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Prologue

In this Undergraduate Dissertation we introduce the concept of inpainting, explaining three
inpainting methods that are used to restore grey value images and another one used to restore
binary images. This work is structured in the following way:

• A summary (written in Spanish).

• Contents.

• Chapter 1. Introduction. We introduce the concept of inpainting.

• Chapter 2. The good continuation principle. We explain how to solve the issue of the
lack of unicity in the inpainting problem, focusing on the historical knowledge and on the
application of Gestalt theory to our context (amodal completion and the good continuation
principle).

• Chapter 3. Inpainting methods based on second-order equations. We present two inpainting
methods governed by second-order equations. We explain their numerical resolutions and
we implement them in MATLAB. We prove that they do not fulfill the good continuation
principle, therefore they are not good enough.

• Chapter 4. Inpainting methods based on the Cahn-Hilliard equation. We present an in-
painting method based on a variation of the Cahn-Hilliard equation. It only works for
binary images, but we can extend it to obtain a method for grey value images (TV-H−1

inpainting). We explain the numerical resolution of both methods and we implement them
in MATLAB.

• Appendix A. Mathematical facts. We sketch out some mathematical results that are used
along the work.

• Appendix B. Discretization of the Bilaplacian. We explain the discretization of the Bi-
laplacian.

• Appendix C. Numerical resolution with MATLAB. MATLAB programs used to obtain the
inpainted images for each inpainting method can be found here.

• Bibliography.
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Resumen

Hoy en día una de las principales fuentes de información es la imagen digital. Esta se obtiene
mediante el muestreo y cuantificación de una representación analógica de la realidad. Es decir,
superponiendo una malla regular sobre la imagen analógica y asignando a cada uno de sus
elementos (píxel) un valor. Esto nos permite interpretar una imagen digital como una matriz
y asociarla a una función f : R2 → Ri, siendo i = 1 si consideramos imágenes en blanco y
negro (escala de grises) e i = 3 si son en color (en este trabajo estudiaremos el caso i = 1).
Podemos realizar operaciones con f , conocidas como técnicas de procesamiento de imágenes.
Las aplicaremos a la restauración de imágenes dañadas o inpainting.

La restauración de imágenes dañadas es un tipo de interpolación que sirve para sustituir las
partes estropeadas de una imagen digital usando la información obtenida de las zonas intactas
de la misma. La formulación matemática del problema es la siguiente:

Sea f una imagen dañada definida en el dominio imagen Ω ⊆ R2. Denotemos por D ⊆ Ω
a la zona estropeada, que llamaremos dominio de inpainting, agujero o hueco. El objetivo es
encontrar una imagen u, similar a la original (sin desperfectos), conocida como imagen restau-
rada. Normalmente u se obtiene resolviendo un problema de contorno.

El término inpainting fue acuñado por los restauradores de arte. Para diseñar métodos de
inpainting hay que tener en cuenta obstáculos que presenta el proceso de restauración como son
la inexistencia de solución única o la imposibilidad de reconstruir estructura y textura al mismo
tiempo (los métodos presentados en este trabajo únicamente reconstruyen la estructura).

El problema relacionado con la no unicidad de solución puede resolverse haciendo uso del
conocimiento histórico (proporcionado por el contexto de la imagen) y de la teoría de la Gestalt
(teoría que estudia las leyes que sigue nuestro cerebro para hacer la reconstrucción visual de una
imagen dañada) aplicada al procesamiento de imágenes. Las leyes proporcionadas por la teoría
de la Gestalt son conocidas en el campo del procesamiento de imágenes como leyes de agrupación.
La más importante de todas ellas en la restauración de imágenes es la compleción amodal, que
consiste en la capacidad de reconstruir un objeto a pesar de que esté oculto parcialmente por
otros. La base de esta ley de agrupación es el principio de buena continuación, que da prioridad
a la conexión de estructuras y a la preservación de su curvatura.

Los métodos de restauración locales y estructurales son aquellos que utilizan únicamente la
información estructural de las zonas de alrededor del agujero para cubrirlo. Por eso, la EDP que
nos permite obtener la imagen restaurada únicamente se resuelve en el dominio de inpainting D,
considerando que tras los procesos de restauración el resto de la imagen es idéntico a la imagen
dañada. A partir de ahora, a menos que se especifique lo contrario, al hablar de imágenes nos
referiremos a imágenes en escala de grises.

Consideraremos aquellos operadores de interpolación tales que dada una curva (borde de
la zona estropeada D) y una función definida en ella, les asocian una función definida en el
dominio de inpainting (que será la imagen restaurada). En un principio buscamos operadores
de interpolación gobernados por EDPs de orden 2, obteniendo el método harmonic inpainting
y TV inpainting.

El harmonic inpainting es un método de restauración de imágenes cuyo proceso de interpo-
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vi Resumen

lación se basa en calcular los valores correspondientes a la parte dañada como el promedio de
los valores de los elementos de alrededor. El problema correspondiente es

∆u = 0 en D,

u = f en ∂D,

cuya solución numérica puede obtenerse aplicando el método de diferencias finitas.
La calidad de este método puede estudiarse descomponiendo la imagen original (sin dañar)

como suma de su parte armónica y de su parte inarmónica en un punto que corresponderá al
dominio dañado (cuando la imagen ya haya sufrido el proceso de degradación). Identificando
la parte armónica con la solución débil del problema anterior, puede demostrarse que cuando
el dominio de inpainting es relativamente grande este método no cumple el principio de buena
continuación. Por tanto, no puede considerarse que proporciona buenos resultados.

El TV inpainting es un método de restauración de imágenes cuyo proceso de interpolación
se basa en calcular el valor de los píxeles dañados de la imagen como la mediana de los valores
de los elementos de alrededor. El problema correspondiente es

∇ ·
(
∇u
‖∇u‖

)
= 0 en D,

u = f en ∂D,

cuya solución numérica puede obtenerse sustituyendo las derivadas del problema de evolución
correspondiente por fórmulas de diferencias finitas.

El principal problema de este método es que su solución puede no ser única. Además, puede
demostrarse, reduciendo el problema a una sola línea de nivel, que la interpolación es lineal,
por lo que no se conserva la curvatura y no se cumple el principio de buena continuación. En
este caso tampoco podemos considerar que este método nos devuelva una imagen restaurada
correctamente.

Hemos observado que realizar la restauración de imágenes con ecuaciones de segundo orden
no nos proporciona buenos resultados. Para mejorarlos debemos tener en cuenta el gradiente
de la imagen en la frontera del dominio de inpainting. Por este motivo utilizaremos métodos
gobernados por ecuaciones de cuarto orden.

Una imagen binaria es aquella cuyos píxeles solo pueden tomar dos valores, por simplicidad
escogeremos el blanco y el negro. El Cahn-Hilliard inpainting para imágenes binarias es un
método de restauración basado en una modificación de la ecuación de Cahn-Hilliard, que es de
cuarto orden. Puede parecer un método restrictivo en el sentido de que únicamente puede ser
utilizado para imágenes binarias, sin embargo, si es usado para reconstruir la parte estructural
de la imagen y se combina con otros métodos de inpainting puede dar muy buenos resultados.
La imagen restaurada será la solución estacionaria de

ut = ∆

(
−ε∆u+

1

ε
F ′(u)

)
en D,

u = f en ∂D,

∇u · ~n = ∇f · ~n en ∂D,

donde F (u) = u2(u − 1)2 y ε > 0. Para la resolución numérica de este problema aplicamos
el método convexity splitting para ecuaciones de evolución, obteniendo esquemas de paso en
tiempo que podemos discretizar con el uso de fórmulas de diferencias finitas.

Podemos extender el Cahn-Hilliard inpainting para obtener un método de inpainting que dé
buenos resultados para la restauración de imágenes en escala de grises. Este método es conocido
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como TV −H−1 inpainting y la imagen restaurada es la solución estacionaria de
ut = ∆p en D,

u = f en ∂D,

∇u · ~n = ∇f · ~n en ∂D,

donde p = −∇ ·
(
∇u
‖∇u‖δ

)
∈ ∂TV∞(u) =

{
p̂ ∈ L2(D) | 〈v − u, p̂〉 ≤ TV∞(v)− TV∞(u), ∀v ∈ L2(D)

}
,

siendo ‖∇u‖δ =
√
‖∇u‖2 + δ, 0 < δ � 1. Su solución numérica puede obtenerse, al igual que

en el método anterior, aplicando el método de convexity splitting para ecuaciones de evolución,
obteniéndose esquemas de paso en tiempo que podemos discretizar con el uso de fórmulas de
diferencias finitas.
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Chapter 1

Introduction

Nowadays, digital images are one of the main sources of information. A digital image is obtained
from an analogue representation of the continuous world by sampling and quantization: a regular
grid is superimposed on the analogue image and a value is assigned to each grid element. These
elements are called pixels (picture elements). If it is a black and white image, the values of the
pixels (grey values) are scalars in the interval [0, 255] where 0 represents black and 255, white
(these values can also be scaled to [0, 1]). If it is a colour image, the values (colour values)
are represented by vectors (r, g, b) (r means red, g is green and b corresponds to blue) where
r, g, b ∈ [0, 255] (r, g, b ∈ [0, 1] if the values are scaled). For a digital image the typical size goes
from 2000× 2000 pixels (if the photo is taken using a simple digital camera) to 10000× 10000
pixels (if a high-resolution camera is used to take the image).

Since we have reinterpreted the digital image as a regular grid (a matrix) we can treat it as
a function f : R2 → Ri where i = 1 if we work with grey value images (black and white images)
and i = 3 if it is a colour image (in this work we study the case i = 1). In some contexts the
domain of f can be R3 or even R4. We can make operations with f , that is to say, we can apply
image processing techniques. In this work we apply them to image inpainting.

Image inpainting is a type of interpolation used for the restoration of virtual images: the
damaged parts of the picture are filled using the information obtained from the intact parts.
This is a process similar to the one used by art restorers who utilize the information around the
damaged part to reconstruct it. Some applications of image inpainting are digital restoration of
old paintings for conservation purposes, text erasing from advertising photographs and removal
of wires needed to create special effects.

Damaged image Inpainted image

Figure 1.1: On the left-hand side we have a picture of 1943 that went through a degradation
process and on the right-hand side we have inverted this process using inpainting methods.
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2 Chapter 1. Introduction

On the left-hand side of Figure 1.1 we can see a draw which was damaged by time. Using
inpainting methods we have reconstructed it, obtaining the image on the right-hand side of
Figure 1.1 (for the reconstruction we have used [1]).

Mathematically, we have a function f defined on Ω ⊆ R2 (known as image domain) which
represents the damaged image and our goal is to reconstruct it over the damaged domain D ⊆ Ω
(which is called inpainting domain, hole or gap) to obtain a picture u similar to the original one
(u is known as inpainted image). In the past, image inpainting was made manually, today it is
automated thanks to mathematical techniques.

The term inpainting was invented by art restoration workers. In the framework of digital
image restoration this word appeared for the first time in the work of Bertalmio et al. [2].
With the objective of imitating the work of art restorers they explain an inpainting model
based on the resolution of a discrete approximation of the PDE ut = ∇⊥u · ∇∆ u in the
gap D taking into account the information of its boundary ∂D (in the previous equation ∇⊥u
represents (−uy, ux)). The idea behind this method follows the principle of prolonging the image
intensity in the direction of the level lines which go inside the damaged part. In order to avoid
the crossing of these level lines, a non-linear diffusion term can be added, so the equation is
ut = ∇⊥u · ∇∆u+ ν∇ · (d(‖∇u‖)∇u), where d(s) is the diffusion coefficient and 0 < ν � 1. In
this inpainting process the user only takes part to select the inpainting domain.

Although PDEs are very common in inpainting methods, sometimes they cannot be used.
For instance, if we have a repetitive image, we have to apply the exemplar-based inpainting
which is based on the replacement of the missing element by a copy of another one equal to it
that is not damaged.

To design inpainting methods we have to take into account some obstacles that we can find
in the process of restoration:

• Unicity problem: the damaged parts of our image represent areas where the information
is irrecoverable. If we do not take into account some additional knowledge (for example,
historical facts) the solution of the inpainting problem may not be unique.

• Problem of the automation of the process: inpainting mathematical methods are designed
with the objective of avoid the supervision of the user. This implies that they have to
simulate the answer that the human brain would give.

• Texture-structure problem: one of the biggest problems is the inability of the methods to
reconstruct structure and texture at the same time. It is necessary to differentiate between
texture inpainting and non-texture or geometrical/structural inpainting. In this work we
study the last one (also known as low-level inpainting).

• Size problem: the bigger the hole is, the harder the problem becomes. If the gap is small,
it is enough to use lower-order inpainting methods. However, if it is bigger, it is necessary
to use non-linear PDEs of higher order.

In this work we study four inpainting methods. They are local structural inpainting methods,
that is to say, only local structural information is used to fill the missing parts of the damaged
image. All of them are governed by PDEs that we solve numerically. We present examples of
all of them.

In Chapter 3 we explain two inpainting methods which are based on second-order equations.
According to the good continuation principle (which is explained in Chapter 2) they are not
good enough. In Chapter 4 we present two inpainting methods which are based on the Cahn-
Hilliard equation. It is a fourth-order equation, so we obtain better results.

For more information about these four methods and to learn about other inpainting methods
we refer to the reader to [3].



Chapter 2

The good continuation principle

In the work of Bertalmio et al. [2] some conservators at the Minneapolis Institute of Arts were
asked about their job. They asserted that inpainting is a very subjective procedure (...) There
is not such thing as "the" way to solve the problem. The process depends on the object and on
the professional. The same happens with image inpainting: it does not have unique solution.
We have two main strategies which help us to determine it: historical knowledge and visual
perception.

2.1 Historical knowledge

Historical knowledge can help us to reconstruct parts of the damaged region using information
provided by the image context. So, this strategy depends on the image: if we work with an
old painting (art restoration), it is useful to know information about the techniques and the
materials used by the painter; but if we work with a medical image, it is more useful to have
knowledge about anatomy.

For example, this strategy is very useful in the continuation of roads in aerial images. Let us
imagine that we have an aerial image of a street which has trees on both sides of the road (the
tops of the trees hide part of the street). We have to reconstruct the road to have the possibility
of following it in the aerial image. Our historical knowledge in this case is a geometric knowledge:
we know how the shape of a road is. This information helps us to obtain a unique solution.

2.2 Visual perception. Gestalt theory

Visual perception is a context-free continuation. It is a human ability which consists in inter-
polating broken or occluded structures automatically.

Figure 2.1: One straight line. Two straight lines. Which is the right solution?

Let us observe the image in Figure 2.1. It is a damaged image, but we do not know if before
the damage it was a unique straight line or there were two straight lines. The solution depends
on the way of perception and on the experience of the viewer. We need a theory that studies
all the possible solutions, assigns probabilities to each of them and gives us a unique solution.
That is to say, a theory which works in a similar way to our natural perception is needed. It is
Gestalt theory.
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4 Chapter 2. The good continuation principle

Gestalt is a german word that can be translated to English as shape. Gestalt theory studies
the laws followed by our brain to do the visual reconstruction of a damaged image. Gestaltists
(scientists who work on this theory) interprete shapes as clouds of points with different hues
of grey and they study the laws followed by our perception mechanism to obtain continuous
shapes (called gestalten) reconstructing these collections of points.

Those clouds of points can be identified with the pixels of an image. Therefore, gestalt laws
can be formalized to apply them to our case. We can find the explanation of these concepts
applied to digital image processing in the work of Kanizsa [4].

Considering a group as a set of points with the same characteristics, the principal gestalt
laws needed in image processing are called grouping laws. The elementary grouping laws that
we can find in Kanizsa’s work are:

• Vicinity: perception tends to group near objects.

• Similarity: similar shapes tend to be grouped.

• Continuity of direction: objects which follow the same direction tend to be interpreted as
a unique one.

• Amodal completion: it consists in the capability of reconstructing an entire object despite
the fact that some of its parts are occluded by other objects.

• Closure: perception tends to close shapes which seem to be interrupted.

• Constant width: objects with the same width tend to be grouped.

• Tendency to convexity: visual perception prefers to group points in convex shapes rather
than in concave ones.

• Symmetry: visual perception tends to recognize symmetry and to understand symmetric
shapes as a group.

• Common motion: we tend to group objects which seem to move together.

• Past experience: shapes can be recognized if something similar has been seen before.

(a) (b)

Figure 2.2: What about the black piece? The good continuation principle gives us the right
solution: (b).

When we study these laws in a concrete image, we can have an ambiguous situation because
each law may group the objects in a different way. In image inpainting we consider that amodal
completion is the strongest grouping law and we choose its configuration as the correct one.

The basis of amodal completion is the good continuation principle. It prefers connection
over disconnection, that means, if an object seems to be partially occluded or broken, according
to this principle it continues under the other objects that hide it. This law also considers that
objects are extended preserving their curvature.
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In Figure 2.2 we can see an example of how the good continuation principle acts. On the left
picture we can see an image, we deduce that it is formed by two different shapes, but which is
the correct solution for the black piece? Is it (a)? Is it (b)? According to the good continuation
principle the correct one is (b) because in (a) the curvature is not preserved and disconnection
is preferred over connection.

The good continuation principle has influenced many inpainting methods, so we use it as a
criterion to determine if one method is good enough.





Chapter 3

Inpainting methods based on
second-order equations

In the following, when we define an inpainting method we denote the damaged image by f .
It is defined on Ω ⊆ R2 and the damaged part is the inpainting domain D, which fulfills that
D ⊆ Ω and ∂D ∩ ∂Ω = ∅. The inpainted image that we obtain when we have covered the gap
is denoted by u. In this work, the PDEs of the inpainting methods are solved in D, obtaining
a solution u defined on D that can be extended to Ω considering that in Ω \ D the inpainted
image u coincides with the damaged one (Ω \ D is the part of the image which was intact).

Notation 3.1. Let u : D ⊆ R2 → R. We denote by D2u the Hessian of u.

Notation 3.2. Let A ∈ R2×2 and v,w ∈ R2. Let us denote the quadratic form vtAw by

A(v,w) := vtAw =
∑
i,j

Aijviwj .

Example 3.1. We apply Notation 3.2 to the matrix A = D2u and to the vectors ∇u = (ux, uy)
t

and ∇⊥u = (−uy, ux)t, then

• D2u

(
∇u
‖∇u‖

,
∇u
‖∇u‖

)
=

1

‖∇u‖2
(
uxxu

2
x + 2uxyuxuy + uyyu

2
y

)
.

• D2u

(
∇⊥u
‖∇u‖

,
∇⊥u
‖∇u‖

)
=

1

‖∇u‖2
(
uxxu

2
y − 2uxyuxuy + uyyu

2
x

)
.

• D2u

(
∇⊥u
‖∇u‖

,
∇u
‖∇u‖

)
= D2u

(
∇u
‖∇u‖

,
∇⊥u
‖∇u‖

)
=

1

‖∇u‖2
(
uxuy(uyy − uxx) + uxy(u

2
x − u2

y)
)
.

Notation 3.3. We denote by C the set of continuous and simple Jordan curves, that is to say,

C = {Γ | Γ is a continuous and simple Jordan curve}.

Notation 3.4. The set of continuous functions defined on Γ is

F(Γ) = {f : Γ→ R | f is continuous}.

Definition 3.1. Interpolation operator.
An interpolation operator (also called inpainting operator) is the map

E : F(Γ)× C −→ {Functions on the inpainting domain D(Γ)}

(f,Γ) 7−→ E(f,Γ)

where E(f,Γ) is called interpolant and D(Γ) denotes the inpainting domain D whose boundary
is the continuous simple Jordan curve Γ.

7



8 Chapter 3. Inpainting methods based on second-order equations

Lemma 3.1. Interpolation axioms.
The interpolation operator in Definition 3.1 has to fulfill the following axioms:

• Comparison Principle (monotony). Let Γ ∈ C and f , g ∈ F(Γ) such that f ≤ g. Then,

E(f,Γ) ≤ E(g,Γ).

• Stability Principle (the iteration of the process of extraction of the interpolant does not
give us additional information). Let Γ1 ∈ C and f ∈ F(Γ1). For any Γ2 ∈ C such that
D(Γ2) ⊆ D(Γ1) we have that

E(E(f,Γ1)|Γ2 ,Γ2) = E(f,Γ1)|D(Γ2).

• Regularity Principle. Let A ∈ SM(2,R) =
{
M ∈ R2×2 | M = M t

}
, p ∈ R2 \0, v,w ∈ R2

with the scalar product 〈v,w〉 = v1w1 + v2w2 and c : R2 → R. Following Notation 3.2, we
define

Q(w) =
A(w − v,w − v)

2
+ 〈p,w − v〉+ c(v).

Then,

E(Q|∂B(x,r), ∂B(x, r))(x)−Q(x)

r2/2
→ F (A,p, c (·) ,x) as r → 0+,

where F : SM(2,R) × R2 \ 0 × R × R2 → R is a continuous function and B(x, r) is the
ball in R2 with center x and radius r.

In the particular case of inpainting we take A = D2u, p = ∇u and c = u.

• Translation Invariance (the inpainting operator is invariant under the translation of f by
a vector h). Let Γ ∈ C and f ∈ F(Γ). Let us denote the translation of f by h ∈ R2 as
τhf(x) := f(x + h), ∀x ∈ Γ. Then,

E(τhf,Γ− h) = τhE(f,Γ).

• Rotation Invariance (the inpainting operator is invariant under rotations). Let Γ ∈ C,
f ∈ F(Γ), R ∈ R2×2 be a rotation matrix such that Rf(x) := f(Rtx), ∀x ∈ Γ, and
RΓ ∈ C. Then,

E(Rf,RΓ) = RE(f,Γ).

• Grey Scale Shift Invariance. Let Γ ∈ C, f ∈ F(Γ) and C ∈ R. Then

E(f + C,Γ) = E(f,Γ) + C.

• Linear Grey Scale Invariance. Let Γ ∈ C, f ∈ F(Γ) and λ ∈ R. Then

E(λf,Γ) = λE(f,Γ).

• Zoom Invariance (invariance under zooming). Let Γ ∈ C, f ∈ F(Γ) and δλf(x) := f(λx),
∀x ∈ Γ, with λ > 0. Then

E(δλf, λ
−1Γ) = δλE(f,Γ).
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Theorem 3.1. Let E be an interpolation operator which satisfies the interpolation axioms
described in Lemma 3.1. Let f be a continuous function that is defined on ∂D (the boundary of
the inpainting domain D). Let u = E(f, ∂D) be the interpolant in D.

Then, the continuous function defined on D that is denoted by u is a solution of the problem{
G(A) = 0 in D,

u = f on ∂D, (3.1)

where G(A) is a non-decreasing function that satisfies G(λA) = λG(A), ∀λ ∈ R, and A = D2u.

Proposition 3.1. Let us consider the assumptions of Theorem 3.1 and let us add that the
function G is differentiable at the origin.

Then, problem (3.1) can be written as


αD2u

(
∇u
‖∇u‖

,
∇u
‖∇u‖

)
+ 2βD2u

(
∇u
‖∇u‖

,
∇⊥u
‖∇u‖

)
+ γD2u

(
∇⊥u
‖∇u‖

,
∇⊥u
‖∇u‖

)
= 0 in D,

u = f on ∂D,
(3.2)

where α, γ ≥ 0 and αγ − β2 ≥ 0.

Corollary 3.1. Applying Example 3.1 to the previous problem (3.2), we can rewrite it as


1

‖∇u‖2
((αu2

x − 2βuxuy + γu2
y)uxx + (αu2

y + 2βuxuy + γu2
x)uyy+

+(2uxuy(α− γ) + 2β(u2
x − u2

y))uxy) = 0 in D,

u = f on ∂D,

(3.3)

where α, γ ≥ 0 and αγ − β2 ≥ 0.

Now we choose possible values for α, β and γ in (3.3) to obtain inpainting methods. We
present two examples: harmonic inpainting and TV inpainting. Harmonic inpainting is ex-
plained because of its simplicity and TV inpainting, because the concept of TV introduced to
study it is useful to understand a more complex method that we will introduce in the next
chapter.

3.1 Harmonic inpainting

Let us take β = 0 and α = γ in (3.3). We obtain{
∆u = 0 in D,
u = f on ∂D, (3.4)

where ∆u = uxx + uyy is the Laplacian of u.
This inpainting method is called harmonic inpainting since the inpainted image is obtained

solving the Laplace equation in (3.4) whose solution is known as harmonic function. It is one of
the best understood inpainting methods. The interpolation process consists in computing the
missing grey values as the average of the values of neighbouring pixels.

Formulation. Let f ∈ L2(Ω) be the given image defined on Ω which has some grey values lost
inside the inpainting domain D ⊂ Ω. We look for an image u ∈ L2(D) that satisfies (3.4).
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3.1.1 Numerical resolution

We have to solve problem (3.4). It is governed by an elliptic equation and it has Dirichlet
boundary conditions. To solve it we apply the finite difference method, that is to say, we
consider a mesh in our domain and in each point of the grid we replace the derivatives of the
PDE by the corresponding finite difference formulas in Definition A.1, obtaining a system of
equations that we can solve.

We suppose that the inpainting domain is a square D = (a, b) × (c, d) ⊂ Ω. Let us take a
mesh in D like the following (we can see a representation in Figure 3.1):

Dh = {(xi, yj) = (a+ ih, c+ jh) | i, j = 0, ..., n+ 1},

where h =
b− a
n+ 1

=
d− c
n+ 1

is the step of the grid and n ∈ N.

(x1, y0)(x0, y0) = (a, c)

(x0, yn+1) = (a, d)

(xn+1, y0) = (b, c)

(xn+1, yn+1) = (b, d)

(xn, y0)

(x0, y1)

(x0, yn)

(xi, yj)

(xn+1, y1)
(x1, y1) (xn, y1)

(x1, yn+1) (xn, yn+1)

(xn+1, yn)
(x1, yn) (xn, yn)

Figure 3.1: Representation of a grid in D

Our objective is to obtain a grid function

{u0,0, u0,1, ..., u0,n+1, u1,0, ..., u1,n+1, ..., un+1,0, ..., un+1,n+1}

such that ui,j ≈ u(xi, yj) for i, j = 0, ..., n+ 1.
Using the Dirichlet boundary conditions (u = f on ∂D) we have that

• u0,j = f(x0, yj), j = 0, ..., n+ 1; • un+1,j = f(xn+1, yj), j = 0, ..., n+ 1;

• ui,0 = f(xi, y0), i = 0, ..., n+ 1; • ui,n+1 = f(xi, yn+1), i = 0, ..., n+ 1.

To compute the remaining ui,j (which correspond with the inner nodes) we replace the
derivatives of the equation in (3.4) by the corresponding centered finite difference formulas in
Definition A.1 and we obtain (expressing it in terms of the grid function) that

1

h2
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j) = 0; i, j = 1, ..., n. (3.5)

The finite difference scheme can be represented by a five-point stencil (see Figure 3.2).
We have a linear system of n2 equations with n2 unknowns. We want to write it as Auh = b.

To have a matrix A with a good structure (a block tridiagonal matrix) we order the unknowns
in a specific way called natural rowwise ordering. The vector of unknowns uh is

uh =

 u[1]

...
u[n]

 where u[j] =

 u1,j
...

un,j

 ; j = 1, ..., n.
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ui,j

ui+1,jui−1,j

ui,j+1

ui,j−1

Figure 3.2: Graphic representation of the five-point stencil

Matrix A is sparse (we know that each row has at most 5 nonzero elements). In addition,
the equations at points near the boundary involve the known values u0,j , un+1,j , ui,0 and ui,n+1

(i, j = 0, ..., n+ 1), so we can move them to the right-hand side b of the system.
The matrix A can be written as

A =
1

h2



T I
I T I

I T I
. . . . . . . . .

. . . . . . I
I T


,

where I is the n× n identity matrix and T is a tridiagonal n× n matrix of the form

T =


−4 1
1 −4 1

. . . . . . . . .
. . . . . . 1

1 −4

 .

The vector of independent terms b is

b = − 1

h2



b[1]

b[2]

...
b[m]

...
b[n−1]

b[n]


,

where b[1], b[m] (m = 2, ..., n− 1), b[n] are vectors of dimension n that can be written as

b[1] =



u0,1 + u1,0

u2,0

u3,0
...

un−2,0

un−1,0

un+1,1 + un,0


, b[m] =


u0,m

0
...
0

un+1,m

, b[n] =



u0,n + u1,n+1

u2,n+1

u3,n+1
...

un−2,n+1

un−1,n+1

un+1,n + un,n+1


.
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The numerical solution of (3.4) is the solution of the system Auh = b.
We program the resolution with MATLAB (see Section C.1 of Appendix C). Let us consider

picture Damaged image in Figure 3.3, its inpainting domain is a white square (see Damaged image
detail in Figure 3.3). Its damaged columns go from pixel 750 to pixel 790 and its damaged rows
go from pixel 160 to pixel 200. Running the program, harmonicInpainting(750,790,160,200),
with this damaged image we obtain the image Inpainted image in Figure 3.3.

Damaged image

Inpainted image

Damaged image detail

Inpainted image detail

Figure 3.3: On the top we have a damaged image and we can see in detail its inpainting domain
(white square). On the bottom we have the inpainted image (it has been obtained applying
harmonic inpainting) and we can see in detail how the inpainting domain has been inpainted.

3.1.2 Quality of harmonic inpainting

The quality of harmonic inpainting is studied using the weak solution of (3.4).

Variational formulation. Let f ∈ L2(Ω) be the given image defined on Ω which has some
grey values lost inside the inpainting domain D ⊂ Ω. We look for an image u ∈ H1(D) which
fulfills { ∫

D∇u · ∇ψ dx = 0 ∀ψ ∈ H1
0(D),

u = f on ∂D.

This weak solution u ∈ H1(D) is known as the harmonic extension u of f from Ω \ D to D.
H1(D) and H1

0(D) denote Sobolev spaces, for more detail see Definition A.4.

Now we start the study of the quality of this inpainting method. It is based on [5].
Let u0 be the original image (that is, the image before the degradation process) defined on

Ω. We suppose that u0 is a smooth function. Let us fix a point x0 = (x0, y0) ∈ D and let
x = (x, y) be whatever other point in D. Let G(x,x0) be the Green’s function (see Definition
A.5) of (3.4) (understanding it as a function of x). So, G is the solution of{

−∆G = δx−x0 in D,
G = 0 on ∂D. (3.6)
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Applying Theorem A.1 (Green’s Second Formula with v1 = u0(x) and v2 = −G(x,x0)) we have
that∫
D

(
u0(x)(−∆G(x,x0)) +G(x,x0)∆u0(x)

)
dx =

∫
∂D

(
u0(x)

∂(−G(x,x0))

∂~n
+G(x,x0)

∂u0(x)

∂~n

)
ds.

Using (3.6) we have that

u0(x0) =

∫
∂D
u0(x)

∂(−G(x,x0))

∂~n
ds+

∫
D
G(x,x0)(−∆u0(x))dx.

So, we have a decomposition of u0 of the form

u0(x0) = uh(x0) + ua(x0).

The first term uh(x0) =
∫
∂D u

0(x)
∂(−G(x,x0))

∂~n
ds is the harmonic part. It is the extension of

u0
|∂D respect to the harmonic measure −∂G(x,x0)

∂~n ds. It can be understood as the harmonic exten-
sion and we have that uh(x0) = u(x0). The second term ua(x0) =

∫
DG(x,x0)(−∆u0(x))dx

is the difference between the real solution and the harmonic extension, so it is the error made
with this inpainting method.

Theorem 3.2. Let d = maxr,s∈∂D ‖r − s‖ be the diameter of D (inpainting domain) and let G
be the Green’s function (see Definition A.5) of the Laplacian (the one obtained solving (3.6)).
Then, ∫

D
|G(x,x0)|dx ≤ d2

4
.

As u0 is a smooth function, |∆u0| is bounded by a constant C > 0. Using this fact and
Theorem 3.2 we have that

|ua(x0)| ≤
∫
D
|G(x,x0)|| −∆u0(x)|dx ≤ C

∫
D
|G(x,x0)|dx ≤ Cd

2

4
.

We conclude that the error at point x0 satisfies that |ua(x0)| ≤ C
d2

4
≡ O(d2). So, if the

inpainting domain is a big hole, the bound of the error is big enough to support the idea that
harmonic inpainting is not good enough (the good continuation principle is not fulfilled).

In Inpainted image detail in Figure 3.3 we can see in detail the region that has been
inpainted in Damaged image in Figure 3.3. It can be clearly seen that the edges are poorly
propagated inside the gap because it is considerably large.

3.2 TV inpainting

Total Variation (TV) is a well-known image processing method since Rudin, Osher and Fatemi
presented it in their work [6]. It was proposed with the aim of preserve sharp image structures
like edges using smooth methods. TV is applied in image denoising, image deblurring and image
segmentation, so it makes sense to try to use it in image inpainting.

TV inpainting arises taking α = β = 0 and γ 6= 0 in (3.3):
1

‖∇u‖2
(
uxxu

2
y − 2uxyuxuy + uyyu

2
x

)
= 0 in D,

u = f on ∂D.

(3.7)
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It is easy to prove that the following problem is equivalent to the previous one in (3.7):
∇ ·
(
∇u
‖∇u‖

)
= 0 in D,

u = f on ∂D.

(3.8)

The interpolation process consists in computing the values of the missing pixels as the median
value of neighbouring pixels.

Formulation. Let f ∈ L2(Ω) be the given image defined on Ω which has some grey values lost
inside the inpainting domain D ⊂ Ω. We look for an image u ∈ L2(D) that satisfies (3.8).

3.2.1 Numerical resolution

We have to solve problem (3.8). To obtain the numerical solution we work with the following
evolution problem: 

ut = ∇ ·
(
∇u
‖∇u‖δ

)
in D,

u = f on ∂D.

(3.9)

To avoid problems with 0 in the denominator we have taken ‖∇u‖δ =
√
‖∇u‖2 + δ instead of

‖∇u‖, where 0 < δ � 1.
We suppose that we have the same spatial inpainting domainD and the same spatial grid that

we had in the numerical resolution of harmonic inpainting method in Section 3.1.1 Numerical res-
olution. In the temporary direction we consider a grid with step size τ = (Tfinal − 0) / (m+ 1)
with m ∈ N. We define tk = kτ , k = 0, ...,m+ 1. So the resultant mesh is

Dh,τ = {(xi, yj , tk) = (a+ ih, c+ jh, kτ) | i, j = 0, ..., n+ 1; k = 0, ...,m+ 1}.

We denote by uki,j the approximation of u(xi, yj) at time level tk (i, j = 0, ..., n + 1, k =
0, ...,m+ 1). Our objective is to compute a spatial grid function

{uk0,0, uk0,1, ..., uk0,n+1, u
k
1,0, ..., u

k
1,n+1, ..., u

k
n+1,0, ..., u

k
n+1,n+1}

for k = 1, ...,m+ 1. For k = 0 (initial condition) the spatial grid function is given by the values
of the pixels of D of the damaged image. The spatial grid function that we look for is the one
obtained at time level tm+1.

Note that at any time tk the values of uk0,j , u
k
n+1,j , u

k
i,0 and uki,n+1 (i, j = 0, ..., n + 1) are

known thanks to the Dirichlet boundary conditions (u = f on ∂D) and these values are the
same for any k:

• uk0,j = f(x0, yj), j = 0, ..., n+ 1; • ukn+1,j = f(xn+1, yj), j = 0, ..., n+ 1;

• uki,0 = f(xi, y0), i = 0, ..., n+ 1; • uki,n+1 = f(xi, yn+1), i = 0, ..., n+ 1.

In the following we focus our calculations on the inner nodes of the spatial mesh for each time
level. Let us start the discretization of our problem. The temporary derivative and the spatial
derivatives are approximated with the corresponding finite difference formulas in Definition A.1.

Denoting by
(
∇h ·

(
∇hu
‖∇hu‖δ

))k−1

i,j

the discretization of ∇·
(
∇u
‖∇u‖δ

)
at (xi, yj , tk−1) we have

that our scheme in differences is

uki,j − u
k−1
i,j

τ
=

(
∇h ·

(
∇hu
‖∇hu‖δ

))k−1

i,j

,
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and expressing uki,j in terms of the values of the approximations of the previous level we obtain
an explicit scheme

uki,j = τ

(
∇h ·

(
∇hu
‖∇hu‖δ

))k−1

i,j

+ uk−1
i,j .

Discretization of ∇ ·
(
∇u
‖∇u‖δ

)
. To do this discretization we consider the same spatial grid

that we have been using in this section and we use the corresponding finite difference formulas
in Definition A.1.

Calling Kδ(x, y) =
1

‖∇hu(x, y)‖δ
, for i, j = 1, ..., n we have

(
∇h ·

(
∇hu
‖∇hu‖δ

))
(xi, yj) ≈

Kδ(xi+1/2, yj)ux(xi+1/2, yj)−Kδ(xi−1/2, yj)ux(xi−1/2, yj)

h
+

+
Kδ(xi, yj+1/2)uy(xi, yj+1/2)−Kδ(xi, yj−1/2)uy(xi, yj−1/2)

h
≈

≈
Kδ(xi+1/2, yj)

ui+1,j − ui,j
h

−Kδ(xi−1/2, yj)
ui,j − ui−1,j

h
h

+

+
Kδ(xi, yj+1/2)

ui,j+1 − ui,j
h

−Kδ(xi, yj−1/2)
ui,j − ui,j−1

h
h

.

Finally, we obtain(
∇h ·

(
∇hu
‖∇hu‖δ

))
(xi, yj) ≈

≈ 1

h2
[Kδ(xi+1/2, yj)ui+1,j +Kδ(xi−1/2, yj)ui−1,j +Kδ(xi, yj+1/2)ui,j+1 +Kδ(xi, yj−1/2)ui,j−1−

−
[
Kδ(xi+1/2, yj) +Kδ(xi−1/2, yj) +Kδ(xi, yj+1/2) +Kδ(xi, yj−1/2)

]
ui,j ] for i, j = 1, ..., n.

(3.10)

Let us compute the expressions of Kδ(xi+1/2, yj), Kδ(xi−1/2, yj), Kδ(xi, yj+1/2) and Kδ(xi, yj−1/2)

for i, j = 1, ..., n.

Kδ(xi+1/2, yj) ≈
1√(

ui+1,j − ui,j
h

)2

+

(
ui+1/2,j+1/2 − ui+1/2,j−1/2

h

)2

+ δ

=

=
h√

(ui+1,j − ui,j)2 +
(
ui+1/2,j+1/2 − ui+1/2,j−1/2

)2
+ δh2

.

Realize that ui+1/2,j+1/2 and ui+1/2,j−1/2 are not nodes of our spatial grid, so these are unknown
values. We approximate these values in the following way:

ui+1/2,j+1/2 =
ui,j+1 + ui+1,j+1

2
, ui+1/2,j−1/2 =

ui,j−1 + ui+1,j−1

2
.
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So, Kδ(xi+1/2, yj) ≈
h√

(ui+1,j − ui,j)2 + ((ui,j+1 + ui+1,j+1 − ui,j−1 − ui+1,j−1) /2)2 + δh2
.

(3.11)
Proceeding in a similar way we obtain that

Kδ(xi−1/2, yj) ≈
h√

(ui,j − ui−1,j)
2 + ((ui−1,j+1 + ui,j+1 − ui−1,j−1 − ui,j−1) /2)2 + δh2

, (3.12)

Kδ(xi, yj+1/2) ≈ h√
(ui,j+1 − ui,j)2 + ((ui+1,j+1 − ui−1,j+1) /2)2 + δh2

and (3.13)

Kδ(xi, yj−1/2) ≈ h√
(ui,j − ui,j−1)2 + ((ui+1,j−1 − ui−1,j−1) /2)2 + δh2

. (3.14)

The finite difference scheme in this case is (3.10) with the expressions in (3.11), (3.12), (3.13)
and (3.14). It can be represented by a nine-point stencil (see Figure 3.4).

ui,j

ui+1,jui−1,j

ui,j+1

ui,j−1

ui−1,j+1

ui−1,j−1

ui+1,j+1

ui+1,j−1

Figure 3.4: Graphic representation of the nine-point stencil

In conclusion, we have that the discretization of (3.9) for each time level is

uki,j =
τ

h2
(Kδ(xi+1/2, yj , tk−1)uk−1

i+1,j +Kδ(xi−1/2, yj , tk−1)uk−1
i−1,j +Kδ(xi, yj+1/2, tk−1)uk−1

i,j+1+

+Kδ(xi, yj−1/2, tk−1)uk−1
i,j−1 − [Kδ(xi+1/2, yj , tk−1) +Kδ(xi−1/2, yj , tk−1) +Kδ(xi, yj+1/2, tk−1)+

+Kδ(xi, yj−1/2, tk−1)]uk−1
i,j ) + uk−1

i,j for i, j = 1, ..., n.

Realize that if i, j = 1, n, then the Dirichlet boundary conditions are involved in the com-
putations.

We program the numerical resolution of this problem with MATLAB (see Section C.2 of
Appendix C). Let us consider the image Damaged image in Figure 3.5. Its inpainting domain is
a white square (see Damaged image detail in Figure 3.5). Its damaged columns go from pixel
760 to pixel 770 and its damaged rows go from pixel 170 to pixel 180. We run the program,
TVInpainting(760,770,170,180,100000), with this damaged image and we obtain the picture
Inpainted image in Figure 3.5.
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Damaged image

Inpainted image

Damaged image detail

Inpainted image detail

Figure 3.5: On the top we have a damaged image and we can see in detail its inpainting domain
(white square). On the bottom we have the inpainted image (it has been obtained applying TV
inpainting) and we can see in detail how the inpainting domain has been inpainted.

3.2.2 Issues that TV inpainting presents

The principal problem of TV inpainting is that the solution may not be unique.

Example 3.2. Let D be the unit disk and let us take the function φ(x) = λ1x
2
1 + λ2x

2
2 where

λ1 and λ2 are two parameters such that λ1 > λ2. Then,

u1(x) = φ

(√
1− x2

2, x2

)
and u2(x) = φ

(
x1,
√

1− x2
1

)
are two different solutions of (3.7). This example can be found in [7].

This method also presents problems related to its quality. To study this we have to discuss
how edge information of f is propagated into D. To do it we need to obtain the weak formulation
of the problem. However, before we need to introduce a new space (we have a method that
preserves sharp structures, so we need a less smooth space than Sobolev space H1 (see Definition
A.4)): the space of functions of bounded variation (BV).

Definition 3.2. Total variation (TV) for integrable functions.
Let u ∈ L1

loc(D), we define the total variation (TV) of u by duality, that is to say, TV is a
functional which associates a scalar value TV(u) to each u.

TV(u) = |Du|(D) = sup

{
−
∫
D
u ∇ · φ dx | φ ∈ C∞c (D;R2), |φ(x)| ≤ 1 ∀x ∈ D

}
.

L1
loc(D) denotes the set of locally integrable functions defined on D (see Definition A.6).

Example 3.3. TV of some functions.

• If u ∈W 1,1(D) (see Definition A.4), the total variation of u is TV(u) = |Du|(D) = ‖∇u‖1.



18 Chapter 3. Inpainting methods based on second-order equations

• If u = χA with A ⊂ D, the total variation of u is TV(u) = |Du|(D) = H1(∂A), where H1

is the one-dimensional Hausdorff measure.

Definition 3.3. Space of functions of bounded variation (BV).
The space of functions of bounded variation in D, denoted by BV(D), is

BV(D) =
{
u ∈ L1(D) | TV(u) <∞

}
.

It is a Banach space with the norm ‖u‖BV = ‖u‖1 + TV(u).

Variational formulation. Let f ∈ L2(Ω) be the given image defined on Ω which has some
grey values lost inside the inpainting domain D ⊂ Ω. We look for

min
u∈BV(D)

{|Du|(D) such that u = f on ∂D}. (3.15)

Definition 3.4. Perimeter.
Let E ⊂ D be a measurable set in R2. E is a set of finite perimeter if and only if its

characteristic function (χE) is a function of bounded variation in D. Per(E;D) := |DχE |(D)
is the perimeter of E in D.

Theorem 3.3. Co-area formula.
Let u ∈ BV(D) and let us consider the so-called s-sup level set of u defined by {u > s} :=

{x ∈ D | u(x) > s} with s ∈ R. Then,

|Du|(D) =

∫ ∞
−∞

Per({u > s};D)ds.

Let us assume that the original image u0 (the one that is not damaged and such that
u0
|Ω\D

= f|Ω\D) is smooth and is not constant inside D. That allows us to assert that there exists
x0 close to D such that ∇f(x0) 6= 0. Applying Theorem A.2 (inverse function theorem), we
have that the level lines of D have to be well-defined.

Let us consider the s-level line Γs = {x ∈ D | u0(x) = s}. Our inpainting problem is
reduced to interpolate Γs by a curve γs that joins two points of the boundary, x1 and x2, such
that f(x1) = f(x2) = s. Thanks to the weak formulation in (3.15) we know that we have to
look for a solution that minimizes |Du|(D). Using co-area formula (that is, Theorem 3.3) it can
be proved that the level line is interpolated by a straight line (for a more detailed explanation
see [3]).

We conclude that in TV inpainting the interpolation is done linearly. That means that
curvature is not preserved. This contradicts the good continuation principle, so TV inpainting
is not good enough.

In picture Inpainted image detail in Figure 3.5 we can see in detail the part of the dam-
aged image (see Damaged image in Figure 3.5) that has been inpainted. If we look the image
carefully we can see that the darkest pixels of the inpainting domain are located on a line (not
on a right angle).

For more information about the inpainting methods described in this chapter see [7].



Chapter 4

Inpainting methods based on the
Cahn-Hilliard equation

As we have seen in the previous chapter, second-order inpainting methods present problems
related to the connection of edges over large distances and the propagation of these edges
in the right direction. To solve these drawbacks we need a method which has to take into
account the gradient of the image on the boundary of the inpainting domain (Neumann boundary
conditions). We have to increase the order of the equations we consider.

In this chapter we present a fourth-order inpainting method for binary images based on a
modification of the Cahn-Hilliard equation and other method which is a generalization for grey
value images.

The Cahn-Hilliard equation is a non-linear fourth-order equation which describes the process
of the phase separation in binary alloys. It can be written in the following way:

ut = ∇ · (M(u)∇µ(u)) in D,

∇u · ~n = ∇µ · ~n = 0 on ∂D,

where µ(u) = F ′(u) − ε2∆u, D ⊂ Rn (n = 1, 2, 3) is a bounded domain, F (u) = 0.25(u2 − 1)2

is a double-well potential, M(u) is a positive mobility and ε > 0. u represents the phase-field.
Some basic principles and practical applications of the Cahn-Hilliard equation can be found

in [8].
Inpainting methods based on the Cahn-Hilliard equation are good methods because the

equations are relatively simple (although they do not involve curvature terms, they fulfill the
good continuation principle) and their numerical solutions have good properties.

4.1 Cahn-Hilliard inpainting for binary images

A binary image is an image whose pixels can only take two values. To make it more simple we
consider that these values are the ones which correspond to black and white.

In this section we present a variation of the Cahn-Hilliard equation for inpainting which can
be applied to binary images. This inpainting method is known as Cahn-Hilliard inpainting. It
seems a bit restrictive method because of the fact that it only works well for binary images.
However, it is a good method for reconstructing the structural part of an image. So, combining
it with other inpainting methods we can obtain good results. In addition, we can extend it to
formulate an inpainting method for grey value images (it is called TV-H−1 inpainting and we
will study it later).

Formulation. Let f ∈ L2(Ω) be a given binary image defined on Ω which has some values lost
inside the inpainting domain D ⊂ Ω. The inpainted image u we are looking for is constructed
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following the evolution of

ut = ∆

(
−ε∆u+

1

ε
F ′(u)

)
in D,

u = f on ∂D,

∇u · ~n = ∇f · ~n on ∂D,

(4.1)

where F (u) is the double-well potential (we can take F (u) = u2(u − 1)2 because the wells of F
are the two values that the image can take: black or white) and ε > 0.

4.1.1 Numerical resolution

Our inpainted image u is the stationary solution of (4.1). To obtain such u we use a method for
evolution equations known as convexity splitting (to learn more about it and its applications
on inpainting see [9]). Using it we obtain a time-stepping scheme, to which we apply the finite
difference method.

Lemma 4.1. General procedure needed to obtain the expression used in each time level.
Let u be a function defined on D × [0, Tfinal] where D ⊂ Ω and Tfinal > 0. Let G be a

real function and let us consider ut = G(u,Dαu) (Dα means that it depends on the derivatives,
α = 1, 2, 3, 4) as our PDE. The time-stepping scheme at time level tk is

uk − uk−1

τ
= Gk(u

k−1, uk, Dαuk−1, Dαuk),

where τ is the size of the time step (which is defined in the same way as in Section 3.2.1
Numerical resolution), Gk is an approximation of G at time level tk and α = 1, 2, 3, 4.

Looking at our problem (4.1), we have that G(u,Dαu) = ∆

(
−ε∆u+

1

ε
F ′(u)

)
and the

approximation at time level tk is

Gk(u
k−1, uk, Dαuk−1, Dαuk) = −ε∆∆uk +

1

ε
∆F ′(uk−1) + C1(∆uk −∆uk−1) + C2(uk−1 − uk),

where C1 is comparable to 1/ε and C2 � 1. For each time level we have the following scheme:

uk − uk−1

τ
= −ε∆∆uk +

1

ε
∆F ′(uk−1) + C1(∆uk −∆uk−1) + C2(uk−1 − uk).

Putting the terms which depend on the previous time level tk−1 on the right-hand side and
the terms which are involved in this time level tk on the left-hand side we obtain the problem
that we have to solve for each k:

ε∆∆uk − C1∆uk + (1/τ + C2)uk = g(uk−1) in D,

uk = f on ∂D,

∇uk · ~n = ∇f · ~n on ∂D,

(4.2)

where g(uk−1) =
(
∆F ′(uk−1)

)
/ε− C1∆uk−1 + (C2 + 1/τ)uk−1.

To solve the previous problem (4.2) we apply the finite difference method. We suppose that
the inpainting domain is a square D = (a, b)× (c, d) ⊂ Ω. For each time level we take the same
spatial grid that we used in Section 3.1.1 Numerical resolution, that is,

Dh = {(xi, yj) = (a+ ih, c+ jh) | i, j = 0, ..., n+ 1}.
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We denote by uki,j the approximation of u(xi, yj) at time level tk (i, j = 0, ..., n + 1, k =
0, ...,m+ 1). We have to compute a spatial grid function

{uk0,0, uk0,1, ..., uk0,n+1, u
k
1,0, ..., u

k
1,n+1, ..., u

k
n+1,0, ..., u

k
n+1,n+1}

for k = 1, ...,m+ 1. For k = 0 the spatial grid function is given by the values of the pixels of D
of the damaged image. The spatial grid function at tm+1 is the one we are looking for.

Using that uk = f on ∂D (Dirichlet boundary conditions) we have that at any time level we
know the value of the following elements of the grid function:

• uk0,j = f(x0, yj), j = 0, ..., n+ 1; • ukn+1,j = f(xn+1, yj), j = 0, ..., n+ 1;

• uki,0 = f(xi, y0), i = 0, ..., n+ 1; • uki,n+1 = f(xi, yn+1), i = 0, ..., n+ 1.

Note that these values are the same for any k.
To compute the remaining uki,j (which correspond with the inner nodes) we have to discretize

problem (4.2). The idea is to solve a system of n2 equations with n2 unknowns of the form
Ak(uk)h = bk, where Ak is the matrix of coefficients obtained with the approximation of the
left-hand side of the equation in problem (4.2) by the corresponding centered finite difference
formulas in Definition A.1, (uk)h is the vector of unknowns ordered in the same way as in Section
3.1.1 Numerical resolution and bk is the vector of independent terms which corresponds with
the sum of g(uk−1) and the known values of uki,j that appear because of the discretization of the
left-hand side (they are related to the boundary conditions).

To obtain Ak we follow these steps:

• We compute the discretization of ∆∆ûk1 = 0 with the same boundary conditions as in
(4.2). We obtain a system of the form Ak1(ûk1)h = bk1 where (ûk1)h is the vector of unknowns
ordered in the same way as (uk)h. We can find the computations in Appendix B. We need
the matrix of coefficients that we denote by Ak1.

• We compute the discretization of ∆ûk2 = 0 with the same Dirichlet boundary conditions as
in (4.2) (in this case Neumann boundary conditions are not needed). We obtain a system
of the form Ak2(ûk2)h = bk2 where (ûk2)h is the vector of unknowns ordered in the same way
as (uk)h. We have computed this case in Section 3.1.1 Numerical resolution. We need the
matrix of coefficients that we denote by Ak2.

• We compute Ak as Ak = εAk1 − C1A
k
2 + (1/τ + C2) In2 .

To obtain the expression of bk we have to do the following:

• When we have computed Ak1 and Ak2 we have obtained in each case a vector of indepen-
dent terms (nodes on the boundary and ghost nodes are involved). We have to consider
these vectors bk1 (the vector of independent terms in Appendix B) and bk2 (the vector of
independent terms in Section 3.1.1 Numerical resolution) as part of the vector bk.

• We have to discretize the expression g(û) = (∆F ′(û)) /ε− C1∆û+ (C2 + 1/τ) û in order
to evaluate it with the vector uk−1 computed in the previous time level.

To do the discretization of g(û) we compute the discretization of each term (last term
does not need any discretization):

◦ (∆F ′(û)) /ε. To compute the discretization of this term we use the discretization
of the Laplacian in (3.5). Adjusting it to our particular case we have that the dis-
cretization we are looking for is(
F ′(ûi+1,j) + F ′(ûi−1,j) + F ′(ûi,j+1) + F ′(ûi,j−1)− 4F ′(ûi,j)

)
/
(
εh2
)

for i, j = 1, ..., n.

Realize that if i, j = 1, n, then Dirichlet boundary conditions are needed.
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◦ −C1∆û. To compute the discretization of this expression we need equation (3.5) as
in the previous term. Adjusting it to this case, we obtain

−C1 (ûi+1,j + ûi−1,j + ûi,j+1 + ûi,j−1 − 4ûi,j) /h
2 for i, j = 1, ..., n.

Note that if i, j = 1, n, then Dirichlet boundary conditions are needed.

• We compute bk as bk = (discretization of g(û) evaluated at uk−1) + εbk1 − C1b
k
2.

We program the numerical resolution of this method with MATLAB (see Section C.3 of
Appendix C). We use the binary image Damaged image in Figure 4.1. The inpainted domain
is a white square (see Damaged image detail in Figure 4.1). The damaged columns go from
pixel 1020 to pixel 1040 and the damaged rows go from pixel 1510 to pixel 1530. Running the
program, CHBinary(1020,1040,1510,1530,50000), we obtain the picture Inpainted image in
Figure 4.1.

Damaged image

Inpainted image

Damaged image detail

Inpainted image detail

Figure 4.1: On the top we have a damaged image and we can see in detail its inpainting domain
(white square). On the bottom we have the inpainted image (it has been obtained applying
Cahn-Hilliard inpainting) and we can see in detail how the inpainting domain has been inpainted.

4.2 Extension of Cahn-Hilliard inpainting to grey value images:
TV-H−1 inpainting

We can extend the inpainting method in Section 4.1 to obtain another one that can be applied to
grey value images (also known as black and white images). This new method is called TV-H−1

inpainting.
Before presenting the formulation of this method we need to explain some new mathematical

concepts related to the concept of total variation explained in Definition 3.2.
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Definition 4.1. Total variation with infinite bound.
Let u ∈ L1(D). We can define total variation with infinite bound (TV∞) as

TV∞(u) =

{
TV(u) if 0 ≤ u(x) ≤ 1 a.e. in D,

+∞ otherwise.

Definition 4.2. Subdifferential of the functional TV∞(u).
The subdifferential of the functional TV∞(u) is

∂TV∞(u) =
{
p ∈ L2(D) | 〈v − u, p〉 ≤ TV∞(v)− TV∞(u), ∀v ∈ L2(D)

}
.

Formulation. Let f ∈ L2(Ω) be a given grey value image defined on Ω which has some values
lost inside the inpainting domain D ⊂ Ω. The inpainted image u is the evolution of

ut = ∆p in D,

u = f on ∂D,

∇u · ~n = ∇f · ~n on ∂D,

(4.3)

where p ∈ ∂TV∞(u). We take p = −∇ ·
(
∇u
‖∇u‖δ

)
, where ‖∇u‖δ =

√
‖∇u‖2 + δ, 0 < δ � 1.

4.2.1 Numerical resolution

The inpainted image u is the stationary solution of (4.3). To obtain u we use the method for
evolution equations that we have used for the numerical resolution of Cahn-Hilliard inpainting
for binary images (see Section 4.1.1 Numerical resolution), that is, convexity splitting. We
obtain a time-stepping scheme and we apply the finite difference method.

In this case, looking at (4.3) we deduce that the function G defined in Lemma 4.1 is
G(u,Dαu) = ∆p and the approximation at time level tk is

Gk(uk−1, uk, Dαuk−1, Dαuk) = −∆

(
∇ ·
(
∇uk−1

‖∇uk−1‖δ

))
+ C1

(
∆∆uk−1 −∆∆uk

)
+ C2

(
uk−1 − uk

)
,

where C1 is comparable to 1/δ and C2 � 1. The scheme at each time level is

uk − uk−1

τ
= −∆

(
∇ ·
(
∇uk−1

‖∇uk−1‖δ

))
+ C1(∆∆uk−1 −∆∆uk) + C2(uk−1 − uk).

We reorder the terms of our PDE to put the ones that depend on time level tk−1 on the
right-hand side and the ones that correspond to time level tk on the left-hand side. We obtain
the problem that we have to solve for each k:

C1∆∆uk + (1/τ + C2)uk = g(uk−1) in D,

uk = f on ∂D,

∇uk · ~n = ∇f · ~n on ∂D,

(4.4)

where g(uk−1) = −∆
(
∇ ·
(
∇uk−1/‖∇uk−1‖δ

))
+ C1∆∆uk−1 + (1/τ + C2)uk−1.

To solve problem (4.4) we apply the finite difference method. We suppose that the inpainting
domain is a square D = (a, b) × (c, d) ⊂ Ω. At each time level we take the same spatial grid
that we used in Section 3.1.1 Numerical resolution, that is,

Dh = {(xi, yj) = (a+ ih, c+ jh) | i, j = 0, ..., n+ 1}.
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We denote by uki,j the approximation of u(xi, yj) at time level tk (i, j = 0, ..., n + 1, k =
0, ...,m+ 1). Our goal is to compute a spatial grid function

{uk0,0, uk0,1, ..., uk0,n+1, u
k
1,0, ..., u

k
1,n+1, ..., u

k
n+1,0, ..., u

k
n+1,n+1}

for k = 1, ...,m + 1. For k = 0 the spatial grid function is given by the values of the pixels of
D of the damaged image. The spatial grid function at tm+1 is the numerical solution of our
problem.

At any time level tk we know the value of some elements of the spatial grid function thanks
to the Dirichlet boundary conditions (uk = f on ∂D):

• uk0,j = f(x0, yj), j = 0, ..., n+ 1; • ukn+1,j = f(xn+1, yj), j = 0, ..., n+ 1;

• uki,0 = f(xi, y0), i = 0, ..., n+ 1; • uki,n+1 = f(xi, yn+1), i = 0, ..., n+ 1.

These values coincide for any k.
The remaining uki,j correspond with the inner nodes. To compute them we have to discretize

the left-hand side of the equation in (4.4). We also have to discretize the right-hand side in
order to be able to evaluate it with the known spatial grid function of the previous time level.
The idea is to solve a system of n2 equations with n2 unknowns of the form Ak(uk)h = bk,
where Ak is the matrix of coefficients obtained with the discretization of the left-hand side of
the equation in (4.4) by the corresponding centered finite difference formulas in Definition A.1,
(uk)h is the vector of unknowns ordered in the same way as in Section 3.1.1 Numerical resolution
and bk is the vector of independent terms which is g(uk−1) added to the known values of uki,j
that appear because of the discretization of the left-hand side (these values are known because
we have boundary conditions).

In the following we explain how to obtain Ak:

• We have to compute the discretization of ∆∆ûk1 = 0 with the same boundary conditions
as in (4.4). Our goal is to obtain a system of the form Ak1(ûk1)h = bk1 where (ûk1)h is the
vector of unknowns ordered in the same way as (uk)h. The computations needed to obtain
this system can be found in Appendix B. We denote the matrix of coefficients by Ak1.

• We compute Ak as Ak = C1A
k
1 + (1/τ + C2) In2 .

The vector of independent terms bk is obtained in the following way:

• When we have computed Ak1 we have obtained a vector bk1 of independent terms (it is the
vector of independent terms in Appendix B). It is part of the vector bk.

• We have to discretize g(û) = −∆ (∇ · (∇û/‖∇û‖δ)) + C1∆∆û + (1/τ + C2) û and to
evaluate it with the vector uk−1.

To compute the discretization of g(û) we calculate the discretization of each term (last
term does not need any discretization):

◦ −∆ (∇ · (∇û/‖∇û‖δ)). To obtain the discretization of this term first of all we have
to apply the discretization of the Laplacian (left-hand side of (3.5)) and then we have
to apply the discretization of ∇ · (∇û/‖∇û‖δ) (it is equation in (3.10)) to each term
of the previous discretization.
If i, j = 1, 2, n− 1, n, then Dirichlet or Neumann boundary conditions are needed.
◦ C1∆∆û. To compute the discretization of this expression we use formula (B.2)

obtained in the discretization of the Bilaplacian. Adjusting it to our case we have
that the discretization we are looking for is

C1(ûi+2,j + 2ûi+1,j−1 − 8ûi+1,j + 2ûi+1,j+1 + ûi,j−2 − 8ûi,j−1 + 20ûi,j − 8ûi,j+1+
+ûi,j+2 + 2ûi−1,j−1 − 8ûi−1,j + 2ûi−1,j+1 + ûi−2,j)/h

4 for i, j = 1, ..., n.

If i, j = 1, 2, n− 1, n, then Dirichlet or Neumann boundary conditions are needed.
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• We compute bk as bk = (discretization of g(û) evaluated at uk−1) + C1b
k
1.

We program the numerical resolution of this method with MATLAB (see Section C.4 of
Appendix C). We use the picture Damaged image in Figure 4.2 whose inpainting domain is a
grey square (see Damaged image detail in Figure 4.2). The damaged columns go from pixel
760 to pixel 770 and the damaged rows go from pixel 170 to pixel 180. Running the program,
CHGreyValues(760,770,170,180,100000), we obtain the image Inpainted image in Figure
4.2.

Damaged image

Inpainted image

Damaged image detail

Inpainted image detail

Figure 4.2: On the top we have a damaged image and we can see in detail its inpainting domain
(grey square). On the bottom we have the inpainted image (it has been obtained applying
TV-H−1 inpainting) and we can see in detail how the inpainting domain has been inpainted.

In picture Inpainted image detail in Figure 4.2 we can see the region of picture Damaged
image in Figure 4.2 that has been inpainted. We can realize that this solution is better than
the one obtained with TV inpainting (it is Inpainted image detail in Figure 3.5) because in
the case of TV-H−1 inpainting we can observe that the darkest pixels form the right angle.

For more information about these two methods we refer to the reader to [10].





Appendix A

Mathematical facts

Definition A.1. Finite difference formulas.
Let u(x, y) be a function sufficiently differentiable and let h be a number small enough.
The first partial derivative ux at point (xi, yj) can be approximated by the centered finite

difference formula

ux(xi, yj) ≈
1

2h
(u(xi+1, yj)− u(xi−1, yj)) ,

and the first partial derivative uy at that point can be approximated by the centered finite
difference formula

uy(xi, yj) ≈
1

2h
(u(xi, yj+1)− u(xi, yj−1)) .

The second partial derivate uxx at point (xi, yj) can be approximated by the centered finite
difference formula

uxx(xi, yj) ≈
1

h2
(u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)) ,

and the second partial derivative uyy at that point can be approximated by the centered finite
difference formula

uyy(xi, yj) ≈
1

h2
(u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)) .

Let τ be a number small enough and let us suppose that the function u also depends on time,
that is to say, u(x, y, t). We can approximate the first partial derivative ut at point (xi, yj , tk)
by

ut(xi, yj , tk) ≈
1

τ
(u(xi, yj , tk)− u(xi, yj , tk−1)) .

Note: xi+1 ≡ xi + h, xi−1 ≡ xi − h, yj+1 ≡ yj + h, yj−1 ≡ yj − h, tk−1 ≡ tk − τ .

Definition A.2. Space of distributions.
Let Ω ⊆ R2. We denote by D(Ω) the set of functions indefinitely differentiable with compact

support in Ω.
The space of distributions on Ω is the topological dual space of D(Ω) (only for real func-

tionals). It is denoted by D′(Ω).

Definition A.3. Partial derivative of a distribution (∂αu).
Let Ω ⊆ R2. Let u ∈ D′(Ω) and let α = (α1, ..., αn) be a multi-index such that |α| =

α1 + ...+ αn. Then,

〈∂αu, ϕ〉 := (−1)|α|〈u, ∂αϕ〉, ∀ ϕ ∈ D(Ω).

See Definition A.2 for the definitions of the spaces D(Ω) and D′(Ω).
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Definition A.4. Sobolev space.
Let Ω ⊆ R2. The Sobolev space Wm,p(Ω) with m a non-negative integer and p ∈ [1,∞) is

Wm,p(Ω) := {u ∈ Lp(Ω) | ∂αu ∈ Lp(Ω), ∀|α| ≤ m, α ∈ N}.

It is a Banach space with the norm

‖u‖Wm,p(Ω) =

 ∑
0≤|α|≤m

‖∂αu‖pLp(Ω)


1

p
.

We denote by Wm,p
0 (Ω) the subset of elements of Wm,p(Ω) which take the value 0 on the

boundary (in a weak sense).
When p = 2 the Sobolev spaces are denoted by Hm(Ω) = Wm,2(Ω) and Hm0 (Ω) = Wm,2

0 (Ω).
These are Hilbert spaces.

Note: All the derivatives are taken in the sense of distributions (see Definition A.3).

Definition A.5. Green’s function. [11]
Let Ω ⊆ R2, u : Ω→ R and x, s ∈ Ω. Let L[u] = f be a differential equation. The Green’s

function G(x, s) is any solution of L[G] = −δx−s.

Theorem A.1. Green’s second formula.
Let v1 and v2 be C2 functions defined on the set Ω ⊆ R2. The boundary of Ω is denoted by

∂Ω. Let ~n be the outward normal direction on ∂Ω and let s be the length parameter. Then,∫
Ω

(v1∆v2 − v2∆v1)dxdy =

∫
∂Ω

(
v1
∂v2

∂~n
− v2

∂v1

∂~n

)
ds.

Definition A.6. Locally integrable.
A function f defined on a set Ω is called locally integrable (f ∈ L1

loc(Ω)) if it is integrable
on each compact of Ω.

Theorem A.2. Inverse function theorem.
Let Ω ⊆ R2 be an open set, f : Ω → R such that f ∈ Cp(Ω) (1 ≤ p ≤ ∞) and x0 ∈ Ω such

that ∇f(x0) 6= 0. Then, there exist two open sets U ⊆ R2 and V ⊆ R such that x0 ∈ U ⊆ Ω,
f(x0) ∈ V ⊆ f(Ω) and f|U : U → V is bijective.

More mathematical facts related to PDEs that can be useful to understand this work can
be found in [12], [13] and [3, Appendix B].



Appendix B

Discretization of the Bilaplacian

We have the following problem:
∆∆u = 0 in D,

u = f on ∂D,
∇u · ~n = ∇f · ~n on ∂D.

(B.1)

To solve it we apply the finite difference method.
We suppose that the inpainting domain D ⊂ Ω is a square (a, b)× (c, d). We take a mesh as

the one used in Section 3.1.1 Numerical resolution, that is to say,

Dh = {(xi, yj) = (a+ ih, c+ jh) | i, j = 0, ..., n+ 1}.

Our goal is to obtain a grid function

{u0,0, u0,1, ..., u0,n+1, u1,0, ..., u1,n+1, ..., un+1,0, ..., un+1,n+1}

such that ui,j ≈ u(xi, yj) for i, j = 0, ..., n+ 1.
Realize that we have Dirichlet boundary conditions (u = f on ∂D), so we already know the

values of some elements of the grid function. That is, we know that

• u0,j = f(x0, yj), j = 0, ..., n+ 1; • un+1,j = f(xn+1, yj), j = 0, ..., n+ 1;

• ui,0 = f(xi, y0), i = 0, ..., n+ 1; • ui,n+1 = f(xi, yn+1), i = 0, ..., n+ 1.

To obtain the remaining nodes, that is, the inner nodes, we apply the corresponding centered
finite difference formulas in Definition A.1 two times, obtaining a formula which involves 13
nodes. Let us do it.

We know that

∆∆u =
∂2∆u

∂x2
+
∂2∆u

∂y2
.

We apply the corresponding centered finite difference formulas in Definition A.1 one time and
we obtain the following approximation for i, j = 1, ..., n:

1

h2
(∆hui+1,j + ∆hui−1,j + ∆hui,j+1 + ∆hui,j−1 − 4∆hui,j) = 0.

Now we apply the corresponding centered finite difference formulas in Definition A.1 to each
term and we have

1

h4
(ui+2,j + 2ui+1,j−1 − 8ui+1,j + 2ui+1,j+1 + ui,j−2 − 8ui,j−1 + 20ui,j − 8ui,j+1 + ui,j+2+

+2ui−1,j−1 − 8ui−1,j + 2ui−1,j+1 + ui−2,j) = 0
(B.2)

29
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for i, j = 1, ..., n. As we said, 13 nodes are involved, so the scheme can be represented by a
thirteen-point stencil (see Figure B.1).

We have a linear system of n2 equations with n2 unknowns. Ordering the unknowns in the
same way as we have done in Section 3.1.1 Numerical resolution, we can write the system as
Auh = b. Note that each equation involves 13 nodes, this implies that each row of the matrix
A has at most 13 non-zero elements.

ui,j

ui+1,jui−1,j

ui,j+1

ui,j−1

ui−1,j+1

ui−1,j−1

ui+1,j+1

ui+1,j−1

ui+2,j

ui,j−2

ui,j+2

ui−2,j

Figure B.1: Graphic representation of the thirteen-point stencil

Realize that when we apply the equation with these indices

• i = 2, ..., n− 1, j = 1; • i = 2, ..., n− 1, j = n;

• i = 1, j = 2, ..., n− 1; • i = n, j = 2, ..., n− 1;

we need a ghost node which is out of our domain. When we use these other indices

• i = 1, j = 1; • i = n, j = 1;

• i = 1, j = n; • i = n, j = n;

we need two ghost nodes which are outside the domain. Using the Neumann boundary conditions
(∇u·~n = ∇f ·~n on ∂D) we can obtain the expressions of the ghost nodes in terms of the nodes of
our mesh and of the derivatives of f (we have to use the corresponding centered finite difference
formulas in Definition A.1 for the u derivatives and we have to isolate the ghost nodes). These
expressions are:

• ui,−1 = ui,1 − 2hfy(xi, y0), i = 0, ..., n+ 1;

• ui,n+2 = ui,n + 2hfy(xi, yn+1), i = 0, ..., n+ 1;

• u−1,j = u1,j − 2hfx(x0, yj), j = 0, ..., n+ 1;

• un+2,j = un,j + 2hfx(xn+1, yj), j = 0, ..., n+ 1.

To sum up, using formula (B.2) for i, j = 1, ..., n, applying the formulas for the ghost nodes
when the special values of i and j are involved and moving the known values (ui,j of the boundary
and evaluations of the functions fx and fy) to the right-hand side we obtain (ordering the vector
of unknowns as always) that the matrix A is
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A =
1

h4



S1 T I
T S2 T I
I T S2 T I

I T S2 T I
. . . . . . . . . . . . . . .

I T S2 T I
I T S2 T

I T S1


,

where I is the n× n identity matrix, T is a tridiagonal n× n matrix of the form

T =


−8 2
2 −8 2

. . . . . . . . .
2 −8 2

2 −8

 ,
and S1, S2 are n× n matrices as follows

S2 = S1 − I =



21 −8 1
−8 20 −8 1
1 −8 20 −8 1

. . . . . . . . . . . . . . .
1 −8 20 −8 1

1 −8 20 −8
1 −8 21


.

The vector of independent terms b is

b = − 1

h4



b[1]

b[2]

b[3]

...
b[m]

...
b[n−2]

b[n−1]

b[n]


,

where b[1], b[2], b[m] (m = 3, ..., n−2), b[n−1], b[n] are vectors of dimension n that can be written as

b[1] =



2u2,0 − 8u1,0 + 2u0,0 − 8u0,1 + 2u0,2 − 2h(fy(x1, y0) + fx(x0, y1))

2u3,0 − 8u2,0 + 2u1,0 + u0,1 − 2hfy(x2, y0)

2u4,0 − 8u3,0 + 2u2,0 − 2hfy(x3, y0)
...

2un−1,0 − 8un−2,0 + 2un−3,0 − 2hfy(xn−2, y0)

un+1,1 + 2un,0 − 8un−1,0 + 2un−2,0 − 2hfy(xn−1, y0)

2un+1,0 − 8un+1,1 + 2un+1,2 − 8un,0 + 2un−1,0 − 2h(fy(xn, y0)− fx(xn+1, y1))



,
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b[2] =



u1,0 + 2u0,1 − 8u0,2 + 2u0,3 − 2hfx(x0, y2)

u2,0 + u0,2

u3,0
...

un−2,0

un+1,2 + un−1,0

2un+1,1 − 8un+1,2 + 2un+1,3 + un,0 + 2hfx(xn+1, y2)



,

b[m] =



2u0,m−1 − 8u0,m + 2u0,m+1 − 2hfx(x0, ym)

u0,m

0
...
0

un+1,m

2un+1,m−1 − 8un+1,m + 2un+1,m+1 + 2hfx(xn+1, ym)


,

b[n−1] =



u1,n+1 + 2u0,n − 8u0,n−1 + 2u0,n−2 − 2hfx(x0, yn−1)

u2,n+1 + u0,n−1

u3,n+1
...

un−2,n+1

un+1,n−1 + un−1,n+1

2un+1,n−2 − 8un+1,n−1 + 2un+1,n + un,n+1 + 2hfx(xn+1, yn−1)



,

b[n] =



2u2,n+1 − 8u1,n+1 + 2u0,n−1 − 8u0,n + 2u0,n+1−
−2h(fx(x0, yn)− fy(x1, yn+1))

2u3,n+1 − 8u2,n+1 + 2u1,n+1 + u0,n + 2hfy(x2, yn+1)

2u4,n+1 − 8u3,n+1 + 2u2,n+1 + 2hfy(x3, yn+1)
...

2un−1,n+1 − 8un−2,n+1 + 2un−3,n+1 + 2hfy(xn−2, yn+1)

un+1,n + 2un,n+1 − 8un−1,n+1 + 2un−2,n+1 + 2hfy(xn−1, yn+1)

2un+1,n−1 − 8un+1,n + 2un+1,n+1 − 8un,n+1 + 2un−1,n+1+
+2h(fy(xn, yn+1) + fx(xn+1, yn))



.

The numerical solution of problem (B.1) is the solution of the system Auh = b with the
matrix A and the vector b described above.



Appendix C

Numerical resolution with MATLAB

In this appendix we can find several MATLAB programs. Given a damaged image, these
programs allow us to obtain the inpainted one. We only have to indicate the damaged pixels,
that is, the inpainting domain (it has to be a square) and, in the case that the PDE is solved as
an evolution problem, a parameter m related to the number of subdivisions of the temporary
grid has to be introduced.

In the first four sections we have the main programs needed to apply harmonic inpainting,
TV inpainting, Cahn-Hilliard inpainting for binary images and TV-H−1 inpainting. In the last
section there are auxiliary functions used in the programs presented in the previous sections. In
each program there are an introduction about its running and some complementary explanations.

C.1 Harmonic inpainting. Numerical resolution with MATLAB

function harmonicInpainting(a1,b1,c1,d1)

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% harmonicInpainting solves the inpainting method known as harmonic

% inpainting.

% It has four inputs:
% -> a1 is the first column of pixels which is damaged.
% -> b1 is the last column of pixels which is damaged.
% -> c1 is the first row of pixels which is damaged.
% -> d1 is the last row of pixels which is damaged.

% It returns the damaged image and the inpainted one.

% NOTE: We suppose that our inpainting domain is a square, so b1-a1 =
% = d1-c1.

% The inpainting domain with its boundary is a submatrix of the matrix of
% the image. The indices of the rows (respect to the image matrix)

% are c1-1,...,d1+1. The indices of the columns (respect to the
% image matrix) are a1-1,...,b1+1.

% n is the number of pixels which are damaged in each spatial direction.
global n;
n = b1-a1+1;
% n can also be computed as n = d1-c1+1.

33
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% As we work with images, the usual step of the spatial grid is h = 1
% in both directions (x-direction and y-direction).

h = 1;

% We read the original image.
f = double(imread(’IMAGE.jpg’))/255;

% We damage the image.
f(c1:d1,a1:b1) = 1;

% In our problem we have Dirichlet boundary conditions, so we store the
% values of the pixels of the boundary in a vector D of dimension 4n+4.

global D;
for i =1:n+2

D(i) = f(d1+1,a1+i-2);
end
for i = 0:n-1

D(n+2+2*i+1) = f(d1-i,a1-1);
D(n+2+2*i+2) = f(d1-i,b1+1);

end
for i = 1:n+2

D(3*n+2+i) = f(c1-1,a1+i-2);
end

% A is a matrix with a lot of zeros, so it is sparse:
A = sparse(n*n, n*n);

% aux represents a number which is used a lot in the program:
aux = 1/(h^2);

% We start filling the matrix A:

%%Diagonal of the matrix.
for i = 1:n*n

A(i,i) = -4*aux;
end

%%Elements above and below the diagonal.
for ind = 0:n-1

for i = 1:n-1
A(i+n*ind,(i+1)+n*ind) = aux;
A((i+1)+n*ind,i+n*ind) = aux;

end
end

%%Elements of the diagonal sub-matrices.
for ind = 0:n-2

for i = 1:n
A(i+n*ind,(i+n*ind)+n) = aux;
A((i+n*ind)+n,i+n*ind) = aux;
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end
end

% We fill the vector b (independent terms):
b = zeros(1,n*n);

%%1. Independent terms which correspond with the n first elements of
%%the vector b.

b(1) = -aux*D(n+3)-aux*D(2);
b(n) = -aux*D(n+4)-aux*D(n+1);
for i = 2:n-1

b(i) = -aux*D(i+1);
end

%%2,...,n-1. Independent terms which correspond with the middle elements
%%of the vector b.

for j = 2:n-1
b((j-1)*n+1) = -aux*D(n+3+2*(j-1));
b(j*n) = -aux*D(n+2+2*j);

end

%%n. Independent terms which correspond with the n last elements of
%%the vector b.

b(n*(n-1)+1) = -aux*D(3*n+1)-aux*D(3*n+4);
b(n*n) = -aux*D(3*n+2)-aux*D(4*n+3);
for i = 2:n-1

b((n-1)*n+i) = -aux*D(3*n+3+i);
end

% Now we solve the system Au=b:
u(1:n*n)=A(1:n*n,1:n*n)\b(1:n*n)’;

% We have that u is a vector of dimension n*n, we have to convert it
% into a square matrix with n rows and n columns:

u = reshape(u,n,n);

% The order in which we have stored the values of the grid function is not
% the order in which we have to print them, we make the change:

u = u’;
ulast = zeros(n,n);

for i = 1:n
for j = 1:n

ulast(n-(i-1),j) = u(i,j);
end

end

% We print the damaged image and the inpainted one:
uinpainting = f;
uinpainting(c1:d1,a1:b1) = ulast;
subplot(2,2,1); imshow(f); title ’Damaged image’;
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subplot(2,2,3); imshow(uinpainting); title ’Inpainted image’;
subplot(2,2,2); imshow(f(c1-6:d1+6,a1-6:b1+6)); title ’Damaged image

detail’;
subplot(2,2,4); imshow(uinpainting(c1-6:d1+6,a1-6:b1+6)); title ’Inpainted

image detail’;

end

C.2 TV inpainting. Numerical resolution with MATLAB

function TVInpainting(a1,b1,c1,d1,m)

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% TVInpainting solves the inpainting method known as TV inpainting.

% It has five inputs:
% -> a1 is the first column of pixels which is damaged.
% -> b1 is the last column of pixels which is damaged.
% -> c1 is the first row of pixels which is damaged.
% -> d1 is the last row of pixels which is damaged.
% -> m, being m+1 the number of subdivisions of the temporary grid.

% It returns the damaged image and the inpainted one.

% This program uses an auxiliary function:
% -> auxiliary.

% NOTE: We suppose that our inpainting domain is a square, so b1-a1 =
% = d1-c1.

% The inpainting domain with its boundary is a submatrix of the matrix
% of the image. The indices of the rows (respect to the image matrix) are
% c1-1,...,d1+1. The indices of the columns (respect to the image matrix)

% are a1-1,...,b1+1.

% n is the number of pixels which are damaged in each spatial direction.
global n;
n = b1-a1+1;
% n can also be computed as n = d1-c1+1.

% As we work with images, the usual step of the spatial grid is h = 1
% in both directions (x-direction and y-direction).

global h;
h = 1;

% k is the step of the temporary grid.
k = 0.01;

% The value of delta (the term used to avoid problems with zero in the
% denominator) is:

global delta;
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delta = 0.01;

% We read the original image.
f = double(imread(’IMAGE.jpg’))/255;

% We damage the image.
f(c1:d1,a1:b1) = 1;

% We store the initial condition.
g = f(c1:d1,a1:b1);

% The order in which we have read the pixels is not the order in which
% we work with the values of the grid function, we make the change:

unew = zeros(n,n);

for i = 1:n
for j = 1:n

unew(n-(i-1),j) = g(i,j);
end

end

unew = unew’;

% In our problem we have Dirichlet boundary conditions, so we store the
% values of the pixels of the boundary in a vector D of dimension 4n+4.

global D;
for i =1:n+2

D(i) = f(d1+1,a1+i-2);
end
for i = 0:n-1

D(n+2+2*i+1) = f(d1-i,a1-1);
D(n+2+2*i+2) = f(d1-i,b1+1);

end
for i = 1:n+2

D(3*n+2+i) = f(c1-1,a1+i-2);
end

% We solve the evolution problem.
global uold;

for time = 1:m+1
uold = unew;
for j = 1:n

for i = 1:n
unew(i,j) = k*auxiliary(i,j) + uold(i,j);

end
end

end

% The last unew (that is the one that solves our problem) is a matrix, but
% the order in which we have stored the values of the grid function is not
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% the order in which we have to print them, we make the change:
unew = unew’;

ulast = zeros(n,n);

for i = 1:n
for j = 1:n

ulast(n-(i-1),j) = unew(i,j);
end

end

% We print the damaged image and the inpainted one:
uinpainting = f;
uinpainting(c1:d1,a1:b1) = ulast;
subplot(2,2,1); imshow(f); title ’Damaged image’;
subplot(2,2,3); imshow(uinpainting); title ’Inpainted image’;
subplot(2,2,2); imshow(f(c1-2:d1+2,a1-2:b1+2)); title ’Damaged image

detail’;
subplot(2,2,4); imshow(uinpainting(c1-2:d1+2,a1-2:b1+2)); title ’Inpainted

image detail’;

end

C.3 Cahn-Hilliard inpainting for binary images. Numerical res-
olution with MATLAB

function CHBinary(a1,b1,c1,d1,m)

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% CHBinary solves the inpainting method known as Cahn-Hilliard inpainting

% for binary images.

% It has five inputs:
% -> a1 is the first column of pixels which is damaged.
% -> b1 is the last column of pixels which is damaged.
% -> c1 is the first row of pixels which is damaged.
% -> d1 is the last row of pixels which is damaged.
% -> m, being m+1 the number of subdivisions of the temporary grid.

% It returns the damaged image and the inpainted one.

% This program uses the following auxiliary functions:
% -> laplacian.
% -> bilaplacianA.
% -> bilaplacianb.
% -> laplacianF.

% NOTE: We suppose that our inpainting domain is a square, so b1-a1 =
% = d1-c1.
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% The inpainting domain with its boundary is a submatrix of the matrix of
% the image. The indices of the rows (respect to the image matrix) are

% c1-1,...,d1+1. The indices of the columns (respect to the image matrix)
% are a1-1,...,b1+1.

% n is the number of pixels which are damaged in each spatial direction.
global n;
n = b1-a1+1;
% n can also be computed as n = d1-c1+1.

% As we work with images, the usual step of the spatial grid is h = 1
% in both directions (x-direction and y-direction).

global h;
h = 1;

% k is the step of the temporary grid.
k = 0.01;

% Constants.
C1 = 3/4;
C2 = 2;
epsilon = 4;

% We read the original image.
f = double(imread(’IMAGE010.jpg’))/255;

% We damage the image.
f(c1:d1,a1:b1) = 1;

% We store the initial condition.
g = f(c1:d1,a1:b1);

% The order in which we have read the pixels is not the order in which
% we work with the values of the grid function, we make the change:

unew = zeros(n,n);

for i = 1:n
for j = 1:n

unew(n-(i-1),j) = g(i,j);
end

end

unew = unew’;

unew = reshape(unew,[],1);

% In our problem we have Dirichlet boundary conditions, so we store the
% values of the pixels of the boundary in a vector D of dimension 4n+4.

global D;
for i =1:n+2

D(i) = f(d1+1,a1+i-2);
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end
for i = 0:n-1

D(n+2+2*i+1) = f(d1-i,a1-1);
D(n+2+2*i+2) = f(d1-i,b1+1);

end
for i = 1:n+2

D(3*n+2+i) = f(c1-1,a1+i-2);
end

% We also have Neumann boundary conditions, so we have to approximate the
% derivatives of the damaged image on the boundary of the inpainting

% domain by finite difference formulas. For that we need
% the pixels that surround the boundary.

global Neumann;
Neumann = zeros(4*n+8,1);
for i = 1:n+2

Neumann(i) = f(d1+2,a1+i-2);
end
for i = 0:n+1

Neumann(n+3+2*i) = f(d1-j+1,a1-2);
Neumann(n+4+2*i) = f(d1-j+1,b1+2);

end
for i = 1:n+2

Neumann(3*n+6+i) = f(c1-2,a1+i-2);
end

% We solve the problem.
global uold;

[mlapl,vlapl] = laplacian();
mbilapl = bilaplacianA();
vbilapl = bilaplacianb();

for j = 1:m+1
uold = unew;
dlaplFder = laplacianF();
matrixA = epsilon*mbilapl-C1*mlapl+((1/k)+C2)*eye(n*n);
vectorb = epsilon*vbilapl’-C1*vlapl’+(1/epsilon)*dlaplFder

+(C2+(1/k))*uold-C1*(mlapl*uold-vbilapl’);
unew = matrixA\vectorb;

end

% We have that unew is a vector of dimension n*n, we have to convert it
% into a square matrix with n rows and n columns:

unew = reshape(unew,n,n);

% The order in which we have stored the values of the grid function is not
% the order in which we have to print them, we make the change:

unew = unew’;

ulast = zeros(n,n);
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for i = 1:n
for j = 1:n

ulast(n-(i-1),j) = unew(i,j);
end

end

% We print the damaged image and the inpainted one:
uinpainting = f;
uinpainting(c1:d1,a1:b1) = ulast;
subplot(2,2,1); imshow(f); title ’Damaged image’;
subplot(2,2,3); imshow(uinpainting); title ’Inpainted image’;
subplot(2,2,2); imshow(f(c1-14:d1+14,a1-14:b1+14)); title ’Damaged image

detail’;
subplot(2,2,4); imshow(uinpainting(c1-14:d1+14,a1-14:b1+14));

title ’Inpainted image detail’;

end

C.4 TV-H−1 inpainting. Numerical resolution with MATLAB

function CHGreyValues(a1,b1,c1,d1,m)

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% CHGreyValues solves the inpainting method known as TV-H^{-1} inpainting.

% It has five inputs:
% -> a1 is the first column of pixels which is damaged.
% -> b1 is the last column of pixels which is damaged.
% -> c1 is the first row of pixels which is damaged.
% -> d1 is the last row of pixels which is damaged.
% -> m, being m+1 the number of subdivisions of the temporary grid.

% It returns the damaged image and the inpainted one.

% This program uses the following auxiliary functions:
% -> bilaplacianA.
% -> bilaplacianb.
% -> laplacianaux.

% NOTE: We suppose that our inpainting domain is a square, so b1-a1 =
% = d1-c1.

% The inpainting domain with its boundary is a submatrix of the matrix of
% the image. The indices of the rows (respect to the image matrix) are

% c1-1,...,d1+1. The indices of the columns (respect to the image matrix)
% are a1-1,...,b1+1.

% n is the number of pixels which are damaged in each spatial direction.
global n;
n = b1-a1+1;
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% n can also be computed as n = d1-c1+1.

% As we work with images, the usual step of the spatial grid is h = 1
% in both directions (x-direction and y-direction).

global h;
h = 1;

% k is the step of the temporary grid.
k = 0.001;

% Constants.
C1 = 0.0001;
C2 = 2;

% The value of delta is:
global delta;
delta = 0.1;

% We read the original image.
f = double(imread(’IMAGE.jpg’))/255;

% We damage the image.
f(c1:d1,a1:b1)=0.5;

% We store the initial condition.
g = f(c1:d1,a1:b1);

% The order in which we have read the pixels is not the order in which
% we work with the values of the grid function, we make the change:

unew = zeros(n,n);

for i = 1:n
for j = 1:n

unew(n-(i-1),j) = g(i,j);
end

end

unew = unew’;

unew = reshape(unew,[],1);

% In our problem we have Dirichlet boundary conditions, so we store the
% values of the pixels of the boundary in a vector D of dimension 4n+4.

global D;
for i =1:n+2

D(i) = f(d1+1,a1+i-2);
end
for i = 0:n-1

D(n+2+2*i+1) = f(d1-i,a1-1);
D(n+2+2*i+2) = f(d1-i,b1+1);

end
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for i = 1:n+2
D(3*n+2+i) = f(c1-1,a1+i-2);

end

% We also have Neumann boundary conditions, so we have to approximate the
% derivatives of the damaged image on the boundary of the inpainting

% domain by finite difference formulas. For that we need
% the pixels that surround the boundary.

global Neumann;
Neumann = zeros(4*n+8,1);
for i = 1:n+2

Neumann(i) = f(d1+2,a1+i-2);
end
for i = 0:n+1

Neumann(n+3+2*i) = f(d1-j+1,a1-2);
Neumann(n+4+2*i) = f(d1-j+1,b1+2);

end
for i = 1:n+2

Neumann(3*n+6+i) = f(c1-2,a1+i-2);
end

% We solve the problem.
mbilapl = bilaplacianA();
vbilapl = bilaplacianb();

global uold;

for j = 1:m+1
uold = unew;
uold = reshape(uold,n,n);
vlaplaux = laplacianaux();
uold = reshape(uold,[],1);
matrixA = ((1/k)+C2)*eye(n*n) + C1*mbilapl;
vectorb = C1*(mbilapl*uold-vbilapl’) - vlaplaux + (C2+(1/k))*uold

+ vbilapl’;
unew = matrixA\vectorb;

end

% We have that unew is a vector of dimension n*n, we have to convert it
% into a square matrix with n rows and n columns:

unew = reshape(unew,n,n);

% The order in which we have stored the values of the grid function is not
% the order in which we have to print them, we make the change:

unew = unew’;

ulast = zeros(n,n);

for i = 1:n
for j = 1:n

ulast(n-(i-1),j) = unew(i,j);
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end
end

% We print the damaged image and the inpainted one:
uinpainting = f;
uinpainting(c1:d1,a1:b1) = ulast;
subplot(2,2,1); imshow(f); title ’Damaged image’;
subplot(2,2,3); imshow(uinpainting); title ’Inpainted image’;
subplot(2,2,2); imshow(f(c1-6:d1+6,a1-6:b1+6)); title ’Damaged image

detail’;
subplot(2,2,4); imshow(uinpainting(c1-6:d1+6,a1-6:b1+6)); title ’Inpainted

image detail’;

end

C.5 Auxiliary programs

res = auxiliary(a,b)

function res = auxiliary(a,b)

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% This program computes the evaluation of the discretization of

% div(grad(u)/normdelta(grad(u))) at a point of the grid.

% It has two inputs:
% -> a is the index of the x-coordinate.
% -> b is the index of the y-coordinate.

% This program uses one auxiliary function:
% -> N.

% This auxiliary program is used in the program TVInpainting and in
% the auxiliary function laplacianaux.

global n;
global h;
global delta;
global D;
global uold;

if 2<=a && a<=n-1 && 2<=b && b<=n-1
kdpa = h/sqrt(((uold(a+1,b)-uold(a,b))^2)+(((1/2)*(uold(a,b+1)

+uold(a+1,b+1)-uold(a,b-1)-uold(a+1,b-1)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((uold(a,b)-uold(a-1,b))^2)+(((1/2)*(uold(a-1,b+1)

+uold(a,b+1)-uold(a-1,b-1)-uold(a,b-1)))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((uold(a,b+1)-uold(a,b))^2)+(((1/2)*(uold(a+1,b+1)

-uold(a-1,b+1)))^2)+delta*(h^2));
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sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((uold(a,b)-uold(a,b-1))^2)+(((1/2)*(uold(a+1,b-1)

-uold(a-1,b-1)))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==1 && 2<=b && b<=n-1
kdpa = h/sqrt(((uold(a+1,b)-uold(a,b))^2)+(((1/2)*(uold(a,b+1)

+uold(a+1,b+1)-uold(a,b-1)-uold(a+1,b-1)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((uold(a,b)-D(n+3+2*(b-1)))^2)+(((1/2)*(D(n+3+2*b)

+uold(a,b+1)-D(n+3+2*(b-2))-uold(a,b-1)))^2)+delta*(h^2));
sumam1b = kdma*D(n+3+2*(b-1));
kdpb = h/sqrt(((uold(a,b+1)-uold(a,b))^2)+(((1/2)*(uold(a+1,b+1)

-D(n+3+2*b)))^2)+delta*(h^2));
sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((uold(a,b)-uold(a,b-1))^2)+(((1/2)*(uold(a+1,b-1)

-D(n+3+2*(b-2))))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==n && 2<=b && b<=n-1
kdpa = h/sqrt(((D(n+4+2*(b-1))-uold(a,b))^2)+(((1/2)*(uold(a,b+1)

+D(n+4+2*b)-uold(a,b-1)-D(n+4+2*(b-2))))^2)+delta*(h^2));
sumap1b = kdpa*D(n+4+2*(b-1));
kdma = h/sqrt(((uold(a,b)-uold(a-1,b))^2)+(((1/2)*(uold(a-1,b+1)

+uold(a,b+1)-uold(a-1,b-1)-uold(a,b-1)))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((uold(a,b+1)-uold(a,b))^2)+(((1/2)*(D(n+4+2*b)

-uold(a-1,b+1)))^2)+delta*(h^2));
sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((uold(a,b)-uold(a,b-1))^2)+(((1/2)*(D(n+4+2*(b-2))

-uold(a-1,b-1)))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif b==1 && 2<=a && a<=n-1
kdpa = h/sqrt(((uold(a+1,b)-uold(a,b))^2)+(((1/2)*(uold(a,b+1)

+uold(a+1,b+1)-D(a+1)-D(a+2)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((uold(a,b)-uold(a-1,b))^2)+(((1/2)*(uold(a-1,b+1)

+uold(a,b+1)-D(a)-D(a+1)))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((uold(a,b+1)-uold(a,b))^2)+(((1/2)*(uold(a+1,b+1)

-uold(a-1,b+1)))^2)+delta*(h^2));
sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((uold(a,b)-D(a+1))^2)+(((1/2)*(D(a+2)

-D(a)))^2)+delta*(h^2));
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sumabm1 = kdmb*D(a+1);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif b==n && 2<=a && a<=n-1
kdpa = h/sqrt(((uold(a+1,b)-uold(a,b))^2)+(((1/2)*(D(3*n+3+a)

+D(3*n+4+a)-uold(a,b-1)-uold(a+1,b-1)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((uold(a,b)-uold(a-1,b))^2)+(((1/2)*(D(3*n+2+a)

+D(3*n+3+a)-uold(a-1,b-1)-uold(a,b-1)))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((D(3*n+3+a)-uold(a,b))^2)+(((1/2)*(D(3*n+4+a)

-D(3*n+2+a)))^2)+delta*(h^2));
sumabp1 = kdpb*D(3*n+3+a);
kdmb = h/sqrt(((uold(a,b)-uold(a,b-1))^2)+(((1/2)*(uold(a+1,b-1)

-uold(a-1,b-1)))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==1 && b==1
kdpa = h/sqrt(((uold(a+1,b)-uold(a,b))^2)+(((1/2)*(uold(a,b+1)

+uold(a+1,b+1)-D(2)-D(3)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((uold(a,b)-D(n+3))^2)+(((1/2)*(D(n+5)

+uold(a,b+1)-D(1)-D(2)))^2)+delta*(h^2));
sumam1b = kdma*D(n+3);
kdpb = h/sqrt(((uold(a,b+1)-uold(a,b))^2)+(((1/2)*(uold(a+1,b+1)

-D(n+5)))^2)+delta*(h^2));
sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((uold(a,b)-D(2))^2)+(((1/2)*(D(3)

-D(1)))^2)+delta*(h^2));
sumabm1 = kdmb*D(2);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==1 && b==n
kdpa = h/sqrt(((uold(a+1,b)-uold(a,b))^2)+(((1/2)*(D(3*n+4)

+D(3*n+5)-uold(a,b-1)-uold(a+1,b-1)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((uold(a,b)-D(3*n+1))^2)+(((1/2)*(D(3*n+3)

+D(3*n+4)-D(3*n-1)-uold(a,b-1)))^2)+delta*(h^2));
sumam1b = kdma*D(3*n+1);
kdpb = h/sqrt(((D(3*n+4)-uold(a,b))^2)+(((1/2)*(D(3*n+5)

-D(3*n+3)))^2)+delta*(h^2));
sumabp1 = kdpb*D(3*n+4);
kdmb = h/sqrt(((uold(a,b)-uold(a,b-1))^2)+(((1/2)*(uold(a+1,b-1)

-D(3*n-1)))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);
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elseif a==n && b==1
kdpa = h/sqrt(((D(n+4)-uold(a,b))^2)+(((1/2)*(uold(a,b+1)

+D(n+6)-D(n+1)-D(n+2)))^2)+delta*(h^2));
sumap1b = kdpa*D(n+4);
kdma = h/sqrt(((uold(a,b)-uold(a-1,b))^2)+(((1/2)*(uold(a-1,b+1)

+uold(a,b+1)-D(n)-D(n+1)))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((uold(a,b+1)-uold(a,b))^2)+(((1/2)*(D(n+6)

-uold(a-1,b+1)))^2)+delta*(h^2));
sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((uold(a,b)-D(n+1))^2)+(((1/2)*(D(n+2)

-D(n)))^2)+delta*(h^2));
sumabm1 = kdmb*D(n+1);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==n && b==n
kdpa = h/sqrt(((D(3*n+2)-uold(a,b))^2)+(((1/2)*(D(4*n+3)

+D(4*n+4)-uold(a,b-1)-D(3*n)))^2)+delta*(h^2));
sumap1b = kdpa*D(3*n+2);
kdma = h/sqrt(((uold(a,b)-uold(a-1,b))^2)+(((1/2)*(D(4*n+2)

+D(4*n+3)-uold(a-1,b-1)-uold(a,b-1)))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((D(4*n+3)-uold(a,b))^2)+(((1/2)*(D(4*n+4)

-D(4*n+2)))^2)+delta*(h^2));
sumabp1 = kdpb*D(4*n+3);
kdmb = h/sqrt(((uold(a,b)-uold(a,b-1))^2)+(((1/2)*(D(3*n)

-uold(a-1,b-1)))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*uold(a,b);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==0 && 2<=b && b<=n-1
kdpa = h/sqrt(((uold(a+1,b)-D(n+3+2*(b-1)))^2)+(((1/2)*(D(n+3+2*b)

+uold(a+1,b+1)-D(n+3+2*(b-2))-uold(a+1,b-1)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((D(n+3+2*(b-1))-(-2*h*N(0,b,1)+uold(1,b)))^2)

+(((1/2)*((-2*h*N(0,b+1,1)+uold(1,b+1))+D(n+3+2*b)
-(-2*h*N(0,b-1,1)+uold(1,b-1))-D(n+3+2*(b-2))))^2)+delta*(h^2));

sumam1b = kdma*(-2*h*N(0,b,1)+uold(1,b));
kdpb = h/sqrt(((D(n+3+2*b)-D(n+3+2*(b-1)))^2)+(((1/2)*(uold(a+1,b+1)

-(-2*h*N(0,b+1,1)+uold(1,b+1))))^2)+delta*(h^2));
sumabp1 = kdpb*D(n+3+2*b);
kdmb = h/sqrt(((D(n+3+2*(b-1))-D(n+3+2*(b-2)))^2)+(((1/2)*(uold(a+1,b-1)

-(-2*h*N(0,b-1,1)+uold(1,b-1))))^2)+delta*(h^2));
sumabm1 = kdmb*D(n+3+2*(b-2));
sumab = -(kdpa+kdma+kdpb+kdmb)*D(n+3+2*(b-1));
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==n+1 && 2<=b && b<=n-1
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kdpa = h/sqrt((((2*h*N(n+1,b,1)+uold(n,b))-D(n+4+2*(b-1)))^2)
+(((1/2)*(D(n+4+2*b)+(2*h*N(n+1,b+1,1)+uold(n,b+1))-D(n+4+2*(b-2))

-(2*h*N(n+1,b-1,1)+uold(n,b-1))))^2)+delta*(h^2));
sumap1b = kdpa*(2*h*N(n+1,b,1)+uold(n,b));
kdma = h/sqrt(((D(n+4+2*(b-1))-uold(a-1,b))^2)+(((1/2)*(uold(a-1,b+1)

+D(n+4+2*b)-uold(a-1,b-1)-D(n+4+2*(b-2))))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((D(n+4+2*b)-D(n+4+2*(b-1)))^2)+(((1/2)*((2*h*N(n+1,b+1,1)

+uold(n,b+1))-uold(a-1,b+1)))^2)+delta*(h^2));
sumabp1 = kdpb*D(n+4+2*b);
kdmb = h/sqrt(((D(n+4+2*(b-1))-D(n+4+2*(b-2)))^2)

+(((1/2)*((2*h*N(n+1,b-1,1)+uold(n,b-1))-uold(a-1,b-1)))^2)+delta*(h^2));
sumabm1 = kdmb*D(n+4+2*(b-2));
sumab = -(kdpa+kdma+kdpb+kdmb)*D(n+4+2*(b-1));
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif b==0 && 2<=a && a<=n-1
kdpa = h/sqrt(((D(a+2)-D(a+1))^2)+(((1/2)*(uold(a,b+1)+uold(a+1,b+1)

-(-2*h*N(a,0,2)+uold(a,1))-(-2*h*N(a+1,0,2)+uold(a+1,1))))^2)
+delta*(h^2));

sumap1b = kdpa*D(a+2);
kdma = h/sqrt(((D(a+1)-D(a))^2)+(((1/2)*(uold(a-1,b+1)+uold(a,b+1)

-(-2*h*N(a-1,0,2)+uold(a-1,1))-(-2*h*N(a,0,2)+uold(a,1))))^2)
+delta*(h^2));

sumam1b = kdma*D(a);
kdpb = h/sqrt(((uold(a,b+1)-D(a+1))^2)+(((1/2)*(uold(a+1,b+1)

-uold(a-1,b+1)))^2)+delta*(h^2));
sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((D(a+1)-(-2*h*N(a,0,2)+uold(a,1)))^2)
+(((1/2)*((-2*h*N(a+1,0,2)+uold(a+1,1))-(-2*h*N(a-1,0,2)+uold(a-1,1))))^2)

+delta*(h^2));
sumabm1 = kdmb*(-2*h*N(a,0,2)+uold(a,1));
sumab = -(kdpa+kdma+kdpb+kdmb)*D(a+1);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif b==n+1 && 2<=a && a<=n-1
kdpa = h/sqrt(((D(3*n+4+a)-D(3*n+3+a))^2)+(((1/2)*((2*h*N(a,n+1,2)

+uold(a,n))+(2*h*N(a+1,n+1,2)+uold(a+1,n))-uold(a,b-1)-uold(a+1,b-1)))^2)
+delta*(h^2));

sumap1b = kdpa*D(3*n+4+a);
kdma = h/sqrt(((D(3*n+3+a)-D(3*n+2+a))^2)+(((1/2)*((2*h*N(a-1,n+1,2)

+uold(a-1,n))+(2*h*N(a,n+1,2)+uold(a,n))-uold(a-1,b-1)-uold(a,b-1)))^2)
+delta*(h^2));

sumam1b = kdma*D(3*n+2+a);
kdpb = h/sqrt((((2*h*N(a,n+1,2)+uold(a,n))-D(3*n+3+a))^2)

+(((1/2)*((2*h*N(a+1,n+1,2)+uold(a+1,n))-(2*h*N(a-1,n+1,2)
+uold(a-1,n))))^2)+delta*(h^2));

sumabp1 = kdpb*(2*h*N(a,n+1,2)+uold(a,n));
kdmb = h/sqrt(((D(3*n+3+a)-uold(a,b-1))^2)+(((1/2)*(uold(a+1,b-1)

-uold(a-1,b-1)))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
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sumab = -(kdpa+kdma+kdpb+kdmb)*D(3*n+3+a);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==0 && b==1
kdpa = h/sqrt(((uold(a+1,b)-D(n+3))^2)+(((1/2)*(D(n+5)+uold(a+1,b+1)-D(1)

-D(2)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((D(n+3)-(-2*h*N(0,1,1)+uold(1,1)))^2)

+(((1/2)*((-2*h*N(0,2,1)+uold(1,2))+D(n+5)-D(1)-(-2*h*N(0,0,1)+D(2))))^2)
+delta*(h^2));

sumam1b = kdma*(-2*h*N(0,1,1)+uold(1,1));
kdpb = h/sqrt(((D(n+5)-D(n+3))^2)+(((1/2)*(uold(a+1,b+1)

-(-2*h*N(0,2,1)+uold(1,2))))^2)+delta*(h^2));
sumabp1 = kdpb*D(n+5);
kdmb = h/sqrt(((D(n+3)-D(1))^2)+(((1/2)*(D(2)-(-2*h*N(0,0,1)+D(2))))^2)

+delta*(h^2));
sumabm1 = kdmb*D(1);
sumab = -(kdpa+kdma+kdpb+kdmb)*D(n+3);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==0 && b==n
kdpa = h/sqrt(((uold(a+1,b)-D(3*n+1))^2)+(((1/2)*(D(3*n+3)+D(3*n+4)

-D(3*n-1)-uold(a+1,b-1)))^2)+delta*(h^2));
sumap1b = kdpa*uold(a+1,b);
kdma = h/sqrt(((D(3*n+1)-(-2*h*N(0,n,1)+uold(1,n)))^2)

+(((1/2)*((-2*h*N(0,n+1,1)+D(3*n+4))+D(3*n+3)-D(3*n-1)-(-2*h*N(0,n-1,1)
+uold(1,n-1))))^2)+delta*(h^2));

sumam1b = kdma*(-2*h*N(0,n,1)+uold(1,n));
kdpb = h/sqrt(((D(3*n+3)-D(3*n+1))^2)+(((1/2)*(D(3*n+4)

-(-2*h*N(0,n+1,1)+D(3*n+4))))^2)+delta*(h^2));
sumabp1 = kdpb*D(3*n+3);
kdmb = h/sqrt(((D(3*n+1)-D(3*n-1))^2)+(((1/2)*(uold(a+1,b-1)

-(-2*h*N(0,n-1,1)+uold(1,n-1))))^2)+delta*(h^2));
sumabm1 = kdmb*D(3*n-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*D(3*n+1);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==n+1 && b==1
kdpa = h/sqrt((((2*h*N(n+1,1,1)+uold(n,1))-D(n+4))^2)+(((1/2)*(D(n+6)

+(2*h*N(n+1,2,1)+uold(n,2))-D(n+2)-(2*h*N(n+1,0,1)+D(n+1))))^2)
+delta*(h^2));

sumap1b = kdpa*(2*h*N(n+1,1,1)+uold(n,1));
kdma = h/sqrt(((D(n+4)-uold(a-1,b))^2)+(((1/2)*(uold(a-1,b+1)+D(n+6)

-D(n+2)-D(n+1)))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((D(n+6)-D(n+4))^2)+(((1/2)*((2*h*N(n+1,2,1)+uold(n,2))

-uold(a-1,b+1)))^2)+delta*(h^2));
sumabp1 = kdpb*D(n+6);
kdmb = h/sqrt(((D(n+4)-D(n+2))^2)+(((1/2)*((2*h*N(n+1,0,1)+D(n+1))

-D(n+1)))^2)+delta*(h^2));
sumabm1 = kdmb*D(n+2);
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sumab = -(kdpa+kdma+kdpb+kdmb)*D(n+4);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==n+1 && b==n
kdpa = h/sqrt((((2*h*N(n+1,n,1)+uold(n,n))-D(3*n+2))^2)

+(((1/2)*(D(4*n+4)+(2*h*N(n+1,n+1,1)+D(4*n+3))-D(3*n)-(2*h*N(n+1,n-1,1)
+uold(n,n-1))))^2)+delta*(h^2));

sumap1b = kdpa*(2*h*N(n+1,n,1)+uold(n,n));
kdma = h/sqrt(((D(3*n+2)-uold(a-1,b))^2)+(((1/2)*(D(4*n+3)+D(4*n+4)

-uold(a-1,b-1)-D(3*n)))^2)+delta*(h^2));
sumam1b = kdma*uold(a-1,b);
kdpb = h/sqrt(((D(4*n+4)-D(3*n+2))^2)+(((1/2)*((2*h*N(n+1,n+1,1)+D(4*n+3))

-D(4*n+3)))^2)+delta*(h^2));
sumabp1 = kdpb*D(4*n+4);
kdmb = h/sqrt(((D(3*n+2)-D(3*n))^2)+(((1/2)*((2*h*N(n+1,n-1,1)+uold(n,n-1))

-uold(a-1,b-1)))^2)+delta*(h^2));
sumabm1 = kdmb*D(3*n);
sumab = -(kdpa+kdma+kdpb+kdmb)*D(3*n+2);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==1 && b==0
kdpa = h/sqrt(((D(3)-D(2))^2)+(((1/2)*(uold(a,b+1)+uold(a+1,b+1)

-(-2*h*N(1,0,2)+uold(1,1))-(-2*h*N(2,0,2)+uold(2,1))))^2)+delta*(h^2));
sumap1b = kdpa*D(3);
kdma = h/sqrt(((D(2)-D(1))^2)+(((1/2)*(D(n+3)+uold(a,b+1)-(-2*h*N(0,0,2)

+D(n+3))-(-2*h*N(1,0,2)+uold(1,1))))^2)+delta*(h^2));
sumam1b = kdma*D(1);
kdpb = h/sqrt(((uold(a,b+1)-D(2))^2)+(((1/2)*(uold(a+1,b+1)-D(n+3)))^2)

+delta*(h^2));
sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((D(2)-(-2*h*N(1,0,2)+uold(1,1)))^2)+(((1/2)*((-2*h*N(2,0,2)

+uold(2,1))-(-2*h*N(0,0,2)+D(n+3))))^2)+delta*(h^2));
sumabm1 = kdmb*(-2*h*N(1,0,2)+uold(1,1));
sumab = -(kdpa+kdma+kdpb+kdmb)*D(2);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==n && b==0
kdpa = h/sqrt(((D(n+2)-D(n+1))^2)+(((1/2)*(uold(a,b+1)+D(n+4)

-(-2*h*N(n,0,2)+uold(n,1))-(-2*h*N(n+1,0,2)+D(n+4))))^2)+delta*(h^2));
sumap1b = kdpa*D(n+2);
kdma = h/sqrt(((D(n+1)-D(n))^2)+(((1/2)*(uold(a-1,b+1)+uold(a,b+1)
-(-2*h*N(n,0,2)+uold(n,1))-(-2*h*N(n-1,0,2)+uold(n-1,1))))^2)+delta*(h^2));
sumam1b = kdma*D(n);
kdpb = h/sqrt(((uold(a,b+1)-D(n+1))^2)+(((1/2)*(D(n+4)-uold(a-1,b+1)))^2)

+delta*(h^2));
sumabp1 = kdpb*uold(a,b+1);
kdmb = h/sqrt(((D(n+1)-(-2*h*N(n,0,2)+uold(n,1)))^2)+(((1/2)*(D(n+2)

-(-2*h*N(n-1,0,2)+uold(n-1,1))))^2)+delta*(h^2));
sumabm1 = kdmb*(-2*h*N(n,0,2)+uold(n,1));
sumab = -(kdpa+kdma+kdpb+kdmb)*D(n+1);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);
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elseif a==1 && b==n+1
kdpa = h/sqrt(((D(3*n+5)-D(3*n+4))^2)+(((1/2)*((2*h*N(1,n+1,2)+uold(1,n))

+(2*h*N(2,n+1,2)+uold(2,n))-uold(a,b-1)-uold(a+1,b-1)))^2)+delta*(h^2));
sumap1b = kdpa*D(3*n+5);
kdma = h/sqrt(((D(3*n+4)-D(3*n+3))^2)+(((1/2)*((2*h*N(0,n+1,2)+D(3*n+1))

+(2*h*N(1,n+1,2)+uold(1,n))-D(3*n+1)-uold(a,b-1)))^2)+delta*(h^2));
sumam1b = kdma*D(3*n+3);
kdpb = h/sqrt((((2*h*N(1,n+1,2)+uold(1,n))-D(3*n+4))^2)

+(((1/2)*((2*h*N(2,n+1,2)+uold(2,n))-(2*h*N(0,n+1,2)+D(3*n+1))))^2)
+delta*(h^2));

sumabp1 = kdpb*(2*h*N(1,n+1,2)+uold(1,n));
kdmb = h/sqrt(((D(3*n+4)-uold(a,b-1))^2)+(((1/2)*(uold(a+1,b-1)

-D(3*n+1)))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*D(3*n+4);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

elseif a==n && b==n+1
kdpa = h/sqrt(((D(4*n+4)-D(4*n+3))^2)+(((1/2)*((2*h*N(n,n+1,2)+uold(n,n))

+(2*h*N(n+1,n+1,2)+D(3*n+2))-uold(a,b-1)-D(3*n+2)))^2)+delta*(h^2));
sumap1b = D(4*n+4);
kdma = h/sqrt(((D(4*n+3)-D(4*n+2))^2)+(((1/2)*((2*h*N(n-1,n+1,2)

+uold(n-1,n))+(2*h*N(n,n+1,2)+uold(n,n))-uold(a-1,b-1)-uold(a,b-1)))^2)
+delta*(h^2));

sumam1b = kdma*D(4*n+2);
kdpb = h/sqrt((((2*h*N(n,n+1,2)+uold(n,n))-D(4*n+3))^2)

+(((1/2)*((2*h*N(n+1,n+1,2)+D(3*n+2))-(2*h*N(n-1,n+1,2)+uold(n-1,n))))^2)
+delta*(h^2));

sumabp1 = kdpb*(2*h*N(n,n+1,2)+uold(n,n));
kdmb = h/sqrt(((D(4*n+3)-uold(a,b-1))^2)+(((1/2)*(D(3*n+2)

-uold(a-1,b-1)))^2)+delta*(h^2));
sumabm1 = kdmb*uold(a,b-1);
sumab = -(kdpa+kdma+kdpb+kdmb)*D(4*n+3);
res = (1/(h^2))*(sumap1b+sumam1b+sumabp1+sumabm1+sumab);

end

end

sol = N(x,y,der)

function sol = N(x,y,der)

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% This program computes the approximation of the derivatives on the

% boundary (Neumann boundary conditions).

% It has three inputs:
% -> x is the index of the x-coordinate.
% -> y is the index of the y-coordinate.
% -> der=1 is x-derivative and der=2 is y-derivative.
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% This auxiliary program is used in the program auxiliary and in
% bilaplacianb.

global Neumann;
global D;
global h;
global n;

if der==1
if x==0

if y==0
sol = (1/h)*(D(1)-Neumann(n+3));

elseif y==n+1
sol = (1/h)*(D(3*n+3)-Neumann(3*n+5));

else
sol = (1/h)*(D(n+3+2*(y-1))-Neumann(n+3+2*y));

end
elseif x==n+1

if y==0
sol = (1/h)*(Neumann(n+4)-D(n+2));

elseif y==n+1
sol = (1/h)*(Neumann(3*(n+2))-D(4*n+4));

else
sol = (1/h)*(Neumann(n+4+2*y)-D(n+2+2*y));

end
end

elseif der==2
if y==0

sol = (1/h)*(D(x+1)-Neumann(x+1));
elseif y==n+1

sol = (1/h)*(Neumann(3*(n+2)+1+x)-D(3*n+3+x));
end

end

end

[A,b] = laplacian()

function [A,b] = laplacian()

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% This program computes the matrix and the vector of independent terms of

% the system of equations obtained with the discretization of
% laplacian(u) = 0.

% It is an adaptation of the program harmonicInpainting.

% This auxiliary program is used in the program CHBinary.

global n;
global h;
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global D;

% A is a matrix with a lot of zeros, so it is sparse:
A = sparse(n*n, n*n);

% aux represents a number which is used a lot in the program:
aux = 1/(h^2);

% We fill the matrix A:

%%Diagonal of the matrix.
for i = 1:n*n

A(i,i) = -4*aux;
end

%%Elements above and below the diagonal.
for ind = 0:n-1

for i = 1:n-1
A(i+n*ind,(i+1)+n*ind) = aux;
A((i+1)+n*ind,i+n*ind) = aux;

end
end

%%Elements of the diagonal sub-matrices.
for ind = 0:n-2

for i = 1:n
A(i+n*ind,(i+n*ind)+n) = aux;
A((i+n*ind)+n,i+n*ind) = aux;

end
end

% We fill the vector b (independent terms):
b = zeros(1,n*n);

%%1. Independent terms which correspond with the n first elements of
%%the vector b.

b(1) = -aux*D(n+3)-aux*D(2);
b(n) = -aux*D(n+4)-aux*D(n+1);
for i = 2:n-1

b(i) = -aux*D(i+1);
end

%%2,...,n-1. Independent terms which correspond with the middle elements
%%of the vector b.

for j = 2:n-1
b((j-1)*n+1) = -aux*D(n+3+2*(j-1));
b(j*n) = -aux*D(n+2+2*j);

end

%%n. Independent terms which correspond with the n last elements of
%%the vector b.
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b(n*(n-1)+1) = -aux*D(3*n+1)-aux*D(3*n+4);
b(n*n) = -aux*D(3*n+2)-aux*D(4*n+3);
for i = 2:n-1

b((n-1)*n+i) = -aux*D(3*n+3+i);
end

end

A = bilaplacianA()

function A = bilaplacianA()

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% This program computes the matrix of the system of equations obtained

% with the discretization of bilaplacian(u) = 0.

% This auxiliary program is used in the program CHBinary and in
% CHGreyValues.

global n;
global h;

% A is a matrix with a lot of zeros, so it is sparse:
A = sparse(n*n, n*n);

% aux represents a number which is used a lot in the program:
aux = 1/(h^4);

% We fill the matrix A:

%%Diagonal of the matrix:

%%%The first and the last n elements of the diagonal.
A(1,1) = 22*aux;
A(n,n) = 22*aux;
A(n*(n-1)+1,n*(n-1)+1) = 22*aux;
A(n*n,n*n) = 22*aux;
for i = 2:n-1

A(i,i) = 21*aux;
A(n*(n-1)+i,n*(n-1)+i) = 21*aux;

end

%%%Remaining elements.
for ind = 1:n-2

A(n*ind+1,n*ind+1) = 21*aux;
A((ind+1)*n,(ind+1)*n) = 21*aux;
for i = 2:n-1

A(n*ind+i,n*ind+i) = 20*aux;
end

end
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%%Elements that are above and below the diagonal.
for ind = 0:n-1

for i = 1:n-1
A(i+n*ind,(i+1)+n*ind) = -8*aux;
A((i+1)+n*ind,i+n*ind) = -8*aux;

end
end

%%Remaining elements of the diagonal blocks of dimension nxn.
for ind = 0:n-1

for i = 1:n-2
A(i+n*ind,(i+2)+n*ind) = aux;
A((i+2)+n*ind,i+n*ind) = aux;

end
end

%%Blocks above and below the diagonal blocks.
for ind = 0:n-2

for i = 1:n
A(i+n*ind,(i+n*ind)+n) = -8*aux;
A((i+n*ind)+n,i+n*ind) = -8*aux;

end
end
for ind = 0:n-2

for i = 1:n-1
A(i+n*ind,(i+n*ind)+n+1) = 2*aux;
A((i+1)+n*ind,(i+n*ind)+n) = 2*aux;
A((i+n*ind)+n+1,i+n*ind) = 2*aux;
A((i+n*ind)+n,(i+1)+n*ind) = 2*aux;

end
end

%%Identity matrices.
for ind = 0:n-3

for i = 1:n
A(i+n*ind,(i+n*ind)+2*n) = aux;
A((i+n*ind)+2*n,i+n*ind) = aux;

end
end

end

b = bilaplacianb()

function b = bilaplacianb()

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% This program computes the vector of independent terms of the system of

% equations obtained with the discretization of bilaplacian(u) = 0.

% This program uses one auxiliary function:
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% -> N.

% This auxiliary program is used in the program CHBinary and in
% CHGreyValues.

global n;
global h;
global D;

% aux represents a number which is used a lot in the program:
aux = -1/(h^4);

% We fill the vector b:
b = zeros(1,n*n);

%%1. Independent terms which correspond with the n first elements of
%%the vector b.

b(1) = 2*aux*D(3)-8*aux*D(2)+2*aux*D(1)-8*aux*D(n+3)+2*aux*D(n+5)
-2*aux*h*(N(1,0,2)+N(0,1,1));

b(2) = 2*aux*D(4)-8*aux*D(3)+2*aux*D(2)+aux*D(n+3)-2*aux*h*N(2,0,2);
for i = 3:n-2

b(i) = 2*aux*D(i+2)-8*aux*D(i+1)+2*aux*D(i)-2*aux*h*N(i,0,2);
end
b(n-1) = aux*D(n+4)+2*aux*D(n+1)-8*aux*D(n)+2*aux*D(n-1)

-2*h*aux*N(n-1,0,2);
b(n) = 2*aux*D(n+2)-8*aux*D(n+4)+2*aux*D(n+6)-8*aux*D(n+1)+2*aux*D(n)

-2*h*aux*(N(n,0,2)-N(n+1,1,1));

%%2. Independent terms which correspond with the n elements of
%%the vector b from n+1 to 2n.

b(n+1) = aux*D(2)+2*aux*D(n+3)-8*aux*D(n+5)+2*aux*D(n+7)-2*h*aux*N(0,2,1);
b(n+2) = aux*D(3)+aux*D(n+5);
for i = 3:n-2

b(n+i) = aux*D(i+1);
end
b(2*n-1) = aux*D(n+6)+aux*D(n);
b(2*n) = 2*aux*D(n+4)-8*aux*D(n+6)+2*aux*D(n+8)+aux*D(n+1)

+2*h*aux*N(n+1,2,1);

%%3,...,n-2. Independent terms which correspond with the middle elements
%%of the vector b.

for j = 3:n-2
b((j-1)*n+1) = 2*aux*D(n+3+2*(j-2))-8*aux*D(n+3+2*(j-1))

+2*aux*D(n+3+2*j)-2*h*aux*N(0,j,1);
b((j-1)*n+2) = aux*D(n+3+2*(j-1));
b(j*n-1) = aux*D(n+4+2*(j-1));
b(j*n) = 2*aux*D(n+4+2*(j-2))-8*aux*D(n+4+2*(j-1))+2*aux*D(n+4+2*j)

+2*h*aux*N(n+1,j,1);
end

%%n-1. Independent terms which correspond with the n elements of
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%%the vector b from n(n-2)+1 to n(n-1).
b(n*(n-2)+1) = aux*D(3*n+4)+2*aux*D(3*n+1)-8*aux*D(3*n-1)+2*aux*D(3*n-3)

-2*h*aux*N(0,n-1,1);
b(n*(n-2)+2) = aux*D(3*n+5)+aux*D(3*n-1);
for i = 3:n-2

b(n*(n-2)+i) = aux*D(3*n+3+i);
end
b(n*(n-1)-1) = aux*D(3*n)+aux*D(4*n+2);
b(n*(n-1)) = 2*aux*D(3*n-2)-8*aux*D(3*n)+2*aux*D(3*n+2)+aux*D(4*n+3)

+2*h*aux*N(n+1,n-1,1);

%%n. Independent terms which correspond with the n last elements of
%%the vector b.

b(n*(n-1)+1) = 2*aux*D(3*n+5)-8*aux*D(3*n+4)+2*aux*D(3*n-1)-8*aux*D(3*n+1)
+2*aux*D(3*n+3)-2*h*aux*(N(0,n,1)-N(1,n+1,2));

b(n*(n-1)+2) = 2*aux*D(3*n+6)-8*aux*D(3*n+5)+2*aux*D(3*n+4)+aux*D(3*n+1)
+2*h*aux*N(2,n+1,2);

for i = 3:n-2
b(n*(n-1)+i) = 2*aux*D(3*n+4+i)-8*aux*D(3*n+3+i)+2*aux*D(3*n+2+i)

+2*h*aux*N(i,n+1,2);
end
b(n*n-1) = aux*D(3*n+2)+2*aux*D(4*n+3)-8*aux*D(4*n+2)+2*aux*D(4*n+1)

+2*h*aux*N(n-1,n+1,2);
b(n*n) = 2*aux*D(3*n)-8*aux*D(3*n+2)+2*aux*D(4*n+4)-8*aux*D(4*n+3)

+2*aux*D(4*n+2)+2*h*aux*(N(n,n+1,2)+N(n+1,n,1));

end

sol = laplacianF()

function sol = laplacianF()

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% This program computes a vector which stores the discretization of

% laplacian(F’(uold)).

% This program uses one auxiliary function:
% -> Fder.

% This auxiliary program is used in the program CHBinary.

global n;
global h;
global D;
global uold;

uold = reshape(uold,n,n);

% aux represents a number which is used a lot in the program:
aux = 1/(h^2);
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% We fill the vector sol.
sol = zeros(n*n,1);

for j = 2:n-1
for i = 2:n-1

sol((j-1)*n+i) = aux*(Fder(uold(i+1,j))+Fder(uold(i-1,j))
+Fder(uold(i,j+1))+Fder(uold(i,j-1))-4*Fder(uold(i,j)));

end
end

i = 1;
for j = 2:n-1

sol((j-1)*n+i) = aux*(Fder(uold(i+1,j))+Fder(D(n+3+2*(j-1)))
+Fder(uold(i,j+1))+Fder(uold(i,j-1))-4*Fder(uold(i,j)));

end

i = n;
for j = 2:n-1

sol((j-1)*n+i) = aux*(Fder(D(n+4+2*(j-1)))+Fder(uold(i-1,j))
+Fder(uold(i,j+1))+Fder(uold(i,j-1))-4*Fder(uold(i,j)));

end

j = 1;
for i = 2:n-1

sol((j-1)*n+i) = aux*(Fder(uold(i+1,j))+Fder(uold(i-1,j))
+Fder(uold(i,j+1))+Fder(D(i+1))-4*Fder(uold(i,j)));

end

j = n;
for i = 2:n-1

sol((j-1)*n+i) = aux*(Fder(uold(i+1,j))+Fder(uold(i-1,j))
+Fder(D(3*n+3+i))+Fder(uold(i,j-1))-4*Fder(uold(i,j)));

end

i = 1; j = 1;
sol((j-1)*n+i) = aux*(Fder(uold(i+1,j))+Fder(D(n+3))+Fder(uold(i,j+1))

+Fder(D(2))-4*Fder(uold(i,j)));

i = n; j = 1;
sol((j-1)*n+i) = aux*(Fder(D(n+4))+Fder(uold(i-1,j))+Fder(uold(i,j+1))

+Fder(D(n+1))-4*Fder(uold(i,j)));

i = 1; j = n;
sol((j-1)*n+i) = aux*(Fder(uold(i+1,j))+Fder(D(3*n+1))+Fder(D(3*n+4))

+Fder(uold(i,j-1))-4*Fder(uold(i,j)));

i = n; j = n;
sol((j-1)*n+i) = aux*(Fder(D(3*n+2))+Fder(uold(i-1,j))+Fder(D(4*n+3))

+Fder(uold(i,j-1))-4*Fder(uold(i,j)));

uold = reshape(uold,[],1);
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end

res = Fder(a)

function res = Fder(a)

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% This program evaluates the function F’(x)=4x^3-6x^2+2x with the input

% value a.

% This auxiliary program is used in the program laplacianF.

res = 4*(a^3)-6*(a^2)+2*a;

end

sol = laplacianaux()

function sol = laplacianaux()

% Name: CARMEN MAYORA CEBOLLERO
% Date: 2020
% This program computes a vector which stores the discretization of

% laplacian(div((grad(uold))/(normdelta(grad(uold))))).

% This program uses one auxiliary function:
% -> auxiliary.

% This auxiliary program is used in the program CHGreyValues.

global n;
global h;

% aux represents a number which is used a lot in the program:
aux = 1/(h^2);

% We fill the vector sol
sol = zeros(n*n,1);

for j = 1:n
for i = 1:n

sol((j-1)*n+i) = aux*(auxiliary(i+1,j)+auxiliary(i-1,j)
+auxiliary(i,j+1)+auxiliary(i,j-1)-4*auxiliary(i,j));

end
end

end
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