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Resumen

Reliability theory is a discipline which studies systems depending on their failure. The aim of this
document is to study systems made up of some components and how the failure of each component
causes the system failure.

The content is divided into five chapters. We begin the document with a review, Chapter 1: ‘General
notions’. In this section we are going to study the following:

= Probability spaces: The paragraph focuses on explaining the basic concept of random variables
such as their definition or different functions defined in order to study them: distribution function,
survival fuction... Besides, we show some attractive results about the mean that we will need in
the next chapters.

» Order Statistic: We are going to focus on the definition of Order Statistic and how to calculate
their distribution.

Chapter 2 represents an introduction to systems and their relationship with their components. We con-
sider the structure function ¢, which is a mapping that associates the condition of the components
(working or not) with the work or the failure of a system. This function brings back the value 1 if the
system works and O elsewhere. We will analize how the way the components are organized affects to
the structure function, so we will see the most commonly used systems. Then, we consider the most
important feature for designing a system: monotonicity and absence of irrelevant component. These two
properties form the basis for the following definition, coherent system. The end of the chapter studies
path sets and cut sets. Their properties and results provide a way to calculate the structure function.
Besides, we will define the reliability of a system.

In Chapter 3 we introduce an alternative index which has the virtue of being manageable and easily
interpretable, although it is less general than a structure function. Such index is called the system’s
signature and it is denotes by s;. In this chapter is very important the use of order statistics. Taking
into account the random variables Xi,...,X,, independently and identically distributed (i.i.d) which
represesent the component lifetimes of an n component coherent system with signature s, we will study
the computation of the signature vector. In addition, we go on with the concept of a mixed system.
Considering the collection of all coherent systems of order n, one of them is selected by a random
process according to a fixed and known probability.

At this stage the question of how to order the random lifetimes arises. For this reason, the
Chapter 4 is based on Stochastic Orders. We will study the following orders, the relatinship between
them and some results of interest. In particular, let X and Y be two random variables, we will see the
next orders:

= Usual Stochatic Order X <y Y: It is the most natural candidate for a stochastic order due to it is
based on the comparison of the distribution function, i.e., X is said smaller than Y with respect to

usual stochastic order if Fx () > Fy(r) VteR.
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IV Resumen

» Hazard Rate Order X <, Y: It implies that % 8; is increasing, being F the survival function.
Furthermore, we describe the Reversed Hazard rate order X <,;, ¥ which implies that the function

) g increasing.
Fx(1)

= Likelihood Ratio Order X <, Y: It implies that
of XandY

j:; Eg is increasing over the union of the supports

Finally, in the last chapter, Chapter 5, we will focus on the application of the concepts and results
provided in Chapter 3 to study systems as defined in Chapter 3. We consider the problem of comparing
the performance of two mixed systems. Three different scenarios will be treated, each one identifying
conditions which yield increasingly stronger conclusions about the superiority of one system over
another. Our treatment focuses on the three orders explained in the Chapter 4, usual order, hazard rate
order and likelihood ratio order. The main part of the section is the proof the the following theorems:

= Let s; and s, be the signatures of the two mixed systems of order n, both based on
components with i.i.d lifetimes with common distribution F. Let 77 and T, be their respective
lifetimes. If s| <, Sy, then 77 <y T>.

= Let s; and s, be the signatures of the two mixed systems of order n, both based on
components with i.i.d lifetimes with common distribution F. Let 77 and 75 be their respective
lifetimes. If s1 <j,, 87, then T7 <j,, T>.

= Let s; and s, be the signatures of the two mixed systems of order n, both based on
components with i.i.d lifetimes with common distribution F. Let 71 and 75 be their respective
lifetimes. If s; <;, sp, then T <;, T>.
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Capitulo 1

Nociones generales

A lo largo de este capitulo veremos ciertos conceptos de probabilidad, que serdn necesarios para el
seguimiento y comprension del documento.

1.1. Espacios de probabilidad

Comenzaremos por los conceptos mas generales, definiendo los diferentes tipos de funciones que
usaremos, el espacio en el que estan definidas y algunos resultados sobre la esperanza.

Definicion 1. Sea Q un conjunto. Una o-dlgebra .% es una coleccién de subconjuntos de Q tal que :
" 0.7
" AT AT
» Sea {A,}> | talque A, € .%, para todo n > 1; se tiene U | A, € F
El par (Q,.%) se llama espacio medible o espacio probabilizable
Definicion 2. Sea (Q,.%) un espacio medible, una probabilidad es una funcién P : % — [0, 1] tal que
» P(Q)=1
= Paratodo A € .7, P(AC) = 1—P(A)

= Sea {A,}7 tal que A, € .Z, para todo n > 1y AjNA; =0 para todo j # i; se tiene
U An) ZP
La terna (Q,.%#, P) se llama espacio de probabilidad.

Definicion 3. Sea (Q,.#,P) un espacio de probabilidad. Una variable aleatoria X es una funcién
X :Q— Rtal que X !(B) € .7 paratodo B € #(R).

Ahora que tenemos claras las variables y donde estdn definidas vamos a pasar a definir las funciones
de distribucién, masa de probabilidad y de densidad. Ademads, veremos alguna propiedad relevante de
algunas de ellas.

Definicion 4. Sea (Q,.%, P) un espacio de probabilidad y X una variable aleatoria. La funcién
F :R — [0, 1] definida por F (x) = P(w € Q : X () < x) se llama funcion de distribucion.

Proposicion 1.1. Sea (Q,.%,P) un espacio de probabilidad y X una variable aleatoria con funcion de
distribucion F. Se tiene

1. F es no decreciente
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2. F es continua por la derecha y tiene limites a izquierda F (x~) = P(X < x)
3. limy o F(x) =0
4. lime e F(x) = 1

Definiciéon 5. Una variable aleatoria es discreta si existe un conjunto de puntos {x,} € R, n > 1 tal que
P(X =x,) >0y Y, P(X =x,) = 1. La funcion masa de probabilidad de X es {p, } con p, = P(X = x,)

Definicion 6. Una variable aleatoria X con funcién de distribucién F es (absolutamente) continua si
existe una funcién integrable f : R — [0,00) tal que F(x) = [*_ f(¢)dt. La funcién f se denomina
densidad de X.

Proposicion 1.2. Sea f: R — [0, ) integrable con [~ f(t)dt = 1. Entonces f es la funcion de densidad
de una variable aleatoria X.

Proposicion 1.3. Sea X una variable aleatoria continua con densidad f. Se tiene

1. F es continua
2. Sifes continua en xo entonces F es derivable en xo y F'(xo) = f(x0)

3. Sea A € B(R), entonces P(X € A) = [, f(x)dx

Definicion 7. Sea X una variable aleatoria con funcién de distribucién F, se define la funcion de super-
vivencia, F, como
F(x)=1—F(x) VxeR

1.1.1. Esperanza

Definicion 8.

= Sea X una variable aleatoria discreta con valores {x,} y funcién de masa de probabilidad {p,}.
La esperanza de X se define como E(X) =Y, X, pn Si L, |Xn|pn < o0

= Sea X una variable aleatoria continua con densidad f. La esperanza de X se define como
E(X) = [Z.xf(x)dx si |7, [x] f(x)dx < oo
En el siguiente teorema demostraremos otra forma de calcular la esperanza de una variable aleatoria
X.

Teorema 1.4. Sea X una variable aleatoria , con esperanza finita. Tenemos que:

E(X):/Om[l—Fx(t)]dt—/_in(t)dt

Demostracion. Notar que

/Ow[l—FX dr = /PX>tdt /</f du)dt

donde f(-) es la funcién de densidad de la variable aleatoria de X, teniendo en cuenta el Teorema de

Fubini:
/Ooo[l—Fx /(/ Flu du>dt /</O"1dz)f(u)du:/0°°uf(u)du (1.1)

Por otro lado,

/_iF(t)dt:/_iP(X<tdt / (/ flu du)d[ / (/uoldt)f(u)du:—/_iuf(u)du

Por lo tanto, agrupando (1.1) y (1.2) obtenemos:

/000[1—Fx(t)]dt—/_(:oFx(t)dt:/Owuf(u)du—}—/_iuf(u)du:/:Ouf(u)du:E(X)
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1.2. Estadisticos Ordenados

Antes de definir estadisticos ordenados, veamos las definiciones previas de muestra aleatoria y
muestra aleatoria simple.

Definicion 9. Una poblacion es un colectivo que nos interesa conocer, describir o sobre el que queremos
decir algo. Por ejemplo, en este documento la poblacién sometida a estudio serdn los tiempos de vida
de los componentes de un sistema.

Definicion 10. El estudio de una poblacion se hace, casi siempre, examinando una pequefia fraccion de
sus individuos, una muestra. El menor costo y el mejor control del proceso de obtencién de los datos,
aconsejan ese procedimiento, en vez del estudio exhaustivo (censo).

Los procesos de muestreo en los que cada miembro de la poblacién tiene una probabilidad especifica
de ser incluido en la muestra son de carécter aleatorio. Y la muestra resultante serd una selecién aleatoria
a la que denominamos muestra aleatoria.

Definicién 11. Una muestra aleatoria simple de tamaiio n, de una variable aleatoria X con distribucién
F, son n variables aleatorias (Xi,...,X,), independientes e idénticamente distribuidas, con distribucién
comun F.

Definicién 12. Dada una muestra aleatoria X = (X, ..., X,,), los estadistico de ordenados de X son las
variables aleatorias X(; que proporcionan los valores de la muestra en orden creciente. De este modo se
verifica que: X(1) < X(3) < ... <Xy

En el siguiente teorema vamos a ver como calcular la probabilidad de que estadistico de orden i
sea mayor que f. Este resultado estd tomado del libro ‘A first course in Order Statistics’ pagina 12, [1],
donde también encontramos su demostracion.

Teorema 1.5.






Capitulo 2

Sistemas coherentes

A lo largo del trabajo utilizaremos el término ‘sistema’ en un sentido amplio. De forma informal,
nos referiremos a él como una coleccién de componentes que estdn conectados entre si para formar un
todo. Ejemplos: una radio, un automévil, un ordenador o un teléfono mévil.

La principal caracteristica de nuestro término ‘sistema’ es que funcionard o no segtin si sus componentes
funcionan correctamente o fallan.

2.1. Sistemas

Para cuantificar el funcionamiento de los componentes emplearemos las siguientes definiciones.

Definicion 13. Consideramos el indicador x; que nos informa del estado del componente i-ésimo de

forma que
1 si el componente i esimo funciona
Xi = . . .
! 0 si el componente i esimo no funciona

Para un sistema de n componentes, esta idea da lugar a la nocién de vector de estado.

Definicion 14. El vector generado por los indicadores de todos los componentes de un sistema se de-
nomina vector de estado.

Para un sistema de n componentes, el vector de estado seria X = (x,X2,...,X;,...,Xx,) € {0,1}" donde
x; nos informa del estado del componente i-ésimo, paracadai=1,2,...,n.

El fin es cuantificar si el sistema funciona o no dependiendo del estado de los componentes, para
ello definimos la siguiente funcién.

Definicién 15. Considerar el espacio {0, 1}" de todos los vectores de estado posibles de un sistema de
n-componentes. La funcion de estructura asocia los vectores de estado para los que el sistema funciona
con el valor 1 y los vectores de estado para los que el sistema falla con el valor 0.

Q: {0,1}" — {0,1}

x= ) = o) 1 si el sistema funciona
= (X1,X2, o0y Xy ony X, = _ _ ,
D32y oo fiy e ¢ 0 si el sistema no funciona

Definicion 16. Al niimero de componentes del sistema se le denomina orden del sistema.

2.1.1. Tipos de sistemas

Con el fin de aclarar este concepto, vamos a estudiar los distintos tipos de sistemas mds comunes y
sus funciones estructura.
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Sistemas & de n

Son aquellos sistemas que funcionan cuando al menos k de sus componentes funcionan correctamente.
La funcién estructura de un sistema k de n siguiendo esta definicién es:

n
0 si in<k
i=1
¢(x) =
n
1 si inZk

i=1

Ejemplo 1. Veamos algunos sencillos:

Sistema 1 de 2: Los rifiones u ojos de humanos.

Sistema 2 de 2: Pilas de un mando de television.

Sistema 2 de 4: Un avidn con cuatro motores que vuela si, al menos, dos de sus motores funcionan .

Sistemas en serie:

El sistema funciona si cada componente funciona correctamente, por ello, también podemos definirlos
como sistemas n de n. Su funcidn estructura viene dada por:

1<i<n

n
o(x) = Hxi = min x;.
i=1

Ejemplo 2. Un sistema en serie cotidiano es, por ejemplo, el equipo de un coche formado por motor,
embrague, transmision y rueda. Otro ejemplo, podria ser nuestro sistema cardiovascular, formado por el
corazon, las arterias y las venas.

Figura 2.1: Representacion de un sistema en serie de orden 4.

Sistemas en paralelo:

El sistema funciona si, al menos, funciona un componente, por ello, también podemos definirlos como
sistemas 1 de n. Su funcién estructura viene dada por:

n

p(x)=1-JJ(1—x)= m’gxnx,u

i=1 1<i

Ejemplo 3. Un ejemplo facil de sistema en paralelo puede ser nuestros pulmones, dado que podemos
vivir con un dnico pulmoén.

©

®

©

Figura 2.2: Representacion de un sistema en paralelo de orden 3.
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Sistemas hibridos:

Son aquellos sistemas resultado de combinar los sistemas en serie y en paralelo; son mas complejos
ya que combinan las propiedades de ambos. Por tanto, la funcién estructura también tendrd elementos
de ambos. Por ejemplo, la funcién estructura ¢(x) = x;[1 — (1 —x2)(1 — x3x4)] corresponde al sistema
de la Figura 2.3.

Figura 2.3: Representacion de un sistema hibrido.

2.2. Clasificacion de sistemas

La utilidad de las funciones de estructura serd la de clasificar los sistemas. Por ello, en este apar-
tado vamos a estudiar sus caracteristicas. Para disefiar un sistema deberiamos centrarnos primero en la
influencia de los componentes. Por ejemplo, podemos encontrarnos con un componente cuyo funciona-
miento no influya en el sistema. Es decir:

Definicion 17. Sea (xi,...,X;—1,d,X;+1...,X,) un vector de estado de un sistema arbitrario de orden n tal
que x; = a € {0,1}. El componente i se dice irrelevante si la funcién estructura del sistema ¢ cumple:
QX1 ey Xim1,0, X110y Xn) = @(X1, .00y X1, 1, Xi41..., X, ) para todos los posibles valores de

(X1, ey Xi 15X 1oy X)) € {0,131

Por lo tanto, si un sistema contiene un componente irrelevante, este podria ser eliminado, simplifi-
cdndo y disminuyendo el orden del sistema y, sin embargo, producir el mismo resultado.
Otra caracteristica a tener en cuenta es que el fallo de un componente propicie el fallo del sistema. A
medida que empiezan a fallar los componentes, el sistema puede seguir funcionando por un tiempo,
pero si el funcionamiento de un componente demostrase ser critico para el funcionamiento del sistema,
arreglando dicho componente resolveriamos el problema. En ningtin caso un sistema se estropearia. Ello
propicia la siguiente definicion.

Definicion 18. Un sistema se denomina mondtono cuando al arreglar un componente no empeora el
sistema. Su funcién de estructura cumple que @(x) < @(y) si x <y, donde las desigualdades de los
vectores X, y se aplica al componente deseado.

Con estas dos caracterfisticas esenciales tenemos la base de la siguiente definicion:

Definicion 19. Decimos que un sistema es coherente si cada componente es relevante y su funcién
estructura es monétona.

A pesar de que la definicién de coherencia restringe el nimero de funciones posibles de {0,1}" en
{0,1}, tenemos que el nimero Z(n) de sistemas coherentes crece exponencialmente con n. Este hecho
se debe a que un nuevo componente se puede afiadir en serie o en paralelo, duplicando el nimero de
sistemas coherentes.
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2.3. Sistemas coherentes

A lo largo de esta seccién vamos a centrarnos en estudiar en profundidad los sistemas coherentes
de orden n. Por ello, vamos a centrarnos en la influencia de las agrupaciones de componentes en el
funcionamiento del sistema, la relacién dual entre sistemas y la fiabilidad.

2.3.1. Conjuntos de camino y de corte

Definicién 20. Un conjunto de componentes P se denomina conjunto camino cuando el sistema funcio-
na siempre que todos los componentes en el conjunto P funcionan.

Propiedades de los conjuntos camino

1. El conjunto de todos los componentes de un sistema es un conjunto camino.

2. Sea B un conjunto y A un subconjunto propio de B tal que A es un conjunto camino. Entonces B
€s un conjunto camino.

Definiciéon 21. Los conjuntos camino que no contienen subconjuntos propios de camino se llaman
conjunto de camino minimo. Se denotan como P;, ..., P,.

Propiedades de subconjuntos de camino minimo

1. Ningun conjunto de camino minimo es subconjunto propio de otro.

2. Launi6n algebrdica de todos los conjuntos de camino minimo es el conjunto de todos los compo-
nentes del sistema.

Ejemplo 4. Tomando un sistema general de orden 4 , veamos los conjuntos de camino minimo depen-
diendo del tipo de sistema:

= Sistema de orden 4 en serie: {1,2,3,4}

Sistema 3 de 4: {1,2,3},{1,2,4},{1,3,4},{2,3,4}

Sistema 2 de 4: {1,2},{1,3},{1,4},{2,3},{2,4},{3,4}

Sistema de orden 4 en paralelo: {1}, {2} {3} {4}

Sistema hibrido, Figura 2.3: {1,2} y {1,3,4}. Notar que el componente 1 es imprescindible para
el funcionamiento del sistema y, por ello, aparece en ambos conjuntos.

Es posible caracterizar todos los sistemas coherentes de un orden dado con las propiedades anterio-
res de conjuntos de camino minimo. Notar que en la segunda propiedad, todo componente es elemento
de, al menos, un conjunto de camino minimo y, por tanto, cada componente es relevante. La monotonia
de un sistema en funcién de los conjuntos camino puede ser argumentada de la siguiente manera.

Si el componente k no estd funcionando y el sistema tampoco, entonces la funcién estructura ¢ per-
manecerd igual a 0 o incrementard a 1 cuando el componente k sea reemplazado. Por otro lado, si el
sistema funciona, hay un conjunto de camino minimo P cuyos componentes estdn en funcionamiento.
Puesto que cualquier conjunto de componentes que contenga a P también serd un conjunto de camino,
se sigue que el conjunto {PU{k}} es un conjunto de camino y que la funcidn estructura del sistema
permanecerd igual a 1 cuando el componente k sea reemplazado por un componente que funcione.

Por otro lado, hay una relacion entre el conjunto camino y el conjunto de componentes cuyo fallo ga-
rantiza el fallo del sistema. Esto motiva la siguiente definicion.
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Definicion 22. Un conjunto de componentes C se llama conjunto de corte si el sistema falla siempre
que todos los componentes del conjunto C fallan.

Definicion 23. Un conjunto de corte se llama minimo si no tiene subconjuntos propios que son también
conjuntos de corte.

Propiedades de los conjuntos de corte minimo

1. Ningun conjunto de corte minimo es subconjunto propio de otro.

2. La unioén algebrdica de todos los conjuntos de corte minimo es el conjunto de todos los compo-
nentes del sistema.

Ejemplo 5. Tomando un sistema general de orden 4 , veamos los conjuntos de corte minimo depen-
diendo del tipo de sistema:

= Sistema de orden 4 en serie: {1},{2},{3},{4}

» Sistema 3 de 4: {1,2},{1,3},{1,4},{2,3},{2,4},{3,4}
= Sistema 2 de 4: {1,2,3},{1,2,4},{1,3,4},{2,3,4}

» Sistema de orden 4 en paralelo: {1,2,3,4}

» Sistema hibrido, Figura 2.3: {1}, {2,3}, {2,4}

Observacién 1. La relacion entre los conjuntos de corte y los conjuntos de camino de un sistema
cualquiera es la siguiente:

e Sea P un conjunto de camino minimo y A un subconjunto propio de P, entonces A€ es un conjunto
de corte.

e Sea C un conjunto de corte minimo y B un subconjunto propio de C, entonces B¢ es un conjunto
camino.

Notar que ni A€ ni B¢ necesitan ser minimos.

Hay una conexién entre la funcién de estructura de un sistema coherente y sus conjuntos de camino
minimo y corte minimo. Como ya hemos visto, para que un sistema funcione debe darse el caso de que
todos los componentes de, al menos, un conjunto de camino minimo funcionen. De forma similar, el
sistema funcionard si y solo si al menos funciona uno de los componentes de cada conjunto de corte
minimo. Esto nos proporcionara las herramientas para el cdlculo de la funcién estructura.

Definicion 24. Sean P, ..., P los conjuntos de corte minimo de un sistema dado. Para cada conjunto se
define la funcion estructura de camino p j(x) como

pi(x) =[]~
iEPj
Notar que p;(x) = 1 se da cuando cada componente de P; estd funcionando. Luego la funcion estructura

puede ser representada como:
p

o(x)=1-[](1-p;(x)
j=1
o0 equivalentemente:
X) = mix p;(x)= maix min(x;
0(x)= mix pj(x)= mix min(x)
Es facil ver que dichas ecuaciones confirman que la funcién estructura es 1 si y solo si hay al menos un
conjunto de camino minimo para el cual todos los componentes funcionan.



10 Capitulo 2. Sistemas coherentes

Definicién 25. Sean Cy,...Cy el conjunto de corte minimo del sistema de interés. Definimos la funcion
estructura de corte como:
cj(x)=1-TT(1-x)

iGCj
Notar que c;(x) = 1 se da cuando el conjunto C; de corte minimo contiene, al menos, un componente

que funciona. Como el sistema funciona si y solo si cada conjunto de corte minimo contiene, al menos,
un componente que funciona, se sigue que la funcién estructura puede ser representada como:

o equivalentemente:
@(x)= min ¢;(x)= min max(x;
(x) (i i(%) (Min ieCj( )

Esta representacion de la funcién de estructura demuestra que los sistemas coherentes pueden ser
representados de dos formas equivalentes: como sistemas paralelos en los que cada elemento es un
sistema en serie formado por un conjunto de camino minimo, o como sistemas en serie en los que cada
elemento es un sistema en paralelo formado por el conjunto de corte minimo.

Ejemplo 6. Para ilustrar este tltimo hecho tomamos el sistema hibrido de la Figura 2.3, de la cual ya
conocemos sus conjuntos de camino, P, = {1,2} y P, = {1,3,4} y sus conjuntos de corte, C; = {1},
C, ={2,3},C3 ={2,4}. Sea x; el indicador de estado del componente i-ésimo y ¢(x) la funcién estruc-
tura del sistema, vamos a calcularla de las dos formas que acabamos de ver:

Segtin los conjuntos de camino: Las funciones de estructura de camino son p;(X) = xjx; y
P2(X) = x1x3x4. Por tanto, es facil ver que p;(x) = 1 si cada componente de P; estd funcionando, ya que
todos los indicadores x; serdn iguales a 1. Asi, la funcién estructura queda representada como:

q)(X) =1- (1 —xle)(l —XIX3]C4)
o equivalentemente:

©(x) = max[(x1x2); (x1x3x4)] = max[min(xy;x;); min(xy;x3;5x4)]

Segiin los conjuntos de corte: Las funciones estructura de corte son ¢;(x) = 1 — (1 —x;),
c2(x)=1—(1—-x)(1 —x3) y c3(x) =1— (1 —x2)(1 —x4). Por tanto, es fécil ver que c;(x) = 1 cuando
al menos un componente estd funcionando, ya que asi el producto se anula. Asi, la funcién estructura
queda representada como:

@(x) = [1— (1 =x)][1 = (1 =x2)(1 —x3)][1 = (1 —x2)(1 = x4)]
o equivalentemente:
o(x)=min[l — (1 —x7);1 = (1 —x2)(1 —x3); 1 — (1 —x2)(1 —x4)] = min[x;; max (xp;x3); max(xy;x3)]
2.3.2. Sistemas duales

Definicion 26. Un sistema coherente A es el dual del sistema coherente B si un conjunto de camino
minimo de A es un conjunto de corte minimo de B. Y de forma andloga, un conjunto de corte minimo
de A es un conjunto de camino minimo de B.

Ejemplo 7. Como podemos comprobar en los ejemplos 4 y 5, el conjunto de camino minimo de un
sistema en paralelo es exactamente el conjunto de corte minimo de un sistema en serie.

Para un sistema k de n su dual es un sistema (n-k+1) de n, como podemos comprobar también en los
ejemplos 4 y 5, el conjunto de camino minimo del sistema 2 de 4 es el conjunto de corte minimo del
sistema 3 de 4.
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Ademéds, la relacién entre sistemas coherentes duales estd presente en sus respectivas funciones de
estructura de la siguiente manera:

Definicion 27. Si A y B son sistemas duales, entonces sus funciones de estructura estdn relacionadas
por la ecuacion:

¢*(x) =1—-9%(1—-x)

Ejemplo 8. En el ejemplo anterior hemos visto que un sistema en paralelo es el dual de un sistema
en serie. Vamos a comprobar que sus funciones estructura estdn relacionadas de la forma mencionada
usando sistemas de orden 4. Primero vamos a calcular por separado sus funciones estructura; para ello
usaremos los conjuntos camino que hemos calculado en el Ejemplo 4.

Para el sistema en serie: El conjunto camino es P; = {1,2,3,4}, la funcién estructura de camino
p1(X) = x1x2x3x4 y, por tanto, su funcién estructura

(pS(X) =1- (1 —X1)C2)C3)C4).

Para el sistema en paralelo: Los conjuntos de camino son P, = {i} para i = 1,2,3,4; las funciones
estructura de camino p;(x) = x; parai = 1,2,3,4 y, por tanto, su funcién estructura

@"(x) =1 — (1 —x1)(1 —x2)(1 —x3)(1 — xa).
Por lo tanto,
() =1—-@"(1—x) =1 [1 = (1= (1—x1)) (1 = (1 =x2)) (1 = (1 =x3)) (1 = (1 —x4))] = 1 = [1 —x102x3x4]
2.3.3. Fiabilidad de sistemas coherentes

Consideramos un sistema coherente con n componentes que funcionan o no de modo independien-
te. Consideramos que fijado un tiempo ¢, en el cual se examina el sistema, cada componente i puede
funcionar (con probabilidad p;) o no ( con probabilidad 1 — p;). Esto es, si X; es una variable aleatoria
con distribucién Bernoulli que indica con valor 1 que el componente funciona y con valor 0 que no
funciona, entonces tenemos que p; = P(X; = 1).

Consideremos que el vector de estado (X;,X>, ...,x,) estd compuesto por n variables aleatorias indepen-
dientes, definimos la probabilidad de que el sistema funciona como:

Definicion 28. La probabilidad de que un sistema a tiempo ¢ funcione se define como fiabilidad del
sistema. Se denota con h(p) y puede calcularse a través de la funcion estructura como:

h(p) = P(e(X) = 1) = E9(X)

Notar que i(p) es multilineal, puesto que es lineal en cada p;. Esto se observa al ser i(p) una suma de
productos de una o varias probabilidades de p = (p1, p2..., Pn)

Ejemplo 9. Tomamos de nuevo el sistema de la Figura 2.3 que tiene funcién de estructura ¢(x) =
1 — (1 —x1x2)(1 —x1x3x4), calculada en el Ejemplo 6 segin sus conjuntos de camino minimo. Queremos
calcular la fiabilidad del sistema, usando la definicién anterior:

h(p) = P(9(X) = 1) = E9(X) = E(1 — (1 = X1X3)(1 — X1 X3X4))
Teniendo en cuenta las propiedades de la esperanza obtenemos:
1-E(1-X1X)(1-X1X3X4)) = 1 —E(1 = X1 X3X4 — X1 X0 + X1 X3 X4 X1 Xp) =

1 —E(]) +E(X1X3X4) +E(X1X2) —E(X1X3X4X1X2) =
1—1+E(X1)E(X3)E(Xs) +E(X1)E(X>) — E(X1)E(X3)E(X4)E(X))E (X2) =

pip3pa+pip2 —pip3papipr =1 — (1 —pip2) (1 — pip3pa)



12 Capitulo 2. Sistemas coherentes

Cuando los componentes vienen definidos por variables aleatorias idénticamente distribuidas, tene-
mos p; = p, y la funcién de fiabilidad % se simplifica.

Definicion 29. Si las variables son independientes e idénticamente distribuidas, entonces nos referimos
a h como polinomio de fiabilidad.

Ejemplo 10. Tomamos un sistema en serie de n componentes independientes e idénticamente distribui-
das (i.i.d), es decir, p; = p. Su funcién de estructura sera:

p(X) =1 (1 —ﬁlxi) :ﬂlxi

Calculamos la fiabilidad del sistema:

n n n
h(p)=EoX)=E([[X)=][EX) =]]p="r"
i=1 i=1 i=1
Por otro lado, tomamos un sistema en paralelo de n componentes i.i.d, es decir, p; = p . Su funcién

de estructura sera:
n

o(X)=1-]](1-X))

i=1
Calculamos la fiabilidad del sistema:

n n

h(p) =E@(X)=E(1-[J(1-X)) =1-[J0 - EX)) =1-(1-p)"

i=1 i=1



Capitulo 3

Signatura de sistemas

Como hemos visto en el capitulo anterior, el nimero de sistemas coherentes de orden n crece expo-

nencialmente con n. Las funciones de estructura son expresiones algebraicas complejas que, en general,
admiten multiples representaciones equivalentes.
En este capitulo, presentaremos una alternativa que, aunque es menos general que la funcidn estructura,
tiene una expresion mds manejable y facil de interpretar. Destacar que para los sistemas de orden n,
serd de dimensidn fija. Recordar para la préxima definicién lo visto en el Capitulo 1 de estadisticos
ordenados .

Definicion 30. Sea 7 un sistema coherente de orden n. Asumir que los tiempos de vida de los n com-
ponentes de un sistema, X1,X5...,X, son independientes e idénticamente distribuidos (i.i.d) de acuerdo
con la distribucién (continua) F.

Dado un sistema 7 se define su signatura , denotada por s; o simplemente s si el sistema correspondiente
estd claro en el contexto, como un vector de probabilidades n-dimensional cuyo i-ésimo elemento, s;,
es igual a la probabilidad de que el fallo del sistema sea debido a que han fallado exactamente i compo-
nentes.

En resumen, s; = P(T = X;.,), donde T es el tiempo de vida del sistema y X;.,, es el estadistico de orden i
de los tiempos de vida del los n componentes, es decir, es el momento de fallo del componente i-ésimo.

En las condiciones de la Definicién 30, supongamos que las variables X; son i.i.d con funcién de
distribucion comun F. Escribimos (ij,...i,) indicando los componentes por su orden de fallo. Las n!
permutaciones del vector son equiprobables.

La caracteristica esencial del cdlculo de signaturas es considerar el nimero de permutaciones de los
tiempos de vida de los n componentes potenciales y contar los que se corresponden con el fallo del
sistema sobre el fallo de i entre los n componentes.

Observacion 2. Dado que T pertenece al conjunto {Xj.y, ..., X,:, } con probabilidad uno, se deduce que
la signatura s en un vector de probabilidad tal que s; >0 Viy Y s, =1

3.1. Calculo del vector signatura para sistemas coherentes

Vamos a comenzar la siguiente seccion viendo un ejemplo particular de un sistema de 3 componen-
tes distribuidos como en la Figura 3.1. A continuacién nos centraremos en calcular la probabilidad de
que el tiempo de vida del sistema dado sea mayor que ¢, definiendo as{ la funcién de supervivencia y en
consecuencia la tasa de fallo.

13
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Ejemplo 11. Consideramos el siguiente sistema de tres componentes, cuya funcién de estructura es
¢(x) =1- (1 —X1)(1 —XZX3).

(1)
Y

Joslos

Figura 3.1: Sistema de tres componentes

Sean X1, X>,X3 variables i.i.d que representan los tiempos de vida de los componentes del sistema
dado, tenenemos que pueden ser odenados de 3! = 3-2-1 = 6 formas distintas e igualmente probables.
Ponemos en comtn en la siguiente tabla las 6 formas distintas de ordenar los tiempos de vida y el
estadistico ordenado igual al tiempo de vida del sistema (7).

Orden de los tiempos de vida ‘ Estadistico ordenado

X <Xo < X3 Xo3
X1 <X53<Xp X3
X < X1 <X; X33
X < X3 <Xy X33
X3 < X1 <Xy X233
X; <X <X X3:3

Tabla 3.1: Resumen de los estadisticos ordenados que dan lugar al fallo del sistema

De la tabla anterior deducimos que la signatura del sistema es s= (0, %, %) Es fécil de ver que los

cinco posibles sistemas coherentes de orden 3 tienen las siguientes signaturas (1,0,0), (0,1,0), (0,0,1),
(0, %, %) y ( %, %,0). Las tres primeras corresponden a los sistemas i de 3 para i = 1,2,3 y el quinto co-
rresponde a un elemento en serie con los otros dos en paralelo (Figura 3.2). Para los cinco sistemas
mencionados, notar que el primer sistema es el dual del tercero y el cuarto el dual del quinto.

®

O —
G)
o/

Figura 3.2:

La combinatoria involucrada en el cdlculo de signaturas de un sistema puede ser compleja. Por ello,
cabe destacar el concepto de dualidad, ya que puede reducir el calculo a la mitad al obtenerse la signa-
tura de un sistema dual mediante argumentos simétricos.

Ahora vamos a establecer una propiedad fundamental para la signatura s. Ademds, consideramos
P(Xj., > t) la funcién de supervivencia del i-ésimo tiempo de vida vista en el Teorema 1.5.
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Teorema 3.1. Sean X1,Xo, ..., X, las variables i.i.d que representan los tiempos de vida de los n compo-
nentes un sistema coherente con signatura s y sea T el tiempo de vida del sistema. Entonces

J— l 1 ¢ —_—
Fr(t)=P T>r=2}21@) Y (F @)y

=1 =0

Demostracion. Notar que el sistema falla cuando uno de sus componentes deja de funcionar, por lo
que T tomara los valores de uno de los estadisticos ordenados X;.,, de la muestra (X;,X3,...,X,), es
decir, T € {X1.1,X2:n,---,Xu:n} con probabilidad 1. Entonces aplicando la ley de probabilidad total y
suponiendo que las variables X; son i.i.d podemos escribir:

n n
P(T>1)=Y P(T>t, T=Xpu) =Y P(T>1,|T =Xn)P(T =Xi)
i=1 i=1

Debido al Teorema 1.5 :

mm:iazC§meHm"f G.1)

se denomina funcion de supervivencia del sistema. Puede también representarse intercambiando los
sumatorios:

m@:i(i&>@)mwwmwf 62

i=j+1

Observacion 3. La igualdad (3.2) también puede ser escrita como funcién que involucra las probabili-
F(1)

(1)’

dades de fallo y supervivencia, G(r)
. . n—1 n n )
Fro=Fory (3 s ) (7)o
J=0 \i=j+1 J
De esta manera, la funcién supervivencia se representa en términos de signaturas.

Observacion 4. Consideramos un sistema basado en n componentes i.i.d funcionando en un instante
fijo de tiempo 9. Tomando p = F(ty) y ¢ = F(to), se puede escribir el polinomio de fiabilidad i(p) en
forma pq usando (3.2) y asi obteniendo dos versiones equivalentes de h

h(p) = jZ_‘; (i_él sz~> (’;) q'p"™

Y cambiando j = n — j tendremos
= f Zn‘, <n> plq"
j=1 \i=n—j+1 J

Nota 1. La funcién de supervivencia de un sistema con tiempo de vida T puede escribirse en términos
de funciones de supervivencia de los estadisticos ordenados de los tiempo de vida de los componentes,
es decir,
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Ademads, por la identidad para variables aleatorias consecuencia del caso general visto en el Teorema

1.4, tenemos que:
= /0 F(y)dy.

Lo que nos proporciona otra conexion ttil entre el tiempo de vida de un sistema y el estadistico ordenado
del tiempo de vida, ya que integrando la dltima expresion de la pagina anterior tenemos:

Zsz tn

La representacion (3.2) se puede aplicar para obtener otras representaciones de la funcién de densi-
dad de un sistema y la tasa de fallo cuando F es absolutamente continua.

Corolario 3.2. Sea X1, ..., X, las variables aleatorias i.i.d con funcion de distribucion F, que representan
los tiempos de vida de los n componentes de un sistema coherente con signatura s y sea T el tiempo de
vida del sistema. Si F es absolutamente continua, entonces

fT(f):—(j,) (T>1) lez( ) )T F @) (3.3)

Demostracion. Derivando Fr(t) en la igualdad (3.1). O

Definicion 32. La tasa de fallo de un sistema r7(¢) se define como la relacién

Jr(1)
FT(I)

y puede escribirse en términos de la signatura s y el componente subyacente de la distribucién F.

La relacién entre la densidad en (3.3) y la funcién de supervivencia en (3.1) puede ser simplificada
para obtener una relacion ttil de la tasa de fallo del sistema.

Corolario 3.3. Considerar un sistema coherente de n componentes con signatura s y asumir que los
tiempos de vida de las componentes X1, ..., X, son i.i.d con distribucion F y densidad f. Sea T el tiempo
de vida del sistema. Entonces

rr(t) =5 — - — (3.4)
Yok ()

Donde r(t) = % es la tasa de fallo comiin de los componentes.

Otra version mds iitil y equivalente:

(3.5

) = 2 ()
) ( ) ) (7)o
i=0

J=i+1

O en términos de la funcion de probabilidad G(t) = £

t

Foe ()

rr(t) = (3.6)

5t ><>
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Observacién 5. Como se deduce de la ecuacién (3.1), el tiempo de vida de un sistema coherente con
componentes i.i.d depende de la estructura del sistema solo a través de la signatura. Si dos sistemas con
componentes i.i.d tienen la misma signatura el comportamiento estocdstico de sus tiempos de vida es
igual. Notar que, dos sistemas coherentes pueden tener la misma signatura.

3.2. Sistemas mixtos

El conjunto de todos los sistemas coherentes de orden n, con n arbitrario, serfa el marco apropiado
para aplicaciones. Pero este conjunto tiene sus limitaciones dado que el nimero de sistemas coherentes
de orden n a veces resulta insuficiente.

En aplicaciones, resulta conveniente trabajar con un conjunto mas amplio de sistemas (no todos ellos
necesariamente coherentes). La idea es formar nuevos sistemas como ‘mezcla’ (aleatoria) de sistemas
coherentes.

3.2.1. Aleatoriedad en la eleccion del sistema

Supongamos que disponemos de un suministro ilimitado de componentes cuyos tiempos de vida
son variables 1.i.d con funcidn de distribucién comin F. Consideramos el conjunto de todos los sistemas
coherentes de orden 7, notar que este conjunto es finito. Teniendo en cuenta el proceso de seleccionar un
sistema coherente al azar de acuerdo con una distribucién de probabilidad fija y conocida p. El vector de
probabilidad p serd m-dimensional y le dard un peso positivo a cada uno de los m sistemas coherentes
de orden n con sus correspondientes signaturas sy, ..., S,,. Entonces

P( El sistema falle por el fallo del componente i-ésimo) =
m

Z P(elegir el sistema k-ésimo) P(fallo del componente i provoca el fallo del sistema k | el sistema k ha
k=1

sido elegido) = Z DiSk;
k=1

m
La signatura, s* asociada a este proceso viene definida por el vector s* = Z DiSk
k=1

Ejemplo 12. La signatura de un sistema k de n es el vector n-dimensional sy, = (0, ...,0, 1,0,...,0) con
n
un 1 en el elemento k. Por tanto, cualquier vector de probabilidad que cumpla p € [0,1]" : Z pi=1
i=1

serd la signatura del sistema mixto, es decir, el sistema que mezcla el sistema k de n con la distribucién
p- Esta observacidén se deduce de lo anterior dado que el vector probabilidad p puede escribirse como

P= PikSk:n

n
k=1
Expandir el conjunto de los sistemas coherentes de orden n al conjunto de todos los sistemas mixtos
de orden n posee sus beneficios. Por ejemplo, los resultados vistos en la seccién 3.1 se pueden aplicar
de la misma manera a los sistemas mixtos. De hecho, los sistemas mixtos incluyen sistemas coherentes

como casos especiales, es decir, como mezclas degeneradas que colocan toda su masa en un solo sistema
coherente. Por tanto, todos los resultados relacionados con signaturas son aplicables a sistemas mixtos.






Capitulo 4

Ordenes estocasticos univariantes

4.1. Introduccion

El capitulo que vamos a desarrollar a continuacién estd basado en el libro de Muller y Stoyan,
Comparison methods for stochastic models and risks,[5]. Estos conceptos se usardn en el siguiente
capitulo.

Comenzamos definiendo lo que es un orden parcial puesto que veremos que las relaciones de 6rdenes
estocdsticos son casos especiales .

Definicion 33. Un relacion binaria < en un conjunto arbitrario S se denomina orden (parcial) si cumple
las siguientes propiedades:

1. Reflexiva: x <x VxS
2. Transitiva: Si x < y ademds y < z entonces x = 7
3. Antisimétrica: Si x <y ademds y < x entonces x =y
Notar que, a veces es conveniente escribir y > x como equivalente a x <y

Definicién 34. Sea S un conjunto (o subconjunto adecuado) de todas las funciones de distribucion de
variables aleatorias en los reales. Un orden parcial en dicho conjunto se denomina orden estocdstico.

Notacion. Sea X una variable aleatoria en los reales denotamos con Py su distribucién y con Fx su
funcién de distribucidn, es decir:

Fx(t) = Py ((—o0,f])) = P(X <1) Vt€R

A menudo es conveniente no distinguir entre una relacién de orden entre funciones de distribucién y la
correspondiente relacion de distribucién y variables aleatorias.

Convenio. Sean las variables aleatorias X e Y con distribuciones Py y Py respectivamente, y funciones
de distribucién Fx(t) y Fy(t) tales que Fx(z) = Fx(¢). Entonces usaremos la siguiente notacién cuando
sea conveniente Py < Py y X =Y.

Ademads, en algunas ocasiones no se hard distincién entre distribuciones y sus funciones de distribucién.
Usaremos el mismo carécter.

Nota 2. Existen variables aleatorias diferentes con la misma distribucién. Luego la relacién < es antisi-
métrica como relacién entre distribuciones pero no puede serlo como relacién entre variables aleatorias.

4.2. Orden estocastico usual

El candidato mds natural para un orden estocdstico es el de la comparacién puntual de las funciones
de distribucion. Si Fy > Fy Vt € R, entonces X toma valores pequefios con mayor probabilidad que Y,
por lo tanto, X toma valores altos con menor probabilidad que Y.

19
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Definicion 35. La variable aleatoria X es mas pequefia que la variable Y con respecto el orden esto-
cdstico usual, X <4 Y, si Fx(t) > Fy(t) Vt € R, o equivalentemente si Fy(t) < Fy(t) Vt € R donde
Fx(t) denota la funcién de supervivencia de X. Habitualmente lo denominaremos simplemente orden
estocdstico.

A primera vista puede parecer contradictorio decir que Fy <g Fy si Fx(t) > Fy(t) Vt € R. Es claro
que queremos definir ¥ estocdsticamente mayor que X, es decir, que toma valores altos con mayor pro-
babilidad. Sin embargo, la funcién de distribucién describe la probabilidad de tomar valores pequefios
y, por ello, invertimos el signo de desigualdad.

Consideramos la notacién <; como una generalizacién del orden < en el eje real, puesto que para
los nimeros reales a,b tenemos que a < b implica a <y b donde a y b denotan las distribuciones de-
generadas en los respectivos puntos. En otras palabras, a < b implica 8, <y 8y, donde J, es la delta de
Dirac en el punto a, es decir, la funcién de distribucién de dicha variable aleatoria.

El siguiente resultado (sin demostracion) se utilizard en el Teorema 4.2.

Teorema 4.1. Sean X,Y variables aleatorias con funciones de distribucion Fx y Fy respectivamente.
Las siguientes afirmaciones son equivalentes:

" X<gY

» Existe un espacio de probabilidad (2, ,P) y existen variables aleatorias X y Y con funciones
de ditribucion Fx y Fy tales que X<YVoel

Observacion 6. Considerar X,Y tales que estdn definidos sobre el mismo espacio probabilistico (Q,.7, P).
Un candidato para orden parcial que compare el tamafio de las variables aleatorias seria la relacién
X <45 Y, que se cumple si y solo si X(®) < Y (@) para casi todo @ € Q. Esta relacién de orden no
depende sélo de las distribuciones. Es ficil ver que siempre se cumple X <, s X, pero no se cumple que
X <, Y cuando X e Y son independientes e idénticamente distribuidas con la misma distribucién no
degenerada. El orden <, ;. es por tanto més fuerte que el usual, esto es X <, Y implica Fy <y Fy, pero
no a la inversa.

Nota 3. Recordar que a.s. es la abreviatura en inglés de almost surely (casi seguro).
Veamos que el orden estocdstico puede ser caracterizado de la siguiente manera:
Teorema 4.2. Las siguientes expresiones son equivalentes:
1. X <4Y

2. La desigualdad
Ef(X) <Ef(Y) .1

se cumple para toda funcion creciente f, para la cual ambas esperanzas existen.

Asimismo,si dada f se cumple la desigualdad (4.1) para todo X e Y tales que X <g Y, entonces f debe
ser creciente.

Demostracion. Veamos la doble implicacion:

1. = 2. Podemos asumir sin pérdida de generalidad que X <Y casi seguro, por el Teorema 4.1. En-
tonces, si f es creciente f(X) < f(Y) a.s. y por la monotonia de la esperanza tenemos que

Ef(X) <Ef(Y).
2. = 1. Se sigue inmediatamente de la observacién P(X >1t) = E I,(X) para la funcién indicativa:

1 x>t
0 en otro caso

() = 1) = {

que efectivamente es creciente.
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Para ver la dltima afirmacién, asumimos que f es no creciente, luego existe x <y tal que f(x) > f(y).
Tomando X e Y tales que P(X =x) = P(Y =y) = 1, entonces X <y Y. Pero Ef(X) > Ef(Y). Contra-
diccién por tomar f no creciente. 0

Teorema 4.3. Sea X e Y variables aleatorias con esperanzas finitas.
a) X <gY entonces E(X) <E(Y)
b) SiX <qYyE(X)=E(Y) entonces X eY tienen la misma distribucion.

Demostracion.
a) tomando f(x) = x y aplicando las equivalencias del Teorema 4.2

b) Sabemos por el Teorema 1.4 que

E(X) = /0 "1 = B (0))di — [ (;Fx(t)dt

Luego
EX)=E() = [ (R0~ Fr(o)las “2)

—oo

SiX <yYyE(X)=E(Y),entonces la parte izquierda de (4.2) es 0 y la derecha es la integral de
una funcién no negativa continua. Luego solo se dard la igualdad si Fx = Fy.

O]

Observacion 7. Hay mas 6rdenes naturales que el orden estocdstico usual, por ejemplo el llamado
‘orden ingeniero’. Este se basa en la comparacién de las medias, es decir, la variable aleatoria X es

menor que Y en media, X <, Y, si E(X) < E(Y). Observamos que el orden estocastico usual implica
este orden.

4.3. Orden de la tasa de fallo

Hay muchas situaciones donde conceptos més fuertes que el orden estocdstico usual son necesarios.
Veamos algunos ejemplos:

Ejemplo 13. Consideramos la situacién donde alguien quiere comprar un coche y puede elegir entre
dos opciones. El tiempo de vida de cada coche es descrito por una variable aleatoria diferente, X e Y. Es
claro que si X <y Y y el precio es el mismo, entonces elegiria el segundo coche. Pero supongamos que
ambos son de segunda mano con un afio de antiguedad, entonces los tiempos de vida restantes vienen
dados por X" e Y’ donde P(X' >1t) = P(X > 1 +¢|X > 1) e igualmente Y. ;Se sigue cumpliendo que
X' <4 Y'? A priori no podriamos asegurar que el segundo coche sea mejor opcion.

Vamos a ilustrar a través de un ejemplo concreto como X < Y no se conserva bajo envejecimiento.

Ejemplo 14. Sea X una variable aleatoria con distribucién uniforme (0,3) e Y una variable aleatoria con
funcién de densidad:

£ 0<x<1
f)=q 5 1<x<2
I 2<x<3
Calculamos las funciones de distribucion de X e Y:
0 x<0
Fx(x)=4q 3 0<x<3
1 x>3
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x<0
0<x<«1
1<x<?2
2<x<3

x>3

Fy(x) = — %

—WxNI=O= O

Es facil ver que Fx(t) > Fy(t) en cada intervalo, luego X <y Y.
Por otro lado, si calculamos como en el Ejemplo 13: P(X’ > x) = P(X > 1 +x|X > 1) tenemos que

, _PX>1+4+x) (2-x)/3
PX>0="px=1y — 23 !

7% l<x<2

Por tanto, Fx/(x) = 5 y X’ es uniforme en (0,2).
Analogamente se podria ver que Y’ tiene densidad:

1l<x<?2

o=

DN

O<x§1}

Con lo que se comprobaria que X’ >, Y’ (a pesar de que X < Y).

Volvemos al Ejemplo 13: A raiz de este hecho, nos surgen la siguiente cuestioén sobre el Ejemplo 13:
( Qué suposiciones son necesarias para garantizar que se mantenga el orden estocdstico usual para los
coches con cualquier afo de antigiiedad, es decir, [X|X > ] <y [Y|Y >1] V¢?

Empleando la definicién de orden estocéstico <y, , la desigualdad anterior puede reescribirse como:

PX>s+t|X >t) <PY >s+t]Y >t) Vs>t
Y esto es equivalente a la expresion:

Erbs+0) s o w

donde Fx (1) =1 — Fx(t)

Definicion 36. La variable aleatoria X es mas pequefia que la variable aleatoria Y con respecto el orden
de la tasa de fallo, X <;, Y, si la siguiente funcion es creciente

Fy(1)
Fx(1)
El nombre de este orden se debe al hecho de que existe una caracterizacidon equivalente en términos de

la comparacién puntual de las llamadas tasas de fallo, suponiendo la existencia de densidades continuas
y por lo tanto de las tasas de fallo.

Teorema 4.4. Sean X e Y variables aleatorias con densidades continuas, entonces X <j, Y es equiva-
lentearx(t) >ry(t) ViteR

Demostracion. XY es creciente si y solo si
Fx (l)
fy (t) > — —
n|{ = =Fy(t)—Fx(t
(F40) =P Fxlo

es creciente. Dado que rx (t) = % In(Fx(t)) el resultado se obtiene debido a que una funcién diferencia-
ble es creciente si y solo si su derivada es no negativa. 0
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Teorema 4.5. Supongamos que X <j, Y y que g : R — R es creciente. Entonces g(X) <p, g(Y).

Demostracion. Suponiendo que exista la inversa de g, la demostracién es inmediata por la identidad

Fo) (1) =P(g(X) > 1) =P(X > g7 (1)) =Fx (¢7'(1)).

d
Teorema 4.6. X <;, Y implica X <,Y
Demostracion. Tenemos que X <j, Y implica %8 > 1 y entonces Fx(t) > Fy(t) Vr € R, es decir,
X < Y. O

A veces es Util considerar el orden estocdstico que se obtiene cuando consideramos la funcién de
supervivencia en vez de la funcién de distribucién en la definicién del orden de tasa de fallo.

Definicién 37. La variable aleatoria X es mas pequefia que la variable aleatoria Y con respecto al orden
de la tasa de fallo inverso, X <,, Y, si la siguiente funcién es creciente

Fy(l)
Fx(t) ’

El orden de la tasa de fallo inverso comparte muchas propiedades con el orden de la tasa de fallo
usual. Asimismo, hay una fuerte dualidad entre ambos. De nuevo tenemos:

Teorema 4.7. Sea g una funcion continua y estrictamente decreciente. Entonces X <, Y si y solo si
8(X) > g(Y)

Demostracion. Si g es continua y estrictamente decreciente entonces también lo es g~
se sigue de la identidad

' La afirmacién

w0 (1) =P(g(X) <1) =P(X > g7'(1) = Fx(g~' (1))
O

De este resultado podemos trasladar las propiedades de orden de la tasa de fallo (<j,) a propiedades
para el orden de la tasa de fallo inverso (<,;) y viceversa. Por ejemplo:

Teorema 4.8. X <,;, Y implica X <4 Y

Demostracion.
X< Y=-X>,-Y=-X>,-Y=>X<,Y

4.4. Orden de razon de verosimilitudes

Una interesante caracteristica del orden de la tasa de fallo es que X <j, Y se cumple si y solo si
[X|X >1] <4 [Y|Y >t] VteR.Es muy importante para analizar los tiempos de vida de las distribu-
ciones. Sin embargo, hay otras situaciones donde nos gustaria tener [X|X € A] <, [Y|Y € A] para todos

los posibles sucesos. Por ello, vamos a definir orden de razén de verosimilitud, como viene en el libro
‘An Introduction to Stochastic Orders’ pagina 60, [2].

Definicion 38. Dadas dos variables aleatorias continuas X e Y con funciones de densidad fy y fy
respectivamente. La variable X es mds pequefia que la variable aleatoria Y respecto al orden de razon
de verosimilitud, X <;. Y, si

Sx@)fr(s) < fx(s)fv(1) Vs <t (4.3)

1) o creciente en ¢ en la unién de los soportesde X e Y.

fx(t)

o0 equivalentemente, si
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Observacién 8. La ecuacion establece una relacién entre £~ creciente, pero escrita de tal forma que

Y
o ) . . fx
indica qué hacer si numerador o denominador son 0.

La definicion anterior permite comparar dos variables aleatorias continuas con respecto al orden de
razon de verosimilitud. Veamos ahora el caso con dos variables aleatorias discretas:

Definicion 39. Sean X e Y dos variables aleatorias que toman valores sobre los enteros, con funciones
de probabilidad px (i) y py (i) respectivamente, para todo i € Z. Diremos que X es mas pequefia que la
variable aleatoria Y respecto al orden de razon de verosimilitud, X <;. Y, si

px())py (i) < px(D)py(j) Vi< (4.4)

Como conclusién del capitulo veamos las implicaciones entre los distintos tipos de drdenes estocds-
ticos estudiados.

Teorema 4.9. X <;, Y implicaX <, Y yX <5, Y



Capitulo 5

Teoremas de preservacion basados en las
propiedades de la signatura

En esta seccion consideraremos el problema de comparar el rendimiento de dos sistemas mixtos.
En el capitulo anterior nos centrdbamos en estudiar cudndo una variable aleatoria es mayor que otra en
el sentido estocdstico.
Supongamos dos variables aleatorias discretas X; y X, cuyas funciones de masa de probabilidad vienen
dadas por las signaturas s; y s, respectivamente. La condicién F1(x) < F, Vx se puede comprobar que
n n

es equivalente a Zsl,- < Zszl- para j=1,...,n.

i=j i=j
Cuando las distribuciones son absolutamente continuas, el orden de la tasa de fallo es equivalente a
comparar las tasas de fallo r; y rp, esto es X; <;, X, si'y solo sir(¢) > ra(t)

El primer resultado compara estocdsticamente, con el orden usual, dos signaturas de sistemas mixtos.

Teorema 5.1. Sean s, y s, las signaturas de dos sistemas mixtos de orden n, ambos formados por
componentes con tiempos de vida i.i.d y ditribucion F comiin. Sea Ty y T, sus respectivos tiempos de
vida. Si s1 <y 7 entonces T1 < T>.

Demostracion. De la representacion de la funcidn de supervivencia (3.2) tenemos que para todo ¢ no
negativo:

n—1 n n—1 n

— n . . n L P

FO=Y (5 o) () ror@ors <L ( 8 s (0)EoiEor=ro

J=0 \i=j+1 J j=0 \i=j+1 J

Esta desiguald proviene de la suposicién de s; <y s;. O
Veamos el uso de este teorema con un ejemplo.

Ejemplo 15. Notar que los cinco sistemas coherentes vistos en el Capitulo 3 estin completamente
ordenados en el sentido del teorema que acabamos de ver. Sin embargo, hay ciertos sistemas coherentes
para los cuales este orden no es valido. Por ejemplo, las signaturas de los sistemas coherentes de orden
cuatro siguientes no estdn ordenadas estocdsticamente:

» Sistema de orden cuatro con conjuntos minimos {1},{2, 3, 4} y signatura (4, 1,3,0)
= Sistema de orden cuatro con conjuntos minimos {1,2}, {1,3}, {1.4}, {2,3} y signatura (0, %, §,0)

Ahora, vamos a comparar estocdsticamente, con el orden de la tasa de fallo, dos sistemas mixtos.
Se mostrard que el orden entre signaturas de dos sistemas mixtos implica que los tiempos de vida de los
correspondientes sistemas estdn ordenados en el orden de la tasa de fallo.
Primero necesitaremos los siguientes resultados técnicos:

25
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a .
Lema 5.2. Sean o.(-) y B(+) dos funciones tales que B(-) es no negativa; [38 y o(+) son no decrecien-
tes. Sean X1 y X, dos variableas aleatorias con funciones de distribucion F| y F, respectivamente tales
que X1 <pr Xo. Entonces
JZwax)dFi(x) _ [ alx)dF(x)

JoeB)dF(x) [ Bx)dFy(x)

El siguiente lema esta extraido del articulo de Boland, El-Newehi y Proschan [4].

(5.1)

Lema 5.3. Sean X1, ...X,, los tiempos de vida de los componentes de un sistema de orden n, independien-
tes no necesariamente idénticamente distribuido y sea Xy, el estadistico de orden k. Entonces Xy 1., es
mayor que Xi.,, con respecto el orden de la tasa de fallo para todo k= 1,....n — 1.

Ahora, estamos en condiciones de demostrar el siguiente resultado:

Teorema 5.4. Sean s| y s, las signaturas de dos sistemas mixtos de orden n, ambos basados en com-
ponentes con tiempos de vida definidos por variables aleatorias i.i.d y distribucion F. Sean T\ y T, los
tiempos de vida de cada sistema. Sis| <y, 8o, entonces Ty <, T

Demostracién. Como vimos en la Nota 1 del Capitulo 3 la funcién supervivencia F ; de un sistema con
tiempo de de vida 7; puede ser escrita en términos de la funcién de supervivencia de los estadisticos
ordenados de los tiempos de vida de los componentes. Luego para j = 1,2 tenemos

n
Fj(l‘) = ZSJ',' P(Xi;n > t)
i=1

1210)
Fi

Asumimos que s; <j, sp y veamos que 77 < 7> demostrando que o

es creciente en ¢. Esto es equiva-
lente a demostrar que
Fay) _ Fa(y)
Fi(x) = Fi(y)

por la Nota 1, podemos reescribirlo de la siguiente manera

Vx<y

$2i P(Xin >y)

or

—_

n
Y s P(Xiw > y)
i=1

IN
0

-

Il
—_

Vx <y (5.2)

n
Y sii P(Xin > x) s2i P(Xjn > x)
i=1

Pero (5.2) se puede demostrar a partir de (5.1) del Lema 5.2 tomando & y 3 como las funciones dis-
cretas a(i) = P(X;., > y) y B(i) = P(Xi;, > x) y tomando F} y F; las distribuciones discretas de s; y
sp respectivamente. Solo necesitamos verificar que las funciones elegidas como a y f satisfacen las
hipotesis del Lema 5.2.

La monotonia de f se sigue del hecho de que los estadisticos ordenados estin ordenados en el or-
den estocdstico usual <y, ya que estdn ordenados en el orden a.s. (recuérdese la Observacién 6). La
desigualdad

o(i) < a(i+1)

(i) = Bi+1)
podemos escribirla
P(Xit1.0 > X) < P(Xiy1: >) Vr <y
P(Xi;n > x) P(Xl';n > y)
Esta desigualdad es equivalente a X;., <, X;+1., como sabemos por el Lema 5.3. ]

El siguiente resultado establece el orden de la razén de verosimilitud de dos sistemas mixtos, en
términos de sus signaturas, entre tiempos de vida.
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Teorema 5.5. Sean s| y s, las signaturas de dos sistemas mixtos de orden n, ambos basados en com-
ponentes con tiempos de vida definidos por variables aleatorias i.i.d y distribucion F. Sean T\ y T, los
tiempos de vida de cada sistema. Si s| <, 82, entonces Ty <; T»

Demostracion. Sean f1y f> las funciones de densidad de 77 y T, respectivamente. Veamos que ]ff—gg es

creciente para todo 7. Usando la representacion de la densidad (3.3), dividiendo numerador y denomi-
E(r)

nador por f(t)(F(t))""! y usando la notacién G(t) = 30

, podemos escribir

n n
S i;mb(i

)Gy
O S i) Gt

(5.3)

Una condicién necesaria y suficiente para que el anterior cociente sea creciente en (0,00) es que para
cualquier ¢ € R la diferencia f>(¢) — ¢ fi(¢) cambie de signo como maximo una vez y pase de negativo
a positivo cuando ¢ avanza de 0 a .

Si (5.3) es creciente, es obvio que se verifica la propiedad anterior. Mientras que si la diferencia cruza
el 0 més de una vez (de positivo a negativo) tendriamos que para todo ¢ entre los dos ceros, 10 E ; >c,y

por encima del segundo cero, I E 3 < c. Por tanto el cociente no podria ser creciente.

Sea x = G(t), estudiamos el siguiente polinomio #(x) de grado médximo n — 1
n .
1) = (67 09) =67 ) = B () e 64

Suponiendo s; <;, s, tenemos que la razén f’ es creciente cuando i aumenta de 1 a n. Esto implica
que, para cualquier nimero real ¢, {s2; —cs1;} tiene como mucho un cambio de signo de negativo a
positivo cuando i aumenta de 1 a n. Por lo tanto, podemos suponer que los coeficientes de (5.4) tienen
como maximo un cambio de signo. La regla de signos de Descartes establece que el ndmero de raices
positivas de un polinomio arbitrario con coeficientes reales es , como mucho, igual al nimero de cambios
de signo que se produzcan entre sus coeficientes diferentes a 0.
En conclusién , para cualquier ¢ € R el polinomio (5.4) cruza el cero como mdximo una vez cuando x
aumenta de 0 a co. El hecho de que los coeficientes en (5.3) solo puedan cambiar de signo de negativo a
positivo implica que si #(x) sufre un cambio de signo, cambiard de negativo a positivo. Ambos hechos
justifican que la relacién fzg g es creciente en 7 € [0,00] es decir, Ty <;, T»

O
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