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1 INTRODUCCIÓN Marta Sánchez Casi

1. Introducción

Los sensores de transición superconductora, (TES de sus siglas en inglés Transition

Edge Sensor), son finas placas de material superconductor que traducen cambios muy pequeños

de la temperatura en variaciones medibles de su resistencia eléctrica. Aprovechan el cambio

abrupto que se da en la resistencia durante la transición superconductora haciendo del TES un

sensor de alta sensiblidad [1].

Los TESs actúan como microcaloŕımetros con gran resolución en enerǵıa, o resolución

en número de fotones, y bajo ruido. Un microcaloŕımetro está compuesto por un termómetro

y un material absorbente unido a un baño térmico [2]. De este modo, cuando un fotón llega al

dispositivo y este lo absorbe, se produce un cambio de temperatura δT = E/C, donde E es la

enerǵıa absorbida y C es la capacidad caloŕıfica del material. Por tanto, tras esta absorción la

temperatura total es T ′ = T0 + δT . Para detectar otro fotón de manera aislada, se conecta el

dispositivo al baño térmico. Aśı, el exceso de enerǵıa tras absorber el fotón puede fluir hacia el

baño térmico, volviendo el sistema a su temperatura original, listo para recibir un nuevo fotón.

Sin este baño térmico la temperatura aumentaŕıa en cada interacción con la radiación, operando

en este caso el sistema como un detector de integración. En este aspecto, la conductancia G ha

de ser elegida de manera adecuada, ya que regula el tiempo de respuesta y el ritmo de detección

del sistema.

Se han desarrollado durante los últimos años sensores TES optimizados para la de-

tección de radiación del rango de los rayos X de baja enerǵıa [3]. Estos tienen gran interés en

astrof́ısica, donde una parte importante de la información que se recibe del Universo es en esta

forma de rayos-X. Se ha propuesto su uso, por ejemplo, en la misión espacial Athena (Advanced

Telescope for High Energy Astrophysics), de la Agencia Espacial Europea, cuyo objetivo es el

estudio del Universo Energético y Caliente gracias a un telescopio que operará en esta banda de

enerǵıa [4].

Sin embargo, estos sensores superconductores también pueden ser interesantes en apli-

caciones fotónicas, en los espectros ultravioleta (UV), visible (VIS) e infrarrojo (IR) [5] . Un

rango muy interesante dentro de estos, es el de las longitudes de onda de las telecomunicaciones,

dentro del cual la longitud correspondiente a 1550 nm es clave para varias aplicaciones. Por

ejemplo, en esta longitud de onda, las gúıas de onda, que habitualmente se utilizan en telecomu-

nicaciones, tienen un mı́nimo de absorción. Por tanto, se puede transmitir información mediante

la luz a mayor distancia con menor atenuación. Otra posible aplicación consiste en el intercam-

bio de llave cuántica, que permite intercambiar información de forma segura disponiendo de

un canal clásico y uno cuántico, por donde viajarán los fotones. Esto requiere detectar fotones

de manera individual con la mayor eficiencia cuántica posible, es decir, es necesario absorber

prácticamente el 100 % de los fotones que inciden en el detector.

Los TES se fabrican con distintas combinaciones de metales. En concreto, una de las

más prometedoras combina láminas delgadas de molibdeno y oro. Los metales absorben mal en

el VIS e IR, muy lejos de las necesidades que las tecnoloǵıas discutidas en el párrafo anterior

precisaŕıan. Sin embargo, los metales nanoestructurados pueden diseñarse para absorber luz en
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1 INTRODUCCIÓN Marta Sánchez Casi

esos rangos de enerǵıa de forma muy eficiente, gracias sobre todo a la excitación de un tipo de

modo electromagnético llamado Plasmón de Supeficie (SPP del inglés Surface Plasmon Polari-

ton) [6].

Los plasmones superficiales fueron descubiertos a mitad del siglo pasado por Rufus

Ritchie [7]. Según el modelo de Sommerfeld, los metales pueden interpretarse como un gas de

Fermi. Los plasmones provienen del acoplo entre los electrones del gas de Fermi y la luz. La

caracteŕıstica principal de los SPPs es que son modos evanescentes, lo que implica por un lado

que estén muy confinados a la superficie del metal (entre decenas y centenas de nanómetros en

el visible), y que por el otro sean fuertemente absorbidos por el metal, dando lugar a longitudes

de propagación que van desde las decenas hasta las centenas de micras en el visible [6]. Sin

embargo, los SPP’s no se excitan simplemente mediante incidencia normal de la luz, ya que este

proceso no es capaz de conservar simultáneamente enerǵıa y momento. Para que se generen SPPs

se deben introducir en la superficie del metal perturbaciones en forma de part́ıculas, agujeros,

ranuras... que, gracias a la re-emisión de luz desde esos centros dispersores, permiten el acoplo

con el campo evanescente del plasmón de superficie.
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2 OBJETIVOS Marta Sánchez Casi

2. Objetivos

El objetivo de este TFG es encontrar una propuesta de diseño para un TES sensible a

la radiación de longitud de onda de 1550 nm. Los TES que operan en el rango de los rayos X,

esquematizado en la figura 1a, cuentan con un absorbente que los hace sensibles precisamente

al rango de los rayos X. En este trabajo se busca diseñar un TES sensible al telecom y para ello

se propone una nanoestructura metálica, capaz de absorber la luz en forma de SPPs, similar a

la que se puede ver en la figura 1b.

Figura 1: Visualización esquemática de la estructura, a grandes rasgos, de dos TES diseñados

para distintas aplicaciones: rayos X (izquierda), infrarrojo (derecha). La G es la conductancia

del TES al baño térmico a temperatura constante. (a) Esquema de un TES sensible a los rayos

X. La radiación incide en el absorbente de rayos X, haciendo el TES sensible a dicha radiación.

(b) Esquema de cómo se espera que podŕıa ser un TES sensible a la radiación infrarroja. La

radiación incide sobre la nanoestructura metálica de ranuras que permite una alta absorción en

este rango.

En el proceso de absorción son clave los SPPs. Se trata de convertir la mayor cantidad

de luz en plasmones de superficie. Si se consigue un estado resonante en el que los fotones se

acoplen con los plasmones, y estos permanezcan en la superficie el tiempo suficiente, los fotones

acabarán siendo absorbidos. De este modo, cuando se excitan los SPPs en metales se tiene una

absorción muy alta. Si la superficie metálica del TES no se nanoestructura, la superficie del

metal se comporta casi como un reflector perfecto, como se va a mostrar. Por lo que para ob-

tener altas eficiencias de absorción, será necesario modificar la superficie metálica. Por tanto, la

finalidad de este trabajo consiste en optimizar las caracteŕısticas de estas nanoestructuras para

lograr la mayor eficiencia posible. Aśı pues, una parte importante de este estudio consiste en

desarrollar las herramientas numéricas adecuadas para llevar a cabo este proceso de optimización.

Para poder detectar un fotón, además de ser absorbido, este tiene que producir un cam-

bio de temperatura medible. En este aspecto, un TES puede ser sensible a variaciones de hasta

unos pocos µK. Si se recuerda la expresión ∆T = E/C, se observa que para pasar de keV (TES

sensible a rayos X) a eV (TES sensible al infrarrojo; 0.8 eV para λ = 1550 nm), es necesaria

una disminución de la capacidad caloŕıfica C de los dispositivos de varios órdenes de magnitud,
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lo cual impone restricciones sobre su diseño. Una forma de reducir un factor importante la C

es eliminando el absorbente, que para el caso del infrarrojo no va a ser necesario. Este factor

esencial en el diseño del TES será también tenido en cuenta.
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3. Aproximación teórica al problema

El diseño para un TES nanofotónico parte del mismo sistema que se utiliza para de-

tección de rayos X (figura 1a), formado por una lámina de oro sobre otra de molibdeno, con la

salvedad de que la capa de absorbente necesaria para las aplicaciones en altas enerǵıas no es

necesaria en el rango del visible. Las láminas son sub-longitud de onda en el rango de enerǵıas

de interés, el telecom. La propuesta de este trabajo para conseguir niveles óptimos de absorción

en este rango consiste en utilizar una red periódica de ranuras hechas en la capa de oro, capaces

de excitar SPPs de forma muy eficiente, tal y como se demuestra más adelante.

Para buscar el diseño apropiado existen programas como el FDTD (Finite-Difference

Time-Domain) [8] que, dada una nanoestructura como input, devuelve como output la respuesta

óptica del sistema. Sin embargo, el espacio de parámetros a investigar en el proceso de optimi-

zación es muy grande (4 parámetros geométricos) y la velocidad de cálculo de estos sistemas

mediante FDTD es relativamente lenta (5-6 horas por simulación), por lo que se hace imprescin-

dible una aproximación al problema no basada en ”fuerza bruta”. No resulta eficiente tratar de

encontrar un conjunto de parámetros óptimos mediante prueba-error. De este modo, el proceso

de optimización de la nanoestructura se realiza en dos pasos, que en el trabajo se han realizado

siguiendo estas técnicas:

1. Redes neuronales: se diseña una red neuronal que, como resultado, devuelve el espectro de

absorción del sistema [9]. De esa forma es posible sustituir en los cálculos del espectro de

absorción el método numérico FDTD por la red neuronal entrenada, con un incremento

muy notable de la velocidad de cálculo del orden de 106.

2. Optimizador clásico GD: se utiliza el algoritmo de optimización de descenso de gradiente,

(GD del inglés Gradient Descent), que emplea la red neuronal para calcular los espectros

de absorción de manera rápida.

3.1. Absorción de luz infrarroja: la nanoestructura

Para empezar, antes de introducirse en el funcionamiento y utilidad de los algoritmos

mencionados, conviene estudiar en detalle la estructura en la se va a centrar todo el trabajo.

Para conseguir la capacidad caloŕıfica C adecuada y la sensibilidad óptima, los TES trabajan

a temperaturas muy bajas. Normalmente, no es posible encontrar materiales superconductores

con la temperatura de operación requerida , por lo que se emplea lo que se conoce como efecto

proximidad [10] en que un metal normal se deposita sobre un superconductor reduciendo su Tc.

Aśı, la Tc final de la bicapa depende de la proporción relativa de espesores.

En el grupo de Quantum Materials and Devices (Q-MAD) [11], en el cual se ha reali-

zado este trabajo, lleva desarrollando durante los últimos años sensores TES optimizados para

la detección de rayos X de baja enerǵıa [3]. Para ello el termómetro se fabrica con bicapas de

Au-Mo. Por tanto, la nanoestructura de este trabajo parte de una lámina de oro situada sobre

un substrato de molibdeno. Como ya se ha mencionado con anterioridad, a la lámina de Au se

le practican unas ranuras de manera periódica. Esto añade otros dos parámetros al problema,

además de los espesores de Au y Mo (hAu, hMo), el periodo p de estas ranuras y su anchura a.
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Si el oro no se perforara, la bicapa Au/Mo se comportaŕıa como un espejo casi perfecto, como

demuestra la figura 2c, en la que se muestra la absorción en una capa de 100nm de Au y Mo.

Aśı, la nanoestructura se crea mediante la perforación del Au con ranuras, distribuidas periódi-

camente, como muestra la figura 2, donde también se incluye la notación para los parámetros

geométricos. En la misma figura se incluyen también las constantes dieléctricas experimentales

para el Au y Mo en el rango UV-VIS-IR (figuras 2a y 2b) [12, 13].

Figura 2: Nanoestructura capaz de soportar la excitación de plasmones de superficie. Consiste en

una capa de oro de espesor hAu, perforada periódicamente con orificios de anchura a y periodo

p, sobre una capa de molibdeno de espesor hMo. (a) Constante dieléctrica del Au, partes real e

imaginaria, frente a la longitud de onda. Aparece la comparativa entre el cálculo experimental y

el obtenido con el algoritmo FDTD. (b) Constante dieléctrica del Mo, partes real e imaginaria,

frente a la longitud de onda. De nuevo, se compara el resultado experimental con el resultado

del algoritmo FDTD. (c) Curvas de absorción para una capa de 100 nm de Au y Mo. Se observa

un muy buen acuerdo entre el cálculo anaĺıtico y el obtenido mediante FDTD.

Ya se ha comentado que los TES implementados por el grupo Q-MAD se basan en

bicapas de Au-Mo, optimizadas para una temperatura de funcionamiento de 100 mK. Se han

conseguido dos combinaciones de espesores de estas capas que trabajen a esa temperatura, y

son las siguientes:

hMo = 45 nm y hAu = 265 nm

hMo = 55 nm y hAu = 340 nm

La temperatura de operación para el rango infrarrojo no ha de ser necesariamente la misma,

pero se emplean estos valores como una referencia o gúıa para restringir el espacio de parámetros

en el proceso de optimización.
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En cuanto a las dimensiones del dispositivo, tanto los ĺımites de fabricación, como la

necesidad de incluir un número mı́nimo de periodos en el metal para obtener una red de ranuras,

fijan un tamaño mı́nimo de dispositivo de unos 10 µm. Mientras que, por otro lado, la necesidad

de mantener la capacidad caloŕıfica en valores cercanos a los 10fJ/K impone un tamaño máxi-

mo para el TES de unos 100 µm. Por tanto, queda acotado el tamaño del dispositivo que se busca.

En cuanto a las ranuras, se pueden fabricar desde unos cuantos nanómetros hasta unas

pocas micras, por lo que es posible realizar ranuras de tamaños del orden de magnitud de la

longitud de onda de interés. En este aspecto, como ya se ha comentado, han de caber un número

razonable de estas en el metal para que pueda considerarse una red ranuras, normalmente entre

10 y 20 es suficiente.

El fenómeno óptico que opera tras este diseño se conoce como EOT (Extraordinary

Optical Transmission). En 1944, Hans Bethe, descubrió que la transmisión normalizada al área

a través de un agujero circular en una placa conductora delgada es [14]:

T ≈ 64

27π2
r

λ

4
(3.1)

De modo que, siendo r el radio del agujero y λ la longitud de onda de la radiación incidente, si

r << λ la transmisión es muy débil. Sin embargo, en 1998 Ebbesen y sus compañeros de trabajo

descubrieron que era posible la transmisión de luz en el visible e infrarrojo a través de agujeros

sub-longitud de onda [15]. Este fenómeno está asociado a una transmisión de la luz a través

de agujeros sub-longitud de onda mayor de la que cabŕıa esperar para aperturas de ese tamaño

[16]. En principio, como ya se ha visto, esto no se debeŕıa dar en agujeros tan pequeños, pero

el acoplamiento entre la radiación incidente y los SPPs da lugar a la resonancia necesaria para

que el proceso EOT ocurra. Aqúı reside la importancia de los plasmones superficiales.

Los picos de EOT están relacionados con la periodicidad de la muestra. Eso es fácil de

entender y permite dar una primera estimación de un valor aproximado para el periodo. Cuando

la luz llega a la red de ranuras en incidencia normal, para que se exciten los plasmones, se ha

de conservar el momento, es decir, el momento de la luz dispersada por el agujero ks debe ser

igual al momento del plasmón kSPP . Al estar en una red de ranuras, en incidencia normal, el

momento de la luz dispersada ha de ser un múltiplo entero de 2π
p , de lo contrario, la relación

de dispersión se anula y no hay luz dispersada. Por tanto, el momento de los plasmones ha de

cumplir kSPP = n2π
p . Si se considera que la relación de dispersión de los plasmones en superficie

plana apenas cambia con la presencia de los orificios y que kSPP se encuentra próximo al cono

de luz, se puede sustituir este momento por el de la relación de dispersión de la luz en vaćıo

ω = cks. De este modo, tomando n=1, queda lo siguiente.

kSPP ≈
ω

c
=

2π

λ
⇒ 2π

λ
≈ 2π

p
⇒ λ ≈ p (3.2)

Aśı, se obtiene que el valor del periodo ha de ser próximo al de la longitud de onda de resonan-
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cia, es decir, p ≈ 1550nm. Sin embargo, hay que tener en cuenta que esto se ha calculado bajo

ciertas aproximaciones, considerando que la relación de dispersión de un plasmón en superficie

plana apenas se ve perturbada por la presencia de orificios y que es cercana al cono de luz. Por

lo tanto, esto no da el valor exacto del periodo, pero resulta útil para conocer la zona en la que

se encuentran las resonancias.

3.2. Método FDTD

El método de diferencias finitas en el dominio del tiempo, (método FDTD de sus siglas

en inglés Finite-Difference Time-Domain), es uno de los más empleados en electromagnetismo

computacional [17]. El algoritmo FDTD es capaz de resolver las ecuaciones de Maxwell numéri-

camente y, por tanto, proporcionar toda la respuesta óptica de un sistema, incluida la evolución

temporal del campo electromagnético. Este método tiene la capacidad de tratar distintos mate-

riales, desde dieléctricos a metales, y diferentes tipos de fuentes. A través de este algoritmo se

pueden obtener los coeficientes de transmisión y reflexión del sistema, lo cual permite conocer

cuál es la absorción en 1550 nm e ir variando los parámetros del sistema para maximizarla.

Adaptando el algoritmo al sistema de red de ranuras explicado anteriormente, se intro-

ducen como input los valores del periodo p, anchura del slit a y espesores de las capas de oro y

molibdeno, hAu hMo. De este modo, se pueden probar distintas combinaciones de valores de estos

parámetros, observar la absorción resultante que ofrece el programa para dichos parámetros e,

intuitivamente, variar estos buscando el objetivo.

No obstante, como ya se ha comentado, este método presenta un inconveniente, tarda

bastante en resolver el espectro. Además, conforme se aumentan las dimensiones del sistema,

este tiempo se dispara llegando a 5-6 horas.

En definitiva, este algoritmo resulta excesivamente lento en procesos de optimización

que, como se va a comprobar, requieren miles de cálculos para converger. Por otro lado, la

búsqueda intuitiva también es poco eficaz. Por ello, se recurre al uso de las redes neuronales las

cuales, una vez entrenadas para calcular el espectro de absorción para un conjunto de paráme-

tros geométricos dados, permiten superar estos inconvenientes.

3.3. Redes Neuronales

La inteligencia artificial se puede definir como el esfuerzo por automatizar, mediante

tecnoloǵıa de computadores, tareas intelectuales normalmente realizadas por los seres humanos

[18]. Un tipo de inteligencia artificial lo constituyen las redes neuronales. El término red neuronal

hace referencia a la neurobioloǵıa, ya que consisten en capas de lo que se llaman neuronas, que

se transmiten información entre ellas, como sucedeŕıa en un cerebro. Esta idea se ilustra en la

figura 3a. Sin embargo, hay que tener claro que las redes neuronales no son modelos cerebra-

les, lo que se realiza en una red neuronal no es lo que sucede en un cerebro durante el aprendizaje.

8
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Figura 3: (a) Ejemplo de estructura genérica de una red neuronal estándar. Se pueden observar

3 partes principales, la capa input, las ocultas y la output [19]. (b) Esquema de los pasos del

funcionamiento de una red neuronal estándar [18].

El objetivo de una red neuronal, como se ha mencionado, es realizar una determinada

tarea utilizando computación clásica. En ese aspecto no se diferencia de la algoŕıtmica con-

vencional. Lo que realmente supone un cambio de paradigma es la forma en la que una red

neuronal hace su tarea y cómo se implementa dicha tarea. Una red neuronal aprende. El proceso

de aprendizaje es básicamente de prueba-error. La red toma un input (que puede ser un d́ıgito

manuscrito) y se espera de ella que responda con un output (que seŕıa el valor numérico del d́ıgi-

to). Durante un proceso de entrenamiento a la red se le indica si ha acertado o no, y mediante

técnicas que se resumen en los siguientes párrafos, se corrige a la red en el sentido que mejora su

aprendizaje. Internamente todos los procesos de aprendizaje se realizan mediante una serie de

transformaciones tanto lineales como no lineales, que se llevan a cabo en cada capa de neuronas

de su estructura. Las operaciones en el interior de la red modifican los parámetros internos de

la red, en cada exposición a los ejemplos.

Como se observa en la figura 3a, la primera capa es la capa de inputs, donde se introdu-

cen los datos al programa, por lo que tiene que haber el mismo número de neuronas que de datos

de entrada. Las siguientes capas son las capas ocultas, estas pueden ser muy variadas, la elección

del número de capas ocultas y de neuronas por capa depende del objetivo para el que se emplee

la red neuronal. La última capa es la de outputs, de nuevo, tiene que haber el mismo número de

neuronas que de outputs esperados. Las flechas indican que cada neurona env́ıa su respuesta a

todas las neuronas de la capa siguiente. En el caso de los inputs, se env́ıa cada valor a todas las

neuronas de la primera capa oculta y, en estas, a dicho valor se le aplica una transformación a

la que llamaremos función de activación. Existen varios tipos de funciones de activación, como

la rectificadora ReLU (Rectified Linear Unit) y la tangente hiperbólica, pero la más empleada

en redes neuronales es la función sigmoidea σ(z) [19].

σ(z) ≡ 1

1 + e−z
con z = −

∑
j

wjxj − b (3.3)

Donde x es el vector de valores que le llega a la neurona de la capa anterior, w es el vector peso
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3 APROXIMACIÓN TEÓRICA AL PROBLEMA Marta Sánchez Casi

de la neurona (weights) y b es la desviación (bias). Estos dos últimos parámetros son los paráme-

tros entrenables, caracteŕısticos de cada neurona, y la función de activación que le asignemos a

las neuronas se aplica sobre z. Aśı, cada neurona elabora su respuesta y la manda a todas las

neuronas de la siguiente capa, hasta que se llega a la capa final y se obtiene un resultado. Este

se ha de comparar con el resultado que la red neuronal debe aprender a producir. Para ello, se

introduce la función de coste, la cual también puede tomar varias formas aśı que, de nuevo, se

introduce la función de error cuadrático medio (ECM), como la más empleada [19].

f(w, b) ≡ 1

2n

∑
x

‖y(x)− a‖2 (3.4)

Siendo n el número total de inputs, a el resultado de la red neuronal e y(x) el resultado que

cabe esperar y que se busca que la red sea capaz de predecir. Por tanto, el objetivo consiste en

buscar unos valores de w y b de modo que f(x) ≈ 0 y, cuando esto suceda, la red neuronal estará

entrenada. En definitiva, el propósito del algoritmo de entrenamiento consiste en minimizar la

función coste f(x) en función de los pesos w y la desviación b. Para ello, se emplea el algoritmo

de descenso de gradiente.

El objetivo del algoritmo GD consiste en resolver problemas de minimización, y en este

caso la función a minimizar es la función coste. El gradiente de una función en un punto de su

dominio indica la dirección de máxima variación de la función en dicho punto. De este modo, se

calcula el gradiente de la función coste respecto de los parámetros entrenables w y b y, a conti-

nuación, se modifica el valor de estos parámetros una pequeña cantidad en la dirección opuesta

a la indicada por el gradiente. Esto hace que, al calcular la respuesta con los nuevos valores de

w y b, la función de coste se acerque progresivamente a su mı́nimo. Las modificaciones sobre los

parámetros tienen la forma que sigue [19].

w′k = wk − η
∂f

∂wk
(3.5)

b′l = bl − η
∂f

∂bl
(3.6)

Donde η es un parámetro positivo llamado learning rate, que indica la magnitud del cambio en

los parámetros. El valor que se le asigne a este parámetro depende del problema a resolver pero,

generalmente, se trata de que no sea tan grande que no converja al valor del mı́nimo, ni tan

pequeño que cueste llegar al mı́nimo un tiempo excesivo. Esta es una de las variables llamadas

hiperparámetros. Se trata de parámetros que influyen en la red y que, dependiendo del valor

que se les asigne, el funcionamiento de esta resulta mejor o peor.

En la práctica, se emplea el algoritmo de descenso de gradiente estocástico SGD (Sto-

chastic Gradient Descent) para acelerar el proceso. La idea reside en que para computar el

gradiente completo, se han de calcular los gradientes para cada input y realizar la media, lo

cual, si el número de entradas es muy alto, ralentiza el aprendizaje. Lo que realiza este nuevo

algoritmo es calcular el gradiente para una muestra pequeña de inputs aleatoria, que recibe el

10
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nombre de mini-batch, y promediarlo. Resulta que este promedio proporciona una buena estima-

ción del gradiente total y, a su vez, acelera el proceso de aprendizaje. Por ello, este proceso entra

dentro de un bucle que genera los mini-batches, el cual, se encuentra dentro de otro bucle, más

externo, que corre sobre el número de épocas de entrenamiento. Estas dos variables, el tamaño

del mini-batch y el número de épocas, también forman parte de los hiperparámetros del sistema.

El algoritmo que se encarga de retroceder por la red cambiando los valores de los

parámetros, como se ha indicado, se conoce como algoritmo de de retropropagación (de su nom-

bre en inglés, Backpropagation Algorithm), y es el algoritmo central en redes neuronales [18].

Este proceso descrito hasta ahora se puede observar esquemáticamente en la figura 3b. En esta,

el optimizador especifica la manera en la que el gradiente de la función coste se emplea para ac-

tualizar los valores de los parámetros, es decir, hace referencia al algoritmo SGD. Reproduciendo

los pasos del esquema varias veces, para distintos inputs, se consigue una red neuronal entrenada.

Por último, es necesario contar con una gran cantidad de datos, es decir, una lista de

inputs y sus respectivos outputs. Esta base de datos se divide en 3 bloques que son, el conjunto

de datos de entrenamiento, el de validación y el de examen. Esto es necesario ya que el objetivo

no es que la red neuronal se ajuste a los datos de los que se disponen, sino que sepa predecir los

resultados. De este modo, la red neuronal lleva a cabo el aprendizaje con el conjunto de datos

de entrenamiento, es decir, se realiza todo el proceso para obtener los valores de w y b que mini-

mizan la función de coste solo con este conjunto de datos. A continuación, se emplea el conjunto

de validación para ver cómo de bien predice resultados la red para datos que no ha visto antes.

Esto sirve para probar distintos valores de los hiperparámetros (η, número de épocas y tamaño

del mini-batch) y averiguar cuáles ofrecen un mejor funcionamiento de la red. Por último, el

conjunto de datos de examen se emplea para comprobar que, tras el entrenamiento y el ajuste

de los hiperparámetros, la red funciona adecuadamente y es capaz de predecir respuestas para

parámetros de entrada con los que no hab́ıa trabajado antes, con gran precisión.

3.4. Optimizador clásico GD

Como ya se ha comentado anteriormente, el objetivo del algoritmo gradient descent se

basa en resolver un problema de minimización, y por eso es útil en este trabajo en el que se busca

obtener la máxima absorción posible en el telecom. Para esto, se puede pensar en una función

que dependa de la absorción en esta longitud de onda, cuyo mı́nimo corresponda al máximo de

absorción. Una opción para esta función, que es la que se va a emplear, es adaptar la función

ECM a este caso, como se indica a continuación.

f(~p) =
1

2
(fNN (~p)− 1)2 (3.7)

El vector ~p hace referencia a los parámetros de la estructura de ranuras, es decir, ~p = (hAu, hMo, a, p).

Por tanto, la función, como es lógico, depende de los parámetros que se han de ir cambiando y

adaptando para obtener el pico de absorción. En cuanto a la función fNN , esta es la absorción

calculada por la red neuronal, de ah́ı el sub́ındice NN de Neural Network. De este modo, fNN

11
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es un número, la absorción en 1550 nm, que depende de los parámetros de la estructura y, cam-

biando los valores de estos, este número será más o menos cercano a la unidad. Resulta obvio

que la función f(~p) tiene un mı́nimo para fNN = 1, por tanto, al aplicar el algoritmo GD, se

puede encontrar ese mı́nimo.

Figura 4: Esquema de los pasos que se siguen en el funcionamiento del algoritmo de optimización

Gradient Descent, que se va a emplear para encontrar los parámetros geométricos adecuados para

la implementación del TES sensible al telecom.

El algoritmo GD lleva a cabo el proceso que se observa en la figura 4. El primer paso en

la optimización es elegir un conjunto de parámetros que actúen como ”semilla”del optimizador.

Cuando no se tiene información del sistema el algoritmo se suele inicializar con una semilla alea-

toria. En este estudio, se cuenta con información sobre el comportamiento de las resonancias de

absorción y la elección de las semillas se realiza teniendo en cuenta que estas producen un pico de

absorción alta cerca de la longitud de onda de interés. Para esta semilla, se calcula, haciendo uso

de la red neuronal entrenada, el valor de la absorción en λ = 1550 nm. Este valor, se sustituye

en la función 3.7 y se compara con un valor de tolerancia. Se incluye este valor de tolerancia

para no exigir directamente que la absorción sea 1, ya que quizá ese valor resulte inalcanzable.

Al inicio, se le adjudica un valor más o menos alto a esta tolerancia, y conforme se comprueba el

funcionamiento del programa, se va bajando para obtener la absorción más cercana a 1 posible.

Aśı, si el valor de la función f(~p) es menor que el de la tolerancia, significa que ya se ha llegado

a una absorción cercana a la unidad y los parámetros que proporcionan esta absorción son los

de la semilla (v́ıa superior en la bifurcación de la figura 4).

Sin embargo, resulta inusual obtener en el primer intento los parámetros que dan máxi-

ma absorción por lo que, normalmente, el valor de f(~p) para la semilla es mayor que la tolerancia

(v́ıa inferior en la bifurcación de la figura 4). En este caso, se aplica el algoritmo GD y, para

empezar, se calcula el gradiente de f(~p) respecto de cada uno de los parámetros hAu, hMo, a

y p. A continuación, se actualizan los valores de estos parámetros del mismo modo que en la

red neuronal, mediante las expresiones 3.5 y 3.6, solo que ahora los parámetros de la estructura

sustituyen a los parámetros w y b. Como se puede apreciar en dichas expresiones, se cambian

los valores de los parámetros en sentido contrario al gradiente de la función y, como el gradiente

marca la dirección de máxima variación, aśı los consecutivos conjuntos de parámetros producen

una absorción que minimiza la función f(~p). Con estos nuevos valores de los parámetros más

cercanos al mı́nimo, se vuelve a calcular la absorción mediante la red neuronal y, de nuevo, se

12
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sustituye en la función f(~p) y se compara con la tolerancia. Realizando esto reiteradas veces,

cada vez se acercan más los valores de los parámetros a aquellos que proporcionan el mı́nimo de

la función y, por tanto, el máximo en la absorción de 1550 nm.
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4. Resultados

4.1. Obtención de los datos de entrenamiento mediante FDTD

Para comenzar a entrenar la red neuronal que se empela en el optimizador GD, se ha de

disponer de un conjunto de datos de entrenamiento. Para generarlos, se usa el algoritmo FDTD,

al cual se le introducen los parámetros del sistema para que resuelva el espectro correspondiente.

De este modo, se tienen los valores de entrada de la red neuronal con sus espectros, los cuales

emplea la red para comparar su resultado y aprender. A la hora de generar el set de datos de

entrenamiento se limita el rango de parámetros en los que moverse debido a las limitaciones

de fabricación del TES comentadas anteriormente. Aśı, se generan espectros para sistemas con

valores de sus parámetros dentro de los siguientes dominios.

Espesor del oro hAu: [20 nm, 200 nm]

Espesor del molibdeno hMo: [20 nm, 200 nm]

Anchura del agujero a: [0 nm, periodo]

Periodo p: [1300 nm, 1700 nm]

El código FDTD utilizado no es comercial [17]. El sistema se discretiza con un mallado

compuesto por cubos de 5 nm de lado. Teniendo el sistema discretizado a 5 nm, se obtiene un

espacio de parámetros extenso. La malla se considera bidimensional, a lo largo de la dirección

x se coloca la estructura de ranuras, y a lo largo de la dirección z viaja el haz de luz (ver figura

2). Por tanto, la estructura se coloca, aproximadamente, hacia la mitad de la extensión de la

dirección z. Aśı, en z = 0 se genera el haz de luz, que incide a medio camino con la estructura

y, a la salida en punto intermedio entre la estructura y el final de la malla, se analiza cómo se

ha modificado el haz al interaccionar con el material.

Se ilumina el sistema con un paquete gaussiano que contiene peso en todas las frecuen-

cias de interés. La iluminación es en incidencia normal y polarización tal que el campo eléctrico

oscila perpendicular a la cara de las ranuras (dirección x). Esta elección es importante porque

la red de ranuras actúa como un polarizador. Si el campo eléctrico se orienta en la dirección de

las ranuras la respuesta del sistema corrugado no difiere de las del sistema sin corrugar.

Se puede observar un ejemplo de resolución del espectro utilizando el algoritmo FDTD

en la figura 5a. Este espectro se obtiene para los valores p = 1464 nm, a = 795 nm, hAu = 70 nm

y hMo = 190 nm. En este caso, se aprecia un máximo de absorción en la longitud de onda λ =

1465 nm. Esto corresponde a que, para esa longitud de onda, se da una excitación de un plasmón

superficial en la estructura, el cual acaba siendo absorbido por la misma, proporcionando el pico

en la absorción que roza la unidad. Puesto que se da esta excitación, se puede observar que la

referencia λ ≈ p sirve para predecir la posición del pico. Por último, en esta imagen también se

ve que la curva correspondiente a la transmisión es constante e igual a cero, lo cual se debe a la

capa de molibdeno sobre la que se deposita el oro corrugado. Dado que el Molibdeno es opaco

en el telecom hace que la transmisión sea despreciable.
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Figura 5: (a) Curvas de absorción, transmisión y reflexión para la nanoestructura de red de

ranuras con p = 1455 nm, a = 795 nm, hAu = 70 nm y hMo = 190 nm, obtenidas con el algoritmo

FDTD en incidencia normal. (b) Módulo del campo eléctrico correspondiente a varias celdas

unidad de la nanoestructura, para la longitud de onda del máximo de absorción, λ = 1465nm.

Por otro lado, la figura 5b muestra el módulo del campo eléctrico correspondiente a

varias celdas unidad de la nanoestructura, para la longitud de onda que corresponde al máximo

de absorción, λ = 1465nm. Se observa el patrón de campo caracteŕıstico de un SPP en este tipo

de sistemas, en este caso con máximos de campo local en las esquinas de las ranuras. El campo

eléctrico es varias veces más intenso que el de la luz incidente, que en este caso es de 1kV/cm,

como suele ser habitual en la excitación de plasmones de superficie. Otro dato interesante es que

no aparece el t́ıpico patrón de reflexión pura que se observa si el metal no está corrugado. La

ausencia de franjas de interferencia horizontales es un claro signo de que a esa longitud de onda

incidente prácticamente nada de luz se refleja.

Para entrenar la red neuronal, se generan 2600 espectros con el algoritmo FDTD. Es

decir, se cuenta finalmente con un conjunto de 2600 valores distintos para los parámetros y sus

respectivos espectros, como conjunto de entrenamiento de la red.

4.2. Optimización de la red neuronal

Una vez se cuenta con el conjunto de entrenamiento adecuado, se implementa la red

neuronal. Para ello, se emplea Keras, que consiste en un entorno de trabajo de deep-learning

de Python, que ofrece una v́ıa para definir y entrenar casi cualquier tipo de modelo de deep-

learning. Hay que tener en cuenta que esta libreŕıa no maneja operaciones como la manipulación

de tensores. En cambio, se basa en libreaŕıas de tensores especializadas y optimizadas para ello.

En este caso, se emplea TensorFlow como libreŕıa especializada para el cáclulo tensorial [18].

Con este entorno de trabajo, en primer lugar, únicamente es necesario detenerse en

definir correctamente el conjunto de datos de entrenamiento, adaptando los datos de entrada y
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de salida a tensores con los que pueda trabajar el modelo de red neuronal TensorFlow-Keras.

A continuación, se ha de definir la estructura de la red neuronal y una de las ventajas que

ofrece este entorno es que se pueden definir varias redes neuronales en un mismo programa, e ir

eligiendo una u otra según convenga. A cada red neuronal se le llama modelo y se definen dentro

del mismo todos los parámetros del sistema, el optimizador, la función de coste, la inicializa-

ción de los parámetros... Además, permite definir cada capa de neuronas, independientemente,

indicando el número de neuronas de entrada, de salida y la función de activación de las mismas.

De este modo, además de elegir los valores de los hiperparámetros, también se elige uno de los

modelos implementados. Por último, se entrena la red mediante la función fit() de la libreŕıa e

iterando sobre el conjunto de datos de entrenamiento.

Durante este proceso se prueban distintos diseños de red neuronal. En cada modelo

se cambia el número de capas ocultas, el de neuronas por capa y sus funciones de activación

o de coste, entre otras cosas, pero todos tienen en común el número de neuronas de entrada

y de salida. En este caso, la capa input tiene 9 neuronas, correspondientes a los 4 parámetros

geométricos (hAu, hMo, a y p), a las constantes dieléctricas de los materiales, que se dividen en

parte real e imaginaria (εiAu, εrAu, εiMo, ε
r
Mo) y a la longitud de onda λ. Se incluye la longitud de

onda ya que la red neuronal va a aprender a predecir la reflexión y absorción para una longitud

de onda determinada. La capa output consiste en 2 neuronas que proporcionan la absorción y

reflexión para una determinada longitud de onda. De este modo, dados los 9 parámetros de

input que definen un estado electromagnético de la nanoestructura para una geometŕıa dada,

la red neuronal ha de aprender a devolver como output la reflexión y absorción correspondientes.

Para realizar distintos modelos, ya se ha comentado que dos de los aspectos que se

pueden variar son la función de coste y la de activación. En cuanto a la función de coste, a

pesar de que la más sencilla sea la de coste cuadrático, esta se puede cambiar por la función de

coste de entroṕıa cruzada (cross-entropy cost function). En cuanto a la de activación, aunque

hay varias, lo más común es probar, además de la sigmoide, la ReLU y la tangente hiperbólica.

Estas funciones tienen las siguientes formas.

Cross− entropy : f(w, b) = − 1

n

∑
x

[ylna+ (1− y)ln(1− a)] (4.1)

ReLU : f(z) = max(0, z) (4.2)

Tanh : f(z) =
2

1 + e−2x
− 1 (4.3)

La cross-entropy function tiene la virtud de que, cuando la diferencia entre la respuesta de la

red y la real es muy grande, lo cual es muy fácil que suceda al inicio, más rápido aprende la red,

y esto es lo que se busca. En cuanto a las funciones de activación, simplemente hay que probar

cuál es la que mejor se adapta al problema, no hay una forma de elegir adecuada salvo probando.

Otro aspecto a variar en estos modelos es la estructura de la red. Hay una infinidad de

combinaciones de número de capas ocultas y de neuronas por capa a elegir pero, en general, la
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tendencia es que a mayor número de capas ocultas, menor se hace el coste, y a mayor número

de neuronas por capa, más rápido aprende la red [20].

Por último, para definir un modelo se pueden escoger dos caminos, usar Sequential class

o functional API [18]. El modelo secuencial, es decir, el primero, sirve únicamente para elaborar

pilas lineales de capas de neuronas, mientras que, el segundo, se emplea para elaborar gráficos

aćıclicos dirigidos de las capas, permitiendo construir estructuras arbitrarias. En este caso, se

emplea el primero, ya que no se van a realizar topoloǵıas complicadas de la red, solamente capas

lineales de neuronas unidas entre ellas.

De este modo, se implementan varios modelos, combinando el uso de distintas funciones

de activación y de coste y de distintas estructuras de la red. Tras varias pruebas, finalmente se

encuentra que aquel que ofrece mejores resultados es el que se describe a continuación. La es-

tructura de la red consiste en 2 capas ocultas de 40 neuronas cada una, más las capas de entrada

y de salida, todas densas, lo que en este entorno significa que están completamente conectadas.

A todas ellas, y a la capa output, se les aplica como función de activación la sigmoide y, como

función de coste se emplea la binary cross-entropy. Además, para evaluar el buen funcionamien-

to de la red, se emplea la función mean squared error. Por último, como optimizador emplea el

stochastic gradient descent, ya mencionado anteriormente.

Una vez elegido el modelo de red neuronal más eficiente, se optimiza su funcionamiento

probando distintos valores de los hiperparámetros del sistema. Ya se ha mencionado anterior-

mente que una buena elección de los hiperparámetros del sistema es esencial para un buen

funcionamiento de la red neuronal y, que para ir variando los valores de estos parámetros se

evalúa su efecto en el conjunto de datos de validación. Por ello, tras cada cambio que se haga en

la red, se evalúan la función de coste y la función ECM, empleada como métrica, tanto en los

datos de entrenamiento como en los de validación. El objetivo consiste en que ambas evolucionen

de la manera más rápida posible hacia el cero. Sin embargo, no hay ninguna regla que indique

cómo elegir los valores de los hiperparámetros, simplemente hay que probar y a menudo esta es

una de las tareas más costosas y en la que se ha centrado mucho el estudio de las redes neuronales.

Finalmente, a través de este proceso de optimización, se llega a los siguientes valores

óptimos: 50 épocas, mini-batch size = 64, learning rate η = 1.0, parámetro de regularización λ

= 0.1, momento = 0.45, decay = 1 ·10−6 y nesterov = True. El momento, junto con el decay y el

nesterov, son parámetros caracteŕısticos del optimizador SGD que ofrece este entorno de trabajo

Keras, para mejorar el proceso de convergencia hacia el mı́nimo de la función a optimizar [21].

Cabe resaltar que estos valores asignados a los hiperparámetros son óptimos para el funciona-

miento de esta red en concreto. Para cada red que se implemente con una función distinta, se

tiene que realizar el proceso de optimización para hallar los valores adecuados de los parámetros

en ese caso concreto.

Por último, esta red se entrena con los 2400 espectros de los 2600 generados mediante el

FDTD y se dejan 100 para validación, que son los empleados para el ajuste de los hiperparáme-

tros, y otros 100 como conjunto de espectros de examen. Por tanto, en total se tienen 2·2600

espectros, ya que se calcula transmisión y reflexión, y cada uno de ellos, contiene información
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de 300 longitudes de onda.

Figura 6: (a) Función ECM frente al número de épocas para los datos de entrenamiento (curva

azul) y los de test (curva roja). Esta se obtiene mediante la red neuronal, implementada en el

entorno Keras, descrita en el texto. (b) Espectros obtenidos, por parte de la red neuronal, para

2 casos concretos del conjunto de datos del test. El de mayor ECM corresponde a p = 1525 nm,

a = 615 nm, hAu = 145 nm, hMo = 150 nm, y el de menor a p = 1470 nm, a = 940 nm, hAu =

115 nm, hMo = 100 nm. Se observa la comparación entre las predicciones obtenidas mediante

la red neuronal (curvas azules) y los resultados del algoritmo FDTD (curvas rojas), apreciando

un mejor ajuste entre estas para el caso con menor ECM.

En la figura 6a se observa la evolución de la función ECM frente al número de épocas

para el conjunto de los datos de entrenamiento y para los de test. En ambos, se aprecia como

esta función llega a valores muy cercanos al cero, consiguiendo incluso valores aún más bajos

para el conjunto de datos de test. Con estos valores de esta función, que se encarga de medir la

correcta actuación de la red neuronal, se consigue reproducir con bastante precisión los espectros

obtenidos mediante el algoritmo FDTD.

En la figura 6b, se muestra la resolución del espectro para estos dos casos concretos,

que se obtienen con la red neuronal, con los datos del conjunto para test, y se comparan con los

calculados con FDTD. Esta comparación evidencia el hecho de que a menor ECM, con mayor

precisión resuelve los espectros la red neuronal, ya que para el caso con ECM = 7.60·10−5, se

aprecia una mayor coincidencia con el resultado numérico del algoritmo FDTD, que para el

caso con ECM = 9.80·10−4. En este segundo caso, el resultado de la red neuronal no termina

de ajustarse al correspondiente al algoritmo FDTD, de modo que predice la posición del pico

existente, pero con una menor precisión, ya que no llega a dar el valor exacto de absorción que se

alcanza. Por tanto, la red neuronal tiene cierto margen de error, pero el grado de concordancia

en la mayoŕıa de las resoluciones de espectros que resuelve la red es muy alto, por lo que se

puede concluir que esta funciona correctamente.
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Por tanto, se tiene una red que aprende en poco tiempo y resuelve la absorción de

manera muy precisa, es decir, se ha alcanzado el objetivo de funcionamiento de la red. A conti-

nuación, se emplea este red neuronal entrenada como parte del algoritmo de optimización, con

el fin de hallar los parámetros adecuados para que la nanoestructura presente un máximo de

absorción en la longitud de onda de 1550 nm. Sin embargo, aunque la red constituya un método

muy eficiente para el proceso de optimización, una vez obtenido un diseño óptimo, resulta ne-

cesario validarlo con los cálculos del algoritmo FDTD.

4.3. Optimización de los parámetros geométricos del TES

Con la red neuronal entrenada ya se tiene la herramienta principal del funcionamiento

del algoritmo de optimización Gradient Descent. El programa de optimización se prueba para

varias semillas, que en este caso son parámetros geométricos, y distintos valores de tolerancia y

del parámetro η de las ecuaciones 3.5 y 3.6, que mide cómo de grande es el cambio que se realiza

en los parámetros en la fase de actualización.

Es importante resaltar el papel esencial de la red neuronal en este proceso en cuanto a

la velocidad de cálculo. La red empleada para este proceso ha requerido calcular 2600 espectros.

Este conjunto de datos de entrenamiento se ha obtenido de manera numérica mediante el algo-

ritmo FDTD y para ello, se han tenido 20 ordenadores trabajando durante 30 d́ıas. Por tanto,

para generar los 2600 espectros con un único ordenador son necesarios 600 d́ıas. Sin embargo, la

red neuronal es un factor 106 más rápida que el FDTD realizando los mismos cálculos. Con este

algoritmo de optimización, para cada semilla es necesario un número distinto de iteraciones, pero

se han empleado del orden de 1000 iteraciones hasta alcanzar un valor de la absorción cercano

a la unidad. De este modo, teniendo en cuenta que en cada iteración se tiene que calcular la

absorción para evaluar f(~p) y compararla con el valor de tolerancia, si se emplea el algoritmo

FDTD tardaŕıa 6 meses en realizar 1000 iteraciones. Además, durante este proceso de optimi-

zación resulta preciso hacer pruebas con varias semillas, para comprobar la posible existencia

de distintas soluciones al problema. Para ello, se implementa un bucle en el programa que, una

vez terminadas las iteraciones con una semilla, perturba la semilla inicial creando otra nueva y

reiniciando el proceso. Cada cálculo de los que se han realizado se hace con unas 50 semillas,

lo cual da lugar a 50000 iteraciones, que con el FDTD equivaldŕıa aproximadamente a 31 años

de cálculo. La mejora es patente, con la red neuronal entrenada se tarda un cuarto de hora

aproximadamente en realizar el mismo número de cálculos.

Una vez implementado el optimizador con el algoritmo GD, se realizan las pruebas.

Como se ha comentado, se toman semillas aleatorias diferentes, con el objetivo de ver qué po-

sibles estructuras distintas pueden dar esta condición de resonancia. En este proceso se ha de

tener en cuenta que no todas las estructuras que se obtengan pueden ser luego implementadas

ya que, dependiendo de la temperatura de operación y de la capacidad caloŕıfica que ofrezcan,

pueden, o no, ser útiles. Por tanto, para cada estructura optimizada, se realiza una estimación

de la temperatura cŕıtica de operación y la capacidad caloŕıfica asociadas, siendo que la primera

depende de los espesores de Au y Mo, y la segunda de la propia temperatura cŕıtica y el tamaño

del TES. Para ello, el tamaño lateral del dispositivo se toma como el número de ranuras por el

19



4 RESULTADOS Marta Sánchez Casi

periodo, que en este caso supone 20·p.

Con esto, se puede obtener un rango de valores de los parámetros para los que se tiene

el pico de absorción en λ = 1550 nm, y elegir el más adecuado de acuerdo a los requerimientos

f́ısicos y de fabricación del TES.

De este modo, los resultados son los siguientes. Se obtienen 2 rangos de parámetros

como solución de la minimización realizada por parte del algoritmo GD. Esto se observa en la

figura 7 donde se puede apreciar que, tanto los valores de los parámetros optimizados como los

de la temperatura cŕıtica y la capacidad caloŕıfica asociadas, se agrupan en rangos entorno a

absorciones algo menores de 0.91 y 0.95.

Figura 7: Resultados de absorción para la optimización de los parámetros geométricos del TES

sensible al telecom, mediante el algoritmo Gradient Descent que utiliza la red neuronal entrena-

da. Para su obtención, se emplean 50 semillas distintas y en cada una de ellas se realizan 1000

iteraciones. (a) Absorción frente a los valores de los parámetros optimizados para el diseño del

TES sensible a λ = 1550 nm. (b) Absorción resultante frente a los valores de temperatura cŕıtica

de operación y capacidad caloŕıfica, que se estima que tiene el TES sensible a λ = 1550 nm que

se busca.

Del conjunto de parámetros que ofrecen estos dos rangos observados en la figura 7, se

hace una selección de aquellos que ofrecen un buen balance entre absorción alta, temperatura

cŕıtica y capacidad caloŕıfica razonables para el funcionamiento del TES. Estos resultan buenos

candidatos a implementar el TES sensible a la radiación de longitud de onda de 1550 nm. Sin

embargo, antes de entrar en detalle con estos resultados, se ha de recordar que los espectros

correspondientes a estos conjuntos de parámetros se han obtenido mediante el cálculo de una

red neuronal. Por tanto, se tiene que comprobar que los espectros que arrojan estos parámetros
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sean de la forma que se busca (pico de absorción en 1550 nm) introduciendo en el algoritmo

FDTD el valor de los mismos.

De los resultados que muestra la figura 7, el mejor resultado en términos de absorción

se obtiene para un sistema de ranuras con p = 1480 nm, a = 280 nm, hAu = 120 nm y hMo = 115

nm. Estos valores se obtienen de redondear los que devuelve el optimizador y que mejor encajan

con el discretizado utilizado en el método FDTD (5 nm). Se ha comprobado que el cambio en la

curva de absorción es mı́nimo al pasar de valores nominales obtenidos por el optimizador a los

valores usados en los cálculos FDTD. Como se puede ver en la figura 8, el espectro que predice la

red neuronal encaja muy bien con el obtenido con el método FDTD. La absorción que se alcanza

con esta configuración es de aproximadamente un 98 %. Es esta estructura la que, finalmente,

se propone en este trabajo como un sistema para construir un TES sensible a la radiación de

longitud de onda de 1550 nm.

Figura 8: Espectros de absorción calculados con el método FDTD (ĺınea roja) y la red neuronal

(ĺınea azul) para los parámetros p = 1480 nm, a = 280 nm, hAu = 120 nm y hMo = 115 nm. Estos

parámetros han sido obtenidos durante el proceso de optimización y constituyen el resultado

principal del trabajo.

Para verificar que estos parámetros corresponden a un diseño de TES que pueda ofrecer

un funcionamiento adecuado, se analizan los valores obtenidos para la temperatura cŕıtica de

operación y la capacidad caloŕıfica. Como ya se ha expuesto anteriormente, para tener una ∆T

medible, son necesarios valores de la capacidad caloŕıfica cercanos a 10fJ/K. En este caso, para

estos valores de los parámetros, se obtiene que C = 21.01 fJ/K, por lo que se encuentra en el

orden de magnitud esperado. En cuanto a la temperatura Tc, la fórmula empleada para obtenerla

no es más que una estimación. Se trata de una fórmula extráıda de ajustar datos experimentales
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de los TES de los que ya se dispone, cuyos espesores de oro y molibdeno son distintos a los que

se han obtenido. La única forma de asegurar el valor de la temperatura de operación es expe-

rimentalmente, pero con esta estimación se puede formar una idea acerca de la funcionalidad

del TES implementado con estos parámetros. Aśı, se obtiene Tc = 720 mK, una temperatura

mayor que los 100 mK a los que operan los TES diseñados para rayos X. Sin embargo, dado

que la C obtenida es razonable, se puede construir un diseño válido. Por lo tanto, se conclu-

ye que la combinación de los valores de Tc y C es adecuada para un buen funcionamiento del TES.

Por último, se comprueba que el valor que se obtiene de la absorción no sea muy sen-

sible a la variación de los parámetros del TES. Esto es necesario ya que puede suceder que, a

la hora de fabricar el TES, no sea posible construirlo con los valores exactos de los parámetros

obtenidos con el optimizador, debido a las limitaciones de la fabricación o por resolución. Con

el algoritmo FDTD se ha constatado que un cambio de ± 5 nm/10 nm en el espesor del oro o

en la anchura del periodo, provoca un corrimiento de la posición del pico en, aproximadamente,

la misma cantidad. Esto, dependiendo de la aplicación puede tener consecuencias más o menos

importantes, por ejemplo, en el caso de que los fotones a medir no sean estrictamente mono-

cromáticos, este problema puede no resultar tan grave.

Por todo esto, los valores de los parámetros: p = 1480 nm, a = 280 nm, hAu = 120

nm y hMo = 115 nm, que proporcionan una absorción del 98 % de la luz incidente en incidencia

normal para λ = 1550 nm, establecen un diseño prometedor para implementar el TES sensible a

la radiación del rango de las telecomunicaciones, y se completa, de esta manera, el objetivo del

trabajo. La validación definitiva del funcionamiento de un TES con este diseño requiere medidas

sobre dispositivos reales, lo cual puede llevar a modificar el diseño. No obstante, las herramientas

desarrolladas a lo largo de este trabajo van a permitir emplear la información obtenida experi-

mentalmente para encontrar nuevos diseños de dispositivos óptimos. Por otro lado, este trabajo

se ha centrado en obtener diseños en una longitud de onda fija. Sin embargo, los TES permiten

medir la enerǵıa del fotón incidente y para algunas aplicaciones, como la astronomı́a, se podŕıa

contemplar el sacrificar algo de eficiencia de absorción para conseguir espectros más anchos que

permitan medir estos directamente. De este modo, de nuevo, las herramientas desarrolladas en

este trabajo, pueden adaptarse para optimizar estos nuevos diseños.
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5. Conclusiones

El objetivo de este trabaja consist́ıa en diseñar un TES con una absorción optimizada

en el rango telecom (λ = 1550 nm), excitando SPPs mediante las nanoestructuras adecuadas.

Para lograr esto ha sido necesario el desarrollo y la optimización de una plataforma basada

en redes neuronales, que acelerase el cálculo. Como resultado, se ha conseguido implementar y

entrenar una red neuronal que permite una aceleración del cálculo en un factor 106. Finalmente,

mediante el uso de esta herramienta, se ha propuesto un diseño preliminar que alcanza una

eficiencia en la absorción del 98 % a la frecuencia de interés.

El correcto funcionamiento de este primer diseño se ha de verificar experimentalmente.

No obstante, la red neuronal desarrollada permitirá seguir mejorando este resultado ya que, por

ejemplo, la frecuencia de la resonancia en este caso puede ser muy sensible a pequeñas variacio-

nes de los parámetros geométricos. Por tanto, un siguiente paso a este trabajo puede ser tratar

de reducir la sensibilidad a las variaciones en los parámetros de fabricación. En este sentido, este

primer diseño está además basado en una geometŕıa fija, pero puede resultar interesante explorar

modificaciones en la propia geometŕıa. Esto constituye otro aspecto que se podŕıa estudiar, por

ejemplo, variando la profundidad de las ranuras en el oro, o con una forma de nanoestructura

diferente a las ranuras.

Por tanto, se puede concluir que este trabajo ha sido una buena primera aproximación

al problema, donde se ha obtenido la propuesta de diseño funcional del TES y una red neuronal

entrenada para seguir explorando mejoras en esta. Las opciones para seguir afinando esta pro-

puesta son varias, pero en cualquier caso, el paso final consistirá en elaborarlo y comprobar su

funcionamiento experimentalmente.

Por último, también se pueden investigar otras posibles aplicaciones. Para la aplicación

propuesta en este trabajo, se ha optimizado la respuesta del TES a una longitud de onda fija.

Sin embargo, los TES son sensores capaces de medir la enerǵıa del fotón incidente, por lo que

modificando de manera adecuada el diseño, podŕıan proponerse estructuras sensibles a un rango

mayor de longitudes de onda. De este modo, se abre la posibilidad de realizar espectroscoṕıa

en aplicaciones como, por ejemplo, la astronomı́a. De nuevo, la red neuronal elaborada en este

estudio podŕıa entrenarse para tratar de aplicarla a este nuevo rango de aplicaciones. En defi-

nitiva, los resultados aqúı alcanzados pueden constituir el punto de partida de futuros trabajos

en este campo.
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