59 else i f ( ( l y==0 && i !=0 && i !=Lx-1 && Resto ( lx /2) !=0))

// Condicion y vec ino s para e l caso de c e l u l a en e l borde i n f e r i o r

60 // columna impar ( Exceptuando esqu inas )

61 {
62 ∗v1= i +1;

63 ∗v2= i - 1 ;

64 ∗v3= i+Lx ;

65 ∗v4= i +(N-Lx ) ;

66 ∗v5=i +(Lx+1);

67 ∗v6=i +(Lx- 1 ) ;

68 }
69

70 else i f ( ( l y==(Ly-1) && i !=(N-Ly) && i !=(N-1) && Resto ( lx /2)==0))

// Condicion y vec ino s para e l caso de c e l u l a en e l borde s u p e r i o r

71 // columna par ( Exceptuando esqu inas )

72 {
73 ∗v1= i +1;

74 ∗v2= i - 1 ;

75 ∗v3= i -Lx ;

76 ∗v4= i -(N-Lx ) ;

77 ∗v5=i -(Lx+1);

78 ∗v6=i -(Lx- 1 ) ;

79 }
80

81 else i f ( ( l y==(Ly-1) && i !=(N-Ly) && i !=(N-1) && Resto ( lx /2) !=0))

// Condicion y vec ino s para e l caso de c e l u l a en e l borde s u p e r i o r

82 // columna impar ( Exceptuando esqu inas )

83 {
84 ∗v1= i +1;

85 ∗v2= i - 1 ;
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86 ∗v3= i -Lx ;

87 ∗v4= i -(N-Lx ) ;

88 ∗v5=i -(N-Lx+1);

89 ∗v6=i -(N-Lx- 1 ) ;

90 }
91

92 else i f ( i ==0)

// Condicion y vec ino s para e l caso de c e l u l a en l a esquina i n f e r i o r i zq .

93 {
94 ∗v1= i +1;

95 ∗v2= i +(N- 1 ) ;

96 ∗v3= i+Lx ;

97 ∗v4= i +(N-Lx ) ;

98 ∗v5=i +(Lx- 1 ) ;

99 ∗v6=i +(N-Lx+1);

100 }
101

102 else i f ( i==(Lx-1 ) )

// Condicion y vec ino s para e l caso de c e l u l a en l a esquina i n f e r i o r dcha .

103 {
104 ∗v1= i +1;

105 ∗v2= i - 1 ;

106 ∗v3= i+Lx ;

107 ∗v4= i +(Lx- 1 ) ;

108 ∗v5=i -(Lx- 1 ) ;

109 ∗v6=i +(N-Lx ) ;

110 }
111

112 else i f ( i==(N-Lx ) )

// Condicion y vec ino s para e l caso de c e l u l a en l a esquina s u p e r i o r i zq .

113 {
114 ∗v1= i +1;

115 ∗v2= i - 1 ;

116 ∗v3= i -Lx ;

117 ∗v4= i -(Lx- 1 ) ;

118 ∗v5=i +(Lx- 1 ) ;

119 ∗v6=i -(N-Lx ) ;

120 }
121

122 else i f ( i==(N-1) )

// // Condicion y vec ino s para e l caso de c e l u l a en l a esquina s u p e r i o r dcha .

123 {
124 ∗v1= i - 1 ;
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125 ∗v2= i -(N-Lx ) ;

126 ∗v3= i -Lx ;

127 ∗v4= i -(N- 1 ) ;

128 ∗v5=i -(Lx- 1 ) ;

129 ∗v6=i -(N-Lx+1);

130 }
131

132 }

G.1.5. Algoritmos para representación gráfica en GNUPlot

1 // El primer subalgor i tmo da l a s coordenadas para l a r e p r e s e n t a c i o n

2 // e s p a c i a l en GNUPlot de l a concent rac ion de pro te ina Her/Hes

3 // de cada c e l u l a de l a red a p a r t i r de l i n d i c e que nos i n d i c a su

4 // p o s i c i o n en l a red .

5 void CoordHex (double CRepresorV [ ] [ tau +1] , FILE∗ fCoord , int k )

6 {
7 int i , j ;

8 for ( i =0; i<Ly ; i++)

9 {
10 for ( j =0; j<Lx ; j++)

11 {
12 i f ( Resto ( j /2)==0) // Condicion para columna par

13 {
14 f p r i n t f ( fCoord , ” f f f \n” ,0 .5+( j ∗0 .5∗ a ) ,0 .5+( i ∗ s q r t (3)∗ a )

15 , CRepresorV [ ( i ∗Ly)+ j ] [ k ] ) ;

16 }
17 else

18 {
19 f p r i n t f ( fCoord , ” f f f \n” ,0 .5+(0 .5∗ a∗ j ) , 0 . 5+(( s q r t (3 )/2)∗ a)+ i ∗ s q r t (3)∗ a

20 , CRepresorV [ ( i ∗Ly)+ j ] [ k ] ) ;

21 }
22 }
23 }
24 }
25

26 // El segundo subalgor i tmo abre GNUPlot mientras se e j e c u t a e l programa

27 // y pinta cada c e l u l a en l a p o s i c i o n de l a red que l e corresponde ,

28 // dando in formac ion de l a concent rac ion de Her/Hes en su i n t e r i o r

29 // mediante un codigo de c o l o r e s .

30 void PintaGNUPlot (void )

31 {
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32 f p r i n t f ( gnuplotPipe , ” p l o t ’Coord1NRDD . txt ’

33 u 1 : 2 : 3 w po in t s pt 7 ps 5 l c p a l e t t e \n” ) ;

34 }

G.1.6. Main del programa

1 int main ( )

2 {
3 // Dec larac ion de v a r i a b l e s

4 int i , j , k ;

5 double TasaTB [N ] ;

6 double PBeta [N ] ;

7 double Alpha [N ] ;

8 double CLigandoV [N ] [ tau +1] ; //Guarda e l va l o r de l l i gando Delta para cada

9 // c e l u l a en un c i e r t o i n s t a n t e y en tau i n s t a n t e s a n t e r i o r e s .

10 double CRepresorV [N ] [ tau +1] ; //Guarda e l va l o r de Her/Hes para cada

11 // c e l u l a en un c i e r t o i n s t a n t e y en tau i n s t a n t e s a n t e r i o r e s .

12 double VectRep [N] , VectRepC [N] , Resta [N ] ; // Vectores usados en e l c a l c u l o

13 // de l parametro de orden R.

14 double MF=0,MAux=0,MC=0; // Var iab l e s usadas en e l c a l c u l o de R.

15 double R=0; // Parametro de orden normalizado

16 i n i r a n ( time (NULL) ) ; // Semi l l a para e l generador de numeros a l e a t o r i o s .

17 // Apertura de f i c h e r o s

18 fL i g=fopen ( ”LigNRDD. txt ” , ”w” ) ;

19 fRep=fopen ( ”RepNRDD. txt ” , ”w” ) ;

20 fPOrden=fopen ( ”POrdenNRDD. txt ” , ”w” ) ;

21 fR=fopen ( ”POrdenR . txt ” , ”w” ) ;

22 // Condic iones i n i c i a l e s para todos l o s parametros .

23 //Se muestra un caso p a r t i c u l a r a r b i t r a r i o . Podria ponerse ot ro rango

24 // de v a r i a c i o n de ru ido e s t a t i c o o i n c l u s o no ponerse ; de hecho , l o s

25 // r e s u l t a d o s obten idos no presentaban ru ido e s t a t i c o en e l parametro Alpha .

26 //

27 for ( k=0; k<N; k++)

28 {
29 TasaTB [ k]=TTB +(double ) (Random ( ) / 2 0 ) ;

30 //Ruido e s t a t i c o : TTB var i a ent r e 0 .95 y 1 en l a s c e l u l a s .

31 PBeta [ k]=BetaD +(double ) ( ( ( Random( ) - 0 . 5 ) ) ∗ 2 ) ;

32 //Ruido e s t a t i c o : BetaD var i a ent re 29 y 31 en l a s c e l u l a s .

33 Alpha [ k]= Alfa +(double ) ( ( ( Random( ) - 0 . 5 ) ) ∗ 0 . 1 ) ;

34 //Ruido e s t a t i c o : Alpha var i a ent re 1 .70 y 1 .80 en l a s c e l u l a s .

35 // I n i c i a l i z a m o s a 0 todas l a s componentes de l o s v e c t o r e s p r i n c i p a l e s

36 // de l programa .
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37 VectRep [ k ]=0;

38 VectRepC [ k ]=0;

39 Resta [ k ]=0;

40 }
41 // Conjunto de comandos para comunicar e l programa en C con e l programa

42 //de r e p r e s e n t a c i o n g r a f i c a GNUPlot

43 gnuplotPipe= popen ( ”C:\\ gnuplot \\ bin \\ gnuplot . exe ” , ”w” ) ;

44 //Abrimos GNUPlot

45 f p r i n t f ( gnuplotPipe , ” s e t cbrange [ 1 . 0 : 1 1 . 5 ] \ n” ) ;

46 // Ajustamos e l rango de v a r i a c i o n de l a coordenada z , que en nuestro caso

47 // es mostrada mediante un codigo de c o l o r e s y r ep r e s en ta l a concent rac ion

48 //de pro t e ina Her/Hes .

49 f p r i n t f ( gnuplotPipe , ” s e t xrange [ 0 : 6 . 5 ] \ n” ) ;

50 /Ajustamos e l rango en e l e j e x

51 f p r i n t f ( gnuplotPipe , ” unset key\n” ) ;

52 // Eliminamos l a leyenda

53 f p r i n t f ( gnuplotPipe , ” s e t t i t l e f ont ’ ; 1 4 ’\n” ) ;

54 // Ajustamos l a fuente de l t i t u l o

55 f p r i n t f ( gnuplotPipe , ” s e t x l a b e l ’ Coordenada e s p a c i a l x ’\n” ) ;

56 f p r i n t f ( gnuplotPipe , ” s e t y l a b e l ’ Coordenada e s p a c i a l y ’\n” ) ;

57 f p r i n t f ( gnuplotPipe , ” s e t t i t l e ’ Concentracion Her/Hes c e l u l a r : Red 12x12 ’\n” ) ;

58 //Ponemos e l t i t u l o de l a g r a f i c a y de l o s e j e s .

59 f p r i n t f ( gnuplotPipe , ”cd ’C:\\ Users \\ r a u l f \\OneDrive\\
60 E s c r i t o r i o \\TFG\\Programa ’\n” ) ;

61 //Ponemos e l d i r e c t o r i o en e l que se guarda e l a rch ivo a r e p r e s e n t a r .

62 f f l u s h ( gnuplotPipe ) ;

63

64 for ( i =0; i<N; i ++){
65 // Elegimos l a s cond i c i one s i n i c i a l e s para l a primera componente de l a

66 // dimension ” tiempo” de l o s v e c t o r e s que guardan l a s concen t rac i one s

67 //de l a s e s p e c i e s .

68 i f ( Resto ( i /2)==0) //Se da l a opcion de dar cond i c i one s i n i c i a l e s

69 // d i s t i n t a s en func ion de s i l a columna es par o impar .

70 {
71 CLigandoV [ i ] [ 0 ]=68∗Random ( ) ;

72 CRepresorV [ i ] [ 0 ]=25∗Random ( ) ;

73 }
74 else i f ( Resto ( i /2) !=0)

75 {
76 CLigandoV [ i ] [ 0 ]=4∗Random ( ) ;

77 CRepresorV [ i ] [ 0 ]=58∗Random ( ) ;

78 }
79 }
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80 for ( i =0; i<N; i ++){
81 // I n i c i a l i z a m o s a cero e l r e s t o de componentes tempora les .

82 for ( j =1; j<tau +1; j++)

83 {
84 CLigandoV [ i ] [ j ]=0;

85 CRepresorV [ i ] [ j ]=0;

86 }
87 }
88

89 for ( j =1; j<Tiempo ; j++) // Bucle temporal

90 {
91 fCoord1NR=fopen ( ”Coord1NRDD . txt ” , ”w” ) ;

92 //Hay l i g e r a s d i f e r e n c i a s en l o s comandos en func ion de s i e l contador

93 // temporal es mayor o menor que tau+1, por l o que se anade un c o n d i c i o n a l .

94 i f ( j<tau+1) //Caso de tiempo menor que tau+1

95 {
96 for ( i =0; i<N; i++) // Bucle a l o l a r g o de l numero de c e l u l a s

97 {
98 int v1=0,v2=0,v3=0,v4=0,v5=0,v6=0;

99 double Ligm ;

100 CondContorno(&v1 ,&v2 ,&v3 ,&v4 ,&v5 ,&v6 , i ) ; // Calculo de vec ino s

101 Ligm=((CLigandoV [ v1 ] [ 0 ] + CLigandoV [ v2 ] [ 0 ] + CLigandoV [ v3 ] [ 0 ]

102 +CLigandoV [ v4 ] [ 0 ] + CLigandoV [ v5 ] [ 0 ] + CLigandoV [ v6 ] [ 0 ] ) / 6 ) ;

103 // Calculo de l a concent rac ion de l i gando promedio de l a s c e l u l a s vec ina s .

104 //Cuando e l paso temporal es menor a l delay , e l s i s tema aun no

105 // puede p e r c i b i r e l e f e c t o de l de lay y no se puede usar un va lo r

106 // un tiempo tau a n t e r i o r porque aun no ha s ido generado .

107 // Mientras se cumpla l a cond i c i on de l bucle , l a concent rac ion

108 //un tiempo tau a n t e r i o r tendra que s e r l a concent rac ion i n i c i a l .

109

110 CLigandoV [ i ] [ j ]=RungeKuttaLigando ( CRepresorV [ i ] [ j - 1 ]

111 , CLigandoV [ i ] [ j - 1 ] , PBeta , i ) ;

112 // Calculo de concent rac ion Delta un tiempo h p o s t e r i o r

113 CRepresorV [ i ] [ j ]=RungeKuttaRepresor ( CRepresorV [ i ] [ j - 1 ]

114 , CRepresorV [ i ] [ 0 ] , Ligm , TasaTB , i , Alpha ) ;

115 // Calculo de concent rac ion Her/Hes un tiempo h p o s t e r i o r

116 }
117 }
118 else i f ( j>=tau+1) //Caso en que e l tiempo es mayor que tau+1

119 {
120 for ( i =0; i<N; i++)

121 {
122 for ( k=0; k<tau ; k++)
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123 //Los v e c t o r e s t i enen tamano tau+1, por l o que cuando e l tiempo

124 // es mayor que tau tenemos que e l im ina r e l va l o r de concent rac ion

125 //mas v i e j o para hacer hueco para e l nuevo va l o r

126 //

127 {
128 CLigandoV [ i ] [ k]=CLigandoV [ i ] [ k +1] ;

129 CRepresorV [ i ] [ k]=CRepresorV [ i ] [ k +1] ;

130 }
131 }
132

133 for ( i =0; i<N; i++)

134 {
135 int v1=0,v2=0,v3=0,v4=0,v5=0,v6=0;

136 double Ligm ;

137 CondContorno(&v1 ,&v2 ,&v3 ,&v4 ,&v5 ,&v6 , i ) ;

138 Ligm=((CLigandoV [ v1 ] [ 0 ] + CLigandoV [ v2 ] [ 0 ] + CLigandoV [ v3 ] [ 0 ]

139 +CLigandoV [ v4 ] [ 0 ] + CLigandoV [ v5 ] [ 0 ] + CLigandoV [ v6 ] [ 0 ] ) / 6 ) ;

140 //La componente 0 de l vec to r s iempre guarda l a concent rac ion en tau

141 // pasos atras , por l o que cuando se pasa l a primera componente de l vec to r

142 // se e s ta pasando l a concent rac ion en un tiempo t-tau .

143 //De e s ta forma se model iza computacionalmente l o s d e s f a s e s tau propuestos

144 //en l a s ecuac ione s d i f e r e n c i a l e s .

145 CLigandoV [ i ] [ tau ]=Runge KutaLigando ( CRepresorV [ i ] [ tau- 1 ]

146 , CLigandoV [ i ] [ tau- 1 ] , PBeta , i ) ;

147 CRepresorV [ i ] [ tau ]=Runge KutaRepresor ( CRepresorV [ i ] [ tau- 1 ]

148 , CRepresorV [ i ] [ 0 ] , Ligm , TasaTB , i , Alpha ) ;

149 }
150 }
151 //Se e s c r i b e en l o s f i c h e r o s l a concentracon de l i gando Delta

152 //y de pro te ina Her/Hes para cada paso de tiempo .

153 for ( i =0; i<N; i++)

154 {
155 i f ( i ==0)

156 {
157 f p r i n t f ( fL ig , ”f ”,j*h ;

158 f p r i n t f ( fRep , ”f ”,j*h ;

159 }
160 i f ( j<tau+1)

161 {
162 f p r i n t f ( fL ig , ”f ”,CLigandoV[i][j] ;

163 f p r i n t f ( fRep , ”f ”,CRepresorV[i][j] ;

164 }
165 else
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166 {
167 f p r i n t f ( fL ig , ”f ”,CLigandoV[i][tau] ;

168 f p r i n t f ( fRep , ”f ”,CRepresorV[i][tau] ;

169 }
170 }
171 f p r i n t f ( fL ig , ”\n” ) ;

172 f p r i n t f ( fRep , ”\n” ) ;

173 // Calculo de v a r i a b l e s n e c e s a r i a s para l a obtenc ion de l parametro

174 // de orden ( Termalizamos previamente )

175 i f ( j>Terma){
176 double M=0;

177 for ( i =0; i<N; i ++){
178 M=M+(CRepresorV [ i ] [ tau ] /N) ;

179 VectRep [ i ]=VectRep [ i ]+CRepresorV [ i ] [ tau ] ;

180 VectRepC [ i ]=VectRepC [ i ]+( CRepresorV [ i ] [ tau ]∗CRepresorV [ i ] [ tau ] ) ;

181 }
182 MAux=MAux+M;

183 MC=MC+(M∗M) ;

184 }
185 // Condicion para poder sacar g i f s de tiempos a n t e r i o r e s a l va l o r

186 // de l d e s f a s e .

187 i f ( j<tau+1)

188 {
189 k=j ;

190 }
191 else

192 {
193 k=tau ;

194 }
195 CoordHex ( CRepresorV , fCoord1NR , k ) ; //Llamamos a l a lgor i tmo que

196 // c a l c u l a l a s coordenadas en l a s que va cada c e l u l a para l a

197 // r e p r e s e n t a c i o n e s p a c i a l de l a s concent rac i one s .

198 i f ( j >200000){ // Esta cond i c i on con t ro l a e l momento en que empieza

199 //a e j e c u t a r s e e l g i f

200 i f ( Resto ( j /50)==0){ //Para no sa tu ra r e l programa de r e p r e s e n t a c i o n

201 // se da l a opcion de que s o l o se p in te cada c i e r t o s pasos tempora les .

202 PintaGNUPlot ( ) ; //Se l lama a l programa que da lugar a l a

203 // r e p r e s e n t a c i o n e s p a c i a l de l a s concent rac i one s .

204 }
205 }
206 f c l o s e ( fCoord1NR ) ;

207 }
208
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209 MC=(double ) (MC/( Tiempo-Terma ) ) ;

210 // Valor medio de M( t )∗M( t )

211 MF=(double ) (MAux/( Tiempo-Terma ) ) ;

212 // Valor medio de M( t )

213 MF=(MF∗MF) ;

214 // Valor medio de M( t ) a l cuadrado

215

216 // Calculamos e l denominador de l parametro de orden

217 for ( i =0; i<N; i++)

218 {
219 VectRep [ i ]=(double ) ( VectRep [ i ] / ( Tiempo-Terma ) ) ;

220 // Valor medio de b i ( t )

221 VectRepC [ i ]=(double ) ( VectRepC [ i ] / ( Tiempo-Terma ) ) ;

222 // Valor medio de b i ( t )∗ b i ( t )

223 VectRep [ i ]=( VectRep [ i ]∗VectRep [ i ] ) ;

224 // Valor medio de b i ( t ) e levado a l cuadrado

225 Resta [ i ]=VectRepC [ i ] -VectRep [ i ] ;

226 }
227 double Den=0; //Denominador de l parametro de orden R

228 for ( i =0; i<N; i++)

229 {
230 //Promedio sobre c e l u l a s

231 Den=Den+Resta [ i ] ;

232 }
233

234 Den=(double ) ( Den/N) ; //Denominador de R

235 R=(double ) ( (MC-MF)/Den ) ; // Parametro de orden R

236 f p r i n t f ( fR , ” f \n” ,R) ;

237

238 //Cerramos todos l o s f i c h e r o s que han s ido a b i e r t o s

239

240 f c l o s e ( fL i g ) ;

241 f c l o s e ( fRep ) ;

242 p c l o s e ( gnuplotPipe ) ;

243 f c l o s e ( fPOrden ) ;

244 f c l o s e ( fR ) ;

245 }
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