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Resumen

Reliability theory is a discipline which studies systems depending on their failure. The aim of this
document is to study systems made up of some components and how the failure of each component
causes the system failure.

The content is divided into five chapters. We begin the document with a review, Chapter 1: ‘General
notions’. In this section we are going to study the following:

Probability spaces: The paragraph focuses on explaining the basic concept of random variables
such as their definition or different functions defined in order to study them: distribution function,
survival fuction... Besides, we show some attractive results about the mean that we will need in
the next chapters.

Order Statistic: We are going to focus on the definition of Order Statistic and how to calculate
their distribution.

Chapter 2 represents an introduction to systems and their relationship with their components. We con-
sider the structure function ϕ , which is a mapping that associates the condition of the components
(working or not) with the work or the failure of a system. This function brings back the value 1 if the
system works and 0 elsewhere. We will analize how the way the components are organized affects to
the structure function, so we will see the most commonly used systems. Then, we consider the most
important feature for designing a system: monotonicity and absence of irrelevant component. These two
properties form the basis for the following definition, coherent system. The end of the chapter studies
path sets and cut sets. Their properties and results provide a way to calculate the structure function.
Besides, we will define the reliability of a system.

In Chapter 3 we introduce an alternative index which has the virtue of being manageable and easily
interpretable, although it is less general than a structure function. Such index is called the system’s
signature and it is denotes by sτ . In this chapter is very important the use of order statistics. Taking
into account the random variables X1, ...,Xn independently and identically distributed (i.i.d) which
represesent the component lifetimes of an n component coherent system with signature s, we will study
the computation of the signature vector. In addition, we go on with the concept of a mixed system.
Considering the collection of all coherent systems of order n, one of them is selected by a random
process according to a fixed and known probability.

At this stage the question of how to order the random lifetimes arises. For this reason, the
Chapter 4 is based on Stochastic Orders. We will study the following orders, the relatinship between
them and some results of interest. In particular, let X and Y be two random variables, we will see the
next orders:

Usual Stochatic Order X ≤st Y : It is the most natural candidate for a stochastic order due to it is
based on the comparison of the distribution function, i.e., X is said smaller than Y with respect to
usual stochastic order if FX(t)≥ FY (t) ∀t ∈ R .
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IV Resumen

Hazard Rate Order X ≤hr Y : It implies that FY (t)
FX (t)

is increasing, being F the survival function.
Furthermore, we describe the Reversed Hazard rate order X ≤rh Y which implies that the function
FY (t)
FX (t)

is increasing.

Likelihood Ratio Order X ≤lr Y : It implies that fY (t)
fX (t)

is increasing over the union of the supports
of X and Y

Finally, in the last chapter, Chapter 5, we will focus on the application of the concepts and results
provided in Chapter 3 to study systems as defined in Chapter 3. We consider the problem of comparing
the performance of two mixed systems. Three different scenarios will be treated, each one identifying
conditions which yield increasingly stronger conclusions about the superiority of one system over
another. Our treatment focuses on the three orders explained in the Chapter 4, usual order, hazard rate
order and likelihood ratio order. The main part of the section is the proof the the following theorems:

Let s1 and s2 be the signatures of the two mixed systems of order n, both based on
components with i.i.d lifetimes with common distribution F. Let T1 and T2 be their respective
lifetimes. If s1 ≤st s2, then T1 ≤st T2.

Let s1 and s2 be the signatures of the two mixed systems of order n, both based on
components with i.i.d lifetimes with common distribution F. Let T1 and T2 be their respective
lifetimes. If s1 ≤hr s2, then T1 ≤hr T2.

Let s1 and s2 be the signatures of the two mixed systems of order n, both based on
components with i.i.d lifetimes with common distribution F. Let T1 and T2 be their respective
lifetimes. If s1 ≤lr s2, then T1 ≤lr T2.
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Capítulo 1

Nociones generales

A lo largo de este capítulo veremos ciertos conceptos de probabilidad, que serán necesarios para el
seguimiento y comprensión del documento.

1.1. Espacios de probabilidad

Comenzaremos por los conceptos más generales, definiendo los diferentes tipos de funciones que
usaremos, el espacio en el que están definidas y algunos resultados sobre la esperanza.

Definición 1. Sea Ω un conjunto. Una σ -álgebra F es una colección de subconjuntos de Ω tal que :

/0 ∈F

A ∈F ⇒ AC ∈F

Sea {An}∞
n=1 tal que An ∈F , para todo n≥ 1; se tiene ∪∞

n=1An ∈F

El par (Ω,F ) se llama espacio medible o espacio probabilizable

Definición 2. Sea (Ω,F ) un espacio medible, una probabilidad es una función P : F → [0,1] tal que

P(Ω) = 1

Para todo A ∈F , P(AC) = 1−P(A)

Sea {An}∞
n=1 tal que An ∈ F , para todo n ≥ 1 y A j ∩ Ai = /0 para todo j 6= i; se tiene

P(∪∞
n=1An) =

∞

∑
n=1

P(An)

La terna (Ω,F ,P) se llama espacio de probabilidad.

Definición 3. Sea (Ω,F ,P) un espacio de probabilidad. Una variable aleatoria X es una función
X : Ω→ R tal que X−1(B) ∈F para todo B ∈B(R).

Ahora que tenemos claras las variables y dónde están definidas vamos a pasar a definir las funciones
de distribución, masa de probabilidad y de densidad. Además, veremos alguna propiedad relevante de
algunas de ellas.

Definición 4. Sea (Ω,F ,P) un espacio de probabilidad y X una variable aleatoria. La función
F : R→ [0,1] definida por F(x) = P(ω ∈Ω : X(ω)≤ x) se llama función de distribución.

Proposición 1.1. Sea (Ω,F ,P) un espacio de probabilidad y X una variable aleatoria con función de
distribución F. Se tiene

1. F es no decreciente

1



2 Capítulo 1. Nociones generales

2. F es continua por la derecha y tiene límites a izquierda F(x−) = P(X < x)

3. lı́mx→−∞ F(x) = 0

4. lı́mx→∞ F(x) = 1

Definición 5. Una variable aleatoria es discreta si existe un conjunto de puntos {xn} ∈R, n≥ 1 tal que
P(X = xn)> 0 y ∑n P(X = xn) = 1. La función masa de probabilidad de X es {pn} con pn = P(X = xn)

Definición 6. Una variable aleatoria X con función de distribución F es (absolutamente) continua si
existe una función integrable f : R→ [0,∞) tal que F(x) =

∫ x
−∞

f (t)dt. La función f se denomina
densidad de X.

Proposición 1.2. Sea f :R→ [0,∞) integrable con
∫

∞

−∞
f (t)dt = 1. Entonces f es la función de densidad

de una variable aleatoria X.

Proposición 1.3. Sea X una variable aleatoria continua con densidad f. Se tiene

1. F es continua

2. Si f es continua en x0 entonces F es derivable en x0 y F ′(x0) = f (x0)

3. Sea A ∈B(R), entonces P(X ∈ A) =
∫

A f (x)dx

Definición 7. Sea X una variable aleatoria con función de distribución F, se define la función de super-
vivencia, F , como

F(x) = 1−F(x) ∀x ∈ R

1.1.1. Esperanza

Definición 8.

Sea X una variable aleatoria discreta con valores {xn} y función de masa de probabilidad {pn}.
La esperanza de X se define como E(X) = ∑n xn pn si ∑n |xn|pn < ∞

Sea X una variable aleatoria continua con densidad f. La esperanza de X se define como
E(X) =

∫
∞

−∞
x f (x)dx si

∫
∞

−∞
|x| f (x)dx < ∞

En el siguiente teorema demostraremos otra forma de calcular la esperanza de una variable aleatoria
X .

Teorema 1.4. Sea X una variable aleatoria , con esperanza finita. Tenemos que:

E(X) =
∫

∞

0
[1−FX(t)]dt−

∫ 0

−∞

FX(t)dt

Demostración. Notar que∫
∞

0
[1−FX(t)]dt =

∫
∞

0
P(X > t)dt =

∫
∞

0

(∫
∞

t
f (u)du

)
dt

donde f (·) es la función de densidad de la variable aleatoria de X, teniendo en cuenta el Teorema de
Fubini: ∫

∞

0
[1−FX(t)]dt =

∫
∞

0

(∫
∞

t
f (u)du

)
dt =

∫
∞

0

(∫ u

0
1dt
)

f (u)du =
∫

∞

0
u f (u)du (1.1)

Por otro lado,∫ 0

−∞

F(t)dt =
∫ 0

−∞

P(X ≤ t)dt =
∫ 0

−∞

(∫ t

−∞

f (u)du
)

dt =
∫ 0

−∞

(∫ 0

u
1dt
)

f (u)du =−
∫ 0

−∞

u f (u)du

(1.2)
Por lo tanto, agrupando (1.1) y (1.2) obtenemos:∫

∞

0
[1−FX(t)]dt−

∫ 0

−∞

FX(t)dt =
∫

∞

0
u f (u)du+

∫ 0

−∞

u f (u)du =
∫

∞

−∞

u f (u)du = E(X)
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1.2. Estadísticos Ordenados

Antes de definir estadísticos ordenados, veamos las definiciones previas de muestra aleatoria y
muestra aleatoria simple.

Definición 9. Una población es un colectivo que nos interesa conocer, describir o sobre el que queremos
decir algo. Por ejemplo, en este documento la población sometida a estudio serán los tiempos de vida
de los componentes de un sistema.

Definición 10. El estudio de una población se hace, casi siempre, examinando una pequeña fracción de
sus individuos, una muestra. El menor costo y el mejor control del proceso de obtención de los datos,
aconsejan ese procedimiento, en vez del estudio exhaustivo (censo).

Los procesos de muestreo en los que cada miembro de la población tiene una probabilidad específica
de ser incluido en la muestra son de carácter aleatorio. Y la muestra resultante será una seleción aleatoria
a la que denominamos muestra aleatoria.

Definición 11. Una muestra aleatoria simple de tamaño n, de una variable aleatoria X con distribución
F, son n variables aleatorias (X1, ...,Xn), independientes e idénticamente distribuidas, con distribución
común F.

Definición 12. Dada una muestra aleatoria X = (X1, ...,Xn), los estadístico de ordenados de X son las
variables aleatorias X(i) que proporcionan los valores de la muestra en orden creciente. De este modo se
verifica que: X(1) ≤ X(2) ≤ ...≤ X(n)

En el siguiente teorema vamos a ver cómo calcular la probabilidad de que estadístico de orden i
sea mayor que t. Este resultado está tomado del libro ‘A first course in Order Statistics’ página 12, [1],
donde también encontramos su demostración.

Teorema 1.5.

P(Xk:n > t) =
k−1

∑
j=0

(
n
j

)
(F(t)) j(F(t))n− j





Capítulo 2

Sistemas coherentes

A lo largo del trabajo utilizaremos el término ‘sistema’ en un sentido amplio. De forma informal,
nos referiremos a él como una colección de componentes que están conectados entre sí para formar un
todo. Ejemplos: una radio, un automóvil, un ordenador o un teléfono móvil.
La principal característica de nuestro término ‘sistema’ es que funcionará o no según si sus componentes
funcionan correctamente o fallan.

2.1. Sistemas

Para cuantificar el funcionamiento de los componentes emplearemos las siguientes definiciones.

Definición 13. Consideramos el indicador xi que nos informa del estado del componente i-ésimo de
forma que

xi =

{
1 si el componente i esimo f unciona
0 si el componente i esimo no f unciona

Para un sistema de n componentes, esta idea da lugar a la noción de vector de estado.

Definición 14. El vector generado por los indicadores de todos los componentes de un sistema se de-
nomina vector de estado.

Para un sistema de n componentes, el vector de estado sería x = (x1,x2, ...,xi, ...,xn) ∈ {0,1}n donde
xi nos informa del estado del componente i-ésimo, para cada i = 1,2, ...,n.

El fin es cuantificar si el sistema funciona o no dependiendo del estado de los componentes, para
ello definimos la siguiente función.

Definición 15. Considerar el espacio {0,1}n de todos los vectores de estado posibles de un sistema de
n-componentes. La función de estructura asocia los vectores de estado para los que el sistema funciona
con el valor 1 y los vectores de estado para los que el sistema falla con el valor 0.

ϕ : {0,1}n → {0,1}

x = (x1,x2, ...,xi, ...,xn) 7→ ϕ(x) =
{

1 si el sistema f unciona
0 si el sistema no f unciona

Definición 16. Al número de componentes del sistema se le denomina orden del sistema.

2.1.1. Tipos de sistemas

Con el fin de aclarar este concepto, vamos a estudiar los distintos tipos de sistemas más comunes y
sus funciones estructura.

5



6 Capítulo 2. Sistemas coherentes

Sistemas k de n

Son aquellos sistemas que funcionan cuando al menos k de sus componentes funcionan correctamente.
La función estructura de un sistema k de n siguiendo esta definición es:

ϕ(x) =


0 si

n

∑
i=1

xi < k

1 si
n

∑
i=1

xi ≥ k

Ejemplo 1. Veamos algunos sencillos:
Sistema 1 de 2: Los riñones u ojos de humanos.
Sistema 2 de 2: Pilas de un mando de televisión.
Sistema 2 de 4: Un avión con cuatro motores que vuela si, al menos, dos de sus motores funcionan .

Sistemas en serie:

El sistema funciona si cada componente funciona correctamente, por ello, también podemos definirlos
como sistemas n de n. Su función estructura viene dada por:

ϕ(x) =
n

∏
i=1

xi = mı́n
1≤i≤n

xi.

Ejemplo 2. Un sistema en serie cotidiano es, por ejemplo, el equipo de un coche formado por motor,
embrague, transmisión y rueda. Otro ejemplo, podría ser nuestro sistema cardiovascular, formado por el
corazón, las arterias y las venas.

Figura 2.1: Representación de un sistema en serie de orden 4.

Sistemas en paralelo:

El sistema funciona si, al menos, funciona un componente, por ello, también podemos definirlos como
sistemas 1 de n. Su función estructura viene dada por:

ϕ(x) = 1−
n

∏
i=1

(1− xi) = máx
1≤i≤n

xi.

Ejemplo 3. Un ejemplo fácil de sistema en paralelo puede ser nuestros pulmones, dado que podemos
vivir con un único pulmón.

Figura 2.2: Representación de un sistema en paralelo de orden 3.
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Sistemas híbridos:

Son aquellos sistemas resultado de combinar los sistemas en serie y en paralelo; son más complejos
ya que combinan las propiedades de ambos. Por tanto, la función estructura también tendrá elementos
de ambos. Por ejemplo, la función estructura ϕ(x) = x1[1− (1− x2)(1− x3x4)] corresponde al sistema
de la Figura 2.3.

Figura 2.3: Representacion de un sistema híbrido.

2.2. Clasificación de sistemas

La utilidad de las funciones de estructura será la de clasificar los sistemas. Por ello, en este apar-
tado vamos a estudiar sus características. Para diseñar un sistema deberíamos centrarnos primero en la
influencia de los componentes. Por ejemplo, podemos encontrarnos con un componente cuyo funciona-
miento no influya en el sistema. Es decir:

Definición 17. Sea (x1, ...,xi−1,a,xi+1...,xn) un vector de estado de un sistema arbitrario de orden n tal
que xi = a ∈ {0,1}. El componente i se dice irrelevante si la función estructura del sistema ϕ cumple:
ϕ(x1, ...,xi−1,0,xi+1...,xn) = ϕ(x1, ...,xi−1,1,xi+1...,xn) para todos los posibles valores de
(x1, ...,xi−1,xi+1...,xn) ∈ {0,1}n−1

Por lo tanto, si un sistema contiene un componente irrelevante, este podría ser eliminado, simplifi-
cándo y disminuyendo el orden del sistema y, sin embargo, producir el mismo resultado.
Otra característica a tener en cuenta es que el fallo de un componente propicie el fallo del sistema. A
medida que empiezan a fallar los componentes, el sistema puede seguir funcionando por un tiempo,
pero si el funcionamiento de un componente demostrase ser crítico para el funcionamiento del sistema,
arreglando dicho componente resolveríamos el problema. En ningún caso un sistema se estropearía. Ello
propicia la siguiente definición.

Definición 18. Un sistema se denomina monótono cuando al arreglar un componente no empeora el
sistema. Su función de estructura cumple que ϕ(x) ≤ ϕ(y) si x ≤ y, donde las desigualdades de los
vectores x, y se aplica al componente deseado.

Con estas dos características esenciales tenemos la base de la siguiente definición:

Definición 19. Decimos que un sistema es coherente si cada componente es relevante y su función
estructura es monótona.

A pesar de que la definición de coherencia restringe el número de funciones posibles de {0,1}n en
{0,1}, tenemos que el número Z(n) de sistemas coherentes crece exponencialmente con n. Este hecho
se debe a que un nuevo componente se puede añadir en serie o en paralelo, duplicando el número de
sistemas coherentes.
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2.3. Sistemas coherentes

A lo largo de esta sección vamos a centrarnos en estudiar en profundidad los sistemas coherentes
de orden n. Por ello, vamos a centrarnos en la influencia de las agrupaciones de componentes en el
funcionamiento del sistema, la relación dual entre sistemas y la fiabilidad.

2.3.1. Conjuntos de camino y de corte

Definición 20. Un conjunto de componentes P se denomina conjunto camino cuando el sistema funcio-
na siempre que todos los componentes en el conjunto P funcionan.

Propiedades de los conjuntos camino

1. El conjunto de todos los componentes de un sistema es un conjunto camino.

2. Sea B un conjunto y A un subconjunto propio de B tal que A es un conjunto camino. Entonces B
es un conjunto camino.

Definición 21. Los conjuntos camino que no contienen subconjuntos propios de camino se llaman
conjunto de camino mínimo. Se denotan como P1,P2...,Pr.

Propiedades de subconjuntos de camino mínimo

1. Ningún conjunto de camino mínimo es subconjunto propio de otro.

2. La unión algebráica de todos los conjuntos de camino mínimo es el conjunto de todos los compo-
nentes del sistema.

Ejemplo 4. Tomando un sistema general de orden 4 , veamos los conjuntos de camino mínimo depen-
diendo del tipo de sistema:

Sistema de orden 4 en serie: {1,2,3,4}

Sistema 3 de 4: {1,2,3},{1,2,4},{1,3,4},{2,3,4}

Sistema 2 de 4: {1,2},{1,3},{1,4},{2,3},{2,4},{3,4}

Sistema de orden 4 en paralelo: {1}, {2} {3} {4}

Sistema híbrido, Figura 2.3: {1,2} y {1,3,4}. Notar que el componente 1 es imprescindible para
el funcionamiento del sistema y, por ello, aparece en ambos conjuntos.

Es posible caracterizar todos los sistemas coherentes de un orden dado con las propiedades anterio-
res de conjuntos de camino mínimo. Notar que en la segunda propiedad, todo componente es elemento
de, al menos, un conjunto de camino mínimo y, por tanto, cada componente es relevante. La monotonía
de un sistema en función de los conjuntos camino puede ser argumentada de la siguiente manera.
Si el componente k no está funcionando y el sistema tampoco, entonces la función estructura ϕ per-
manecerá igual a 0 o incrementará a 1 cuando el componente k sea reemplazado. Por otro lado, si el
sistema funciona, hay un conjunto de camino mínimo P cuyos componentes están en funcionamiento.
Puesto que cualquier conjunto de componentes que contenga a P también será un conjunto de camino,
se sigue que el conjunto {P∪{k}} es un conjunto de camino y que la función estructura del sistema
permanecerá igual a 1 cuando el componente k sea reemplazado por un componente que funcione.
Por otro lado, hay una relación entre el conjunto camino y el conjunto de componentes cuyo fallo ga-
rantiza el fallo del sistema. Esto motiva la siguiente definición.
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Definición 22. Un conjunto de componentes C se llama conjunto de corte si el sistema falla siempre
que todos los componentes del conjunto C fallan.

Definición 23. Un conjunto de corte se llama mínimo si no tiene subconjuntos propios que son también
conjuntos de corte.

Propiedades de los conjuntos de corte mínimo

1. Ningún conjunto de corte mínimo es subconjunto propio de otro.

2. La unión algebráica de todos los conjuntos de corte mínimo es el conjunto de todos los compo-
nentes del sistema.

Ejemplo 5. Tomando un sistema general de orden 4 , veamos los conjuntos de corte mínimo depen-
diendo del tipo de sistema:

Sistema de orden 4 en serie: {1},{2},{3},{4}

Sistema 3 de 4: {1,2},{1,3},{1,4},{2,3},{2,4},{3,4}

Sistema 2 de 4: {1,2,3},{1,2,4},{1,3,4},{2,3,4}

Sistema de orden 4 en paralelo: {1,2,3,4}

Sistema híbrido, Figura 2.3: {1}, {2,3}, {2,4}

Observación 1. La relación entre los conjuntos de corte y los conjuntos de camino de un sistema
cualquiera es la siguiente:

• Sea P un conjunto de camino mínimo y A un subconjunto propio de P, entonces AC es un conjunto
de corte.

• Sea C un conjunto de corte mínimo y B un subconjunto propio de C, entonces BC es un conjunto
camino.

Notar que ni AC ni BC necesitan ser mínimos.

Hay una conexión entre la función de estructura de un sistema coherente y sus conjuntos de camino
mínimo y corte mínimo. Como ya hemos visto, para que un sistema funcione debe darse el caso de que
todos los componentes de, al menos, un conjunto de camino mínimo funcionen. De forma similar, el
sistema funcionará si y solo si al menos funciona uno de los componentes de cada conjunto de corte
mínimo. Esto nos proporcionará las herramientas para el cálculo de la función estructura.

Definición 24. Sean P1, ...,Pr los conjuntos de corte mínimo de un sistema dado. Para cada conjunto se
define la función estructura de camino p j(x) como

p j(x) = ∏
i∈Pj

xi

Notar que p j(x) = 1 se da cuando cada componente de Pj está funcionando. Luego la función estructura
puede ser representada como:

ϕ(x) = 1−
r

∏
j=1

(1− p j(x))

o equivalentemente:
ϕ(x) = máx

{1≤ j≤r}
p j(x) = máx

{1≤ j≤r}
mı́n
i∈Pj

(xi)

Es fácil ver que dichas ecuaciones confirman que la función estructura es 1 si y solo si hay al menos un
conjunto de camino mínimo para el cual todos los componentes funcionan.
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Definición 25. Sean C1, ...Ck el conjunto de corte mínimo del sistema de interés. Definimos la función
estructura de corte como:

c j(x) = 1−∏
i∈C j

(1− xi)

Notar que c j(x) = 1 se da cuando el conjunto C j de corte mínimo contiene, al menos, un componente
que funciona. Como el sistema funciona si y solo si cada conjunto de corte mínimo contiene, al menos,
un componente que funciona, se sigue que la función estructura puede ser representada como:

ϕ(x) =
k

∏
j=1

c j(x)

o equivalentemente:
ϕ(x) = mı́n

{1≤ j≤k}
c j(x) = mı́n

{1≤ j≤k}
máx
i∈C j

(xi)

Esta representación de la función de estructura demuestra que los sistemas coherentes pueden ser
representados de dos formas equivalentes: como sistemas paralelos en los que cada elemento es un
sistema en serie formado por un conjunto de camino mínimo, o como sistemas en serie en los que cada
elemento es un sistema en paralelo formado por el conjunto de corte mínimo.

Ejemplo 6. Para ilustrar este último hecho tomamos el sistema híbrido de la Figura 2.3, de la cual ya
conocemos sus conjuntos de camino, P1 = {1,2} y P2 = {1,3,4} y sus conjuntos de corte, C1 = {1},
C2 = {2,3}, C3 = {2,4}. Sea xi el indicador de estado del componente i-ésimo y ϕ(x) la función estruc-
tura del sistema, vamos a calcularla de las dos formas que acabamos de ver:

Según los conjuntos de camino: Las funciones de estructura de camino son p1(x) = x1x2 y
p2(x) = x1x3x4. Por tanto, es fácil ver que p j(x) = 1 si cada componente de Pj está funcionando, ya que
todos los indicadores xi serán iguales a 1. Así, la función estructura queda representada como:

ϕ(x) = 1− (1− x1x2)(1− x1x3x4)

o equivalentemente:

ϕ(x) = máx[(x1x2);(x1x3x4)] = máx[mı́n(x1;x2);mı́n(x1;x3;x4)]

Según los conjuntos de corte: Las funciones estructura de corte son c1(x) = 1− (1− x1),
c2(x) = 1− (1−x2)(1−x3) y c3(x) = 1− (1−x2)(1−x4). Por tanto, es fácil ver que c j(x) = 1 cuando
al menos un componente está funcionando, ya que así el producto se anula. Así, la función estructura
queda representada como:

ϕ(x) = [1− (1− x1)][1− (1− x2)(1− x3)][1− (1− x2)(1− x4)]

o equivalentemente:

ϕ(x) = mı́n[1− (1− x1);1− (1− x2)(1− x3);1− (1− x2)(1− x4)] = mı́n[x1;máx(x2;x3);máx(x2;x3)]

2.3.2. Sistemas duales

Definición 26. Un sistema coherente A es el dual del sistema coherente B si un conjunto de camino
mínimo de A es un conjunto de corte mínimo de B. Y de forma análoga, un conjunto de corte mínimo
de A es un conjunto de camino mínimo de B.

Ejemplo 7. Como podemos comprobar en los ejemplos 4 y 5, el conjunto de camino mínimo de un
sistema en paralelo es exactamente el conjunto de corte mínimo de un sistema en serie.
Para un sistema k de n su dual es un sistema (n-k+1) de n, como podemos comprobar también en los
ejemplos 4 y 5, el conjunto de camino mínimo del sistema 2 de 4 es el conjunto de corte mínimo del
sistema 3 de 4.
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Además, la relación entre sistemas coherentes duales está presente en sus respectivas funciones de
estructura de la siguiente manera:

Definición 27. Si A y B son sistemas duales, entonces sus funciones de estructura están relacionadas
por la ecuación:

ϕ
A(x) = 1−ϕ

B(1−x)

Ejemplo 8. En el ejemplo anterior hemos visto que un sistema en paralelo es el dual de un sistema
en serie. Vamos a comprobar que sus funciones estructura están relacionadas de la forma mencionada
usando sistemas de orden 4. Primero vamos a calcular por separado sus funciones estructura; para ello
usaremos los conjuntos camino que hemos calculado en el Ejemplo 4.
Para el sistema en serie: El conjunto camino es P1 = {1,2,3,4}, la función estructura de camino
p1(x) = x1x2x3x4 y, por tanto, su función estructura

ϕ
S(x) = 1− (1− x1x2x3x4).

Para el sistema en paralelo: Los conjuntos de camino son Pi = {i} para i = 1,2,3,4; las funciones
estructura de camino pi(x) = xi para i = 1,2,3,4 y, por tanto, su función estructura

ϕ
P(x) = 1− (1− x1)(1− x2)(1− x3)(1− x4).

Por lo tanto,

ϕ
S(x)= 1−ϕ

P(1−x)= 1−[1−(1−(1−x1))(1−(1−x2))(1−(1−x3))(1−(1−x4))]= 1−[1−x1x2x3x4]

2.3.3. Fiabilidad de sistemas coherentes

Consideramos un sistema coherente con n componentes que funcionan o no de modo independien-
te. Consideramos que fijado un tiempo t, en el cual se examina el sistema, cada componente i puede
funcionar (con probabilidad pi) o no ( con probabilidad 1− pi). Esto es, si Xi es una variable aleatoria
con distribución Bernoulli que indica con valor 1 que el componente funciona y con valor 0 que no
funciona, entonces tenemos que pi = P(Xi = 1).
Consideremos que el vector de estado (X1,X2, ...,xn) está compuesto por n variables aleatorias indepen-
dientes, definimos la probabilidad de que el sistema funciona como:

Definición 28. La probabilidad de que un sistema a tiempo t funcione se define como fiabilidad del
sistema. Se denota con h(p) y puede calcularse a través de la función estructura como:

h(p) = P(ϕ(X) = 1) = Eϕ(X)

Notar que h(p) es multilineal, puesto que es lineal en cada pi. Esto se observa al ser h(p) una suma de
productos de una o varias probabilidades de p = (p1, p2..., pn)

Ejemplo 9. Tomamos de nuevo el sistema de la Figura 2.3 que tiene función de estructura ϕ(x) =
1−(1−x1x2)(1−x1x3x4), calculada en el Ejemplo 6 según sus conjuntos de camino mínimo. Queremos
calcular la fiabilidad del sistema, usando la definición anterior:

h(p) = P(ϕ(X) = 1) = Eϕ(X) = E(1− (1−X1X2)(1−X1X3X4))

Teniendo en cuenta las propiedades de la esperanza obtenemos:

1−E((1−X1X2)(1−X1X3X4)) = 1−E(1−X1X3X4−X1X2 +X1X3X4X1X2) =

1−E(1)+E(X1X3X4)+E(X1X2)−E(X1X3X4X1X2) =

1−1+E(X1)E(X3)E(X4)+E(X1)E(X2)−E(X1)E(X3)E(X4)E(X1)E(X2) =

p1 p3 p4 + p1 p2− p1 p3 p4 p1 p2 = 1− (1− p1 p2)(1− p1 p3 p4)
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Cuando los componentes vienen definidos por variables aleatorias idénticamente distribuidas, tene-
mos pi = p, y la función de fiabilidad h se simplifica.

Definición 29. Si las variables son independientes e idénticamente distribuidas, entonces nos referimos
a h como polinomio de fiabilidad.

Ejemplo 10. Tomamos un sistema en serie de n componentes independientes e idénticamente distribui-
das (i.i.d), es decir, pi = p. Su función de estructura será:

ϕ(X) = 1− (1−
n

∏
i=1

Xi) =
n

∏
i=1

Xi

Calculamos la fiabilidad del sistema:

h(p) = Eϕ(X) = E(
n

∏
i=1

Xi) =
n

∏
i=1

E(Xi) =
n

∏
i=1

p = pn

Por otro lado, tomamos un sistema en paralelo de n componentes i.i.d, es decir, pi = p . Su función
de estructura será:

ϕ(X) = 1−
n

∏
i=1

(1−Xi)

Calculamos la fiabilidad del sistema:

h(p) = Eϕ(X) = E(1−
n

∏
i=1

(1−Xi)) = 1−
n

∏
i=1

(1−E(Xi)) = 1− (1− p)n



Capítulo 3

Signatura de sistemas

Como hemos visto en el capítulo anterior, el número de sistemas coherentes de orden n crece expo-
nencialmente con n. Las funciones de estructura son expresiones algebraicas complejas que, en general,
admiten múltiples representaciones equivalentes.
En este capítulo, presentaremos una alternativa que, aunque es menos general que la función estructura,
tiene una expresión más manejable y fácil de interpretar. Destacar que para los sistemas de orden n,
será de dimensión fija. Recordar para la próxima definición lo visto en el Capítulo 1 de estadísticos
ordenados .

Definición 30. Sea τ un sistema coherente de orden n. Asumir que los tiempos de vida de los n com-
ponentes de un sistema, X1,X2...,Xn son independientes e idénticamente distribuidos (i.i.d) de acuerdo
con la distribución (continua) F.
Dado un sistema τ se define su signatura , denotada por sτ o simplemente s si el sistema correspondiente
está claro en el contexto, como un vector de probabilidades n-dimensional cuyo i-ésimo elemento, si,
es igual a la probabilidad de que el fallo del sistema sea debido a que han fallado exactamente i compo-
nentes.
En resumen, si = P(T = Xi:n), donde T es el tiempo de vida del sistema y Xi:n es el estadístico de orden i
de los tiempos de vida del los n componentes, es decir, es el momento de fallo del componente i-ésimo.

En las condiciones de la Definición 30, supongamos que las variables Xi son i.i.d con función de
distribución común F. Escribimos (i1, ...in) indicando los componentes por su orden de fallo. Las n!
permutaciones del vector son equiprobables.
La característica esencial del cálculo de signaturas es considerar el número de permutaciones de los
tiempos de vida de los n componentes potenciales y contar los que se corresponden con el fallo del
sistema sobre el fallo de i entre los n componentes.

Observación 2. Dado que T pertenece al conjunto {X1:n, ...,Xn:n} con probabilidad uno, se deduce que
la signatura s en un vector de probabilidad tal que si ≥ 0 ∀i y ∑

n
i=1 si = 1

3.1. Cálculo del vector signatura para sistemas coherentes

Vamos a comenzar la siguiente sección viendo un ejemplo particular de un sistema de 3 componen-
tes distribuidos como en la Figura 3.1. A continuación nos centraremos en calcular la probabilidad de
que el tiempo de vida del sistema dado sea mayor que t, definiendo así la función de supervivencia y en
consecuencia la tasa de fallo.

13
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Ejemplo 11. Consideramos el siguiente sistema de tres componentes, cuya función de estructura es
φ(x) = 1− (1− x1)(1− x2x3).

Figura 3.1: Sistema de tres componentes

Sean X1,X2,X3 variables i.i.d que representan los tiempos de vida de los componentes del sistema
dado, tenenemos que pueden ser odenados de 3! = 3 ·2 ·1 = 6 formas distintas e igualmente probables.
Ponemos en común en la siguiente tabla las 6 formas distintas de ordenar los tiempos de vida y el
estadístico ordenado igual al tiempo de vida del sistema (T ).

Orden de los tiempos de vida Estadístico ordenado
X1 < X2 < X3 X2:3

X1 < X3 < X2 X2:3

X2 < X1 < X3 X2:3

X2 < X3 < X1 X3:3

X3 < X1 < X2 X2:3

X3 < X2 < X1 X3:3

Tabla 3.1: Resumen de los estadísticos ordenados que dan lugar al fallo del sistema

De la tabla anterior deducimos que la signatura del sistema es s= (0, 2
3 ,

1
3). Es fácil de ver que los

cinco posibles sistemas coherentes de orden 3 tienen las siguientes signaturas (1,0,0), (0,1,0), (0,0,1),
(0, 2

3 ,
1
3) y (1

3 ,
2
3 ,0). Las tres primeras corresponden a los sistemas i de 3 para i = 1,2,3 y el quinto co-

rresponde a un elemento en serie con los otros dos en paralelo (Figura 3.2). Para los cinco sistemas
mencionados, notar que el primer sistema es el dual del tercero y el cuarto el dual del quinto.

Figura 3.2:

La combinatoria involucrada en el cálculo de signaturas de un sistema puede ser compleja. Por ello,
cabe destacar el concepto de dualidad, ya que puede reducir el calculo a la mitad al obtenerse la signa-
tura de un sistema dual mediante argumentos simétricos.

Ahora vamos a establecer una propiedad fundamental para la signatura s. Además, consideramos
P(Xi:n > t) la función de supervivencia del i-ésimo tiempo de vida vista en el Teorema 1.5.
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Teorema 3.1. Sean X1,X2, ...,Xn las variables i.i.d que representan los tiempos de vida de los n compo-
nentes un sistema coherente con signatura s y sea T el tiempo de vida del sistema. Entonces

FT (t)≡ P(T > t) =
n

∑
i=1

si

i−1

∑
j=0

(
n
j

)
(F(t)) j(F(t))n− j

Demostración. Notar que el sistema falla cuando uno de sus componentes deja de funcionar, por lo
que T tomará los valores de uno de los estadísticos ordenados Xi:n de la muestra (X1,X2, ...,Xn), es
decir, T ∈ {X1:n,X2:n, ...,Xn:n} con probabilidad 1. Entonces aplicando la ley de probabilidad total y
suponiendo que las variables Xi son i.i.d podemos escribir:

P(T > t) =
n

∑
i=1

P(T > t, T = Xi:n) =
n

∑
i=1

P(T > t, |T = Xi:n)P(T = Xi:n)

Debido al Teorema 1.5 :

=
n

∑
i=1

siP(Xi:n > t) =
n

∑
i=1

si

i−1

∑
j=0

(
n
j

)
(F(t)) j(F(t))n− j

Definición 31. La función definida en el teorema anterior

FT (t) =
n

∑
i=1

si

i−1

∑
j=0

(
n
j

)
(F(t)) j(F(t))n− j (3.1)

se denomina función de supervivencia del sistema. Puede también representarse intercambiando los
sumatorios:

FT (t) =
n−1

∑
j=0

(
n

∑
i= j+1

si

)(
n
j

)
(F(t)) j(F(t))n− j (3.2)

Observación 3. La igualdad (3.2) también puede ser escrita como función que involucra las probabili-
dades de fallo y supervivencia, G(t) = F(t)

F(t) .

FT (t) = (F(t))n
n−1

∑
j=0

(
n

∑
i= j+1

si

)(
n
j

)
(G(t)) j

De esta manera, la función supervivencia se representa en términos de signaturas.

Observación 4. Consideramos un sistema basado en n componentes i.i.d funcionando en un instante
fijo de tiempo t0. Tomando p = F(t0) y q = F(t0), se puede escribir el polinomio de fiabilidad h(p) en
forma pq usando (3.2) y así obteniendo dos versiones equivalentes de h

h(p) =
n−1

∑
j=0

(
n

∑
i= j+1

si

)(
n
j

)
q j pn− j

Y cambiando j = n− j tendremos

h(p) =
n

∑
j=1

(
n

∑
i=n− j+1

si

)(
n
j

)
p jqn− j

Nota 1. La función de supervivencia de un sistema con tiempo de vida T puede escribirse en términos
de funciones de supervivencia de los estadísticos ordenados de los tiempo de vida de los componentes,
es decir,

P(T > t) =
n

∑
i=1

siP(Xi:n > t).
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Además, por la identidad para variables aleatorias consecuencia del caso general visto en el Teorema
1.4, tenemos que:

E(Y ) =
∫

∞

0
F(y)dy.

Lo que nos proporciona otra conexión útil entre el tiempo de vida de un sistema y el estadístico ordenado
del tiempo de vida, ya que integrando la última expresión de la página anterior tenemos:

E(T ) =
n

∑
i=1

si E(Xi:n)

La representación (3.2) se puede aplicar para obtener otras representaciones de la función de densi-
dad de un sistema y la tasa de fallo cuando F es absolutamente continua.

Corolario 3.2. Sea X1, ...,Xn las variables aleatorias i.i.d con función de distribución F, que representan
los tiempos de vida de los n componentes de un sistema coherente con signatura s y sea T el tiempo de
vida del sistema. Si F es absolutamente continua, entonces

fT (t) =−
(

∂

∂ t

)
P(T > t) =

n

∑
i=1

isi

(
n
i

)
(F(t))i−1(F(t))n−i f (t) (3.3)

Demostración. Derivando FT (t) en la igualdad (3.1).

Definición 32. La tasa de fallo de un sistema rT (t) se define como la relación

fT (t)
FT (t)

y puede escribirse en términos de la signatura s y el componente subyacente de la distribución F.

La relación entre la densidad en (3.3) y la función de supervivencia en (3.1) puede ser simplificada
para obtener una relación útil de la tasa de fallo del sistema.

Corolario 3.3. Considerar un sistema coherente de n componentes con signatura s y asumir que los
tiempos de vida de las componentes X1, ...,Xn son i.i.d con distribución F y densidad f. Sea T el tiempo
de vida del sistema. Entonces

rT (t) =

n

∑
i=1

i si

(
n
i

)
(F(t))i−1(F(t))n−i+1

n

∑
i=1

si

i−1

∑
j=0

(
n
j

)
(F(t)) j(F(t))n− j

(3.4)

Donde r(t) = f (t)
F(t) es la tasa de fallo común de los componentes.

Otra versión más útil y equivalente:

rT (t) =

n−1

∑
i=0

(n− i)si+1

(
n
i

)
(F(t))i(F(t))n−i

n−1

∑
i=0

(
n

∑
j=i+1

s j

)(
n
i

)
(F(t))i(F(t))n−i

r(t) (3.5)

O en términos de la función de probabilidad G(t) = F(t)
F(t)

rT (t) =

n−1

∑
i=0

(n− i)si+1

(
n
i

)
(G(t))i

n−1

∑
i=0

(
n

∑
j=i+1

s j

)(
n
i

)
(G(t))i

r(t) (3.6)
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Observación 5. Como se deduce de la ecuación (3.1), el tiempo de vida de un sistema coherente con
componentes i.i.d depende de la estructura del sistema solo a través de la signatura. Si dos sistemas con
componentes i.i.d tienen la misma signatura el comportamiento estocástico de sus tiempos de vida es
igual. Notar que, dos sistemas coherentes pueden tener la misma signatura.

3.2. Sistemas mixtos

El conjunto de todos los sistemas coherentes de orden n, con n arbitrario, sería el marco apropiado
para aplicaciones. Pero este conjunto tiene sus limitaciones dado que el número de sistemas coherentes
de orden n a veces resulta insuficiente.
En aplicaciones, resulta conveniente trabajar con un conjunto más amplio de sistemas (no todos ellos
necesariamente coherentes). La idea es formar nuevos sistemas como ‘mezcla’ (aleatoria) de sistemas
coherentes.

3.2.1. Aleatoriedad en la elección del sistema

Supongamos que disponemos de un suministro ilimitado de componentes cuyos tiempos de vida
son variables i.i.d con función de distribución común F. Consideramos el conjunto de todos los sistemas
coherentes de orden n, notar que este conjunto es finito. Teniendo en cuenta el proceso de seleccionar un
sistema coherente al azar de acuerdo con una distribución de probabilidad fija y conocida p. El vector de
probabilidad p será m-dimensional y le dará un peso positivo a cada uno de los m sistemas coherentes
de orden n con sus correspondientes signaturas s1, ...,sm. Entonces
P( El sistema falle por el fallo del componente i-ésimo) =

m

∑
k=1

P(elegir el sistema k-ésimo) P(fallo del componente i provoca el fallo del sistema k | el sistema k ha

sido elegido) =
m

∑
k=1

pkski

La signatura, s∗ asociada a este proceso viene definida por el vector s∗ =
m

∑
k=1

pksk

Ejemplo 12. La signatura de un sistema k de n es el vector n-dimensional sk:n = (0, ...,0,1,0, ...,0) con

un 1 en el elemento k. Por tanto, cualquier vector de probabilidad que cumpla p ∈ [0,1]n :
n

∑
i=1

pi = 1

será la signatura del sistema mixto, es decir, el sistema que mezcla el sistema k de n con la distribución
p. Esta observación se deduce de lo anterior dado que el vector probabilidad p puede escribirse como

p =
n

∑
k=1

pksk:n

Expandir el conjunto de los sistemas coherentes de orden n al conjunto de todos los sistemas mixtos
de orden n posee sus beneficios. Por ejemplo, los resultados vistos en la sección 3.1 se pueden aplicar
de la misma manera a los sistemas mixtos. De hecho, los sistemas mixtos incluyen sistemas coherentes
como casos especiales, es decir, como mezclas degeneradas que colocan toda su masa en un solo sistema
coherente. Por tanto, todos los resultados relacionados con signaturas son aplicables a sistemas mixtos.





Capítulo 4

Órdenes estocásticos univariantes

4.1. Introducción

El capítulo que vamos a desarrollar a continuación está basado en el libro de Muller y Stoyan,
Comparison methods for stochastic models and risks,[5]. Estos conceptos se usarán en el siguiente
capítulo.
Comenzamos definiendo lo que es un orden parcial puesto que veremos que las relaciones de órdenes
estocásticos son casos especiales .

Definición 33. Un relación binaria� en un conjunto arbitrario S se denomina orden (parcial) si cumple
las siguientes propiedades:

1. Reflexiva: x� x ∀x ∈ S

2. Transitiva: Si x� y además y� z entonces x� z

3. Antisimétrica: Si x� y además y� x entonces x = y

Notar que, a veces es conveniente escribir y� x como equivalente a x� y

Definición 34. Sea S un conjunto (o subconjunto adecuado) de todas las funciones de distribución de
variables aleatorias en los reales. Un orden parcial en dicho conjunto se denomina orden estocástico.

Notación. Sea X una variable aleatoria en los reales denotamos con PX su distribución y con FX su
función de distribución, es decir:

FX(t) = PX ((−∞, t]) = P(X ≤ t) ∀t ∈ R

A menudo es conveniente no distinguir entre una relación de orden entre funciones de distribución y la
correspondiente relación de distribución y variables aleatorias.

Convenio. Sean las variables aleatorias X e Y con distribuciones PX y PY respectivamente, y funciones
de distribución FX(t) y FY (t) tales que FX(t)� FX(t). Entonces usaremos la siguiente notación cuando
sea conveniente PX � PY y X � Y .
Además, en algunas ocasiones no se hará distinción entre distribuciones y sus funciones de distribución.
Usaremos el mismo carácter.

Nota 2. Existen variables aleatorias diferentes con la misma distribución. Luego la relación� es antisi-
métrica como relación entre distribuciones pero no puede serlo como relación entre variables aleatorias.

4.2. Orden estocástico usual

El candidato más natural para un orden estocástico es el de la comparación puntual de las funciones
de distribución. Si FX ≥ FY ∀t ∈ R, entonces X toma valores pequeños con mayor probabilidad que Y ,
por lo tanto, X toma valores altos con menor probabilidad que Y .
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Definición 35. La variable aleatoria X es más pequeña que la variable Y con respecto el orden esto-
cástico usual, X ≤st Y , si FX(t) ≥ FY (t) ∀t ∈ R, o equivalentemente si FX(t) ≤ FY (t) ∀t ∈ R donde
FX(t) denota la función de supervivencia de X . Habitualmente lo denominaremos simplemente orden
estocástico.

A primera vista puede parecer contradictorio decir que FX ≤st FY si FX(t)≥ FY (t) ∀t ∈R. Es claro
que queremos definir Y estocásticamente mayor que X , es decir, que toma valores altos con mayor pro-
babilidad. Sin embargo, la función de distribución describe la probabilidad de tomar valores pequeños
y, por ello, invertimos el signo de desigualdad.

Consideramos la notación ≤st como una generalización del orden ≤ en el eje real, puesto que para
los números reales a,b tenemos que a ≤ b implica a ≤st b donde a y b denotan las distribuciones de-
generadas en los respectivos puntos. En otras palabras, a≤ b implica δa ≤st δb, donde δa es la delta de
Dirac en el punto a, es decir, la función de distribución de dicha variable aleatoria.
El siguiente resultado (sin demostración) se utilizará en el Teorema 4.2.

Teorema 4.1. Sean X,Y variables aleatorias con funciones de distribución FX y FY respectivamente.
Las siguientes afirmaciones son equivalentes:

X ≤st Y

Existe un espacio de probabilidad (Ω,F ,P) y existen variables aleatorias X̂ y Ŷ con funciones
de ditribución FX y FY tales que X̂ ≤ Ŷ ∀ω ∈Ω

Observación 6. Considerar X ,Y tales que están definidos sobre el mismo espacio probabilístico (Ω,F ,P).
Un candidato para orden parcial que compare el tamaño de las variables aleatorias sería la relación
X ≤a.s. Y , que se cumple si y solo si X(ω) ≤ Y (ω) para casi todo ω ∈ Ω. Esta relación de orden no
depende sólo de las distribuciones. Es fácil ver que siempre se cumple X ≤a.s. X , pero no se cumple que
X ≤a.s. Y cuando X e Y son independientes e idénticamente distribuidas con la misma distribución no
degenerada. El orden≤a.s. es por tanto más fuerte que el usual, esto es X ≤a.s. Y implica FX ≤st FY , pero
no a la inversa.

Nota 3. Recordar que a.s. es la abreviatura en inglés de almost surely (casi seguro).

Veamos que el orden estocástico puede ser caracterizado de la siguiente manera:

Teorema 4.2. Las siguientes expresiones son equivalentes:

1. X ≤st Y

2. La desigualdad
E f (X)≤ E f (Y ) (4.1)

se cumple para toda función creciente f, para la cual ambas esperanzas existen.

Asimismo,si dada f se cumple la desigualdad (4.1) para todo X e Y tales que X ≤st Y , entonces f debe
ser creciente.

Demostración. Veamos la doble implicación:

1.⇒ 2. Podemos asumir sin pérdida de generalidad que X ≤ Y casi seguro, por el Teorema 4.1. En-
tonces, si f es creciente f (X) ≤ f (Y ) a.s. y por la monotonía de la esperanza tenemos que
E f (X)≤ E f (Y ).

2.⇒ 1. Se sigue inmediatamente de la observación P(X > t) = E It(X) para la función indicativa:

It(x) = 1(t,∞) =

{
1 x > t
0 en otro caso

que efectivamente es creciente.
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Para ver la última afirmación, asumimos que f es no creciente, luego existe x ≤ y tal que f (x) > f (y).
Tomando X e Y tales que P(X = x) = P(Y = y) = 1, entonces X ≤st Y . Pero E f (X)> E f (Y ). Contra-
dicción por tomar f no creciente.

Teorema 4.3. Sea X e Y variables aleatorias con esperanzas finitas.

a) X ≤st Y entonces E(X)≤ E(Y )

b) Si X ≤st Y y E(X) = E(Y ) entonces X e Y tienen la misma distribución.

Demostración.

a) tomando f (x) = x y aplicando las equivalencias del Teorema 4.2

b) Sabemos por el Teorema 1.4 que

E(X) =
∫

∞

0
[1−FX(t)]dt−

∫ 0

−∞

FX(t)dt

Luego

E(X)−E(Y ) =
∫

∞

−∞

[FX(t)−FY (t)]dt (4.2)

Si X ≤st Y y E(X) = E(Y ), entonces la parte izquierda de (4.2) es 0 y la derecha es la integral de
una función no negativa continua. Luego solo se dará la igualdad si FX = FY .

Observación 7. Hay más órdenes naturales que el orden estocástico usual, por ejemplo el llamado
‘orden ingeniero’. Este se basa en la comparación de las medias, es decir, la variable aleatoria X es
menor que Y en media, X ≤µ Y , si E(X) ≤ E(Y ). Observamos que el orden estocástico usual implica
este orden.

4.3. Orden de la tasa de fallo

Hay muchas situaciones donde conceptos más fuertes que el orden estocástico usual son necesarios.
Veamos algunos ejemplos:

Ejemplo 13. Consideramos la situación donde alguien quiere comprar un coche y puede elegir entre
dos opciones. El tiempo de vida de cada coche es descrito por una variable aleatoria diferente, X e Y . Es
claro que si X ≤st Y y el precio es el mismo, entonces elegiría el segundo coche. Pero supongamos que
ambos son de segunda mano con un año de antiguedad, entonces los tiempos de vida restantes vienen
dados por X ′ e Y ′ donde P(X ′ > t) = P(X > 1+ t|X > 1) e igualmente Y . ¿Se sigue cumpliendo que
X ′ ≤st Y ′? A priori no podríamos asegurar que el segundo coche sea mejor opción.

Vamos a ilustrar a través de un ejemplo concreto como X ≤st Y no se conserva bajo envejecimiento.

Ejemplo 14. Sea X una variable aleatoria con distribución uniforme (0,3) e Y una variable aleatoria con
función de densidad:

f (y) =


1
6 0 < x≤ 1
1
2 1 < x≤ 2
1
3 2 < x≤ 3


Calculamos las funciones de distribución de X e Y:

FX(x) =


0 x < 0
x
3 0≤ x < 3
1 x≥ 3


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FY (x) =


0 x < 0
x
6 0≤ x < 1
x
2 −

1
3 1≤ x < 2

x
3 2≤ x < 3
1 x≥ 3


Es fácil ver que FX(t)≥ FY (t) en cada intervalo, luego X ≤st Y .
Por otro lado, si calculamos como en el Ejemplo 13: P(X ′ > x) = P(X > 1+ x|X > 1) tenemos que

P(X ′ > x) =
P(X > 1+ x)

P(X > 1)
=

(2− x)/3
2/3

= 1− x
2

1 < x≤ 2

Por tanto, FX ′(x) = x
2 y X ′ es uniforme en (0,2).

Análogamente se podría ver que Y ′ tiene densidad:

f ′(x) =
{ 3

5 0 < x≤ 1
2
5 1 < x≤ 2

}
Con lo que se comprobaría que X ′ >st Y ′ (a pesar de que X ≤st Y ).

Volvemos al Ejemplo 13: A raíz de este hecho, nos surgen la siguiente cuestión sobre el Ejemplo 13:
¿Qué suposiciones son necesarias para garantizar que se mantenga el orden estocástico usual para los
coches con cualquier año de antigüedad, es decir, [X |X > t]≤st [Y |Y > t] ∀t?
Empleando la definición de orden estocástico ≤st , la desigualdad anterior puede reescribirse como:

P(X > s+ t|X > t)≤ P(Y > s+ t|Y > t) ∀s≥ t

Y esto es equivalente a la expresión:

FY (t)
FX(t)

≤ FY (s+ t)
FX(s+ t)

∀s≥ 0 ∀t

donde FX(t) = 1−FX(t)

Definición 36. La variable aleatoria X es más pequeña que la variable aleatoria Y con respecto el orden
de la tasa de fallo, X ≤hr Y , si la siguiente función es creciente

t→ FY (t)
FX(t)

.

El nombre de este orden se debe al hecho de que existe una caracterización equivalente en términos de
la comparación puntual de las llamadas tasas de fallo, suponiendo la existencia de densidades continuas
y por lo tanto de las tasas de fallo.

Teorema 4.4. Sean X e Y variables aleatorias con densidades continuas, entonces X ≤hr Y es equiva-
lente a rX(t)≥ rY (t) ∀t ∈ R

Demostración. FY (t)
FX (t)

es creciente si y solo si

ln
(

FY (t)
FX(t)

)
= FY (t)−FX(t)

es creciente. Dado que rX(t) = d
dt ln(FX(t)) el resultado se obtiene debido a que una función diferencia-

ble es creciente si y solo si su derivada es no negativa.
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Teorema 4.5. Supongamos que X ≤hr Y y que g : R→ R es creciente. Entonces g(X)≤hr g(Y ).

Demostración. Suponiendo que exista la inversa de g, la demostración es inmediata por la identidad

Fg(X)(t) = P(g(X)> t) = P
(
X > g−1(t)

)
= FX

(
g−1(t)

)
.

Teorema 4.6. X ≤hr Y implica X ≤st Y

Demostración. Tenemos que X ≤hr Y implica FY (t)
FX (t)

≥ 1 y entonces FX(t) ≥ FY (t) ∀t ∈ R, es decir,
X ≤hr Y .

A veces es útil considerar el orden estocástico que se obtiene cuando consideramos la función de
supervivencia en vez de la función de distribución en la definición del orden de tasa de fallo.

Definición 37. La variable aleatoria X es más pequeña que la variable aleatoria Y con respecto al orden
de la tasa de fallo inverso, X ≤rh Y , si la siguiente función es creciente

t→ FY (t)
FX(t)

.

El orden de la tasa de fallo inverso comparte muchas propiedades con el orden de la tasa de fallo
usual. Asimismo, hay una fuerte dualidad entre ambos. De nuevo tenemos:

Teorema 4.7. Sea g una función continua y estrictamente decreciente. Entonces X ≤hr Y si y solo si
g(X)≥rh g(Y )

Demostración. Si g es continua y estrictamente decreciente entonces también lo es g−1 . La afirmación
se sigue de la identidad

Fg(X)(t) = P(g(X)≤ t) = P(X ≥ g−1(t)) = FX(g−1(t))

De este resultado podemos trasladar las propiedades de orden de la tasa de fallo (≤hr) a propiedades
para el orden de la tasa de fallo inverso (≤rh) y viceversa. Por ejemplo:

Teorema 4.8. X ≤rh Y implica X ≤st Y

Demostración.
X ≤rh Y ⇒−X ≥hr −Y ⇒−X ≥st −Y ⇒ X ≤st Y

4.4. Orden de razón de verosimilitudes

Una interesante característica del orden de la tasa de fallo es que X ≤hr Y se cumple si y solo si
[X |X > t] ≤st [Y |Y > t] ∀t ∈ R. Es muy importante para analizar los tiempos de vida de las distribu-
ciones. Sin embargo, hay otras situaciones donde nos gustaría tener [X |X ∈ A]≤st [Y |Y ∈ A] para todos
los posibles sucesos. Por ello, vamos a definir orden de razón de verosimilitud, como viene en el libro
‘An Introduction to Stochastic Orders’ página 60, [2].

Definición 38. Dadas dos variables aleatorias continuas X e Y con funciones de densidad fX y fY
respectivamente. La variable X es más pequeña que la variable aleatoria Y respecto al orden de razón
de verosimilitud, X ≤lr Y , si

fX(t) fY (s)≤ fX(s) fY (t) ∀s≤ t (4.3)

o equivalentemente, si fY (t)
fX (t)

es creciente en t en la unión de los soportes de X e Y .
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Observación 8. La ecuación establece una relación entre fY
fX

creciente, pero escrita de tal forma que
indica qué hacer si numerador o denominador son 0.

La definición anterior permite comparar dos variables aleatorias continuas con respecto al orden de
razón de verosimilitud. Veamos ahora el caso con dos variables aleatorias discretas:

Definición 39. Sean X e Y dos variables aleatorias que toman valores sobre los enteros, con funciones
de probabilidad pX(i) y pY (i) respectivamente, para todo i ∈ Z. Diremos que X es más pequeña que la
variable aleatoria Y respecto al orden de razón de verosimilitud, X ≤lr Y , si

pX( j)pY (i)≤ pX(i)pY ( j) ∀i≤ j (4.4)

Como conclusión del capítulo veamos las implicaciones entre los distintos tipos de órdenes estocás-
ticos estudiados.

Teorema 4.9. X ≤lr Y implica X ≤rh Y y X ≤hr Y



Capítulo 5

Teoremas de preservación basados en las
propiedades de la signatura

En esta sección consideraremos el problema de comparar el rendimiento de dos sistemas mixtos.
En el capítulo anterior nos centrábamos en estudiar cuándo una variable aleatoria es mayor que otra en
el sentido estocástico.
Supongamos dos variables aleatorias discretas X1 y X2 cuyas funciones de masa de probabilidad vienen
dadas por las signaturas s1 y s2 respectivamente. La condición F1(x)≤ F2 ∀x se puede comprobar que

es equivalente a
n

∑
i= j

s1i ≤
n

∑
i= j

s2i para j = 1, ...,n.

Cuando las distribuciones son absolutamente continuas, el orden de la tasa de fallo es equivalente a
comparar las tasas de fallo r1 y r2, esto es X1 ≤hr X2 si y solo si r1(t)≥ r2(t)

El primer resultado compara estocásticamente, con el orden usual, dos signaturas de sistemas mixtos.

Teorema 5.1. Sean s1 y s2 las signaturas de dos sistemas mixtos de orden n, ambos formados por
componentes con tiempos de vida i.i.d y ditribución F común. Sea T1 y T2 sus respectivos tiempos de
vida. Si s1 ≤st s2 entonces T1 ≤st T2.

Demostración. De la representación de la función de supervivencia (3.2) tenemos que para todo t no
negativo:

F1(t) =
n−1

∑
j=0

(
n

∑
i= j+1

s1i

)(
n
j

)
(F(t)) j(F(t))n− j ≤

n−1

∑
j=0

(
n

∑
i= j+1

s2i

)(
n
j

)
(F(t)) j(F(t))n− j = F2(t)

Esta desiguald proviene de la suposición de s1 ≤st s2.

Veamos el uso de este teorema con un ejemplo.

Ejemplo 15. Notar que los cinco sistemas coherentes vistos en el Capítulo 3 están completamente
ordenados en el sentido del teorema que acabamos de ver. Sin embargo, hay ciertos sistemas coherentes
para los cuales este orden no es válido. Por ejemplo, las signaturas de los sistemas coherentes de orden
cuatro siguientes no están ordenadas estocásticamente:

Sistema de orden cuatro con conjuntos mínimos {1},{2, 3, 4} y signatura (1
4 ,

1
4 ,

1
2 ,0)

Sistema de orden cuatro con conjuntos mínimos {1,2}, {1,3}, {1,4}, {2,3} y signatura (0, 2
3 ,

1
3 ,0)

Ahora, vamos a comparar estocásticamente, con el orden de la tasa de fallo, dos sistemas mixtos.
Se mostrará que el orden entre signaturas de dos sistemas mixtos implica que los tiempos de vida de los
correspondientes sistemas están ordenados en el orden de la tasa de fallo.
Primero necesitaremos los siguientes resultados técnicos:
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Lema 5.2. Sean α(·) y β (·) dos funciones tales que β (·) es no negativa;
α(·)
β (·)

y α(·) son no decrecien-

tes. Sean X1 y X2 dos variableas aleatorias con funciones de distribución F1 y F2 respectivamente tales
que X1 ≤hr X2. Entonces ∫

∞

−∞
α(x)dF1(x)∫

∞

−∞
β (x)dF1(x)

≤
∫

∞

−∞
α(x)dF2(x)∫

∞

−∞
β (x)dF2(x)

(5.1)

El siguiente lema está extraído del artículo de Boland, El-Newehi y Proschan [4].

Lema 5.3. Sean X1, ...Xn los tiempos de vida de los componentes de un sistema de orden n, independien-
tes no necesariamente idénticamente distribuido y sea Xk:n el estadístico de orden k. Entonces Xk+1:n es
mayor que Xk:n con respecto el orden de la tasa de fallo para todo k = 1, ...,n−1.

Ahora, estamos en condiciones de demostrar el siguiente resultado:

Teorema 5.4. Sean s1 y s2 las signaturas de dos sistemas mixtos de orden n, ambos basados en com-
ponentes con tiempos de vida definidos por variables aleatorias i.i.d y distribución F. Sean T1 y T2 los
tiempos de vida de cada sistema. Si s1 ≤hr s2, entonces T1 ≤hr T2

Demostración. Como vimos en la Nota 1 del Capítulo 3 la función supervivencia F j de un sistema con
tiempo de de vida Tj puede ser escrita en términos de la función de supervivencia de los estadísticos
ordenados de los tiempos de vida de los componentes. Luego para j = 1,2 tenemos

F j(t) =
n

∑
i=1

s ji P(Xi:n > t)

Asumimos que s1 ≤hr s2 y veamos que T1 ≤ T2 demostrando que F2(t)
F1(t)

es creciente en t. Esto es equiva-
lente a demostrar que

F2(x)
F1(x)

≤ F2(y)
F1(y)

∀x≤ y

por la Nota 1, podemos reescribirlo de la siguiente manera

n

∑
i=1

s1i P(Xi:n > y)

n

∑
i=1

s1i P(Xi:n > x)
≤

n

∑
i=1

s2i P(Xi:n > y)

n

∑
i=1

s2i P(Xi:n > x)
∀x < y (5.2)

Pero (5.2) se puede demostrar a partir de (5.1) del Lema 5.2 tomando α y β como las funciones dis-
cretas α(i) = P(Xi:n > y) y β (i) = P(Xi:n > x) y tomando F1 y F2 las distribuciones discretas de s1 y
s2 respectivamente. Solo necesitamos verificar que las funciones elegidas como α y β satisfacen las
hipotesis del Lema 5.2.
La monotonía de β se sigue del hecho de que los estadísticos ordenados están ordenados en el or-
den estocástico usual ≤st , ya que están ordenados en el orden a.s. (recuérdese la Observación 6). La
desigualdad

α(i)
β (i)

≤ α(i+1)
β (i+1)

podemos escribirla
P(Xi+1:n > x)
P(Xi:n > x)

≤ P(Xi+1:n > y)
P(Xi:n > y)

∀x < y

Esta desigualdad es equivalente a Xi:n ≤hr Xi+1:n como sabemos por el Lema 5.3.

El siguiente resultado establece el orden de la razón de verosimilitud de dos sistemas mixtos, en
términos de sus signaturas, entre tiempos de vida.
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Teorema 5.5. Sean s1 y s2 las signaturas de dos sistemas mixtos de orden n, ambos basados en com-
ponentes con tiempos de vida definidos por variables aleatorias i.i.d y distribución F. Sean T1 y T2 los
tiempos de vida de cada sistema. Si s1 ≤lr s2, entonces T1 ≤lr T2

Demostración. Sean f1 y f2 las funciones de densidad de T1 y T2 respectivamente. Veamos que f2(t)
f1(t)

es
creciente para todo t. Usando la representación de la densidad (3.3), dividiendo numerador y denomi-
nador por f (t)(F(t))n−1 y usando la notación G(t) = F(t)

F(t) , podemos escribir

f2(t)
f1(t)

=

n

∑
i=1

is2i

(
n
i

)
(G(t))i−1

n

∑
i=1

is1i

(
n
i

)
(G(t))i−1

(5.3)

Una condición necesaria y suficiente para que el anterior cociente sea creciente en (0,∞) es que para
cualquier c ∈ R la diferencia f2(t)− c f1(t) cambie de signo como máximo una vez y pase de negativo
a positivo cuando t avanza de 0 a ∞.
Si (5.3) es creciente, es obvio que se verifica la propiedad anterior. Mientras que si la diferencia cruza
el 0 más de una vez (de positivo a negativo) tendriamos que para todo t entre los dos ceros, f2(t)

f1(t)
> c, y

por encima del segundo cero, f2(t)
f1(t)

< c. Por tanto el cociente no podría ser creciente.
Sea x = G(t), estudiamos el siguiente polinomio t(x) de grado máximo n−1

t(x) = f2(G−1(x))− c f1(G−1(x)) =
n

∑
i=1

i
(

n
i

)
(s2i− cs1i)xi−1 (5.4)

Suponiendo s1 ≤lr s2 tenemos que la razón s2i
s1i

es creciente cuando i aumenta de 1 a n. Esto implica
que, para cualquier número real c, {s2,i− cs1,i} tiene como mucho un cambio de signo de negativo a
positivo cuando i aumenta de 1 a n. Por lo tanto, podemos suponer que los coeficientes de (5.4) tienen
como máximo un cambio de signo. La regla de signos de Descartes establece que el número de raíces
positivas de un polinomio arbitrario con coeficientes reales es , como mucho, igual al número de cambios
de signo que se produzcan entre sus coeficientes diferentes a 0.
En conclusión , para cualquier c ∈ R el polinomio (5.4) cruza el cero como máximo una vez cuando x
aumenta de 0 a ∞. El hecho de que los coeficientes en (5.3) solo puedan cambiar de signo de negativo a
positivo implica que si t(x) sufre un cambio de signo, cambiará de negativo a positivo. Ambos hechos
justifican que la relación f2(t)

f1(t)
es creciente en t ∈ [0,∞] es decir, T1 ≤lr T2
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