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1 INTRODUCCION MARTA SANCHEZ CASI

1. Introduccion

Los sensores de transicién superconductora, (TES de sus siglas en inglés Transition
Edge Sensor), son finas placas de material superconductor que traducen cambios muy pequenos
de la temperatura en variaciones medibles de su resistencia eléctrica. Aprovechan el cambio
abrupto que se da en la resistencia durante la transicién superconductora haciendo del TES un
sensor de alta sensiblidad [IJ.

Los TESs actidan como microcalorimetros con gran resolucién en energia, o resolucién
en niamero de fotones, y bajo ruido. Un microcalorimetro estd compuesto por un termémetro
y un material absorbente unido a un bafio térmico [2]. De este modo, cuando un fot6n llega al
dispositivo y este lo absorbe, se produce un cambio de temperatura 67 = E/C, donde E es la
energia absorbida y C es la capacidad calorifica del material. Por tanto, tras esta absorcién la
temperatura total es T" = Ty + §7T. Para detectar otro fotén de manera aislada, se conecta el
dispositivo al banio térmico. Asi, el exceso de energia tras absorber el fotén puede fluir hacia el
bano térmico, volviendo el sistema a su temperatura original, listo para recibir un nuevo foton.
Sin este bano térmico la temperatura aumentaria en cada interaccién con la radiacién, operando
en este caso el sistema como un detector de integracién. En este aspecto, la conductancia G ha
de ser elegida de manera adecuada, ya que regula el tiempo de respuesta y el ritmo de deteccién
del sistema.

Se han desarrollado durante los ultimos amnos sensores TES optimizados para la de-
teccién de radiacién del rango de los rayos X de baja energia [3]. Estos tienen gran interés en
astrofisica, donde una parte importante de la informacién que se recibe del Universo es en esta
forma de rayos-X. Se ha propuesto su uso, por ejemplo, en la misién espacial Athena (Advanced
Telescope for High Energy Astrophysics), de la Agencia Espacial Europea, cuyo objetivo es el
estudio del Universo Energético y Caliente gracias a un telescopio que operara en esta banda de

energia [4].

Sin embargo, estos sensores superconductores también pueden ser interesantes en apli-
caciones foténicas, en los espectros ultravioleta (UV), visible (VIS) e infrarrojo (IR) [5] . Un
rango muy interesante dentro de estos, es el de las longitudes de onda de las telecomunicaciones,
dentro del cual la longitud correspondiente a 1550 nm es clave para varias aplicaciones. Por
ejemplo, en esta longitud de onda, las guias de onda, que habitualmente se utilizan en telecomu-
nicaciones, tienen un minimo de absorcién. Por tanto, se puede transmitir informacién mediante
la luz a mayor distancia con menor atenuaciéon. Otra posible aplicacién consiste en el intercam-
bio de llave cudntica, que permite intercambiar informaciéon de forma segura disponiendo de
un canal clasico y uno cuantico, por donde viajaran los fotones. Esto requiere detectar fotones
de manera individual con la mayor eficiencia cuantica posible, es decir, es necesario absorber
practicamente el 100 % de los fotones que inciden en el detector.

Los TES se fabrican con distintas combinaciones de metales. En concreto, una de las
mas prometedoras combina laminas delgadas de molibdeno y oro. Los metales absorben mal en
el VIS e IR, muy lejos de las necesidades que las tecnologias discutidas en el parrafo anterior
precisarian. Sin embargo, los metales nanoestructurados pueden disenarse para absorber luz en
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esos rangos de energia de forma muy eficiente, gracias sobre todo a la excitacién de un tipo de
modo electromagnético llamado Plasmén de Supeficie (SPP del inglés Surface Plasmon Polari-
ton) [6].

Los plasmones superficiales fueron descubiertos a mitad del siglo pasado por Rufus
Ritchie [7]. Segin el modelo de Sommerfeld, los metales pueden interpretarse como un gas de
Fermi. Los plasmones provienen del acoplo entre los electrones del gas de Fermi y la luz. La
caracteristica principal de los SPPs es que son modos evanescentes, lo que implica por un lado
que estén muy confinados a la superficie del metal (entre decenas y centenas de nanémetros en
el visible), y que por el otro sean fuertemente absorbidos por el metal, dando lugar a longitudes
de propagacién que van desde las decenas hasta las centenas de micras en el visible [6]. Sin
embargo, los SPP’s no se excitan simplemente mediante incidencia normal de la luz, ya que este
proceso no es capaz de conservar simultdneamente energia y momento. Para que se generen SPPs
se deben introducir en la superficie del metal perturbaciones en forma de particulas, agujeros,
ranuras... que, gracias a la re-emision de luz desde esos centros dispersores, permiten el acoplo
con el campo evanescente del plasmoén de superficie.
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2. Objetivos

El objetivo de este TFG es encontrar una propuesta de disenio para un TES sensible a
la radiacién de longitud de onda de 1550 nm. Los TES que operan en el rango de los rayos X,
esquematizado en la figura [Th, cuentan con un absorbente que los hace sensibles precisamente
al rango de los rayos X. En este trabajo se busca disefiar un TES sensible al telecom y para ello
se propone una nanoestructura metédlica, capaz de absorber la luz en forma de SPPs, similar a
la que se puede ver en la figura [Ip.
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Figura 1: Visualizacién esquematica de la estructura, a grandes rasgos, de dos TES disenados
para distintas aplicaciones: rayos X (izquierda), infrarrojo (derecha). La G es la conductancia
del TES al bano térmico a temperatura constante. (a) Esquema de un TES sensible a los rayos
X. La radiacién incide en el absorbente de rayos X, haciendo el TES sensible a dicha radiacion.
(b) Esquema de cémo se espera que podria ser un TES sensible a la radiacién infrarroja. La
radiacién incide sobre la nanoestructura metéalica de ranuras que permite una alta absorciéon en

este rango.

En el proceso de absorcion son clave los SPPs. Se trata de convertir la mayor cantidad
de luz en plasmones de superficie. Si se consigue un estado resonante en el que los fotones se
acoplen con los plasmones, y estos permanezcan en la superficie el tiempo suficiente, los fotones
acabaran siendo absorbidos. De este modo, cuando se excitan los SPPs en metales se tiene una
absorcién muy alta. Si la superficie metalica del TES no se nanoestructura, la superficie del
metal se comporta casi como un reflector perfecto, como se va a mostrar. Por lo que para ob-
tener altas eficiencias de absorcién, serd necesario modificar la superficie metélica. Por tanto, la
finalidad de este trabajo consiste en optimizar las caracteristicas de estas nanoestructuras para
lograr la mayor eficiencia posible. Asi pues, una parte importante de este estudio consiste en
desarrollar las herramientas numéricas adecuadas para llevar a cabo este proceso de optimizacion.

Para poder detectar un fotén, ademas de ser absorbido, este tiene que producir un cam-
bio de temperatura medible. En este aspecto, un TES puede ser sensible a variaciones de hasta
unos pocos kK. Si se recuerda la expresién AT = E/C, se observa que para pasar de keV (TES
sensible a rayos X) a eV (TES sensible al infrarrojo; 0.8 eV para A = 1550 nm), es necesaria
una disminucion de la capacidad calorifica C de los dispositivos de varios 6rdenes de magnitud,
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lo cual impone restricciones sobre su disefio. Una forma de reducir un factor importante la C
es eliminando el absorbente, que para el caso del infrarrojo no va a ser necesario. Este factor
esencial en el disenio del TES serd también tenido en cuenta.
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3. Aproximacion tedrica al problema

El diseno para un TES nanofoténico parte del mismo sistema que se utiliza para de-
teccion de rayos X (figura [th), formado por una ldmina de oro sobre otra de molibdeno, con la
salvedad de que la capa de absorbente necesaria para las aplicaciones en altas energias no es
necesaria en el rango del visible. Las laminas son sub-longitud de onda en el rango de energias
de interés, el telecom. La propuesta de este trabajo para conseguir niveles éptimos de absorcion
en este rango consiste en utilizar una red periddica de ranuras hechas en la capa de oro, capaces

de excitar SPPs de forma muy eficiente, tal y como se demuestra mas adelante.

Para buscar el disefio apropiado existen programas como el FDTD (Finite-Difference
Time-Domain) [8] que, dada una nanoestructura como input, devuelve como output la respuesta
Optica del sistema. Sin embargo, el espacio de pardmetros a investigar en el proceso de optimi-
zacién es muy grande (4 pardmetros geométricos) y la velocidad de célculo de estos sistemas
mediante FDTD es relativamente lenta (5-6 horas por simulacién), por lo que se hace imprescin-
dible una aproximacién al problema no basada en ”fuerza bruta”. No resulta eficiente tratar de
encontrar un conjunto de parametros éptimos mediante prueba-error. De este modo, el proceso
de optimizacion de la nanoestructura se realiza en dos pasos, que en el trabajo se han realizado
siguiendo estas técnicas:

1. Redes neuronales: se disenia una red neuronal que, como resultado, devuelve el espectro de
absorcién del sistema [9]. De esa forma es posible sustituir en los cdlculos del espectro de
absorcion el método numérico FDTD por la red neuronal entrenada, con un incremento

muy notable de la velocidad de célculo del orden de 106.

2. Optimizador clasico GD: se utiliza el algoritmo de optimizacion de descenso de gradiente,
(GD del inglés Gradient Descent), que emplea la red neuronal para calcular los espectros
de absorcion de manera rapida.

3.1. Absorcién de luz infrarroja: la nanoestructura

Para empezar, antes de introducirse en el funcionamiento y utilidad de los algoritmos
mencionados, conviene estudiar en detalle la estructura en la se va a centrar todo el trabajo.
Para conseguir la capacidad calorifica C adecuada y la sensibilidad 6ptima, los TES trabajan
a temperaturas muy bajas. Normalmente, no es posible encontrar materiales superconductores
con la temperatura de operacién requerida , por lo que se emplea lo que se conoce como efecto
proximidad [10] en que un metal normal se deposita sobre un superconductor reduciendo su 7.
Asi, la T, final de la bicapa depende de la proporcion relativa de espesores.

En el grupo de Quantum Materials and Devices (Q-MAD) [I1], en el cual se ha reali-
zado este trabajo, lleva desarrollando durante los ultimos afios sensores TES optimizados para
la deteccién de rayos X de baja energia [3]. Para ello el termémetro se fabrica con bicapas de
Au-Mo. Por tanto, la nanoestructura de este trabajo parte de una lamina de oro situada sobre
un substrato de molibdeno. Como ya se ha mencionado con anterioridad, a la ldmina de Au se
le practican unas ranuras de manera periddica. Esto anade otros dos pardmetros al problema,

ademads de los espesores de Auy Mo (hay, haro), €l periodo p de estas ranuras y su anchura a.
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Si el oro no se perforara, la bicapa Au/Mo se comportaria como un espejo casi perfecto, como
demuestra la figura [2, en la que se muestra la absorcién en una capa de 100nm de Au y Mo.
Asi, la nanoestructura se crea mediante la perforacién del Au con ranuras, distribuidas periédi-
camente, como muestra la figura [2] donde también se incluye la notacién para los pardmetros
geométricos. En la misma figura se incluyen también las constantes dieléctricas experimentales

para el Auy Mo en el rango UV-VIS-IR (figuras [2h y [2b) [12} [13].
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Figura 2: Nanoestructura capaz de soportar la excitaciéon de plasmones de superficie. Consiste en
una capa de oro de espesor h 4, perforada periédicamente con orificios de anchura a y periodo
p, sobre una capa de molibdeno de espesor hj,. (a) Constante dieléctrica del Au, partes real e
imaginaria, frente a la longitud de onda. Aparece la comparativa entre el calculo experimental y
el obtenido con el algoritmo FDTD. (b) Constante dieléctrica del Mo, partes real e imaginaria,
frente a la longitud de onda. De nuevo, se compara el resultado experimental con el resultado
del algoritmo FDTD. (c) Curvas de absorcién para una capa de 100 nm de Au y Mo. Se observa
un muy buen acuerdo entre el calculo analitico y el obtenido mediante FDTD.

Ya se ha comentado que los TES implementados por el grupo Q-MAD se basan en
bicapas de Au-Mo, optimizadas para una temperatura de funcionamiento de 100 mK. Se han
conseguido dos combinaciones de espesores de estas capas que trabajen a esa temperatura, y
son las siguientes:

= hpro =45 nm y ha, = 265 nm
= hpyro =50 nm y ha, = 340 nm

La temperatura de operacién para el rango infrarrojo no ha de ser necesariamente la misma,
pero se emplean estos valores como una referencia o guia para restringir el espacio de parametros

en el proceso de optimizacion.
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En cuanto a las dimensiones del dispositivo, tanto los limites de fabricacién, como la
necesidad de incluir un niimero minimo de periodos en el metal para obtener una red de ranuras,
fijan un tamano minimo de dispositivo de unos 10 um. Mientras que, por otro lado, la necesidad
de mantener la capacidad calorifica en valores cercanos a los 10fJ/K impone un tamano méxi-
mo para el TES de unos 100 gm. Por tanto, queda acotado el tamano del dispositivo que se busca.

En cuanto a las ranuras, se pueden fabricar desde unos cuantos nanémetros hasta unas
pocas micras, por lo que es posible realizar ranuras de tamanos del orden de magnitud de la
longitud de onda de interés. En este aspecto, como ya se ha comentado, han de caber un ntimero
razonable de estas en el metal para que pueda considerarse una red ranuras, normalmente entre

10 y 20 es suficiente.

El fenémeno 6ptico que opera tras este diseno se conoce como EOT (Eztraordinary
Optical Transmission). En 1944, Hans Bethe, descubri6 que la transmisién normalizada al drea
a través de un agujero circular en una placa conductora delgada es [14]:

~ 04 7 (3.1)
272 \

De modo que, siendo r el radio del agujero y A la longitud de onda de la radiacién incidente, si
r << Ala transmision es muy débil. Sin embargo, en 1998 Ebbesen y sus compaiieros de trabajo
descubrieron que era posible la transmisién de luz en el visible e infrarrojo a través de agujeros
sub-longitud de onda [I5]. Este fenémeno estd asociado a una transmisiéon de la luz a través
de agujeros sub-longitud de onda mayor de la que cabria esperar para aperturas de ese tamano
[16]. En principio, como ya se ha visto, esto no se deberia dar en agujeros tan pequenios, pero
el acoplamiento entre la radiacion incidente y los SPPs da lugar a la resonancia necesaria para
que el proceso EOT ocurra. Aqui reside la importancia de los plasmones superficiales.

Los picos de EOT estén relacionados con la periodicidad de la muestra. Eso es facil de
entender y permite dar una primera estimacién de un valor aproximado para el periodo. Cuando
la luz llega a la red de ranuras en incidencia normal, para que se exciten los plasmones, se ha
de conservar el momento, es decir, el momento de la luz dispersada por el agujero ks debe ser
igual al momento del plasmén kgpp. Al estar en una red de ranuras, en incidencia normal, el
momento de la luz dispersada ha de ser un multiplo entero de 2%7 de lo contrario, la relacién
de dispersion se anula y no hay luz dispersada. Por tanto, el momento de los plasmones ha de
cumplir kspp = n%’r. Si se considera que la relacion de dispersion de los plasmones en superficie
plana apenas cambia con la presencia de los orificios y que kgpp se encuentra proximo al cono
de luz, se puede sustituir este momento por el de la relaciéon de dispersién de la luz en vacio
w = cks. De este modo, tomando n=1, queda lo siguiente.

w 2 2 21
k N—=— = — & — = \X 3.2
SPP c b\ b\ p p ( )

Asi, se obtiene que el valor del periodo ha de ser préximo al de la longitud de onda de resonan-
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cia, es decir, p ~ 1550nm. Sin embargo, hay que tener en cuenta que esto se ha calculado bajo
ciertas aproximaciones, considerando que la relacién de dispersiéon de un plasmén en superficie
plana apenas se ve perturbada por la presencia de orificios y que es cercana al cono de luz. Por
lo tanto, esto no da el valor exacto del periodo, pero resulta 1til para conocer la zona en la que

se encuentran las resonancias.

3.2. Método FDTD

El método de diferencias finitas en el dominio del tiempo, (método FDTD de sus siglas
en inglés Finite-Difference Time-Domain), es uno de los més empleados en electromagnetismo
computacional [I7]. El algoritmo FDTD es capaz de resolver las ecuaciones de Maxwell numéri-
camente y, por tanto, proporcionar toda la respuesta 6ptica de un sistema, incluida la evolucién
temporal del campo electromagnético. Este método tiene la capacidad de tratar distintos mate-
riales, desde dieléctricos a metales, y diferentes tipos de fuentes. A través de este algoritmo se
pueden obtener los coeficientes de transmision y reflexion del sistema, lo cual permite conocer

cual es la absorcién en 1550 nm e ir variando los pardmetros del sistema para maximizarla.

Adaptando el algoritmo al sistema de red de ranuras explicado anteriormente, se intro-
ducen como input los valores del periodo p, anchura del slit a y espesores de las capas de oro y
molibdeno, h 4, hjso. De este modo, se pueden probar distintas combinaciones de valores de estos
parametros, observar la absorcion resultante que ofrece el programa para dichos pardmetros e,

intuitivamente, variar estos buscando el objetivo.

No obstante, como ya se ha comentado, este método presenta un inconveniente, tarda
bastante en resolver el espectro. Ademds, conforme se aumentan las dimensiones del sistema,
este tiempo se dispara llegando a 5-6 horas.

En definitiva, este algoritmo resulta excesivamente lento en procesos de optimizacién
que, como se va a comprobar, requieren miles de calculos para converger. Por otro lado, la
busqueda intuitiva también es poco eficaz. Por ello, se recurre al uso de las redes neuronales las
cuales, una vez entrenadas para calcular el espectro de absorciéon para un conjunto de parame-

tros geométricos dados, permiten superar estos inconvenientes.

3.3. Redes Neuronales

La inteligencia artificial se puede definir como el esfuerzo por automatizar, mediante
tecnologia de computadores, tareas intelectuales normalmente realizadas por los seres humanos
[18]. Un tipo de inteligencia artificial lo constituyen las redes neuronales. El término red neuronal
hace referencia a la neurobiologia, ya que consisten en capas de lo que se llaman neuronas, que
se transmiten informacién entre ellas, como sucederia en un cerebro. Esta idea se ilustra en la
figura [3p. Sin embargo, hay que tener claro que las redes neuronales no son modelos cerebra-
les, lo que se realiza en una red neuronal no es lo que sucede en un cerebro durante el aprendizaje.
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Figura 3: (a) Ejemplo de estructura genérica de una red neuronal estdndar. Se pueden observar
3 partes principales, la capa input, las ocultas y la output [19]. (b) Esquema de los pasos del

funcionamiento de una red neuronal esténdar [I§].

El objetivo de una red neuronal, como se ha mencionado, es realizar una determinada
tarea utilizando computacién clasica. En ese aspecto no se diferencia de la algoritmica con-
vencional. Lo que realmente supone un cambio de paradigma es la forma en la que una red
neuronal hace su tarea y como se implementa dicha tarea. Una red neuronal aprende. El proceso
de aprendizaje es basicamente de prueba-error. La red toma un input (que puede ser un digito
manuscrito) y se espera de ella que responda con un output (que seria el valor numérico del digi-
to). Durante un proceso de entrenamiento a la red se le indica si ha acertado o no, y mediante
técnicas que se resumen en los siguientes parrafos, se corrige a la red en el sentido que mejora su
aprendizaje. Internamente todos los procesos de aprendizaje se realizan mediante una serie de
transformaciones tanto lineales como no lineales, que se llevan a cabo en cada capa de neuronas
de su estructura. Las operaciones en el interior de la red modifican los parametros internos de
la red, en cada exposicién a los ejemplos.

Como se observa en la figura [3h, la primera capa es la capa de inputs, donde se introdu-
cen los datos al programa, por lo que tiene que haber el mismo niimero de neuronas que de datos
de entrada. Las siguientes capas son las capas ocultas, estas pueden ser muy variadas, la eleccién
del nimero de capas ocultas y de neuronas por capa depende del objetivo para el que se emplee
la red neuronal. La ultima capa es la de outputs, de nuevo, tiene que haber el mismo nimero de
neuronas que de outputs esperados. Las flechas indican que cada neurona envia su respuesta a
todas las neuronas de la capa siguiente. En el caso de los inputs, se envia cada valor a todas las
neuronas de la primera capa oculta y, en estas, a dicho valor se le aplica una transformacién a
la que llamaremos funcién de activacién. Existen varios tipos de funciones de activacién, como
la rectificadora ReLU (Rectified Linear Unit) y la tangente hiperbdlica, pero la méas empleada
en redes neuronales es la funcién sigmoidea o(z) [19].

1
o(z) = Toes M %= ijacj -b (3.3)
J

Donde z es el vector de valores que le llega a la neurona de la capa anterior, w es el vector peso
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de la neurona (weights) y b es la desviacién (bias). Estos dos ltimos pardmetros son los pardme-
tros entrenables, caracteristicos de cada neurona, y la funcién de activacién que le asignemos a
las neuronas se aplica sobre z. Asi, cada neurona elabora su respuesta y la manda a todas las
neuronas de la siguiente capa, hasta que se llega a la capa final y se obtiene un resultado. Este
se ha de comparar con el resultado que la red neuronal debe aprender a producir. Para ello, se
introduce la funcion de coste, la cual también puede tomar varias formas asi que, de nuevo, se

introduce la funcién de error cuadratico medio (ECM), como la mas empleada [19].

flw,b) = 53 ) — al? (34)

Siendo n el nimero total de inputs, a el resultado de la red neuronal e y(z) el resultado que
cabe esperar y que se busca que la red sea capaz de predecir. Por tanto, el objetivo consiste en
buscar unos valores de w y b de modo que f(x) =~ 0y, cuando esto suceda, la red neuronal estara
entrenada. En definitiva, el propdsito del algoritmo de entrenamiento consiste en minimizar la
funcién coste f(z) en funcién de los pesos w y la desviacién b. Para ello, se emplea el algoritmo

de descenso de gradiente.

El objetivo del algoritmo GD consiste en resolver problemas de minimizacion, y en este
caso la funcién a minimizar es la funcién coste. El gradiente de una funcién en un punto de su
dominio indica la direccién de méaxima variacion de la funcién en dicho punto. De este modo, se
calcula el gradiente de la funcién coste respecto de los pardmetros entrenables w y b y, a conti-
nuacién, se modifica el valor de estos parametros una pequena cantidad en la direccién opuesta
a la indicada por el gradiente. Esto hace que, al calcular la respuesta con los nuevos valores de
w y b, la funcién de coste se acerque progresivamente a su minimo. Las modificaciones sobre los

pardmetros tienen la forma que sigue [19].

0

wy, = Wi — "asz (3.5)
of
/ o

bl = bl nabl (36)

Donde 7 es un pardmetro positivo llamado learning rate, que indica la magnitud del cambio en
los parametros. El valor que se le asigne a este parametro depende del problema a resolver pero,
generalmente, se trata de que no sea tan grande que no converja al valor del minimo, ni tan
pequenio que cueste llegar al minimo un tiempo excesivo. Esta es una de las variables llamadas
hiperpardmetros. Se trata de pardametros que influyen en la red y que, dependiendo del valor
que se les asigne, el funcionamiento de esta resulta mejor o peor.

En la préctica, se emplea el algoritmo de descenso de gradiente estocéstico SGD (Sto-
chastic Gradient Descent) para acelerar el proceso. La idea reside en que para computar el
gradiente completo, se han de calcular los gradientes para cada input y realizar la media, lo
cual, si el nimero de entradas es muy alto, ralentiza el aprendizaje. Lo que realiza este nuevo
algoritmo es calcular el gradiente para una muestra pequena de inputs aleatoria, que recibe el

10
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nombre de mini-batch, y promediarlo. Resulta que este promedio proporciona una buena estima-
cién del gradiente total y, a su vez, acelera el proceso de aprendizaje. Por ello, este proceso entra
dentro de un bucle que genera los mini-batches, el cual, se encuentra dentro de otro bucle, mas
externo, que corre sobre el nimero de épocas de entrenamiento. Estas dos variables, el tamano
del mini-batch y el nimero de épocas, también forman parte de los hiperparametros del sistema.

El algoritmo que se encarga de retroceder por la red cambiando los valores de los
parametros, como se ha indicado, se conoce como algoritmo de de retropropagacién (de su nom-
bre en inglés, Backpropagation Algorithm), y es el algoritmo central en redes neuronales [18§].
Este proceso descrito hasta ahora se puede observar esquemdticamente en la figura [3p. En esta,
el optimizador especifica la manera en la que el gradiente de la funcién coste se emplea para ac-
tualizar los valores de los pardametros, es decir, hace referencia al algoritmo SGD. Reproduciendo
los pasos del esquema varias veces, para distintos inputs, se consigue una red neuronal entrenada.

Por dltimo, es necesario contar con una gran cantidad de datos, es decir, una lista de
inputs y sus respectivos outputs. Esta base de datos se divide en 3 bloques que son, el conjunto
de datos de entrenamiento, el de validacién y el de examen. Esto es necesario ya que el objetivo
no es que la red neuronal se ajuste a los datos de los que se disponen, sino que sepa predecir los
resultados. De este modo, la red neuronal lleva a cabo el aprendizaje con el conjunto de datos
de entrenamiento, es decir, se realiza todo el proceso para obtener los valores de w y b que mini-
mizan la funcién de coste solo con este conjunto de datos. A continuacién, se emplea el conjunto
de validacién para ver cémo de bien predice resultados la red para datos que no ha visto antes.
Esto sirve para probar distintos valores de los hiperparametros (1, niumero de épocas y tamano
del mini-batch) y averiguar cudles ofrecen un mejor funcionamiento de la red. Por ltimo, el
conjunto de datos de examen se emplea para comprobar que, tras el entrenamiento y el ajuste
de los hiperparametros, la red funciona adecuadamente y es capaz de predecir respuestas para
parametros de entrada con los que no habia trabajado antes, con gran precision.

3.4. Optimizador clasico GD

Como ya se ha comentado anteriormente, el objetivo del algoritmo gradient descent se
basa en resolver un problema de minimizacion, y por eso es 1til en este trabajo en el que se busca
obtener la maxima absorcion posible en el telecom. Para esto, se puede pensar en una funcién
que dependa de la absorcion en esta longitud de onda, cuyo minimo corresponda al maximo de
absorciéon. Una opcién para esta funcién, que es la que se va a emplear, es adaptar la funcién
ECM a este caso, como se indica a continuacion.

£&) = 3 (Fon () ~ 1) (3.7

El vector p'hace referencia a los parametros de la estructura de ranuras, es decir, o= (hay, haso, @, D).
Por tanto, la funcién, como es 1égico, depende de los pardametros que se han de ir cambiando y
adaptando para obtener el pico de absorcién. En cuanto a la funcion fypy, esta es la absorcion
calculada por la red neuronal, de ahi el subindice NN de Neural Network. De este modo, fyn

11



3 APROXIMACION TEORICA AL PROBLEMA MARTA SANCHEZ CASI

es un numero, la absorcién en 1550 nm, que depende de los parametros de la estructura y, cam-
biando los valores de estos, este niimero serd mas o menos cercano a la unidad. Resulta obvio
que la funcién f(p) tiene un minimo para fyy = 1, por tanto, al aplicar el algoritmo GD, se

puede encontrar ese minimo.

(hau, hnvio, &, p) tal que

f(p) < tolerancia absorcién ~ 1

Semilla: (las, Into, a, p). Calculo absorcion

con NN: fun(p)
: f(p) >tolerancia
Actualizar parametros: Cilculo gradiente
(had', hvio, @', p'). f(p)

Figura 4: Esquema de los pasos que se siguen en el funcionamiento del algoritmo de optimizacién
Gradient Descent, que se va a emplear para encontrar los parametros geométricos adecuados para
la implementacién del TES sensible al telecom.

El algoritmo GD lleva a cabo el proceso que se observa en la figura[d] El primer paso en
la optimizacion es elegir un conjunto de pardmetros que actiien como ”semilla”del optimizador.
Cuando no se tiene informacién del sistema el algoritmo se suele inicializar con una semilla alea-
toria. En este estudio, se cuenta con informacién sobre el comportamiento de las resonancias de
absorcion y la eleccién de las semillas se realiza teniendo en cuenta que estas producen un pico de
absorcion alta cerca de la longitud de onda de interés. Para esta semilla, se calcula, haciendo uso
de la red neuronal entrenada, el valor de la absorcién en A = 1550 nm. Este valor, se sustituye
en la funcién y se compara con un valor de tolerancia. Se incluye este valor de tolerancia
para no exigir directamente que la absorcion sea 1, ya que quiza ese valor resulte inalcanzable.
Al inicio, se le adjudica un valor mas o menos alto a esta tolerancia, y conforme se comprueba el
funcionamiento del programa, se va bajando para obtener la absorcién més cercana a 1 posible.
Asi, si el valor de la funcién f(p) es menor que el de la tolerancia, significa que ya se ha llegado
a una absorcién cercana a la unidad y los parametros que proporcionan esta absorcién son los
de la semilla (via superior en la bifurcacién de la figura 4)).

Sin embargo, resulta inusual obtener en el primer intento los parametros que dan maxi-
ma absorcién por lo que, normalmente, el valor de f(p) para la semilla es mayor que la tolerancia
(via inferior en la bifurcacién de la figura . En este caso, se aplica el algoritmo GD vy, para
empezar, se calcula el gradiente de f(p) respecto de cada uno de los pardmetros hay, haso, @
y p. A continuacién, se actualizan los valores de estos pardmetros del mismo modo que en la
red neuronal, mediante las expresiones y solo que ahora los parametros de la estructura
sustituyen a los parametros w y b. Como se puede apreciar en dichas expresiones, se cambian
los valores de los parametros en sentido contrario al gradiente de la funcién y, como el gradiente
marca la direccién de maxima variacién, asi los consecutivos conjuntos de pardmetros producen
una absorcién que minimiza la funcién f(p). Con estos nuevos valores de los pardmetros més

cercanos al minimo, se vuelve a calcular la absorcién mediante la red neuronal y, de nuevo, se

12
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sustituye en la funcién f(p) y se compara con la tolerancia. Realizando esto reiteradas veces,
cada vez se acercan mas los valores de los parametros a aquellos que proporcionan el minimo de

la funcién y, por tanto, el maximo en la absorcién de 1550 nm.
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4. Resultados

4.1. Obtencidén de los datos de entrenamiento mediante FDTD

Para comenzar a entrenar la red neuronal que se empela en el optimizador GD, se ha de
disponer de un conjunto de datos de entrenamiento. Para generarlos, se usa el algoritmo FDTD,
al cual se le introducen los parametros del sistema para que resuelva el espectro correspondiente.
De este modo, se tienen los valores de entrada de la red neuronal con sus espectros, los cuales
emplea la red para comparar su resultado y aprender. A la hora de generar el set de datos de
entrenamiento se limita el rango de pardmetros en los que moverse debido a las limitaciones
de fabricacion del TES comentadas anteriormente. Asi, se generan espectros para sistemas con

valores de sus parametros dentro de los siguientes dominios.

Espesor del oro h4,: [20 nm, 200 nm)|

Espesor del molibdeno hjps,: [20 nm, 200 nm]

Anchura del agujero a: [0 nm, periodo]

Periodo p: [1300 nm, 1700 nm]|

El c6digo FDTD utilizado no es comercial [17]. El sistema se discretiza con un mallado
compuesto por cubos de 5 nm de lado. Teniendo el sistema discretizado a 5 nm, se obtiene un
espacio de parametros extenso. La malla se considera bidimensional, a lo largo de la direccién
x se coloca la estructura de ranuras, y a lo largo de la direccién z viaja el haz de luz (ver figura
. Por tanto, la estructura se coloca, aproximadamente, hacia la mitad de la extension de la
direccién z. Asi, en z = 0 se genera el haz de luz, que incide a medio camino con la estructura
y, a la salida en punto intermedio entre la estructura y el final de la malla, se analiza como se
ha modificado el haz al interaccionar con el material.

Se ilumina el sistema con un paquete gaussiano que contiene peso en todas las frecuen-
cias de interés. La iluminacion es en incidencia normal y polarizacién tal que el campo eléctrico
oscila perpendicular a la cara de las ranuras (direccién x). Esta eleccién es importante porque
la red de ranuras actia como un polarizador. Si el campo eléctrico se orienta en la direccién de

las ranuras la respuesta del sistema corrugado no difiere de las del sistema sin corrugar.

Se puede observar un ejemplo de resolucion del espectro utilizando el algoritmo FDTD
en la figura[bh. Este espectro se obtiene para los valores p = 1464 nm, a = 795 nm, h4, = 70 nm
v haro = 190 nm. En este caso, se aprecia un maximo de absorcién en la longitud de onda A =
1465 nm. Esto corresponde a que, para esa longitud de onda, se da una excitacion de un plasmén
superficial en la estructura, el cual acaba siendo absorbido por la misma, proporcionando el pico
en la absorciéon que roza la unidad. Puesto que se da esta excitacién, se puede observar que la
referencia A = p sirve para predecir la posicion del pico. Por iltimo, en esta imagen también se
ve que la curva correspondiente a la transmision es constante e igual a cero, lo cual se debe a la
capa de molibdeno sobre la que se deposita el oro corrugado. Dado que el Molibdeno es opaco
en el telecom hace que la transmisién sea despreciable.
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Figura 5: (a) Curvas de absorcién, transmisién y reflexién para la nanoestructura de red de
ranuras con p = 1455 nm, a = 795 nm, ha, = 70 nm y hps, = 190 nm, obtenidas con el algoritmo
FDTD en incidencia normal. (b) Médulo del campo eléctrico correspondiente a varias celdas

unidad de la nanoestructura, para la longitud de onda del maximo de absorcién, A = 1465nm.

Por otro lado, la figura muestra el médulo del campo eléctrico correspondiente a
varias celdas unidad de la nanoestructura, para la longitud de onda que corresponde al méaximo
de absorcién, A = 1465nm. Se observa el patron de campo caracteristico de un SPP en este tipo
de sistemas, en este caso con maximos de campo local en las esquinas de las ranuras. El campo
eléctrico es varias veces mas intenso que el de la luz incidente, que en este caso es de 1kV/cm,
como suele ser habitual en la excitacién de plasmones de superficie. Otro dato interesante es que
no aparece el tipico patrén de reflexiéon pura que se observa si el metal no estda corrugado. La
ausencia de franjas de interferencia horizontales es un claro signo de que a esa longitud de onda
incidente practicamente nada de luz se refleja.

Para entrenar la red neuronal, se generan 2600 espectros con el algoritmo FDTD. Es
decir, se cuenta finalmente con un conjunto de 2600 valores distintos para los pardametros y sus

respectivos espectros, como conjunto de entrenamiento de la red.

4.2. Optimizacion de la red neuronal

Una vez se cuenta con el conjunto de entrenamiento adecuado, se implementa la red
neuronal. Para ello, se emplea Keras, que consiste en un entorno de trabajo de deep-learning
de Python, que ofrece una via para definir y entrenar casi cualquier tipo de modelo de deep-
learning. Hay que tener en cuenta que esta libreria no maneja operaciones como la manipulacién
de tensores. En cambio, se basa en librearias de tensores especializadas y optimizadas para ello.
En este caso, se emplea TensorFlow como libreria especializada para el céclulo tensorial [1§].

Con este entorno de trabajo, en primer lugar, inicamente es necesario detenerse en

definir correctamente el conjunto de datos de entrenamiento, adaptando los datos de entrada y
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de salida a tensores con los que pueda trabajar el modelo de red neuronal TensorFlow-Keras.
A continuacién, se ha de definir la estructura de la red neuronal y una de las ventajas que
ofrece este entorno es que se pueden definir varias redes neuronales en un mismo programa, e ir
eligiendo una u otra segiin convenga. A cada red neuronal se le llama modelo y se definen dentro
del mismo todos los parametros del sistema, el optimizador, la funcién de coste, la inicializa-
cion de los parametros... Ademds, permite definir cada capa de neuronas, independientemente,
indicando el nimero de neuronas de entrada, de salida y la funcién de activacién de las mismas.
De este modo, ademas de elegir los valores de los hiperparametros, también se elige uno de los
modelos implementados. Por iltimo, se entrena la red mediante la funcién fit() de la libreria e
iterando sobre el conjunto de datos de entrenamiento.

Durante este proceso se prueban distintos disenos de red neuronal. En cada modelo
se cambia el nimero de capas ocultas, el de neuronas por capa y sus funciones de activacién
o de coste, entre otras cosas, pero todos tienen en comtun el nimero de neuronas de entrada
y de salida. En este caso, la capa input tiene 9 neuronas, correspondientes a los 4 parametros
geométricos (hay, haro, 2 y p), a las constantes dieléctricas de los materiales, que se dividen en
parte real e imaginaria (ei‘u, € s 65\4 o» €110) ¥ & la longitud de onda A. Se incluye la longitud de
onda ya que la red neuronal va a aprender a predecir la reflexién y absorcién para una longitud
de onda determinada. La capa output consiste en 2 neuronas que proporcionan la absorcion y
reflexién para una determinada longitud de onda. De este modo, dados los 9 parametros de
iput que definen un estado electromagnético de la nanoestructura para una geometria dada,
la red neuronal ha de aprender a devolver como output la reflexién y absorcion correspondientes.

Para realizar distintos modelos, ya se ha comentado que dos de los aspectos que se
pueden variar son la funcién de coste y la de activacion. En cuanto a la funcién de coste, a
pesar de que la mas sencilla sea la de coste cuadratico, esta se puede cambiar por la funcién de
coste de entropia cruzada (cross-entropy cost function). En cuanto a la de activacién, aunque
hay varias, lo mas comun es probar, ademés de la sigmoide, la ReLLU y la tangente hiperbdlica.

Estas funciones tienen las siguientes formas.

Cross — entropy : f(w,b) = —% Z[ylna + (1 —y)in(1l —a)] (4.1)
ReLU : f(z) = max(0,z2) (4.2)

2
Tanh : f(z)= Toeo 1 (4.3)

La cross-entropy function tiene la virtud de que, cuando la diferencia entre la respuesta de la
red y la real es muy grande, lo cual es muy facil que suceda al inicio, més rapido aprende la red,
y esto es lo que se busca. En cuanto a las funciones de activacion, simplemente hay que probar
cual es la que mejor se adapta al problema, no hay una forma de elegir adecuada salvo probando.

Otro aspecto a variar en estos modelos es la estructura de la red. Hay una infinidad de
combinaciones de nimero de capas ocultas y de neuronas por capa a elegir pero, en general, la
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tendencia es que a mayor nimero de capas ocultas, menor se hace el coste, y a mayor niimero

de neuronas por capa, més rapido aprende la red [20].

Por ltimo, para definir un modelo se pueden escoger dos caminos, usar Sequential class
o functional API [1§]. El modelo secuencial, es decir, el primero, sirve tinicamente para elaborar
pilas lineales de capas de neuronas, mientras que, el segundo, se emplea para elaborar graficos
aciclicos dirigidos de las capas, permitiendo construir estructuras arbitrarias. En este caso, se
emplea el primero, ya que no se van a realizar topologias complicadas de la red, solamente capas

lineales de neuronas unidas entre ellas.

De este modo, se implementan varios modelos, combinando el uso de distintas funciones
de activacién y de coste y de distintas estructuras de la red. Tras varias pruebas, finalmente se
encuentra que aquel que ofrece mejores resultados es el que se describe a continuacién. La es-
tructura de la red consiste en 2 capas ocultas de 40 neuronas cada una, mas las capas de entrada
y de salida, todas densas, lo que en este entorno significa que estan completamente conectadas.
A todas ellas, y a la capa output, se les aplica como funciéon de activacién la sigmoide y, como
funcién de coste se emplea la binary cross-entropy. Ademads, para evaluar el buen funcionamien-
to de la red, se emplea la funcién mean squared error. Por ultimo, como optimizador emplea el
stochastic gradient descent, ya mencionado anteriormente.

Una vez elegido el modelo de red neuronal mas eficiente, se optimiza su funcionamiento
probando distintos valores de los hiperparametros del sistema. Ya se ha mencionado anterior-
mente que una buena eleccién de los hiperparametros del sistema es esencial para un buen
funcionamiento de la red neuronal y, que para ir variando los valores de estos parametros se
evalta su efecto en el conjunto de datos de validacién. Por ello, tras cada cambio que se haga en
la red, se evalian la funcién de coste y la funcion ECM, empleada como métrica, tanto en los
datos de entrenamiento como en los de validacién. El objetivo consiste en que ambas evolucionen
de la manera més rdapida posible hacia el cero. Sin embargo, no hay ninguna regla que indique
cémo elegir los valores de los hiperparametros, simplemente hay que probar y a menudo esta es
una de las tareas méds costosas y en la que se ha centrado mucho el estudio de las redes neuronales.

Finalmente, a través de este proceso de optimizacion, se llega a los siguientes valores
6ptimos: 50 épocas, mini-batch size = 64, learning rate n = 1.0, pardmetro de regularizacion A
= 0.1, momento = 0.45, decay = 1-107% y nesterov = True. El momento, junto con el decay y el
nesterov, son pardmetros caracteristicos del optimizador SGD que ofrece este entorno de trabajo
Keras, para mejorar el proceso de convergencia hacia el minimo de la funcién a optimizar [21].
Cabe resaltar que estos valores asignados a los hiperparametros son 6ptimos para el funciona-
miento de esta red en concreto. Para cada red que se implemente con una funcién distinta, se
tiene que realizar el proceso de optimizacién para hallar los valores adecuados de los parametros

en ese caso concreto.

Por 1dltimo, esta red se entrena con los 2400 espectros de los 2600 generados mediante el
FDTD y se dejan 100 para validacion, que son los empleados para el ajuste de los hiperparame-
tros, y otros 100 como conjunto de espectros de examen. Por tanto, en total se tienen 2-2600

espectros, ya que se calcula transmision y reflexién, y cada uno de ellos, contiene informacion
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de 300 longitudes de onda.
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Figura 6: (a) Funcion ECM frente al nimero de épocas para los datos de entrenamiento (curva
azul) y los de test (curva roja). Esta se obtiene mediante la red neuronal, implementada en el
entorno Keras, descrita en el texto. (b) Espectros obtenidos, por parte de la red neuronal, para
2 casos concretos del conjunto de datos del test. El de mayor ECM corresponde a p = 1525 nm,
a = 615 nm, h4, = 145 nm, hp;, = 150 nm, y el de menor a p = 1470 nm, a = 940 nm, hy, =
115 nm, Ay, = 100 nm. Se observa la comparacién entre las predicciones obtenidas mediante
la red neuronal (curvas azules) y los resultados del algoritmo FDTD (curvas rojas), apreciando

un mejor ajuste entre estas para el caso con menor ECM.

En la figura [Bh se observa la evolucién de la funcién ECM frente al ndmero de épocas
para el conjunto de los datos de entrenamiento y para los de test. En ambos, se aprecia como
esta funcién llega a valores muy cercanos al cero, consiguiendo incluso valores aiin mas bajos
para el conjunto de datos de test. Con estos valores de esta funcién, que se encarga de medir la
correcta actuacién de la red neuronal, se consigue reproducir con bastante precisién los espectros

obtenidos mediante el algoritmo FDTD.

En la figura [6b, se muestra la resolucién del espectro para estos dos casos concretos,
que se obtienen con la red neuronal, con los datos del conjunto para test, y se comparan con los
calculados con FDTD. Esta comparacién evidencia el hecho de que a menor ECM, con mayor
precisién resuelve los espectros la red neuronal, ya que para el caso con ECM = 7.60-1075, se
aprecia una mayor coincidencia con el resultado numérico del algoritmo FDTD, que para el
caso con ECM = 9.80-107%. En este segundo caso, el resultado de la red neuronal no termina
de ajustarse al correspondiente al algoritmo FDTD, de modo que predice la posicién del pico
existente, pero con una menor precision, ya que no llega a dar el valor exacto de absorcién que se
alcanza. Por tanto, la red neuronal tiene cierto margen de error, pero el grado de concordancia
en la mayoria de las resoluciones de espectros que resuelve la red es muy alto, por lo que se

puede concluir que esta funciona correctamente.
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Por tanto, se tiene una red que aprende en poco tiempo y resuelve la absorcién de
manera muy precisa, es decir, se ha alcanzado el objetivo de funcionamiento de la red. A conti-
nuacion, se emplea este red neuronal entrenada como parte del algoritmo de optimizacién, con
el fin de hallar los pardametros adecuados para que la nanoestructura presente un maximo de
absorcion en la longitud de onda de 1550 nm. Sin embargo, aunque la red constituya un método
muy eficiente para el proceso de optimizacion, una vez obtenido un diseno éptimo, resulta ne-

cesario validarlo con los cédlculos del algoritmo FDTD.

4.3. Optimizacién de los parametros geométricos del TES

Con la red neuronal entrenada ya se tiene la herramienta principal del funcionamiento
del algoritmo de optimizacién Gradient Descent. El programa de optimizacién se prueba para
varias semillas, que en este caso son pardametros geométricos, y distintos valores de tolerancia y
del parametro 7 de las ecuaciones y que mide cémo de grande es el cambio que se realiza

en los pardametros en la fase de actualizacion.

Es importante resaltar el papel esencial de la red neuronal en este proceso en cuanto a
la velocidad de célculo. La red empleada para este proceso ha requerido calcular 2600 espectros.
Este conjunto de datos de entrenamiento se ha obtenido de manera numérica mediante el algo-
ritmo FDTD y para ello, se han tenido 20 ordenadores trabajando durante 30 dias. Por tanto,
para generar los 2600 espectros con un tinico ordenador son necesarios 600 dias. Sin embargo, la
red neuronal es un factor 10° més rdpida que el FDTD realizando los mismos calculos. Con este
algoritmo de optimizacion, para cada semilla es necesario un niamero distinto de iteraciones, pero
se han empleado del orden de 1000 iteraciones hasta alcanzar un valor de la absorcién cercano
a la unidad. De este modo, teniendo en cuenta que en cada iteracion se tiene que calcular la
absorcién para evaluar f(p) y compararla con el valor de tolerancia, si se emplea el algoritmo
FDTD tardaria 6 meses en realizar 1000 iteraciones. Ademas, durante este proceso de optimi-
zacion resulta preciso hacer pruebas con varias semillas, para comprobar la posible existencia
de distintas soluciones al problema. Para ello, se implementa un bucle en el programa que, una
vez terminadas las iteraciones con una semilla, perturba la semilla inicial creando otra nueva y
reiniciando el proceso. Cada calculo de los que se han realizado se hace con unas 50 semillas,
lo cual da lugar a 50000 iteraciones, que con el FDTD equivaldria aproximadamente a 31 anos
de célculo. La mejora es patente, con la red neuronal entrenada se tarda un cuarto de hora

aproximadamente en realizar el mismo niimero de calculos.

Una vez implementado el optimizador con el algoritmo GD, se realizan las pruebas.
Como se ha comentado, se toman semillas aleatorias diferentes, con el objetivo de ver qué po-
sibles estructuras distintas pueden dar esta condiciéon de resonancia. En este proceso se ha de
tener en cuenta que no todas las estructuras que se obtengan pueden ser luego implementadas
yva que, dependiendo de la temperatura de operacién y de la capacidad calorifica que ofrezcan,
pueden, o no, ser utiles. Por tanto, para cada estructura optimizada, se realiza una estimacién
de la temperatura critica de operacion y la capacidad calorifica asociadas, siendo que la primera
depende de los espesores de Au y Mo, y la segunda de la propia temperatura critica y el tamano
del TES. Para ello, el tamano lateral del dispositivo se toma como el nimero de ranuras por el
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periodo, que en este caso supone 20-p.

Con esto, se puede obtener un rango de valores de los pardmetros para los que se tiene
el pico de absorcién en A = 1550 nm, y elegir el mas adecuado de acuerdo a los requerimientos
fisicos y de fabricacion del TES.

De este modo, los resultados son los siguientes. Se obtienen 2 rangos de parametros
como solucién de la minimizacién realizada por parte del algoritmo GD. Esto se observa en la
figura [7] donde se puede apreciar que, tanto los valores de los pardmetros optimizados como los
de la temperatura critica y la capacidad calorifica asociadas, se agrupan en rangos entorno a
absorciones algo menores de 0.91 y 0.95.
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Figura 7: Resultados de absorcién para la optimizacién de los parametros geométricos del TES
sensible al telecom, mediante el algoritmo Gradient Descent que utiliza la red neuronal entrena-
da. Para su obtencion, se emplean 50 semillas distintas y en cada una de ellas se realizan 1000
iteraciones. (a) Absorcién frente a los valores de los pardmetros optimizados para el diseno del
TES sensible a A = 1550 nm. (b) Absorcién resultante frente a los valores de temperatura critica
de operacién y capacidad calorifica, que se estima que tiene el TES sensible a A = 1550 nm que
se busca.

Del conjunto de pardmetros que ofrecen estos dos rangos observados en la figura [7], se
hace una seleccién de aquellos que ofrecen un buen balance entre absorcién alta, temperatura
critica y capacidad calorifica razonables para el funcionamiento del TES. Estos resultan buenos
candidatos a implementar el TES sensible a la radiacién de longitud de onda de 1550 nm. Sin
embargo, antes de entrar en detalle con estos resultados, se ha de recordar que los espectros
correspondientes a estos conjuntos de parametros se han obtenido mediante el calculo de una
red neuronal. Por tanto, se tiene que comprobar que los espectros que arrojan estos parametros
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sean de la forma que se busca (pico de absorcién en 1550 nm) introduciendo en el algoritmo
FDTD el valor de los mismos.

De los resultados que muestra la figura [7], el mejor resultado en términos de absorcién
se obtiene para un sistema de ranuras con p = 1480 nm, a = 280 nm, h 4, = 120 nm y hys, = 115
nm. Estos valores se obtienen de redondear los que devuelve el optimizador y que mejor encajan
con el discretizado utilizado en el método FDTD (5 nm). Se ha comprobado que el cambio en la
curva de absorcién es minimo al pasar de valores nominales obtenidos por el optimizador a los
valores usados en los cdlculos FDTD. Como se puede ver en la figura[§] el espectro que predice la
red neuronal encaja muy bien con el obtenido con el método FDTD. La absorcién que se alcanza
con esta configuracién es de aproximadamente un 98 %. Es esta estructura la que, finalmente,
se propone en este trabajo como un sistema para construir un TES sensible a la radiacién de
longitud de onda de 1550 nm.

1.0 T T T T T T T T T
| jm——Método FDTD
= = Prediccién red neuronal

0.8 4 -
S o064 J
°
o
@
0
< 04-

0.2 4

;J
0.0 —

T T T T T T T T T T
1200 1300 1400 1500 1600 1700 1800
longitud de onda (nm)

Figura 8: Espectros de absorcién calculados con el método FDTD (linea roja) y la red neuronal
(linea azul) para los parametros p = 1480 nm, a = 280 nm, ha, = 120 nm y hps, = 115 nm. Estos
parametros han sido obtenidos durante el proceso de optimizacién y constituyen el resultado
principal del trabajo.

Para verificar que estos parametros corresponden a un diseio de TES que pueda ofrecer
un funcionamiento adecuado, se analizan los valores obtenidos para la temperatura critica de
operacion y la capacidad calorifica. Como ya se ha expuesto anteriormente, para tener una AT
medible, son necesarios valores de la capacidad calorifica cercanos a 10fJ /K. En este caso, para
estos valores de los pardmetros, se obtiene que C = 21.01 £J/K, por lo que se encuentra en el
orden de magnitud esperado. En cuanto a la temperatura T, la formula empleada para obtenerla

no es mas que una estimacion. Se trata de una férmula extraida de ajustar datos experimentales
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de los TES de los que ya se dispone, cuyos espesores de oro y molibdeno son distintos a los que
se han obtenido. La tunica forma de asegurar el valor de la temperatura de operacion es expe-
rimentalmente, pero con esta estimacion se puede formar una idea acerca de la funcionalidad
del TES implementado con estos parametros. Asi, se obtiene T, = 720 mK, una temperatura
mayor que los 100 mK a los que operan los TES diseniados para rayos X. Sin embargo, dado
que la C obtenida es razonable, se puede construir un diseno valido. Por lo tanto, se conclu-

ye que la combinacion de los valores de T, y C es adecuada para un buen funcionamiento del TES.

Por dltimo, se comprueba que el valor que se obtiene de la absorciéon no sea muy sen-
sible a la variacién de los pardmetros del TES. Esto es necesario ya que puede suceder que, a
la hora de fabricar el TES, no sea posible construirlo con los valores exactos de los parametros
obtenidos con el optimizador, debido a las limitaciones de la fabricacién o por resolucién. Con
el algoritmo FDTD se ha constatado que un cambio de + 5 nm/10 nm en el espesor del oro o
en la anchura del periodo, provoca un corrimiento de la posicién del pico en, aproximadamente,
la misma cantidad. Esto, dependiendo de la aplicaciéon puede tener consecuencias mas o menos
importantes, por ejemplo, en el caso de que los fotones a medir no sean estrictamente mono-

cromaticos, este problema puede no resultar tan grave.

Por todo esto, los valores de los parametros: p = 1480 nm, a = 280 nm, h4, = 120
nm y Ay = 115 nm, que proporcionan una absorcién del 98 % de la luz incidente en incidencia
normal para A = 1550 nm, establecen un disefio prometedor para implementar el TES sensible a
la radiacion del rango de las telecomunicaciones, y se completa, de esta manera, el objetivo del
trabajo. La validacién definitiva del funcionamiento de un TES con este disefio requiere medidas
sobre dispositivos reales, lo cual puede llevar a modificar el diseno. No obstante, las herramientas
desarrolladas a lo largo de este trabajo van a permitir emplear la informacién obtenida experi-
mentalmente para encontrar nuevos disefios de dispositivos 6ptimos. Por otro lado, este trabajo
se ha centrado en obtener disenos en una longitud de onda fija. Sin embargo, los TES permiten
medir la energia del fotén incidente y para algunas aplicaciones, como la astronomia, se podria
contemplar el sacrificar algo de eficiencia de absorcién para conseguir espectros mas anchos que
permitan medir estos directamente. De este modo, de nuevo, las herramientas desarrolladas en
este trabajo, pueden adaptarse para optimizar estos nuevos disenos.
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5. Conclusiones

El objetivo de este trabaja consistia en disenar un TES con una absorcién optimizada
en el rango telecom (A = 1550 nm), excitando SPPs mediante las nanoestructuras adecuadas.
Para lograr esto ha sido necesario el desarrollo y la optimizacion de una plataforma basada
en redes neuronales, que acelerase el cdlculo. Como resultado, se ha conseguido implementar y
entrenar una red neuronal que permite una aceleracién del célculo en un factor 10°. Finalmente,
mediante el uso de esta herramienta, se ha propuesto un disefio preliminar que alcanza una

eficiencia en la absorcién del 98 % a la frecuencia de interés.

El correcto funcionamiento de este primer diseno se ha de verificar experimentalmente.
No obstante, la red neuronal desarrollada permitira seguir mejorando este resultado ya que, por
ejemplo, la frecuencia de la resonancia en este caso puede ser muy sensible a pequenas variacio-
nes de los pardmetros geométricos. Por tanto, un siguiente paso a este trabajo puede ser tratar
de reducir la sensibilidad a las variaciones en los pardmetros de fabricaciéon. En este sentido, este
primer diseno estd ademds basado en una geometria fija, pero puede resultar interesante explorar
modificaciones en la propia geometria. Esto constituye otro aspecto que se podria estudiar, por
ejemplo, variando la profundidad de las ranuras en el oro, o con una forma de nanoestructura

diferente a las ranuras.

Por tanto, se puede concluir que este trabajo ha sido una buena primera aproximacién
al problema, donde se ha obtenido la propuesta de disenio funcional del TES y una red neuronal
entrenada para seguir explorando mejoras en esta. Las opciones para seguir afinando esta pro-
puesta son varias, pero en cualquier caso, el paso final consistird en elaborarlo y comprobar su

funcionamiento experimentalmente.

Por tdltimo, también se pueden investigar otras posibles aplicaciones. Para la aplicacién
propuesta en este trabajo, se ha optimizado la respuesta del TES a una longitud de onda fija.
Sin embargo, los TES son sensores capaces de medir la energia del fotén incidente, por lo que
modificando de manera adecuada el diseno, podrian proponerse estructuras sensibles a un rango
mayor de longitudes de onda. De este modo, se abre la posibilidad de realizar espectroscopia
en aplicaciones como, por ejemplo, la astronomia. De nuevo, la red neuronal elaborada en este
estudio podria entrenarse para tratar de aplicarla a este nuevo rango de aplicaciones. En defi-
nitiva, los resultados aqui alcanzados pueden constituir el punto de partida de futuros trabajos

en este campo.
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