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1. Introduccion

Las teorias de gauge juegan un papel fundamental para entender la fisica
de particulas. En ellas se basan teorias de unificacién de fuerzas, como puede
ser la electro-débil, con un grupo de gauge SU(2) x U(1). En estas teorias,
los campos son representaciones de los grupos de simetria. Si se construye el
Lagrangiano de forma invariante bajo dichas simetrias, aparecen cantidades
que se conservan, como pueden ser la carga eléctrica, la carga de color o la
masa.

En la descripcién tedrica, esta simetria local se asegura con la introduc-
cién de grados de libertad adicionales en forma de campo de gauge. El caso
mas sencillo aparece en las teorias de gauge Abelianas, donde los campos de
gauge solo interactuan con la materia y no con ellos mismos. Para las teorias
no Abelianas, como las teorias de unificacion, la interaccién de las campos

de gauge con ellos mismos da lugar a una fenomenologia mas compleja.

Para simplificar el estudio en ambos casos, se recurre a definir estas teorias
en la red.[1] Toda teoria de campos se puede definir en una red reemplazando
las derivadas parciales del Lagrangiano por diferencias de operadores finitos.
Es decir, las teorias de gauge de red son modelos fisicos que se obtienen dis-
cretizando el espacio-tiempo continuo. Estas teorias se caracterizan por su
grupo de gauge, por su dimensiéon y por un parametro llamado constante de
acoplamiento. Este pardmetro, es un niimero que determina la fuerza de una
interacciéon. Cuando el valor de la constante de acoplamiento es pequeno, se
dice que la teoria esta en un régimen de acoplamiento débil. Por el contrario,
cuando es grande, se dice que la teoria estd en un régimen de acoplamiento

fuerte.

Mediante esta reformulacion, se pretende buscar respuestas a misterios
como el confinamiento de los quarks [2]. Los quarks son los constituyentes
de varias particulas elementales, como los protones y los neutrones. El pro-
blema es el por qué no se pueden observar estas particulas libremente en

la naturaleza.[3] Wilson argument6 que el confinamiento de los quarks era



equivalente a demostar que la teoria de gauge de red satisface la ley de area
de Wilson. Para probar esta ley, habria que demostrar que se cumple para
todos los valores de fuerza de acoplamiento, sobre todo para los valores mas
pequenos. Guth [4], entre otros, demostré que para la teoria de gauge de
red U(1) en 4 dimensiones, desaparecia el confinamiento para el régimen de
acoplamiento débil. Probar esta ley de area para régimen de acoplamiento
débil es un problema abieerto para sistemas de mas de 2 dimensiones. Sin
embargo, ocurre un extrano caso para la teoria de gauge de red U(1) para 3
dimensiones. En esta situacion, la ley de drea de Wilson se mantiene en la

region de acoplamiento débil 20.

Para entender el significado de la ley de area, se va a partir de la definicién
del bucle de Wilson. Estos bucles son factores de fase en teorias de gauge
Abelianas o no Abelianas, jugando un papel fundamental en estas teorias. El

factor de fase abeliano para un camino I'y;, viene definido por a férmula [5]:

U [Cpa] = & Iria 44 (1.0.1)

Bajo transformaciones de Gauge

Ay(z) = A, + i@ua(z) (1.0.2)

el factor de fase abeliano se transforma en

U [Dpa) = 2OU [y e~ @ (1.0.3)

Una funcién de ondas en el punto a se transforma como

o(x) — D p(z) (1.0.4)

por lo que el factor de fase se transformaré como el producto de ¢(y)¢' ()

U [Tha] ~ ¢(y)¢' (2) (1.0.5)



El factor de fase juega un rol importante en el transporte paralelo dentro
de un campo electromagnético y a la hora de comparar fases de una funcién
de ondas en los puntos x e y.

2. Objetivo

El objetivo de este trabajo es plantear un algoritmo geométrico para la
simulaciéon numérica de la teoria de gauge de red U(1) para tres dimensiones.
Los resultados obtenidos se compararan con los planteados en el articulo [6].
Se estudiaran las diferencias en los tiempos de simulacién de ambos algorit-
mos y su eficacia. También se hard una comparativa los observables obtenidos

junto con sus errores correspondientes.

A nivel tedrico, se espera una introduccién a las teorias gauge de red, asi

como a la formulacién de la teoria cudntica de campos.

Por 1ltimo, se pretende reforzar conocimientos del lenguaje de programa-
cién C, junto con el aprendizaje de nuevas metodologias de trabajo enfocadas

a la simulacién de redes.



3. Desarrollo

3.1. Geometria del sistema

Uno de los principales problemas que se debe solventar es la discretizacion
del espacio sobre el que se quiere trabajar. Para ello, se utilizaran las teorias
gauge de red, propuestas por Wilson para explicar el confinamiento en QCD.
Una red es una aproximacion del continuo a partir de puntos discretos del
espacio (sitios de la red). Estos estdn definidos en un espacio Euclideo d-
dimensional, cuyas coordenadas vendran dadas por:

ual (3.1.1)

Donde, para un espacio 3d, n, = (1., ny,n,) es el vector direccién y a el

equiespaciado de la red. De ahora en adelante tomaremos a = 1.

Para este trabajo, se han considerado condiciones de contorno periddicas,
para poder aproximar la simulacién a un sistema de mayores dimensiones.
En una red 3d de tamafio L (V = L%), supondria que sitios con n, = L
serfan equivalentes a los sitios con n, = 0. Se puede apreciar en el siguiente
ejemplo (L = 2):

Siendo p y v dos de las dimensiones de nuestra red.

A partir de 2 sitios de la red (o un sitio y una direccién [ : {n, u}) se puede
definir el concepto de link. La importancia de los links se debe a que en ellos
estan definidos los campos de gauge (A,(x)), que describirian la interaccién
entre particulas (sitios). Esta asignacion es:

Au(z) = U,(z) (3.1.2)

Donde la variable link viene definida por la integral de camino entre dos
sitios consecutivos de la forma:

Uy(z) = Pelf.™ 4 4@ (3.1.3)

Integrando a lo largo del link obtenemos que:
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Figura 1: Representacion de las condiciones de contorno peridédicas para una
red 2D.

U,(n) = e (3.1.4)

l
o—0

n n+p
Figura 2: Diagrama bésico de construccion de un link

Se define la orientacién positiva de un link como aquella para el cual

1 > 0. Para los links con orientacién negativa, se tiene en cuenta la relacién:

U_u(n+apt) = Ul(n) (3.1.5)

Otro concepto de la red que se debe tener en cuenta son las plaquetas,
que son elementos cuadrados generados por links en las direciones pu y v.
Una plaqueta queda descrita por un sitio y dos direcciones p : {n, u,v}.

La variable plaqueta se construye a partir de la variable ltnk. Esta variable

juega un papel muy importante el la teoria de red, ya que esta relacionada
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con el factor de fase que previamente se ha comentado. Se construye a partir
del contorno orientado de una plaqueta, y es de la forma:

Uw(n) =U,(n) U,(n+ ajr) U;(n + ab) Ul(n) (3.1.6)

N N
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Uj(n) U(n+ )
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Uun) n+j

Figura 3: Diagrama de una plaqueta basica, compuesta por 4 links orientados.

Para este trabajo, se ha definido el concepto de cubo. Se trata de un
elemento de la red formado por 6 plaquetas. Es importante resaltar que dos
cubos adyacentes comparten plaqueta. Es decir, cualquier cambio en dicha
plaqueta afectara a los dos cubos.

3.2. Funcién de particiéon

La funcién de particiéon de nuestro sistema vendra dada por:

/HdU e PSIUI (3.2.1)

Se considera la teoria de Gauge U(1) abeliana y euclidea para la red, de

forma que la accion de Wilson sera de la forma:

N\Q

(Ve +0i)
(3.2.2)

Ny
S=—BRe Y Uu(n) Uy(n+ap) Ul(n+ap) Uf(n Z

[,V



Donde k es el indice que numera las plaquetas y N, el numero total de
plaquetas. Para elaborar el algoritmo, se considera una expansién de acopla-
miento fuerte de la funcién de particion:

Np Np

/[HdU h;[eﬁ e Z/[HdU h;[e" .

Np o0
— / H [ Z I zn@k]
Sabiendo que los elementos del grupo U(1) son de la forma Uy = e y

utilizando la igualdad de Jacobi-Anger. I,,(3) es la funciéon de Bessel modifi-
cada de orden n y 0y € [0, 27]. Este valor seréd la suma de los 6; de cada link

4
de una plaqueta, de forma que 0, = >_ 0;,;. Podemos reescribir la funcién de
=1

particién como suma de todas las posibles configuraciones C*(/3):

co(8) =111 (6 [ T 0 exp <z an9k> (3.2.3)

El indice nf sera el indice de Bessel que tiene la plaqueta k para una
configuraciéon «a. Analizando la integral que se obtiene, se debe modificar
para poder integrar en cada link, de forma que:

C(8) = ﬁ[ng(ﬁ) / ” busexo lz i (; ek,lﬂ (3.2.4)

En cada link contribuyen 4 plaquetas (en 3d), de forma que, para un cada
link (0,) tendemos:
2
df; exp [i(ng + ny + ne + ngq)0)] (3.2.5)
Donde ng,,ny, n. y ng son los indices de las funciones de Bessel de cada

plaqueta que contiene el link que se ha fijado. El tinico valor no nulo de esta
integral aparece cuando:



ng="mng+mny+n.+ng=0 (3.2.6)

Esta restricciéon fija las configuraciones admitidas del sistema, siendo el
peso de cada una:

R (3.27)

De esta forma, la funcién de particién de particion sera la suma a todas
las configuraciones admitidas posibles (distintos nf):

Z =Y CpB) (3.2.8)
La probabilidad de cada configuracién sera:
Oa
= — 3.2.9
W= (3:2.9)

3.3. Observables

Se estudiard los mismos observables que en el articulo [6], para poder
comparar los resultados obtenidos. El calculo de los mismos se encuentra en

el anexo A. El primero es el observable plaqueta:

(Po) = Nlpag In(Z) (3.3.1)

Para la funcion de particiéon planteada EN, obtenemos:

1 oz Ina1(B)  Tnosa(B)
0= o8 2 |2 T T L)

J

(3.3.2)

El factor w, es la probabilidad de cada configuracion «. El siguiente
observable que se va a estudiar es el calor especifico

Cy = 93(Pp) (3.3.3)

A partir de la expresion (3.3.2), se obtiene



Cv = 4NP{Z“’

- J ]

N Inoy Inoga ’ Tnoy Inoga ’
2 va Z( T I;q) 2 ta Z T I

J J J J J J
(3.3.4)

Se ha omitido la dependencia con 8 de todas las funciones de Bessel para

no saturar mas la expresion.

3.4. Algoritmo e implementacion

Gracias a la formulacion de la mecéanica estadistica, se puede saber que
solo un pequeno subconjunto de configuraciones posibles contribuiran a los
promedios de los observables. Para obtener los valores promedio de nues-
tros observables, se utilizard una simulacién Monte Carlo (MC). La idea de
la simulacion MC es muestrear el espacio de configuraciones mediante una
secuencia estocastica de las mismas. Una configuracion esta fijada por el con-
junto de valores (n).

La probabilidad de encontrar una configuracion C'* es proporcional a su
peso en la funcion de particién. Para moverse de una configuraciéon C* a una
Ot se tiene que definir un paso elemental. En este trabajo, consistird en
anadir un cubo elemental en la red, es decir, (n{) — (n¢ + 1) para ca-
da plaqueta contenida en el cubo. También se define el movimiento opuesto
(ng) — (ng — 1). Los valores de nf pueden ser negativos, ya que las fun-
ciones de Bessel modificadas son simétricas. Se podria asociar la situacién
de una plaqueta con ny < 0 con una 'antiplaqueta’, que seria una plaqueta
orientada en el sentido opuesto al definido.

Para asegurarse de que el algoritmo cumple con la condicién de balance
detallado, utilizaremos el método de Metropolis para definir la probabilidad

10
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de transicién entre una configuracion y otra. El objetivo de este método es
optimizar el nimero de cambios, maximizando la probabilidad de transiciéon

hacia configuraciones que minimizan la accién.

La simulacién numérica ha consistido en un co6digo en C separado en dos
partes. La primera, se encargaba en generar las distintas configuraciones del
sistema, mientras que la segunda se basaba en el calculo de los observables
comentados previamente y un analisis estadistico de los mimos. La generacién
de las configuraciones se llevaba a cabo mediante el siguiente algoritmo:

input : Punto (Cubo) de la red

Generacion de numero aleatorio entre 0 y 1 (rand);
for 0 to MC steps do
Se anade o quita un cubo elemental. C* — C**1;

if peso (C*T') / peso (C*) > rand then
| Se acepta el cambio
end

end
Algorithm 1: Actualizar configuraciéon Bessel

La seleccion de un cubo de la red se puede realizar de forma aleatoria o
de forma ordenada. Los cubos del sistema estan indexados de forma tnica,
de forma que se la seleccion de los mismos sea mas sencilla. En este trabajo
se ha optado por la seleccion aleatoria, aunque esta decision apenas influye
en los resultados obtenidos.

A la hora de implementar el algoritmo, se han tenido en cuenta una serie
de consideraciones previas. La primera es el tamaiio de la red. Esta debe de
ser lo suficientemente grande para que no se vean involucrados los efectos
de tamano finito. Para entender el alcance de esta limitacién, pondremos un
ejemplo para 3 dimensiones.

Para redes con L < 10, el nimero de puntos en el borde es mayor que el

de puntos en el interior. Cuanto mayor sea la dimensién, mayor tendra que

11



ser el tamafio de la red, de forma que haya méas puntos en el interior que en
el borde. Para que se tengan al menos el 50 % en el interior, el tamafio de la
red debera ser al menos:

25+
25 -1
Donde D es la dimensién del sistema. Por otro lado, cuanto mas grande

Lso (3.4.1)

sea el tamano de la red, mas largas debera de ser las simulaciones para al-
canzar el equilibrio estadistico.

Las condiciones de contorno periédicas permiten solventar el problema
de el efecto de tamano finito, a la vez de trabajar con redes que no requieran
mucho tiempo de simulacién. En el caso del algoritmo planteado, se ha ele-
gido una red de tamaifio 16® para calcular los observables y compararlos con

los obtenidos en el articulo.

Otro aspecto a tener en cuenta es la configuracion inicial de la simulacién.
Se puede partir desde una configuracién congelada o desde una desordenada.
En el primer caso, consistira en una configuraciéon donde n; = 0 para todas las
plaquetas. La configuracion desordenada se basa en asignar un valor aleatorio
a cada ny de tal forma que la configuracién esté admitida por la restriccion
(2.2.7). En este trabajo se ha partido de una configuracién congelada.

12



4. Resultados numéricos

Se han realizado simulaciones numéricas para distintas redes de gauge
en 3 dimensiones para comprobar que el algoritmo planteado reproduce re-
sultados comparables al algoritmo planteado en el articulo. Para ello, se ha
implementado a partir de las ecuaciones facilitadas en el articulo [6], el al-
goritmo del mismo, con el fin de realizar ambas simulaciones en el mismo
dispositivo y comparar los resultados. Es importante destacar que la forma
en la que se ha implementado el algoritmo del articulo, en cuanto a cédigo,

no sera la misma que la que se planted en el mismo.

Para ambos algoritmos, se ha simulado el modelo de red de gauge U(1) en
3 dimensiones, en el cual encontramos una tnica fase desde el acoplamiento
fuerte al débil. Se mediran los observables definidos anteriormente para un
intervalo de 3 entre 0 y 3, con un cambio de 63 = 0,2. La red utilizada es de
163, y se ha dejado termalizar el sistema para 5-10* iteraciones. La medicién
de los observables se ha hecho en un total de 10° iteraciones. Una iteracién
consiste en realizar tantas actualizaciones (pasos de Metrdépolis) como pla-

quetas haya en la red, es decir, 3 - L3.

Al generar una configuracion a partir de la anterior, es inevitable que
estas tengan una cierta autocorrelacion, es decir, los observables que se ob-
tengan no seran estadisticamente independientes. Por ello, se ha utilizado el
método de calculo de errores por bloques. De esta forma, los observables de
cada bloque seran practicamente independientes y la estimacion del error sera
mas correcta. Agrupando en bloques de 200 medidas, el error de los observa-

bles permanece constante y podemos tratarlos como medidas independientes.

Para el observable plaqueta, como se puede ver en la grafica 4, se obtiene
los mismos resultados para ambos algoritmos. Este resultado indica que el
algoritmo propuesto es valido para calcular este observable. Los errores del
algoritmo del articulo son ligeramente mas grandes (un orden de magnitud).

El origen de esta diferencia puede deberse a que el algoritmo del articulo tra-

13



Promedio Plaqueta

Figura 4: Promedio plaqueta. Red de gauge U(1) de tres dimensiones.
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Figura 5: Calor especifico. Red de gauge U(1) de tres dimensiones.



baja con niimeros enteros. Una pequefia fluctuacion en alguna configuracion,
tendrd mas influencia que en el algoritmo de Bessel, pues este trabaja con

funciones decimales.

En cuanto al calor especifico, se obtienen valores dispares. Como se ha
dicho antes, el algoritmo del articulo trabaja con ntimeros enteros. El calor
especifico es una derivada de segundo orden, por lo que es mucho mas sensible
a posibles fluctuaciones. Cabe destacar que los valores recuperados con el
algoritmo de Bessel coinciden con los de la grafica del articulo. En cuanto a
los errores, no se han representado en la grafica 5 ya que todos ellos superaban
a la medida por 1 o 2 6rdenes de magnitud. Por ello, se seguirda analizando
exclusivamente el observable plaqueta para el resto de resultados.

Por ultimo, se ha comparado el rendimiento de ambos algoritmos en cuan-

to a el tiempo de CPU y los errores obtenidos.

T
beta 0.9 +
beta 1.1 ><

0.1 | B

Error? x CPU time Bessel/Geo

0.01 I I I I I I I

Figura 6: Ratios de funcionamiento entre algoritmos.

Se ha representado el cociente para ambos algoritmos para tamafios de
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16 y 32. En ambos casos tiene mejor ratio el algoritmo de Bessel, no tanto
por tiempo de CPU sino porque sus errores son mas pequenos.
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5. Conclusiones

En este trabajo se han planteado dos objetivos. El primero es la construc-
cion de un algoritmo geométrico basado en Montecarlo para redes de gauge
de 3 dimensiones, asi como la implementacién del mismo en una simulaciéon
numérica. Los datos obtenidos en dicha simulaciéon son coherentes con la
muestra del articulo [6] facilitado como guidn.

Una ventaja del algoritmo elaborado frente al del articulo, es que per-
mite el calculo de observables para § = 0, ya que las funciones de Bessel
modificadas estan definidas en dicho punto.

En cuanto a la comparacion de los resultados entre los dos algoritmos,
para la plaqueta se ajustan entre si, teniendo mas diferencias en el calor
especifico.

Con respecto a la eficacia, segtin la prueba realizada el algoritmo de Bessel
parece dar mejores resultados. Cabe decir que el algoritmo del articulo se ha
elaborado de nuevo, no se ha utilizado el propio. Esto ha podido provocar
pérdidas de rendimiento.

Como trabajo futuro, queda abierta la posibilidad de implementar el al-
goritmo de Bessel para un sistema de 4 dimensiones, y ver de esta forma

cOomo funciona ante una transicion de fase.
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