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1. Introducción
Las teorías de gauge juegan un papel fundamental para entender la física

de partículas. En ellas se basan teorías de unificación de fuerzas, como puede
ser la electro-débil, con un grupo de gauge SU(2) × U(1). En estas teorías,
los campos son representaciones de los grupos de simetría. Si se construye el
Lagrangiano de forma invariante bajo dichas simetrías, aparecen cantidades
que se conservan, como pueden ser la carga eléctrica, la carga de color o la
masa.

En la descripción teórica, esta simetría local se asegura con la introduc-
ción de grados de libertad adicionales en forma de campo de gauge. El caso
mas sencillo aparece en las teorías de gauge Abelianas, donde los campos de
gauge sólo interactuan con la materia y no con ellos mismos. Para las teorías
no Abelianas, como las teorías de unificación, la interacción de las campos
de gauge con ellos mismos da lugar a una fenomenología mas compleja.

Para simplificar el estudio en ambos casos, se recurre a definir estas teorías
en la red.[1] Toda teoría de campos se puede definir en una red reemplazando
las derivadas parciales del Lagrangiano por diferencias de operadores finitos.
Es decir, las teorías de gauge de red son modelos físicos que se obtienen dis-
cretizando el espacio-tiempo continuo. Estas teorías se caracterizan por su
grupo de gauge, por su dimensión y por un parámetro llamado constante de
acoplamiento. Éste parámetro, es un número que determina la fuerza de una
interacción. Cuando el valor de la constante de acoplamiento es pequeño, se
dice que la teoría esta en un régimen de acoplamiento débil. Por el contrario,
cuando es grande, se dice que la teoría está en un régimen de acoplamiento
fuerte.

Mediante esta reformulación, se pretende buscar respuestas a misterios
como el confinamiento de los quarks [2]. Los quarks son los constituyentes
de varias partículas elementales, como los protones y los neutrones. El pro-
blema es el por qué no se pueden observar estas partículas libremente en
la naturaleza.[3] Wilson argumentó que el confinamiento de los quarks era
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equivalente a demostar que la teoría de gauge de red satisface la ley de área
de Wilson. Para probar esta ley, habría que demostrar que se cumple para
todos los valores de fuerza de acoplamiento, sobre todo para los valores más
pequeños. Guth [4], entre otros, demostró que para la teoria de gauge de
red U(1) en 4 dimensiones, desaparecía el confinamiento para el régimen de
acoplamiento débil. Probar esta ley de área para régimen de acoplamiento
débil es un problema abieerto para sistemas de más de 2 dimensiones. Sin
embargo, ocurre un extraño caso para la teoría de gauge de red U(1) para 3
dimensiones. En esta situación, la ley de área de Wilson se mantiene en la
región de acoplamiento débil 20.

Para entender el significado de la ley de área, se va a partir de la definición
del bucle de Wilson. Estos bucles son factores de fase en teorías de gauge
Abelianas o no Abelianas, jugando un papel fundamental en estas teorías. El
factor de fase abeliano para un camino Γab viene definido por a fórmula [5]:

U [Γba] = e
ie
∫

Γba
dzµAµ(z) (1.0.1)

Bajo transformaciones de Gauge

Aµ(z)→ Aµ + 1
e
∂µα(z) (1.0.2)

el factor de fase abeliano se transforma en

U [Γba] = eiα(b)U [Γba] e−iα(a) (1.0.3)

Una función de ondas en el punto a se transforma como

φ(x)→ eiα(a)φ(x) (1.0.4)

por lo que el factor de fase se transformará como el producto de φ(y)φ†(x)

U [Γba] ∼ φ(y)φ†(x) (1.0.5)
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El factor de fase juega un rol importante en el transporte paralelo dentro
de un campo electromagnético y a la hora de comparar fases de una función
de ondas en los puntos x e y.

2. Objetivo
El objetivo de este trabajo es plantear un algoritmo geométrico para la

simulación numérica de la teoría de gauge de red U(1) para tres dimensiones.
Los resultados obtenidos se compararán con los planteados en el artículo [6].
Se estudiarán las diferencias en los tiempos de simulación de ambos algorit-
mos y su eficacia. También se hará una comparativa los observables obtenidos
junto con sus errores correspondientes.

A nivel teórico, se espera una introducción a las teorias gauge de red, así
como a la formulación de la teoría cuántica de campos.

Por último, se pretende reforzar conocimientos del lenguaje de programa-
ción C, junto con el aprendizaje de nuevas metodologías de trabajo enfocadas
a la simulación de redes.

4



3. Desarrollo

3.1. Geometría del sistema
Uno de los principales problemas que se debe solventar es la discretización

del espacio sobre el que se quiere trabajar. Para ello, se utilizarán las teorías
gauge de red, propuestas por Wilson para explicar el confinamiento en QCD.
Una red es una aproximación del continuo a partir de puntos discretos del
espacio (sitios de la red). Estos están definidos en un espacio Euclídeo d-
dimensional, cuyas coordenadas vendrán dadas por:

xµ = nµa (3.1.1)

Donde, para un espacio 3d, nµ = (nx, ny, nz) es el vector dirección y a el
equiespaciado de la red. De ahora en adelante tomaremos a = 1.

Para este trabajo, se han considerado condiciones de contorno periódicas,
para poder aproximar la simulación a un sistema de mayores dimensiones.
En una red 3d de tamaño L (V = L3), supondría que sitios con nµ = L

serían equivalentes a los sitios con nµ = 0. Se puede apreciar en el siguiente
ejemplo (L = 2):

Siendo µ y ν dos de las dimensiones de nuestra red.
A partir de 2 sitios de la red (o un sitio y una dirección l : {n, µ}) se puede

definir el concepto de link. La importancia de los links se debe a que en ellos
están definidos los campos de gauge (Aµ(x)), que describirían la interacción
entre partículas (sitios). Esta asignación es:

Aµ(x) =⇒ Uµ(x) (3.1.2)

Donde la variable link viene definida por la integral de camino entre dos
sitios consecutivos de la forma:

Uµ(x) = Pei
∫ x+aµ̂
x

dzµAµ(z) (3.1.3)

Integrando a lo largo del link obtenemos que:
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Figura 1: Representación de las condiciones de contorno periódicas para una
red 2D.

Uµ(n) = eiAµ(n) (3.1.4)

Figura 2: Diagrama básico de construcción de un link

Se define la orientación positiva de un link como aquella para el cual
µ > 0. Para los links con orientación negativa, se tiene en cuenta la relación:

U−µ(n+ aµ̂) = U †µ(n) (3.1.5)

Otro concepto de la red que se debe tener en cuenta son las plaquetas,
que son elementos cuadrados generados por links en las direciones µ y ν.
Una plaqueta queda descrita por un sitio y dos direcciones p : {n, µ, ν}.

La variable plaqueta se construye a partir de la variable link. Esta variable
juega un papel muy importante el la teoría de red, ya que está relacionada
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con el factor de fase que previamente se ha comentado. Se construye a partir
del contorno orientado de una plaqueta, y es de la forma:

Uµν(n) = Uµ(n) Uν(n+ aµ̂) U †µ(n+ aν̂) U †ν(n) (3.1.6)

Figura 3: Diagrama de una plaqueta básica, compuesta por 4 links orientados.

Para este trabajo, se ha definido el concepto de cubo. Se trata de un
elemento de la red formado por 6 plaquetas. Es importante resaltar que dos
cubos adyacentes comparten plaqueta. Es decir, cualquier cambio en dicha
plaqueta afectará a los dos cubos.

3.2. Función de partición
La función de partición de nuestro sistema vendrá dada por:

Z(β) =
∫ ∏

n,µ

dUµ(n) e−βS[U ] (3.2.1)

Se considera la teoria de Gauge U(1) abeliana y euclídea para la red, de
forma que la acción de Wilson será de la forma:

S = −βRe
∑
n,µ,ν

Uµ(n) Uν(n+ aµ̂) U †µ(n+ aν̂) U †ν(n) = −
Np∑
k=1

β

2
(
Uk + U †k

)
(3.2.2)
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Donde k es el índice que numera las plaquetas y Np el número total de
plaquetas. Para elaborar el algoritmo, se considera una expansión de acopla-
miento fuerte de la función de partición:

Z =
∫ [∏

µ,ν

dUµ(n)
] Np∏

k

e
β
2 (Uk+U†

k) =
∫ [∏

µ,ν

dUµ(n)
] Np∏

k

e
β
2 (eiθk+e−iθk) =

=
∫

[DU ]
Np∏
k

[ ∞∑
n=−∞

In(β)einθk
]

Sabiendo que los elementos del grupo U(1) son de la forma Uk = eiθk y
utilizando la igualdad de Jacobi-Anger. In(β) es la función de Bessel modifi-
cada de orden n y θk ∈ [0, 2π]. Este valor será la suma de los θl de cada link
de una plaqueta, de forma que θk =

4∑
l=1

θk,l. Podemos reescribir la función de
partición como suma de todas las posibles configuraciones Cα(β):

Cα(β) =
Np∏
k

Inα
k
(β)

∫ 2π

0

∏
k,l

dθk,l exp
(
i
∑
k

nkθk

)
(3.2.3)

El índice nαk será el índice de Bessel que tiene la plaqueta k para una
configuración α. Analizando la integral que se obtiene, se debe modificar
para poder integrar en cada link, de forma que:

Cα(β) =
Np∏
k

Inα
k
(β)

∫ 2π

0

∏
k,l

dθk,l exp
[
i
∑
k

nk

(∑
l

θk,l

)]
(3.2.4)

En cada link contribuyen 4 plaquetas (en 3d), de forma que, para un cada
link (θl) tendemos:

∫ 2π

0
dθl exp [i(na + nb + nc + nd)θl] (3.2.5)

Donde na, nb, nc y nd son los índices de las funciones de Bessel de cada
plaqueta que contiene el link que se ha fijado. El único valor no nulo de esta
integral aparece cuando:
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nl = na + nb + nc + nd = 0 (3.2.6)

Esta restricción fija las configuraciones admitidas del sistema, siendo el
peso de cada una:

Cα(β) =
Np∏
k

Inα
k
(β)δ0,nl (3.2.7)

De esta forma, la función de partición de partición será la suma a todas
las configuraciones admitidas posibles (distintos nαk ):

Z =
∑
α

Cα(β) (3.2.8)

La probabilidad de cada configuración será:

wα = Cα

Z
(3.2.9)

3.3. Observables
Se estudiará los mismos observables que en el artículo [6], para poder

comparar los resultados obtenidos. El cálculo de los mismos se encuentra en
el anexo A. El primero es el observable plaqueta:

〈P�〉 = 1
NP

∂β ln(Z) (3.3.1)

Para la función de partición planteada EN, obtenemos:

〈P�〉 = 1
2NP

∑
α

wα

Np∑
j

Inαj −1(β)
Inαj (β) +

Inαj +1(β)
Inαj (β)

 (3.3.2)

El factor wα es la probabilidad de cada configuración α. El siguiente
observable que se va a estudiar es el calor específico

CV = ∂β〈P�〉 (3.3.3)

A partir de la expresión (3.3.2), se obtiene
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CV = 1
4NP

{
∑
α

wα

Np∑
j

1
I2
nαj

(
2 + Inαj Inαj −2 − I2

nαj −1 − 2Inαj −1Inαj +1 + Inαj Inαj +2 − I2
nαj +1

)+

+
∑
α

wα

Np∑
j

Inαj −1

Inαj
+
Inαj +1

Inαj

2
−

∑
α

wα

Np∑
j

Inαj −1

Inαj
+
Inαj +1

Inαj

2

(3.3.4)

Se ha omitido la dependencia con β de todas las funciones de Bessel para
no saturar más la expresión.

3.4. Algoritmo e implementación
Gracias a la formulación de la mecánica estadística, se puede saber que

sólo un pequeño subconjunto de configuraciones posibles contribuirán a los
promedios de los observables. Para obtener los valores promedio de nues-
tros observables, se utilizará una simulación Monte Carlo (MC). La idea de
la simulación MC es muestrear el espacio de configuraciones mediante una
secuencia estocástica de las mismas. Una configuración esta fijada por el con-
junto de valores (nαk ).

La probabilidad de encontrar una configuración Cα es proporcional a su
peso en la función de partición. Para moverse de una configuración Cα a una
Cα+1, se tiene que definir un paso elemental. En este trabajo, consistirá en
añadir un cubo elemental en la red, es decir, (nαk ) −→ (nαk + 1) para ca-
da plaqueta contenida en el cubo. También se define el movimiento opuesto
(nαk ) −→ (nαk − 1). Los valores de nαk pueden ser negativos, ya que las fun-
ciones de Bessel modificadas son simétricas. Se podría asociar la situación
de una plaqueta con nαk < 0 con una ’antiplaqueta’, que sería una plaqueta
orientada en el sentido opuesto al definido.

Para asegurarse de que el algoritmo cumple con la condición de balance
detallado, utilizaremos el método de Metrópolis para definir la probabilidad
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de transición entre una configuración y otra. El objetivo de este método es
optimizar el número de cambios, maximizando la probabilidad de transición
hacía configuraciones que minimizan la acción.

La simulación numérica ha consistido en un código en C separado en dos
partes. La primera, se encargaba en generar las distintas configuraciones del
sistema, mientras que la segunda se basaba en el cálculo de los observables
comentados previamente y un análisis estadístico de los mimos. La generación
de las configuraciones se llevaba a cabo mediante el siguiente algoritmo:

input : Punto (Cubo) de la red

Generacion de numero aleatorio entre 0 y 1 (rand);
for 0 to MC steps do

Se añade o quita un cubo elemental. Cα → Cα+1;
if peso (Cα+1) / peso (Cα) > rand then

Se acepta el cambio
end

end
Algorithm 1: Actualizar configuración Bessel

La selección de un cubo de la red se puede realizar de forma aleatoria o
de forma ordenada. Los cubos del sistema están indexados de forma única,
de forma que se la selección de los mismos sea mas sencilla. En este trabajo
se ha optado por la selección aleatoria, aunque esta decisión apenas influye
en los resultados obtenidos.

A la hora de implementar el algoritmo, se han tenido en cuenta una serie
de consideraciones previas. La primera es el tamaño de la red. Ésta debe de
ser lo suficientemente grande para que no se vean involucrados los efectos
de tamaño finito. Para entender el alcance de esta limitación, pondremos un
ejemplo para 3 dimensiones.

Para redes con L < 10, el número de puntos en el borde es mayor que el
de puntos en el interior. Cuanto mayor sea la dimensión, mayor tendrá que
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ser el tamaño de la red, de forma que haya más puntos en el interior que en
el borde. Para que se tengan al menos el 50 % en el interior, el tamaño de la
red deberá ser al menos:

L50 = 2 1
D

+1

2 1
D − 1

(3.4.1)

Donde D es la dimensión del sistema. Por otro lado, cuanto más grande
sea el tamaño de la red, más largas deberá de ser las simulaciones para al-
canzar el equilibrio estadístico.

Las condiciones de contorno periódicas permiten solventar el problema
de el efecto de tamaño finito, a la vez de trabajar con redes que no requieran
mucho tiempo de simulación. En el caso del algoritmo planteado, se ha ele-
gido una red de tamaño 163 para calcular los observables y compararlos con
los obtenidos en el artículo.

Otro aspecto a tener en cuenta es la configuración inicial de la simulación.
Se puede partir desde una configuración congelada o desde una desordenada.
En el primer caso, consistirá en una configuración donde nk = 0 para todas las
plaquetas. La configuración desordenada se basa en asignar un valor aleatorio
a cada nk de tal forma que la configuración esté admitida por la restricción
(2.2.7). En este trabajo se ha partido de una configuración congelada.
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4. Resultados numéricos
Se han realizado simulaciones numéricas para distintas redes de gauge

en 3 dimensiones para comprobar que el algoritmo planteado reproduce re-
sultados comparables al algoritmo planteado en el artículo. Para ello, se ha
implementado a partir de las ecuaciones facilitadas en el artículo [6], el al-
goritmo del mismo, con el fin de realizar ambas simulaciones en el mismo
dispositivo y comparar los resultados. Es importante destacar que la forma
en la que se ha implementado el algoritmo del artículo, en cuanto a código,
no será la misma que la que se planteó en el mismo.

Para ambos algoritmos, se ha simulado el modelo de red de gauge U(1) en
3 dimensiones, en el cual encontramos una única fase desde el acoplamiento
fuerte al débil. Se medirán los observables definidos anteriormente para un
intervalo de β entre 0 y 3, con un cambio de δβ = 0,2. La red utilizada es de
163, y se ha dejado termalizar el sistema para 5 ·104 iteraciones. La medición
de los observables se ha hecho en un total de 105 iteraciones. Una iteración
consiste en realizar tantas actualizaciones (pasos de Metrópolis) como pla-
quetas haya en la red, es decir, 3 · L3.

Al generar una configuración a partir de la anterior, es inevitable que
estas tengan una cierta autocorrelación, es decir, los observables que se ob-
tengan no serán estadísticamente independientes. Por ello, se ha utilizado el
método de cálculo de errores por bloques. De esta forma, los observables de
cada bloque serán prácticamente independientes y la estimación del error será
más correcta. Agrupando en bloques de 200 medidas, el error de los observa-
bles permanece constante y podemos tratarlos como medidas independientes.

Para el observable plaqueta, como se puede ver en la gráfica 4, se obtiene
los mismos resultados para ambos algoritmos. Este resultado indica que el
algoritmo propuesto es válido para calcular este observable. Los errores del
algoritmo del artículo son ligeramente más grandes (un orden de magnitud).
El origen de esta diferencia puede deberse a que el algoritmo del artículo tra-
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Figura 4: Promedio plaqueta. Red de gauge U(1) de tres dimensiones. Los
errores para Bessel son mas pequeños que los símbolos

Figura 5: Calor específico. Red de gauge U(1) de tres dimensiones.
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baja con números enteros. Una pequeña fluctuación en alguna configuración,
tendrá más influencia que en el algoritmo de Bessel, pues este trabaja con
funciones decimales.

En cuanto al calor específico, se obtienen valores dispares. Como se ha
dicho antes, el algoritmo del artículo trabaja con números enteros. El calor
específico es una derivada de segundo orden, por lo que es mucho mas sensible
a posibles fluctuaciones. Cabe destacar que los valores recuperados con el
algoritmo de Bessel coinciden con los de la gráfica del artículo. En cuanto a
los errores, no se han representado en la gráfica 5 ya que todos ellos superaban
a la medida por 1 o 2 órdenes de magnitud. Por ello, se seguirá analizando
exclusivamente el observable plaqueta para el resto de resultados.

Por último, se ha comparado el rendimiento de ambos algoritmos en cuan-
to a el tiempo de CPU y los errores obtenidos.

Figura 6: Ratios de funcionamiento entre algoritmos.

Se ha representado el cociente para ambos algoritmos para tamaños de
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16 y 32. En ambos casos tiene mejor ratio el algoritmo de Bessel, no tanto
por tiempo de CPU sino porque sus errores son mas pequeños.
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5. Conclusiones
En este trabajo se han planteado dos objetivos. El primero es la construc-

ción de un algoritmo geométrico basado en Montecarlo para redes de gauge
de 3 dimensiones, así como la implementación del mismo en una simulación
numérica. Los datos obtenidos en dicha simulación son coherentes con la
muestra del artículo [6] facilitado como guión.

Una ventaja del algoritmo elaborado frente al del artículo, es que per-
mite el cálculo de observables para β = 0, ya que las funciones de Bessel
modificadas están definidas en dicho punto.

En cuanto a la comparación de los resultados entre los dos algoritmos,
para la plaqueta se ajustan entre sí, teniendo más diferencias en el calor
específico.

Con respecto a la eficacia, según la prueba realizada el algoritmo de Bessel
parece dar mejores resultados. Cabe decir que el algoritmo del artículo se ha
elaborado de nuevo, no se ha utilizado el propio. Esto ha podido provocar
pérdidas de rendimiento.

Como trabajo futuro, queda abierta la posibilidad de implementar el al-
goritmo de Bessel para un sistema de 4 dimensiones, y ver de esta forma
cómo funciona ante una transición de fase.
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