Anexo 1. Caso de N=8 elementos

De forma totalmente analoga al caso de N=4 elementos, podremos ver el caso no trivial de

N=8 elementos.

Etapa 1

Etapa 3.1

Etapa 3.3

Etapa 4.2

Ftapa 4.4

N
/NN

fdviody

N
ANVAN
Aedudody

7N
ANAN

Aoy

AN
A NVAN
T

7N
ANAN

Jri

TN
AT
Ay
AN
/NN
Ahird:
P
/NN
s dody
PN
/NN
irhsiod:
Etapa 4.3
P
/NN
ATt
Etapa 4.5
Pl
/NN

piphd:

Etapa 4.6

24

o N

/NN YANVAN
Il s
Etapa 5.1 Etapa 5.2
PN Pl
/NN /NN
ra g
Etapa 5.3 Etapa 5.4
N N
ANVAN NN
Etapa 5.5 ﬁ/lk Zgééb ?\Q Etapa 5.6 ﬁ/{/\lé\@éb (I{\OI
N N
ANAN A
ATk Y iTaT e
Etapa 5.7 2 : Etapa 5.8 z 2
N N
/NN ANVAN
N
Etapa 6.1 Etapa 6.2
PR A
/NN YANVAN
Y%
o AR
ANAN A
S
Etapa 6.5 Etapa 6.6
P A
/NN /NN

S I h

Etapa 6.7 2Ftapa 6.8

7N A
/NN /NN

I e

Etapa 7.1 Etapa 7.2

PN Pl
/NN /NN

I

Etapa 7.3 Etapa 7.4

PN ey
ANVAN /NN

WINPT e

Etapa 7.5 Etapa 7.6

PR
ANVA

WIIITT

Etapa 8

Una vez planteadas las posibles rupturas vamos a describirlo de forma cuantitativa, las pri-

meras etapas seran triviales y tales que

(1) =8 (1) =
I(2) = 10 — 5(2) = 1%

A partir de esa etapa ya no es simétrica la ruptura de un elemento respecto de cualquiera de
la fibra. Podremos observar que de la segunda etapa podemos tener 3 configuraciones diferentes

en funciéon de cuél sea el elemento roto. Sin embargo, podemos hacer su anélisis y ver

26

4 2

I'(3,1) =12 P3.1)= — ==
(3.2) = 12 — P32 =21
e ’ 10 5

4 2

1'(3,3) =12 P - - _Z

Aunque en esta etapa en concreto podemos comprobar que, no nos sirve como ejemplo, ya
que ocurre lo mismo que en la tercera etapa del caso anterior, todas las configuraciones tienen

la misma anchura, por lo que la anchura de la etapa, pesadas las probabilidades, sera igual

T(3) = T(3,1)P(3,1) + T(3.2)P(3.2) + T(3,3) P(3,3) = 12% + 12% + 12% 12 (28)
5(3) = 1—12 (29)

Ahora bien, para la cuarta y quinta etapa, en las siguientes configuraciones veremos ya el por
qué de la necesidad del algoritmo en cuestion. A continuacion, en esta cuarta etapa, se veran las
2 configuraciones posibles de la ruptura de la configuracion 3.1, que seran las figuras 4.1 y 4.2,
de la ruptura de la configuracién 3.2 tendremos las figuras 4.3 y 4.4, andlogamente de la ruptura
de 3.3 veremos las configuraciones 4.5 y 4.6, aunque algunas seran iguales entre si y podremos

agruparlas

41=43=A (30)
P(A) = P(4,1)P(3,1) + P(4,3)P(3,2) = %% + %% = % (31)
T'(A) =20 (32)

42=45=B (33)

P(B) = P(4,2)P(3,1) + P(4,5)P(3,3) = é% + ;% = % (34)
[(B) =14 (35)

27

44=46=C (36)

P(C) = P(4,4)P(3,2) + P(4,6)P(3,3) = %% + %% _1 (37)

[(A) =14 (38)

Entonces tenemos ahora dos posibles diferentes anchuras, (ya que las anchuras de dos de esas
configuraciones, B y C, son iguales), por ello tendremos esa anchura de la ruptura de esta etapa

como

P(4) = T(A)P(A) + T(B)P(B) + T(C)P(C) = 202 +145 + 145 =202 + 147 (39)

§(4) = 11/175 = 0,06285 (40)

Podemos ver por ello que esta etapa podra darnos dos valores de la anchura posibles, dados
como I' = 20 con un 0.4 de probabilidad y I' = 14 con una probabilidad de 0.6.

Algo parecido sucederé para la siguiente etapa, empezando desde la posible ruptura del estado
A, observaremos que tenemos dos configuraciones posibles 5.1 y 5.2, para B tendremos 5.3, 5.4
y 5.5, y finalmente para C tendremos 5.6, 5.7 y 5.8, por lo cual el procedimiento sera analogo al

caso anterior.

51=FE (41)

P(E) = P(5,1)P(A) = %% _ % (42)

I(E) = 16 (43)

52—=53=56=F (44)

P(F) = P(5.2)P(A) + P(5,3)P(B) + P(5.6)P(C) = %% 4 %% 4 % - % (45)
I(F) = 22 (46)

28

P(G) = P(5,4)P(B) ;% _ % (48)

I(G) = 16 (49)

55—57—H (50)

P(H) = P(5.5)P(B) + PBT)P(C) = 12 + 21 = % (51)
I(H) =16 (52)

58=1 (53)

P(I) = P(58)P(C) = 1% _ 3—15 (54)

I(I)=16 (55)

Con lo cual veremos que, la anchura final de esta etapa vendra dada como

') =I'(E)P(E)+[(F)P(F)+I'(G)P(G)+I'(H)P(H)+I'(I)P(I) = (56)

8 74 4 4 1 101 74
=16—+22— +16—= + 16~ + 16— = 16—

22—
25 175 35 35 35 175 * 175 (57)

Donde, como en la etapa anterior, tenemos dos posibles valores de la anchura (16 y 22) dados
por esas probabilidades(101/175 y 74/175). Y un resultado tal que
0(5) = 1703/30800 = 0,055292207 (58)

En el resto de etapas este suceso no ocurre como se va a comprobar, de la ruptura de E
tendremos 6.1, de F' tendremos las figuras 6.2, 6.3 y 6.4, de la ruptura de G podremos ver 6.5,

de H tendremos 6.6 y 6.7 y de I tendremos 6.8, por lo que de nuevo agrupamos tal que

1208

P(J) = P(6,1)P(E) + P(6,2)P(F) = 1 (60)
I(J) =24 (61)
6,3=66=1L (62)
258
P(L) = P(6,3)P(F) + P(6.6)P(H) = oo (63)
I(L) = 24 (64)
64=65=67=68=M (65)
P(M) = P(6,4)P(F) + P(6,5)P(G) + P(6,7)P(H) + P(6,8)P(I) = % (66)
I(M) = 24 (67)

Pero realmente las probabilidades ahora solo influyen en el camino, ya que realmente la
anchura es la misma, luego siempre tendra el mismo valor, como ya hemos apreciado en varias

ocasiones previamente

1208 2538 459
[(6) = T(J)P(J) + D(L)P(L) + T(M)P(M) = 2470 + 25500 + 24752 =24 (68)
5(6) = 1/24 = 0,04166... (69)

Continuamos con la séptima etapa, de la ruptura de J tendremos 7.1 y 7.2, de la ruptura de L
obtendremos como posible 7.3 y 7.4, y finalmente de M se veran 7.5 y 7.6, por lo que agrupando

de nuevo

71=73=N (70)
P(N) = P(7,1)P(J) + P(7,3)P(L) (71)
I'(N) = 32 (72)

30

P(O) = P(72)P(L) + P(7,5)P(M) (74)
(0) =32 (75)
7T4=76=P (76)
P(P) = P(74)P(L) + P(7,6)P(M) (77)
['(P) =32 (78)
Y entonces
I'(7) = T(N)P(N) + I'(O)P(0O) + I'(P)P(P) = 32 (79)
5(7) = 3—12 _ 0,03125 (80)

Para la ultima etapa, las rupturas de N, O y P coinciden, como era de esperar, en una tnica

configuracion tal que es la configuracion de la etapa 8

P(s) =1 (81)
I(8) = 64 (82)
5(8) = 614 — 0,0015625 (83)

De esta forma podremos concluir que esos dos posibles resultados para las anchuras de esas
dos etapas vendran dados con esas proporcionalidades, por lo cual queda probado que en un
caso tan sencillo como es el de 8 elementos, tendremos que realizar cierta cantidad de estadistica
usando MonteCarlo, de tal forma que el programa, por el hecho de promediar a tantas rupturas
posibles, nos acabe dando esas probabilidades en forma de la cantidad correcta de anchuras en

esas dos etapas.

31

Anexo 2. Codigo

#include <stdio.h >

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <string.h>

#defne NormRANu (2.3283063671E-10F)
#defne verFallo

extern double Random(void);

extern void ini_ran(int SEMILLA);
unsigned int irr[256];

unsigned char ind_ran,igl,ig2,ig3; unsigned int irl;
double Random(void){

double r;

igl=ind ran-24;

ig2=ind ran-55;

igd=ind _ran-61;
irr[ind_ran]=irr[igl|+irr[ig2][;
irl=(irr[ind _ran|irr[ig3]);

ind ran++;

r=ir1*NormRANu;

return r;

¥

void ini_ran(int SEMILLA){ int IN[LFACTOR,SUM,i;
srand(SEMILLA);

INI=SEMILLA;

FACTOR=6739T7,

SUM=7364893;

32

for(i=0; 1<256; i++){
INI—(INI*FACTOR SUM);

irr[i]=INT;

}
ind_ran=igl=ig2=ig3=0;
}

void inicializaArboly Vector(int matrix|p+1|[N],double vectorCargas[N],int sigma0){
int i,j;

for(i=0;i<p+1;i++){

for(j=0;j<N;j++){

matrix[i][j]=1;

vectorCargas[j]=sigma0;//Se repite p+1 veces la inicializacion, pero al final
}

¥

/* for(j=0:j<Nij++){

matrix|0][j]=j;

} */ } //Con 1=sano, 0=roto, y veriamos asi inicializo un arbol sano

void muestraArbolyVector(int matrix[p-+1][N],double vectorCargas|N])

int ij;

for(i=0;i<p+Lit+){

for(j=0;j<Nsj++){

J /printf("

printf("n");//Se ha llegado al nal de la la de la matriz
printf("VectorCargas: ");

for(i=0;i<N;i++)

printf("

printf();

void muestraVector(double * vector) int i; for(i=0;i<N;i++) printf("vector| printf();
void secuenciaAleatoria(int * seCal){ int aux, j,aleat;

for(j=0;j<N;j+-+){ seCallj]=j;

}

33

//Se ha inicializado el seCal como si fuesen de 0 a N para ir indicando una sec aleatoria
for(j=0;j<Nsj++){

aleat=(int)((N-1-j)*Random());

//printf("N-1-j=aux=seCal[N-1-j|;

seCal|N-1-j]=seCal[aleat];

seCal[aleat]|=aux;

//muestraVector(seCal);

//getchar();

}

for(j=0;j<N;j++){

/ /printf("seCal|

¥

//printf();

}

int potenciaManual(int ci, int pi){

int res,j;

res=1;

for(j=0;j<pi;j++){

res—ci*res;

}

return res;

}

void vektorReparte(double vectorCargas[N|,int matrix[p+1|[N],int pi,int k,double carga,int
i,int controlDeControl){

int j,l,m,jumpo,sum,zum,pasos,tantas,control;

/// NECESITO MEMORIA DINAMICA

vektor[potenciaManual(c,pi)]

FILE * uw;

uw=fopen("vectork.txt",.at");

int* vektor;

vektor=(int*)malloc(potenciaManual(c,pi)*sizeof(int));

34

control=0;
for(jumpo=Xk;jumpo<k-+potenciaManual(c,pi);jumpo-+-+){
sum=0;

for(j=05j<c;j++){

if(matrix[0][jumpo*c+j|>0){

sum=sum-+1;

}

}

vektor[jumpo-k|=sum;

/ /fprintf(uw,"vektor| %d]= %d ",jumpo-k,vektor[jumpo-k|);
control=control4vektor[jumpo-k|;

¥

/ /fprintf(uw,control=

//fprintf(uw,);

if(control==0){

/ /fprintf(uw,"#0. control=0, activo ");

if (controlDeControl==1){

//tprintf(uw,controlDeControl= %d ",controlDeControl);
//controlDeControl=0;
vektorReparte(vectorCargas,matrix,pi-+1,(int) (k/c),carga,i,controlDeControl);

controlDeControl=0;

}

}
if(control!=0 && controlDeControl==1){

//fprintf(uw,"0. control!=0, activo loop pasos ");
for(pasos=1;pasos<pi+1;pasos++){
for(1=0;1<potenciaManual(c,pi-pasos);1+-+){
zum=0;

for(m=0;m<c;m+-+)

sum=0;

for(j=0;j<potenciaManual(c,pasos-1);j++){

35

if(vektor| I*potenciaManual(c,pasos) +m*potenciaManual(c,pasos-1) + j| >0){
sum=sum-+1;

¥

}

if(sum >0){

zum=zum-1;

}

}
//A multiplicar

for(m=0;m<c;m+-+){

for(j=0;j<potenciaManual(c,pasos-1);j++)

if(vektor| I*potenciaManual(c,pasos) +m*potenciaManual(c,pasosl) + j| >0){

vektor| I*potenciaManual(c,pasos) +m*potenciaManual(c,pasos-1) + j| = zum*vektor| [*potenciaManual(c,p
+m*potenciaManual(c,pasos-1) + j;

¥

¥

}

//Fin de la l-esima interaccion

}
//Fin del paso-esimo interaccion
}
}

rolDeControl==1) //fprintf(uw,"#0. control!=0, activo loop jumpo");
for(jumpo=k;jumpo<k+potenciaManual(c,pi);jumpo-+-+){
if(vektor[jumpo-k|>0){

for(j=0;j<c;j++){

if(matrix[0][jumpo*c+j]>0){
vectorCargas|jumpo*c+j|+=carga/vektor|[jumpo-k|;

¥

}

}

36

¥
}

fclose(uw);

free(vektor);

J /printf("bye ");

//getchar();

void redefineMatrixy Vector27(double vectorCargas[N],int matrix|[p+1|[N],int fibraRota,int i,int
tal){

int pi,k,subo,j;

int cuentaSanos,cuentaSanotes,soloReparteUno,controlDeControl;

double carga,cargaProbby,cargaPls,cargaProbbySuma;

matrix[0][fibraRota|=0;

carga=vectorCargas|fibraRota];

vectorCargas|fibraRota|=0;

cuentaSanos=0;

soloReparteUno=1;

int pip,potpi,csub;

FILE*v;

v=fopen("pi.txt",.at");

FILE * uw;

uw=fopen("vectork.txt",.at");

for(pi=0;pi<p;pi++)

pip=(int)(fibraRota/pow(c,pi+1));

potpi=potenciaManual(c,pi);

for(j=0;j<potenciaManual(c,pi+1);j++)

if (matrix|0|[pip*potenciaManual(c,pi+1)+j])

cuentaSanos+-+;

if(cuentaSanos==0)

matrix|pi+1|[pip]=0;

if(cuentaSanos!=0) if(soloReparteUno) soloReparteUno=0;

controlDeControl=1;

37

k=pip*potpi;
vektorReparte(vectorCargas,matrix,pi,k,carga,i,controlDeControl);
}

}

if(soloReparteUno==0)

break;

for(j=0;j<N;j+-+)
cargaPls-+=vectorCargas|j|;
//printf(cargaPls= %f " cargaPls);
//tprintf(v,cargaTot= %If" ,cargaPls);
fclose(v);

fclose(uw);

double cargacons;

cargacons=0.0;

for(j=0;j<N;j++)

if(matrix[0][j])
cargacons+=vectorCargas|j;

void tiempos(double * vectorBigTala, int tala) FILE* vbt;
vbt=fopen("vbt.txt","wt");

FILE* timy;
timy=fopen("tiempos.txt","wt");
//printf("hi");

int i,n;

double m,S,prev_mean;

m=0;

S=0;

n=0;

double timeMed,errorTime,desvEst;
timeMed=0.0;

for(i=0;i<tala;i++)

timeMed-+=vectorBigTalali| /tala;

38

for(i=0;i<tala;i++)

prev_mean=m;

n=n+1;

m=m-+(vectorBigTalal[i]-m) /n;

S=S+ (vectorBigTala[i]-m)*(vectorBigTala|i]-prev_ mean);

/ /errorTime=(vectorBigTala[i]-timeMed)*(vectorBigTalali|-timeMed) /tala;

fprintf(timy," %f" ,vectorBigTalali]);

desvEst=sqrt(S/tala);

errorTime=desvEst /sqrt(tala);

//errorTime=sqrt(errorTime);

fclose(vbt);

fclose(timy);

void leyDePotencias(int tala, int gamma0,int sigma0,double vectorCargas|N],int matrix[p-+1][N],int
ro,double * Tgamma,double * Tdelta)

int 1,j,k,fibraRota,m,seCal[N];

double gammaMayus,gammaMinus|N],probRuptura[N];

double aleat,probby;

double gaMayus|N],deltA[N];

double delt[N],cargaPls;

double * vectorDeltas4;

double * vectorDeltas5;

double * vectorBigTala;

vectorBigTala=(double*)malloc(tala*sizeof(double));

vectorDeltasd=(double*)malloc(tala*sizeof(double));

vectorDeltas5=(double*)malloc(tala*sizeof(double));

i=1;

for(j=0;j<N;j++) gaMayus|j]=0.0;

delt A[j]=0.0;

FILE*u; u=fopen("pi.txt","wt"); fclose(u); FILE*v; v=fopen("pi.txt","wt");

for(k=0;k<talak+-+)

//vectorBigTalalk|=1/(N*N);

39

if(k %1000==0) printf("LLEVO %d " k);
//printf("tala= %d " k);
for(i=1;i<N+1;i++)

//printf(.etapa %d-esima" i);
for(j=0;j<N;j++)
gammaMinus|j|=gamma0*pow((vectorCargas[j|/sigma0) , ro);
gammaMayus=0.0;

for(j=0;j<N;j++)

if(matrix[0][j])
gammaMayus+=gammaMinus|j|;

gaMayus|i] +=gammaMayus/tala;
deltAfi]+=(1.0/gammaMayus) /tala;
//vectorBigTala[k]+=1/gammaMayus;
if(i==4)

vectorDeltasd[k|=1/gammaMayus;

if(i==>5)

vectorDeltasb[k]=1/gammaMayus;
//tprintf(deltas,"delta| %d]= %f ",i,deltAfi]);
for(j=0;j<N;j+-+)

if(matrix[0][j])
probRuptura[j|=gammaMinus|j| /gammaMayus;
else

probRuptura[j|=0.0;

probby=0.0;

aleat=Random();

secuenciaAleatoria(seCal);

for(j=0;j<N;j+-+)

// /montecarlo

if(matrix[0][seCallj]])
probby-+=probRuptura[seCall[j]|;

if(probby >aleat)

40

fibraRota=seCallj|;

break;

redefineMatrixy Vector27(vectorCargas,matrix,fibraRota,i,k);
cargaPls=0.0;

for(j=0;j<N;j++)

cargaPls+=vectorCargaslj|;
inicializaArbolyVector(matrix,vectorCargas,sigma0); //getchar();
///TOCA TRABAJAR CON vectorBigTala
tiempos(vectorBigTala,tala);
deltad5(vectorDeltas4,vectorDeltash,tala);
free(vectorBigTala);

free(vectorDeltas4);

free(vectorDeltas));

fclose(v);

/ /fclose(vh);

gaMayus|[N|=0.0; for(j=0;j<N;j++)
gaMayus[N|+=vectorCargaslj|;
gaMayus|N|=gaMayus|N|*gaMayus|N];
deltA[N]=1.0/gaMayus|N];

*Tgamma=0.0;

*Tdelta=0.0;

for(j=1;j<N+1;j++)

delt[j]=1.0/gaMayus|j];

*Tgamma+=delt|j];

*Tdelta+=deltAlj];

void rupturaVariante(int tala,double * Tgamma,double * Tdelta)
int matrix[p+1][N],i;

int sigmal,gammal,ro;

double T,delta|N],vectorCargas|N];

double Tgam,Tdel;

sigmalO=1;

41

gammal=1;

ro=2;

inicializaArbolyVector(matrix,vectorCargas,sigma0);///Inicializar el arbol para los paréme-
tros dados //muestraArbolyVector(matrix,vectorCargas);

*Tgamma—=Tgam; *Tdelta=Tdel;

int main()

c=2;//2

p=16;//20

N=potenciaManual(c,p);

double Tgamma, Tdelta,

int i,pi,pmax,tala;

tala=100;

pmax=1;

pi=p;

FILE*fallingTime;

fallingTime=fopen("weAreGoingDown.txt",.at");

FILE*deltas;

deltas=fopen("deltas.txt",.at");

for(i=0;i<pmax;i+-+)

p=piti;

N=potenciaManual(c,p); /// Defino las potencias que quiero como enteros gracias a este

//getchar();

rupturaVariante(tala,&Tgamma,&Tdelta);

///El algoritmo de ruptura se desarrolla entero en

este ///algoritmo junto con otro que llama "leyDePotencias(...) 2

este llama a redefineMatrixyVector27(...)"

/ /getchar();

fclose(fallingTime);

fclose(deltas);
(84)

42

43

