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Abstract

Fermat’s last theorem states that the equation xn+yn = zn does not have any non-trivial integral solution.
In this work we will show the general setting of this theorem and discuss the principal ideas of Kummer’s
approach and the most natural relations between the mathematical objects that are behind it, which will
allow us to understand the proof of the cases n = p, with p regular prime. Finally, we will give a short
comment about the relations between elliptic curves and modular forms that allowed Andrew Wiles to
achieve a general and definitive proof for Fermat’s conjecture.
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Resumen

El objetivo de este trabajo es introducir los conceptos necesarios para entender la demostración del
Último Teorema de Fermat para el caso de primos regulares. La mayor parte de las nociones nuevas
que explicaremos aparecen de forma natural a la hora de tratar con problemas algebraicos relacionados
con la teorı́a de anillos conmutativos y las extensiones finitas de cuerpos, las cuales han sido objeto de
estudio en las asignaturas de Estructuras algebraicas, Grupos y Teorı́a de Galois impartidas en el grado
de matemáticas de la Universidad de Zaragoza. Por ello, se ha intentado que todo lo ilustrado aquı́ sea
accesible a cualquier estudiante de matemáticas con un conocimiento básico sobre estos temas. Debido
a eso mismo, este trabajo está más focalizado en discutir las ideas fundamentales que rodean al Último
Teorema de Fermat, y establecer las relaciones más generales entre ellas, que en comprender de manera
exhaustiva cada una de las mismas.

En la introducción se hará un breve comentario sobre los orı́genes del Último Teorema de Fermat y
los intentos y métodos empleados para resolver ciertos casos particulares, como el caso n = 3 o n = 4.
Se mencionará además, de manera esquemática, las ideas que permitieron a Ernst Kummer demostrar
el Último Teorema de Fermat para el caso de primos regulares.

El capı́tulo primero lo empezaremos con un breve repaso de los conceptos básicos de la teorı́a alge-
braica de números, como lo son los números algebraicos y los polinomios mı́nimos asociados a ellos,
ası́ como las relaciones entre estos y las extensiones finitas de cuerpos. Después introduciremos los en-
teros algebraicos, más concretamente, el anillo de enteros de un cuerpo de números, y describiremos la
norma de un número algebraico y el discriminante de un cuerpo de números como objetos que permiten
“trasladar” información de una estructura matemática más o menos compleja a otra más simple.

En el capı́tulo segundo tomaremos un nivel mayor de abstracción. Repasaremos nociones básicas de
la teorı́a de anillos, tales como dominio de integridad o ideal, y generalizaremos estos últimos definiendo
lo que se viene a llamar un ideal fraccionario. Esto nos permitirá hablar de dominios de Dedekind,
definidos como dominios de integridad en los cuales cualquier ideal fraccionario no nulo es invertible, y
estudiar propiedades de ellos relacionadas con la factorización de sus ideales y elementos. En concreto,
probaremos que cualquier ideal no nulo de un dominio de Dedekind factoriza de manera única como
producto de ideales primos. Veremos que cada anillo de enteros es un dominio de Dedekind, y acabare-
mos definiendo el grupo de clase HK de un cuerpo de números K como cierto cociente de su grupo de
ideales fraccionarios, probando su finitud.

En el capı́tulo tercero introduciremos la noción de primo regular. Concretamente, se dice que un
número primo p impar es regular si no divide el orden del grupo de clase del cuerpoQ(ζp), donde ζp es
una raı́z distinta de 1 del polinomio xp−1. Veremos que el anillo de enteros de Q(ζp) es precisamente
Z[ζp]. Después de estudiar las caracterı́sticas generales de este anillo a partir de los resultados de los
capı́tulos anteriores, mencionaremos los enunciados técnicos necesarios para poder demostrar el primer
caso del Último Teorema de Fermat para primos regulares, y expondremos una demostración del mismo.

En el capı́tulo cuarto haremos un breve repaso de las ideas que fundamentan la llamada teorı́a de
cuerpos de clases, tales como la ramificación de un ideal primo de un anillo de enteros en otras ex-
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vi Resumen

tensiones y la existencia del cuerpo de clases de Hilbert. Definiremos el discriminante relativo de una
extensión finita de cuerpos de números, como generalización del discriminante anteriormente intro-
ducido, y veremos su relación con las ramificaciones de ideales primos de Z en Z[ζp] y de Z[ζp] en
cualquier extensión finita que lo contenga. Esto nos permitirá demostrar una versión débil del Lemma
de Kummer sobre las unidades de Z[ζp] y, con ello, mostrar una demostración del segundo caso del
Último Teorema de Fermat para primos regulares.

Finalmente, en el último capı́tulo esbozaremos de manera esquemática los objetos matemáticos e
ideas que permitieron obtener una demostración general del Último Teorema de Fermat.
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Chapter 0

Introduction

Fermat’s Last Theorem is probably the most famous theorem of all time. Since its origins in the early
17th century until mathematicians found a definitive proof for it, more than 350 years passed and many
mathematical objects which we are nowadays used to work with were introduced or developed in order
to find a solution to that problem.

Fermat’s Last Theorem was firstly stated as a conjecture in 1637 by Pierre de Fermat, a jurist and
an amateur mathematician, while he was reading the classic text of mathematics Arithmetica from Dio-
phantus of Alexandria. In that book he found a page were Pythagoras’s Theorem was explained and
Fermat asked himself if that theorem could be extended somehow. Euclides’s Theorem tells us that any
solution to the equation x2 + y2 = z2 with pairwise coprime natural numbers x,y,z is, after a possible
permutation of x and y, of the form x = 2rs, y = r2− s2, z = r2 + s2, where r,s are coprime, r > s and
exactly one of them is odd. Therefore, there are infinitely many non-trivial solutions to the equation
x2 + y2 = z2, where x,y,z ∈ Z. So Fermat wondered about what may happen if we change the exponent
2 by another different natural number. After playing a bit with the equation he claimed that in fact
there are no non-trivial solutions in Z for any natural number greater or equal than 3. More formally: If
0 6= x,y,z ∈ Z then the equation

xn + yn = zn

does not have a solution for any natural number n ≥ 3. He realised that if his conjecture was true for
some natural number n then it should be true for any multiple m of it. For that let m = nr and assume
the conjecture is false for m, that is the equation xm+ym = zm has a non-trivial solution. If that happens,
then (xr)n+(yr)n = (zr)n is a solution for n, which contradicts the conjecture being true for n. From this
argument he deduced that in order to prove his conjecture he should only focus on the cases n = 4 and
n = p odd prime number. In fact, he claimed to have found a method for proving all the cases, but no
one has ever found any evidence of this fact. Anyway, by using an infinite descent argument he proved
correctly the case n = 4. We show the proof here.

Theorem 0.1. If 0 6= x,y,z ∈ Z then the equation x4 + y4 = z4 does not have a solution.

Proof. It is enough to prove that there are no solutions to the equation x4 + y4 = z2 because if there is
a solution to x4 + y4 = z4 then x,y,z2 is a solution for the first equation. As every exponent is even we
may assume x,y,z positive integers. We can also assume x,y,z pairwise relatively prime because if there
is a prime number dividing two of them then it must divide the other one, so we can take that factor out.

Let’s take a solution (x,y,z) of mimimal z. By Euclides’s Theorem we have

x2 = r2− s2, y2 = 2rs, z = r2 + s2

where x,z are odd, y is even and r,s are coprime. We have x2 = r2 + s2 with x,s coprime because
otherwise r,s would have a common factor. Thus, by Euclides’s Theorem again we get, since x is odd,

x2 = a2−b2, s = 2ab, r = a2 +b2

1



2 Chapter 0. Introduction

with a,b coprime positive integers. If we substitute it in y2 = 2rs we get y2 = 4ab(a2+b2), so y must be
even. Let’s write y = 2k, then we have k2 = ab(a2 +b2). But, since a,b,a2 +b2 are pairwise relatively
prime and ab(a2 +b2) is a square we must have a = c2, b = d2, a2 +b2 = e2 for some c,d,e pairwise
relatively prime. Therefore, substituting we get

e2 = a2 +b2 = c4 +d4

which is a solution to x4 + y4 = z2. But e = a2 + b2 = r < z, as z = r2 + s2, which contradicts the
mimimality of z.

More than one century after Fermat’s discovery, Leonhard Euler gave several proofs for the case
p = 3. In one of those proofs, while studying the possible factorization of the equation x3 + y3 = z3,
Euler used complex numbers of the form x+3iy, where x,y∈Z, which helped him to solve the problem.
However, the proof contained some gaps because he was assuming properties of these numbers as if they
were ordinary integers. More concretely, by the Fundamental Theorem of Arithmetic, we know that
every element 0 6= z ∈ Z can be factored uniquely, up to the order of the factors, as z = upr1

1 ...p
rs
s , where

each pi is a different prime number and u is an invertible element in Z. Recall that the only invertible
elements in Z are ±1. Euler did not realise that but in his proof he was using the same property of the
factorization in Z but in the ring Z[i] := {a+bi : a,b ∈ Z}. In fact this property holds in Z[i] but Euler
did not realise he needed to prove it in order to prove his theorem.

In the more general case, given a ring R, any invertible element is called a unit. Also, we say that an
element 0 6= p ∈ R is prime if p is not a unit and whenever p divides ab for some a,b ∈ R, then either
p divides a or p divides b. The property of factorization that holds in particular in Z and in Z[i] can be
stated as follows:

Definition. Let R be a ring which is commutative, unital (1 ∈ R) and with the property that whenever
ab = 0, then either a = 0 or b = 0. Then we say that R is a unique factorization domain (UFD) if every
0 6= a factors uniquely as a = upr1

1 ...p
rs
s , where u is a unit of R and each pi is a distinct prime element of

R.

Anyway, Euler gave another proof just using elementary notions and an infinite descent argument,
so from that moment on mathematicians could focus only on the case n = p, with p prime grater or
equal than 5. However, the problem is still complicated because there are infinitely many primes, so it
would be nice to find more general methods to solve it. It was the mathematician Sophie Germain the
first one to do it. She found it convenient to divide the problem into two cases:

1. p - x,y,z

2. p|x and p - y,z

As Fermat realised, if p|x,y then p must divide z and we can take the factor p out. Also, as p is odd, if
(a,b,c) is a solution for xp + yp = zp, then (a,b,−c) is a solution for xp + yp + zp = 0 and viceversa, so
the equation is symmetric and we can assume p|x. Therefore, if mathematicians were able to prove both
cases, Fermat’s Last Theorem would be finally solved. She proved the first case for all prime numbers
p≤ 97. Legendre proved the second case for p = 5 using ideas on Dirichlet, and Gabriel Lamé proved
the case p = 7.

On 1 March 1847, Lamé adressed the Paris Academy and announced a complete proof of Fermat’s
Last Theorem and explained it to his colleagues. He had factorized the equation xp + yp = zp as

(x+ y)(x+ζpy)...(x+ζ
p−1
p ) = zp

where 1 6= ζp is root of the polynomial xp−1 and claimed that any of those linear factors was prime to
the others. From that fact he derived a contradiction. While checking the proof, Liouville pointed out
that in his argument he was assuming that Z[ζp] was UFD for any odd prime, and that may not be true.
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In fact, three years before the german mathematician Ernst Kummer showed that for p = 23 the ring
Z[ζp] is not UFD so Lamé argument failed.

In 1850 Kummer produced a very nice proof for what he called “regular primes”. It was the most
important step taken in 200 years since Fermat stated his conjecture. In order to prove that, Kummer
wondered if some good properties of factorization in Z could be extended to some Z[ζp]. He defined
the concept of “ideal number”, what was further developed by Dedekind as the notion of ideal of a ring
we are used to, and proved that even if we cannot talk about the unique factorization of elements in
Z[ζp] we can say somehow that its ideals factor uniquely. Recall that any ζp is a root of the monic poly-
nomial xp− 1 ∈ Q[x] and the polynomial ring is an Euclidean domain, meaning that we have division
algorithm for its elements in a similar way we do in Z, so it is a nice polynomial ring to work with.
In fact, given any root α of a monic polynomial p(x) ∈ Q[x] we can define the field Q(α). This field
contains Q so it is a field extension of it. Kummer worked in field extensions of Q of the form Q(ζp)
because Z[ζp]⊂Q(ζp), and revealed valuable information of those domains. This led him to introduce
the notion of the class group of a field of the form Q(ζp) and define what is called a regular prime.

We will introduce all the necessary concepts to understand Kummer’s approach and study them in a
more general way. After that, we will be able to prove Fermat’s Last Theorem for regular primes.



Chapter 1

The ring of integers of a number field

We start by doing a review of some basic concepts of algebraic number theory. Then we will introduce
the ring of integers of a number field and see some properties of it.

Definition. Given a subfield K of C, an element α ∈ C is said to be algebraic over K if ∃p(x) ∈ K[x]
monic such that p(α) = 0. If K =Q we say that α is an algebraic number.

Example 1.
√

2 is an algebraic number, as
√

2 is a root of x2−2 ∈Q[x], but for example π is not, as it
is not a root of any polynomial in Q.

For any algebraic number α we denote by Q(α) the smallest field that contains Q and α . It can be
checked that Q(α) ∼= Q[x]/(p(x)) as fields, where (p(x)) is the maximal ideal generated by p(x) and
p(x) is the unique monic irreducible polynomial over Q of minimal degree satisfying p(α) = 0. In that
case, p(x) is called the minimum polynomial of α over Q.

Having now that Q(α) is a field , which contains Q by definition, we can see Q(α) as a field
extension of Q and also as a vector space over Q. We denote [Q(α) :Q] = dimQQ(α).

Lemma 1.1. ([2, 1.4]) For any algebraic number α , [Q(α) : Q] = n = deg(p(x)) where p(x) is its
minimum polynomial over Q.

In Example 1 we can see that p(x) = x2− 2 is the minimum polynomial of
√

2 over Q because
otherwise p(x) should have degree 1, which is impossible since

√
2 /∈Q. At the same time,

as (
√

2)2 = 2 ∈Q, we have Q(α) = {a+b
√

2 : a,b ∈Q}, so dimQQ(
√

2) = 2 = deg(x2−2).
On the other hand, we have said that π is not an algebraic number, which actually depends on the

fact that [Q(π) :Q] = ∞. This led us to characterize algebraic numbers in terms of finite field extensions
of Q.

Proposition 1.2. ([3, Thm 1.11]) An element α ∈ C is an algebraic number if and only if
[Q(α) :Q]< ∞.

We callQ the set of algebraic numbers. For any α,β ∈Q, we have α +β ,αβ ,α−1,β−1 ∈Q(α,β ),
which is a finite field extension of Q, so we get:

Theorem 1.3. ([3, Thm 2.1]) Q is a field.

Definition. A subfield K of C is called a number field if [K :Q]< ∞.

By Proposition 1.2 this implies K ⊂ Q, in other words, K = Q(α1, ...,αm) for some m ∈ N, where
αi ∈Q ∀i = 1, ...,m. Using induction on m we can prove the following:

Theorem 1.4. ([3, Thm 2.2]) If K is a number field then K =Q(θ) for some θ ∈Q.

Remark. As a finite dimensional vector space over Q, a Q-basis of a number field K =Q(θ) exists in
the natural sense. If [Q(θ) :Q] = n, {1,θ , ...,θ n−1} is a common basis to work with.

4
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As we have said, any number field K = Q(θ) is isomorphic to Q[x]/(p(x)), where p(x) is the
minimum polynomial of θ over Q. The study of these number fields in terms of groups of permutations
acting on the roots of their respective associated irreducible polynomials is a part of an abstract algebraic
theory known as Galois Theory, in honor to the mathematician Évariste Galois, who was the first one to
take this approach. The Galois group Gal(K/Q) of a number field K is exactly
AutK := {σ : K→ K : σ isomorphism}. The next theorem relates the number of elements in Gal(K/Q)
with [K : Q].

Theorem 1.5. Let K = Q(θ) be a number field with [K : Q] = n. Then there are exactly n different
monomorphisms σi : K→ C. The elements σi(θ) = θi are the distinct zeros of p(x), where p(x) is the
minimum polynomial of θ over Q.

Proof. First recall that as p(x) is monic of minimal degree then it is irreducible, that is it cannot be
factored into two non-constant polynomials of degree less than n. As the characteristic of Q is 0, we
know that every irreducible polynomial over Q is separable, that is, all its roots are distinct. So call
θ1, ...,θn the different roots of p(x). Given any θi with pi(x) its minimum polynomial, then
0 = pi(θi) = p(θi). Recall thatQ[x] is an Euclidean Domain, so we can apply division algorithm. Using
the fact that pi(x) is monic of minimal degree we get pi(x)|p(x) and p(x) monic and irreducible implies
pi(x) = p(x), ∀i = 1, ...,n. So we haveQ(θi)∼=Q[x]/(pi(x)) =Q[x]/(p(x))∼=Q(θ), hence they are iso-
morphic. So given any field isomorphism σ :Q(θ)→Q(θi) as σ(1) = 1 and σ(a+b) = σ(a)+σ(b)
we have σ(n) = n ∀n ∈ N, and as σ(1

n) = (σ(n))−1 we deduce σ(q) = q ∀q ∈ Q. Therefore, as
Q(θ),Q(θi) can be seen as Q-vector spaces with basis {1,θ , ...,θ n−1},{1,θi, ...,θ

n−1
i } respectively, σ

is determined by the value of σ(θ). From here it is easy to see that, for i = 1, ...,n, each σ(θ) = θi

induces a different field isomorphism and therefore a different monomorphism from K into C.

On the other hand, if σ : K → C is a monomorphism then by the same reason σ(q) = q ∀q ∈ Q.
Hence, 0 = σ(p(θ)) = p(σ(θ)), so σ(θ) = θi for some i.

Corollary 1.6. If [K :Q] = n then |Gal(K/Q)| ≤ n

Proof. Any σ ∈ Gal(K/Q) induces a unique monomorphism σ ′ : K→ K ⊆ C so by the previous theo-
rem it has to be one of the n possible ones.

Remark. There are some examples, as K =Q( 3
√

2), where Gal(K/Q)< [K :Q]. In case
Gal(K/Q) = [K : Q], we say that K/Q is a Galois extension. This is equivalent to say that every root
of p(x) is in K. In the more general case, given any two fields K,F and a finite field extension K/F
we can also define its Galois group as Gal(K/F) := {σ ∈ AutK : σ(α) = α ∀α ∈ F} but in that case
it is a subgroup of AutK, not necessarily equal to it. In case F = Q the equality holds because any
automorphism of K fixes Q. We say that K/F is a Galois extension if |Gal(K/F)| = [K : F ] = dimFK
as a vector space.

For any α ∈ K the elements σi(α) i = 1, ...,n are called the K-conjugates of α . Recall that they do
not need to be different i.e. σi(q) = q ∀q ∈ Q ∀i. The product of these K-conjugates of α is called the
norm of α in K and is denoted by N(α). As all the σ ′i s are homomorphisms, this norm is multiplicative.
Also, it can be checked (see [3, Thm 2.6]) that the K-conjugates of α are the roots of some polynomial
q(x) = p(x)s ∈ Q[x], where s ∈ N and p(x) is the minimum polynomial of α , so by Cardano-Vieta
relations we know that the product of the K-conjugates of α , that is N(α), is up to sign, the term of
degree 0 of q(x). Hence, N(α) ∈Q ∀α ∈ K.

Using the K-conjugates, the next definition, as the norm does, gives a nice tool to study number
fields.

Definition. Let K =Q(θ) be a number field and {α1, ...,αn} a Q-basis for it. Then the discriminant of
the basis is defined as ∆[α1, ...,αn] = (det[σi(α j)])

2



6 Chapter 1. The ring of integers of a number field

Taking the basis {1,θ , ...,θ n−1} one can check that

0 6= ∆[1,θ , ...,θ n−1] = Πi 6= j(θ
i−θ

j)2 ∈Q

Then, as K =Q(θ) is a Q-vector space and the discriminant is multiplicative, if {α1, ...,αn} is another
basis then there exists and invertible matrix C with coeffiecients in Q such that
∆[α1, ...,αn] = (detC)2∆[1,θ , ...,θ n−1] ∈Q. So we have:

Proposition 1.7. Given K =Q(θ) a number field and α1, ...,αn a Q-basis for it. Then
0 6= ∆ := ∆[α1, ...,αn] ∈Q

In the introduction we have mentioned in some rings the unique factorization of elements does
not always hold, so it would be nice to find domains that help us to study the structure behind those
factorizations. The best choice for that is the ring of integers of a given number field.

Definition. An algebraic number α is called an algebraic integer if its minimum polynomial belongs to
Z[x]. We denote the set of algebraic integers by D.

Example 2.
√

2 ∈D as x2−2 ∈ Z[x], but 1
2 /∈D since x− 1

2 /∈ Z[x]. In fact, ∀q ∈Q\Z we have q /∈D.

Remark. In some mathematical articles algebraic integers are defined in a different way. They say
that α an algebraic integer if ∃p(x) ∈ Z[x] monic such that p(α) = 0. In fact these two definitions are
equivalent (see [3, Lemma 2.13])

In the same way that we characterize algebraic numbers in terms of finite field extensions of Q we
can characterize algebraic integers in terms of finitely generated additive groups.

Proposition 1.8. ([3, Lemma 2.8]) θ ∈D if and only if the additive group generated by {1,θ ,θ 2, ...}
is finitely generated.

The proof depends mostly of the fact that if the minimum polynomial of θ has degree n then
θ n = ∑

n
i=0 aiθ

i and hence all θ m,m > n, can be written as a linear combination of {1,θ , ...,θ n−1}.

Corollary 1.9. D is a ring.

Proof. Let α ,β ∈D and Gα ,Gβ their respective finitely generated additive groups. Then GαGβ is also
a finitely generated additive group and it contains all the powers of α+β and αβ .
Hence, α+β , αβ ∈D.

We can see any field as a ring itself and as the intersection of two rings is a ring we have:

Definition. Given K =Q(θ) number field then DK =D∩ K is called the ring of integers of K.

Lemma 1.10. Let K be a number field. If α ∈ K then ∃c ∈ Z such that cα ∈DK .

Proof. Let p(x) be the minimal polynomial of α overQ. Then 0= p(α)=αn+ an−1
bn−1

+..+ a0
b0

ai,bi∈ Z ∀i.
Take c = Πbi. Then 0 = cn p(α) = ...= (cα)n + c an−1

bn−1
(cα)n−1 + ...+ cn a0

b0
= q(cα) ∈ Z[cα]

and cα ∈DK .

Corollary 1.11. If K is a number field then K =Q(θ) for some θ ∈DK

Proof. By Theorem 1.4 and Lemma 1.10 ∃φ ∈Q, c ∈ Z such that K =Q(φ) and cφ ∈DK . Clearly
Q(cφ)⊂Q(φ). Also, as c ∈ Z⊂Q⊂Q(cφ), c is invertible in Q(cφ) and φ = c−1cφ .
Hence, K =Q(φ) =Q(cφ).

From Example 2 we deduce DQ = Z. For any number field K = Q(θ) it is clear that Z(θ) ⊆DK ,
where Z(θ) denotes the smallest subring of C that contains Z and θ , but the equality is not always true.
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Example 3. Let K =Q(
√

5). Then α = 1+
√

5
2 ∈ K and α2−α−1 = 0 so α ∈DK , but α /∈ Z[

√
5] .

The ring of integers DK is an abelian group under addition, so it has a natural structure of Z-module.
Recall that a module over a ring is a generalization of a vector space over a field, as any field is a ring.

Definition. A Z-basis for (DK ,+) is called an integral basis for K.

Let K be a number field with [K :Q] = n. From Lemma 1.10 we can deduce that any Z-basis for DK

is a Q-basis for K, so n = dimQK = dimZDK . But, even if every finite dimensional vector space over
a field has a basis, it is not always the case with finite dimensional modules over a ring. We may think
that a basis of K consisting of integer numbers will be an integral basis for K but in Example 3 {1,

√
5}

is a Q-basis but α /∈ Z(
√

5), so it is not an integral basis. In order to prove that an integral basis for K
always exists, we need to use properties of the discriminant of a basis.

Lemma 1.12. If {α1, ...,αn} is a basis of K consisting of algebraic integers then
0 6= ∆ = ∆[α1, ...,αn] ∈ Z.

Proof. By Proposition 1.7 and Corollary 1.9, 0 6= ∆ ∈Q∩DK so, by Example 2, 0 6= ∆ ∈ Z.

Now, as given any basis of K consisting of integers we have |∆| ∈N we can apply an infinite descent
argument to show that the integral basis must exist.

Theorem 1.13. ([3, Thm 2.16]) Every number field K posseses an integral basis and DK is a finitely
generated Z-module with n = dimZDK .

Let {α1, ...,αn},{β1, ...,βn} be two integral basis for K and C the matrix of the change of basis.
C is an invertible matrix with coefficients in Z so detC =±1. Hence,

0 6= ∆[β1, ...,βn] = (detC)2
∆[α1, ...,αn] = ∆[α1, ...,αn]

so the discriminant of an integral basis of a number field K is independent of the integral basis we
choose. In fact, it is an invariant of the number field known as the discrimant of K.



Chapter 2

Dedekind domains and the Class Group

The ring of integers of a number field appears as a particular case of a more general abstract object,
a Dedekind domain. We will see some properties of these domains and relate them with our rings of
integers. After that, we will define the class group of a given number field and prove its finiteness.
We start with a review of some basic terminology of ring theory.

Definition. Given a commutative ring D and a subset I ⊂ D we say that I is an ideal of D if I is closed
under the sum and ∀x ∈ I ∀r ∈ D we have xr ∈ I. This property is usually written as ID⊂ I.

Remark. Recall that if 1 ∈ D then I = I ·1⊂ ID, hence we have ID = I for any ideal I. Clearly 0 and
D are ideals of D. We say that an ideal I of D is proper if I 6= 0,D. Also, we can give a multiplicative
structure to the set of ideals of D. That is, for any ideals I,J of D we define IJ := {∑bib j : bi ∈ I,b j ∈ J}
where all the sums are finite sums. It is easy to check that IJ is also an ideal of D.

Definition. A ring D is called an integral domain if it is unital, commutative and if ab = 0 for some
a,b ∈ D then either a = 0 or b = 0.

Example 4. For any number field K, DK is commutative and unital as 1 ∈ Z ⊂ DK ⊂ K and K is
commutative by definition. Also, for any 0 6= a ∈ DK such that ab = 0 for some b ∈ DK then, in
particular, ab,a−1 ∈ K so 0 = a−1ab = b. Hence, it is an integral domain. In particular Z is. On the
other hand, for example Z6 is not an integral domain as 2 ·3 = 0.

Lemma 2.1. Any finite integral domain D is a field.

Proof. Let 0 6= x ∈ D, we just need to check that x is invertible. Take the map Φx : D→ D given by
Φx(y) = xy ∀y ∈D. Given y,y′ ∈D, y 6= y′ then xy = xy′⇔ x(y−y′) = 0⇔ y = y′ since D is an integral
domain. Therefore, Φx is inyective and as D is finite it is surjective, so in particular ∃z ∈ D such that
1 = Φx(z) = xz = zx , so x is invertible. As this happens ∀x ∈ D we conclude that D is a field.

Definition. We say that an ideal I of D is principal if there is an element b∈D such that I = {br : r ∈D}.
That is, I is generated by b. We write I = 〈b〉 or I = bD.

Principal ideals are related to factorization of elements in the sense that an integral domain with
most part of its ideals being principal will have in general lot of elements with unique factorization. The
following two lemmas ilustrate some nice properties of these ideals.

Lemma 2.2. Let D be an integral domain and I = 〈α〉, J = 〈β 〉 two proper principal ideals of D. Then
I = J⇔ β = uα , where u is a unit of D.

Proof. Assume 〈α〉= 〈β 〉, in particular α ∈ J, β ∈ I. So ∃u,v∈D such that α = vβ and β = uα . Thus,
α = vβ = vuα ⇔ α(1− vu) = 0. As I is proper then 0 6= α , so D integral domain implies 1− vu = 0
and hence 1 = vu = uv as D is commutative, so u is invertible. Conversely, if we assume β = uα then
b ∈ I. Also, α = u−1β ∈ 〈β 〉= J. Hence, I = J.

8
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Lemma 2.3. Let D be an integral domain and I = 〈α〉, J = 〈β 〉. Then 〈α〉〈β 〉= 〈αβ 〉.

Proof. We have 1 ∈ D, so αβ = α · 1 β · 1 ∈ 〈α〉〈β 〉. Hence, 〈αβ 〉 ⊂ 〈α〉〈β 〉. On the other hand,
〈α〉〈β 〉 = {∑(aiα)(biβ ) : ai,bi ∈ D} = {∑aibiαβ : ai,bi ∈ D} = {∑diαβ : di ∈ D} ⊂ 〈αβ 〉, so we
have the equality.

From now on , D will denote an integral domain and F = Q(D) = {a
b : a,b ∈ D,b 6= 0} its field of

fractions.
Recall that any non-zero ideal I of D can be seen as a D-module. Also, by definition, F is a

D-module. Hence, I has a natural structure of D-submodule of F , as I ⊂ D ⊂ F . Furthermore, for any
0 6= b ∈ F , bI is a D-submodule of F . This motivates the following:

Definition. A fractional ideal I of D is a nonzero D-submodule of F such that aI = J for some 0 6= a∈D
and some non-zero ideal J of D.

Any non-zero ideal I of D is also a fractional ideal, just taking a= 1; and if I is a fractional ideal then
for some a ∈ D aI is a non-zero ideal of D. Calling FD the set of fractional ideals of D the definition
tells us that FD = {1

a J : 0 6= a ∈ D, J non-zero ideal of D}. In order to avoid confusion we will write
I ≤ D when I is an ideal of D. Otherwise we will say that I is a fractional ideal of D.

Example 5. Let D = Z, F =Q. Every fractional ideal of Z is of the form rZ, for some 0 6= r ∈Q.

Let I1, I2 ∈ FD then ∃a,b ∈ D such that aI1,bI2 are non-zero ideals of D. The product I1I2 is defined
in the same way than before and we can check that I1I2 is a D-submodule of F with abI1I2 non-zero
ideal of D, so I1I2 ∈ FD. Also, as 1 ∈ D then DI = I ∀I ∈ FD. Hence, (F,∗) is a commutative monoid
with identity D.

There is an analogue to the concept of a principal ideal in the fractional case. That is, we say that I
is a principal fractional ideal of D if I = bD , 0 6= b ∈ F . We denote the set of principal fractional ideals
of D by PD.

Lemma 2.4. (PD,∗) is a submonoid of (FD,∗)

Proof. Let I1, I2 ∈PD, then I1 = b1D , I2 = b2D for some 0 6= b1,b2 ∈ F . Hence,
0 6= I1I2 = (b1D)(b2D) = b1b2D ∈PD just taking b = b1b2.

Recall that a monoid is a generalization of a group in the sense that we allow some elements not
to have an inverse, but groups contain much more information, so it would be nice to have a group
structure in these monoids. For that, we need to talk about the inverse of a fractional ideal.

Let I be a fractional ideal of D. We define I−1 := {c ∈ F : cI ⊂ D}. As I is fractional,
∃0 6= a ∈ D such that aI ⊂ D, so 0 6= I−1. It is clear that I−1 is a D-submodule of F . Also, taking
0 6= b ∈ I∩D then bI−1 is a non-zero ideal of D. Hence, by definition, I−1 is a fractional ideal of D.

Definition. Let I be a fractional ideal of D. We say that I is invertible if II−1 = D.

From the definition of I−1 we can deduce II−1 = I−1I ⊂ D, but the other containment does not
always hold. Anyway, in some cases we know it is true.

Lemma 2.5. Every principal fractional ideal is invertible.

Proof. I principal fractional ⇒ I = bD for some 0 6= b ∈ F . So it is clear that I−1 = b−1D. Then,
I−1I = (b−1D)(bD) = b−1bD = D.

Now we are ready to characterize the domains that concern us in this chapter.

Definition. An integral domain D is called a Dedekind domain if every D-fractional ideal of F = Q(D)
is invertible.
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Example 6. Let D = Z. Every Z-fractional ideal of Q is of the form rZ with 0 6= r ∈ Q. Hence, every
fractional ideal is principal fractional so by Lemma 2.5 every fractional ideal is invertible and hence
Z is a Dedekind domain. On the other hand, not every integral Domain is Dedekind, as for example
D = Z(

√
5).

We know that Z is a principal ideal domain, that is, every ideal of Z is principal. If we take any other
principal ideal domain, we can also characterize its fractional ideals very easily and a similar argument
as the one in Example 6 tells us that any Principal ideal domain is a Dedekind domain.

In Dedekind Domains we find out the following nice result about what is concerning us all the time,
that is, to find domains with good properties regarding the factorizations of its elements.

Theorem 2.6. ([4, Prop 4.42]) A Dedekind domain D is a unique factorization domain if and only if it
is a Principal ideal domain.

In the same way that given a,b ∈ D we say that a divides b if ∃u ∈ D such that au = b, we can talk
in general about an ideal I “dividing” an ideal J , and in Dedekind domains we can characterize these
divisions very nicely.

Definition. Let D be an integral domain and let I,J ∈ FD. We say that I divides J, written I|J, if ∃K ≤D
such that J = IK.

Proposition 2.7. Let D be a Dedekind domain and let I,J ∈ FD. Then I|J⇔ J ⊂ I.

Proof. J = IK and K ⊂ D implies J ⊂ ID = I. Conversely, if J ⊂ I then I−1J ⊂ I−1I = D, so
K = I−1J ≤ D and IK = I(I−1J) = J

In Z a prime number p is characterized by the property that whenever p|ab, 0 6= a,b ∈ Z then p|a
or p|b. The characterization of prime ideals in a Dedekind domain D is analogous to that one. For that,
recall that an ideal P in a ring R is prime if and only if R/P is an integral domain and P 6= R. So take
R = D and let 0 6= I,J ≤D such that IJ ⊂ P. Hence, IJ = 0 in D/P which is an integral domain so either
J ⊂ P or I ⊂ P. By the last proposition this is the same that saying P|IJ implies P|I or P|J. In particular,
if P is prime and P = IJ, then I = P and J = D or I = D and J = P.

Definition. An ideal M in a ring is maximal if for any ideal I of D such that M  I we have I = D.

Theorem 2.8. Any non-zero prime ideal in a Dedekind domain D is maximal.

Proof. Let 0 6= I a prime ideal of D which is not maximal. Then ∃J ≤ D such that I  J  D. So by
Proposition 2.7 ∃K ≤ D such that I = JK and as I is prime then either J ⊂ I or K ⊂ I. Since J 6= I
we have J * I, so we must have K ⊂ I. But I = JK ⊂ DK = K, so I ⊂ K and we get I = K. But then
K = I = JK⇒D=KK−1 = JKK−1 = J, which is a contradiction since J 6=D. Hence, I is maximal.

Dedekind domains are named after the mathematician Richard Dedekind who was one of the first
mathematicians that studied Ideal theory and related it with number theoretical problems. He did the
amazing discovery that, even if we cannot factor an element uniquely in a Dedekind domain, we can
always factor any ideal as a unique product of prime ideals. We are going to prove it here but before
that we need to introduce the concept of a ring being Noetherian, named also after the mathematician
Emmy Noether.

Definition. A ring R is called Noetherian if every ideal I of R is a finitely generated R-module, that is
for some n ∈ N ∃{b1, ...,bn} ⊂ I such that ∀m ∈ I m = r1b1 + ...+ rnbn for some ri ∈ R . This is
equivalent to say that every non-empty set of ideals of R has a maximal element.

Proposition 2.9. Every Dedekind domain D is Noetherian.
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Proof. Let 0 6= I ≤ D. We will see that I is finitely generated. We have 1 ∈ D = I−1I so , for some
n ∈N, ∃b1, ...,bn ∈ I, c1, ...,cn ∈ I−1 such that 1 = ∑

n
i=1 cibi. Now let b ∈ I, then b = b ·1 = ∑

n
i=1(bci)bi

with bci ∈ D. Thus, I = ∑
n
i=1 Dbi and hence I = 〈b1, ...,bn〉, which is finitely generated.

Now that we have seen that every Dedekind domain is Noetherian we are ready to prove the result:

Theorem 2.10. Every proper ideal of a Dedekind domain D can be written uniquely as a non-zero finite
product of prime ideals.

Proof. Let 0 6= J ≤ D. We will show first that J is a non-zero finite product of prime ideals. Assume
it is not true, so /0 6= S = {0 6= J � D : J has no prime factorization}. As D is Noetherian, S contains a
maximal element I � D in S. Recall that I is maximal in D if and only if D/I is a field. So, as every
field is an integral domain and D/I is an integral domain if and only if I is prime we deduce that I is
not maximal in D. So ∃I1 ∈ D such that I ( I1 � D and I = I1I2 for some I2 � D. We have I ⊂ I2 and
I2 = I ⇒ D = II−1 = I1I2I−1

2 = I1 which is impossible, so I ( Ii � D for i = 1,2. But I maximal in
S implies that I1, I2 /∈ S so they are non-zero finite products of prime ideals. As I = I1I2 we get I /∈ S,
which is a contradiction.
So J = P1...Pn for some non-zero prime ideals Pi. We need to check now that this is the only possible
factorization. Assume P1...Pn = J = Q1...Qm, Q j prime ∀ j. We have P1|Q1...Qm and P1 is prime so we
can assume P1|Q1. By Theorem 2.8, P1 = Q1. Multiplying by P−1

1 = Q−1
1 we get D = Q2...Qm if n = 1

and P2...Pn = Q2...Qm if n > 1. The first expression is impossible since Q j|D⇒ D = Q j, and every Q j

is prime. In the second case, we repeat the argument with P2,Q2 instead of P1,Q1, and we continue like
that, so after a finite number of steps we will get n = m and Pi = Q1 ∀i = 1, ...,n.

Recall that our interest is to study the rings of integers of some specific number fields. We will show
that these rings, in particular any ring of integers, is a Dedekind domain so we will be able to study
properties of those rings in the context of Dedekind domains and reveal valuable information. Before
that we are going to see one more property of Dedekind domains that will help us to characterize them
in a less abstract way.

Definition. An integral domain D is called integrally closed if for any α ∈ F = Q(D) which is a root of
a monic polynomial p(x) ∈ D[x] we have α ∈ D.

Example 7. For any number field K, DK is integrally closed. For that, let θ ∈ K and p(x) ∈DK [x] such
that 0 = p(θ) = θ n +an−1θ n−1 + ...+a0, with ai ∈DK ∀i. Then the set {θ i} of all the powers of θ lies
in a DK-module M generated by {1,θ , ...,θ n−1}. By Theorem 1.13, DK is a finitely generated additive
group with basis {α1, ...,αn}, where n = [K :Q]. Therefore, M lies in the additive group generated by
{α1, ...,αn}×{1,θ , ...,θ n−1}, which is finitely generated. Hence, by Proposition 1.8, θ ∈D∩K =DK .

We are going to prove that, in fact, any Dedekind domain is integrally closed. For that we need this
useful lemma:

Lemma 2.11. Let I be a fractional ideal of a Dedekind domain D such that I2 = I. Then I = D.

Proof. D = II−1 ⇔ D = I2I−1 ⇔ D = I(II−1)⇔ D = ID ⊂ I. Also, as 1 ∈ D we get I = I · 1 ⊂ ID.
Hence, D = ID = I.

Theorem 2.12. Any Dedekind domain D is integrally closed.

Proof. Let 0 6=α ∈F =Q(D) D- integral, that is, ∃p(x)= xn+a1xn−1+...+an ∈D[x] such that p(α)=
0. We need to check that α ∈D. Write M =D1+ ...+Dαn−1. M is clearly a finitely generated D-module
and α ∈M. Also, writing α = b

c with 0 6= b,c∈D, then cn−1M is an ideal of D, so M is a fractional ideal
of D. The construction of M, and the fact that p(α) = 0, imply that M2 = M. So, by the last lemma,
α ∈M = D and we are done.
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Summarizing, what we have seen until now is that any Dedekind domain is integrally closed,
Noetherian and every non-zero prime ideal is maximal. In fact, these three properties characterize
Dedekind domains.

Theorem 2.13. ([1, Thm 10.3]) An integral domain D is Dedekind if and only if D is integrally closed,
Noetherian and every non-zero prime ideal is maximal.

Now that we know this characterization we are in good conditions to prove that every ring of integers
is a Dedekind domain.

Theorem 2.14. For any number field K, DK is a Dedekind domain.

Proof. Let K be a number field. We just need to check that DK is integrally closed, Noetherian and
every non-zero prime ideal is maximal. By Example 7 we know that DK is integrally closed.

Let 0 6= I ≤ DK . By Theorem 1.13 we know that DK is a finitely generated Z-module with
dimZDK = n = [K : Q], and then I is also finitely generated as a Z-module, and hence as an ideal
too. We conclude that DK is Noetherian.

So we are left to prove that every non-zero prime ideal of DK is maximal. For that, let 0 6= P≤DK

a prime ideal and let 0 6= α ∈ P. Let N(α) be the norm of α in K. We have N(α) = α1...αn where {αi}
are the K-conjugates of α . By Theorem 1.5 we know that σi(α) = αi, where {σi} are the n distinct
monomorphisms of K in C. As the identity on K is one of these monomorphisms, we get α = αi for
some i. Assume α = α1. Hence, as P is an ideal, N = N(α) = α...αn ∈ P, so 〈N〉 ⊂ P, where 〈N〉 is the
ideal of DK generated by N. Also, by Example 2, N ∈ Z. Recall that P is prime if and only if DK/P
is an integral domain and P is maximal if and only if DK/P is a field. By Lemma 2.1 we know that
any finite integral domain is a field, so we just need to check that DK/P is finite. Let 0 6= x ∈DK . By
what we have said we know Nx ∈ 〈N〉 ⊂ P so Nx = 0 in DK/P, ∀x ∈ DK . Now, looking at (DK ,+)
as a finitely generated abelian group, P can be seeing as a finitely generated abelian subgroup of DK .
(DK/P,+) is also a finitely generated abelian group as the quotient of two abelian groups is a group.
Then, as N ∈ Z, every x ∈ DK/P has finite order. Thus, (DK/P,+) is finitely generated with every
element of finite order, so DK/P is finite. Hence, P is maximal and we conclude that DK is a Dedekind
Domain.

Remark. During the proof we have seen that DK/P is finite for any 0 6= P ≤ DK . In fact, by the
same argument, we can show that DK/I is finite for any 0 6= I ≤ DK . We define the norm of I in K
as NK(I) := |DK/I| ∈ N. Clearly NK(DK) = 1. It can be checked (see [5, Thm 2.2]) that this norm is
multiplicative, that is, for any 0 6= I,J ≤ DK we have NK(IJ) = NK(I)NK(J). Also, for any principal
ideal 0 6= 〈α〉 ≤DK we have NK(〈α〉) = N(α).

Lemma 2.15. Let K be a number field and 0 6= P≤DK . If NK(P) is prime then P is a prime ideal.

Proof. Assume P = IJ then by the multiplicative property of NK(·) we have p = NK(P) = NK(I)NK(J)
for some prime number p. Hence, either NK(I) = p or NK(J) = p. By commutativity of the ideals, we
can assume NK(I) = p. But then NK(J) = 1 = |DK/J|, so J = D. Hence, P = IJ = ID = I and P is a
prime ideal.

Lemma 2.16. Let K be a number field, then NK(I) ∈ I for any 0 6= I ≤DK .

Proof. NK(I) = |DK/I| ⇒ NK(I)x ∈ I ∀x ∈DK . In particular it is true for x = 1.

Lemma 2.17. Only finitely many ideals of DK have a given norm.

Proof. By last Lemma, for any 0 6= I ≤DK we have NK(I) ∈ I, so 〈NK(I)〉 ⊂ I and by Proposition 2.7
∃0 6= J ≤DK such that IJ = 〈NK(I)〉. At the same time, as DK is a Dedekind Domain, 〈NK(I)〉 factors
as a product of prime ideals IJ = 〈NK(I)〉 = Pr1

1 ...Prn
n and this factorizacion is unique, so I must be a

product of some Psi
i ’s, 1≤ i≤ n, 1≤ si ≤ ri. Hence, there are only finitely many possibilities for this I

and so only finitely many ideals Ii can have NK(I) = NK(Ii).
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Previously, we have said that given any integral domain D, in particular any Dedekind domain, then
(FD,∗) is a commutative monoid. The only required condition for being in fact a group is that every
element must be invertible, that is, every fractional ideal must be invertible. But, if we remember the
definition of a Dedekind domain we see that this condition is satisfied so, for any Dedekind domain D,
(FD,∗) is an abelian group. In the same way we see that (PD,∗) is an abelian subgroup of (FD,∗).
Hence, as the quotient of two abelian groups is an abelian group we get that (FD/PD,∗) is an abelian
group, with 1 = DPD, whose elements are equivalence classes of fractional ideals of FD due to the
relation: I ∼ J ⇔ IJ−1 ∈ PD, and the product is defined as [I] · [J] = [IJ] for any I,J ∈ FD, where [I]
denotes the equivalence class of I. This group contains plenty of information about the fractional ideals
of the domain. If D = DK for some number field K we call this group the class group of K and we
denote it by HK . One of the main properties of this group is that it is a finite group for any number field
K. We will show it, but first of all let us see how this group encapsulates information about the ideals
and the factorization of the elements in DK .

Lemma 2.18. For any Dedekind domain D and any I ∈ FD, [I] contains an ideal 0 6= J ≤ D.

Proof. I ∈ FD⇒ I = 1
c J, where c ∈ F = Q(D) and 0 6= J ≤ D. So J = cI and hence JI−1 = cD ∈PD

and J ∼ I, in other words J ∈ [I].

Lemma 2.19. For any number field K, factorization of elements in DK is unique⇔ |HK |= 1.

Proof. We know by Theorem 2.6 that factorization in D =DK is unique if and only if every ideal of D
is principal. If we remember the construction of FD and PD we see that this is equivalent to say that
every fractional ideal is principal fractional, which means FD =PD, and hence it is the same that saying
|HK |= |FD/PD|= |PD/PD|= 1.

Thus, hK := |HK | measures somehow how far DK is from being a unique factorization domain. We
call hK the class number of K.

Theorem 2.20. ([5, Thm 35]) For any number field K, hK ∈ N.

Proof. Let’s prove first that ∃λ ∈R+ such that for every 0 6= I≤DK ∃α ∈ I such that |N(α)| ≤ λ ·NK(I).
By Theorem 1.13 we know that an integral basis {α1, ...,αn} of DK exists. Let σ1, ...,σn denote the
distinct monomorphisms of K in Theorem 1.5. Take λ = ∏

n
i=1 ∑

n
j=1 |σi(α j)| and 0 6= I ≤DK .

As NK(I) ∈ N ∃m ∈ N such that mn ≤ NK(I)< (m+1)n, where n = [K :Q]. Consider the family

S = {
n

∑
i=1

m jα j : m j ∈ Z, 0 6= m j ≤ m}

Clearly |S| = (m+ 1)n and S ⊂ DK , so as NK(I) = |DK/I| < (m+ 1)n there must be β1,β2 ∈ S such
that β1 + I = β2 + I, by the Pidgeon’s hole principle. So, α = β1−β2 = ∑

n
i=1 r jα j ∈ I,r j ∈ Z,|r j| ≤ m.

Hence,

N(α) =
n

∏
i=1
|σi(α)| ≤

n

∏
i=1

n

∑
j=1
|r j||σi(α j)| ≤ mn

λ ≤ NK(I) ·λ

Let’s prove now that, calling D = DK , every class of fractional ideals of FD/PD contains 0 6= I ≤ D
such that NK(I) ≤ λ . Take C ∈ FD/PD. By Lemma 2.18 ∃0 6= J ≤ D such that J ∈C−1. Recall that
C−1C =PD. By what we have said before ∃α ∈ J such that N(α)≤ λ ·NK(J). We have 〈α〉 ⊂ J and
〈α〉 ∈PD. So, ∃0 6= I ≤ D,
I ∈ (C−1)−1 =C such that 〈α〉= IJ. Hence, as this NK(·) is multiplicative we have

λ ·NK(J)≥ NK(α) = NK(I)NK(J)

so NK(I)≤ λ , and we can do this for every C ∈ FD/PD.
Finally, calling s the integral part of λ , we know by Lemma 2.17 that for any i = 1, ...,s there are

only finitely many ideals 0 6= I ≤ D such that NK(I) = i, so there are only finitely many ideals such
that NK(I)≤ λ . Hence, as every C ∈ FD/PD contains an ideal I such that NK(I)≤ λ we conclude that
FD/PD contains only a finite number of elements, that is, hK ∈ N.



Chapter 3

Regular primes: First case

We proceed now to prove the first case of Fermat’s Last Theorem using the notions we have introduced
in the last two chapters. In the introduction we have mentioned that, for any odd prime p the equation
xp + yp + zp = 0 can be factored as (x+ y)(x+ ζpy)...(x+ ζ

p−1
p y) = −zp, where 1 6= ζp is a root of

xp−1. So, the best number field to work with is K =Q(ζp) and as we are studying the possible integer
solutions of xp + yp = zp it will be helpful for us to work in DK , which is a Dedekind domain with the
property that hK is finite, as we saw in the last chapter.

Definition. We say that an odd prime number p is regular if p - hK where K =Q(ζp).

We know that if we work with principal ideals is easier to study properties of factorization of
elements. The main advantage of regular primes can be understood in the following lemma.

Lemma 3.1. Let p be a regular prime and let K =Q(ζp). Assume ∃I ≤DK such that Ip is a principal
ideal. Then I must be principal.

Proof. Write F= FDK and P=PDK . In HK = F/P, 1 =DKP=P, so Ip principal implies that Ip ∈P
and [I]P = 1 in HK . So the order of [I] is either 1 or p. If the order is 1 then I is clearly principal.
Otherwise, the order is p and we know that the order of every element in a finite group divides the order
of the group, so p|hK , which is a contradiction.

The lemma above will help us to prove that , for a regular prime p, and for every i = 0, ..., p−1 we
have x+ ζ i

py = uiα
p
i , where αi,ui ∈ DK and ui is a unit. Before that we are going to see some useful

properties of Q(ζp).

Proposition 3.2. For every odd prime p the minimum polynomial of ζp ∈ K =Q(ζp) over Q is
Φp(x) = xp−1 + ...+ x+1.

Proof. ζp is a root of xp− 1 = (x− 1)(xp−1 + ...+ x+ 1), so as 1 6= ζp , the mimimum polynomial of
ζp must divide Φp(x), so we just need to see that Φp(x) is irreducible in Q. For that we are going to use
the well-known Eisenstein’s criterion: If for p(x) = xn +an−1 + ...+a0 ∈Q[x] ∃p prime number such
that p|ai ∀i = 0, ...,n−1 but p2 - a0, then p(x) is irreducible in Q[x].

Doing the change of variable y = x+1 then clearly Φp(y) irreducible implies Φp(x) irreducible. So,
as Φp(y) = ∑

p
r=1

(p
r

)
(y−1)r−1 = ∑

p
r=1

(p
r

)
xr−1 , and p|

(p
r

)
∀1≤ r≤ p−1, but p2 -

(p
1

)
= p, we conclude

that Φp(y) is irreducible. Hence, Φp(x) is irreducible.

Corollary 3.3. For any odd prime p, [Q(ζp) :Q] = p−1 and {1,ζp, ...,ζ
p−2
p } is a Q-basis for Q(ζp).

Corollary 3.4. Q(ζp) contains all the roots of Φp(x). Thus, Q(ζp)/Q is a Galois extension and
|Gal(Q(ζp)/Q)|= p−1.

14
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Remark. Φp(x) can be generalized to every n ∈ Z greater than 1. For that we take ζn as a primitive
n-th root of unity, that is ζ m

n = 1⇒ n|m, and we define

Φn(x) = ∏
k
(x−ζ

k
n )

where k runs over all natural numbers coprime to and lower than n. In particular, for n = 2, ζ2 =−1
and Φ2(x) = x+1. These irreducible polynomials are called cyclotomic polynomials, and an important
property of them is that if m and n are coprime then Φmn(x) = Φm(x)Φn(x).

Any field extension K/Q induces a natural ring extension DK/Z. Therefore, any ideal nZ “extends”
to nDK . Also, in the same way that an irreducible polynomial over Q may not be irreducible over K,
a prime ideal of Z may not be prime in DK . The study of the “extensions” of prime ideals, called
ramifications, will be very important to prove the second case of Fermat’s Last Theorem. The following
theorem illustrates an important example of the ramification of a prime ideal.

Theorem 3.5. For any odd prime p set λp := ζp − 1 ∈ Z[ζp]. Then 〈λp〉 is a ideal in DK , where
K =Q(ζp), and 〈λp〉p−1 = pDK =: 〈p〉.

Proof. Clearly λp ∈DK . We claim that for any 1≤ i≤ p−1 the element ui =
1−ζ i

p
1−ζp

is a unit in DK . As
p is prime, Zp is a field, so given any 0 6= i ∈ Zp, ∃0 6= j ∈ Z such that i j ≡ 1(mod p). Then, as ζp is

a p-th root of unity, we have u−1
i =

1−ζp
1−ζ i

p
=

1−ζ
i j
p

1−ζ i
p
= 1+ζ i

p + ...+(ζ i
p)

j−1 ∈DK .

Thus, for any i = 1, ..., p−1 we have (1−ζ i
p) = (1−ζp)ui, where ui is a unit, and

p = Φp(1) =
p−1

∏
i=1

(1−ζ
i
p) = (1−ζp)

p−1U

where U = ∏
p−1
i=1 ui is a unit. Hence, by Theorem 3.5 〈p〉 = 〈(1− ζp)〉p−1 = 〈λp〉p−1. Let’s see now

that 〈λp〉 is prime. Recall that 〈p〉 = 〈λp〉p−1 = 〈λ p−1
p 〉, so 〈p〉 is a principal ideal in DK . Hence, as

p ∈Q, σ(p) = p ∀σ ∈ Gal(K/Q) we have pp−1 = N(p) = NK(〈p〉) = NK(〈λ p−1〉) = (NK(〈λp〉))p−1

and p prime implies NK(〈λp〉) = p. Hence, by Lemma 2.15, 〈λp〉 is a prime ideal.

Corollary 3.6. 1+ζp is a unit in DK .

Corollary 3.7. For any i 6= j 〈λp〉= 〈ζ i
p−ζ

j
p〉.

In Chapter 1 we saw that given any number field K, then K can be written as K =Q(θ), where θ is
an algebraic integer. We also showed that Z[θ ]⊂DK but the equality is not always true, as in
Example 3. Anyway, for K =Q(ζp), it behaves nicely.

Theorem 3.8. ([6, Prop 3.3]) For any odd prime p and K =Q(ζp) we have Z[ζp] =DK .

Corollary 3.9. An integral basis for K =Q(ζp) is {1,ζp, ...,ζ
p−2
p }.

Proof. For any i = 0, ..., p−2, ζ i
p is an algebraic integer as it is a root of Φp(x) ∈ Z[x]. By Corollary

3.3 {1,ζp, ...,ζ
p−2
p } is a Q-basis for Q(ζp). Also, it spans Z[ζp]. Hence, by the last theorem, it is an

integral basis.

Remark. In chapter 1 we saw that given any integral basis {α1, ...,αn} of a number field K, then
∆[α1, ...,αn] is an invariant of K known as the discriminant of K. In our case, for any odd prime
p, ∆[1,ζp, ...,ζ

p−2
p ] = (−1)

p−1
2 pp−2 ([3, Thm 3.6]). The discriminant of K will be related with the

ramification of prime ideals in K in the proof of the second case of Fermat’s Last Theorem.

The study of the units of Z[ζp] plays a fundamental role in the proof of Fermat’s Last Theorem for
regular primes. We proceed now to characterize the roots of unity in DK , a special type of units, where
K =Q(ζp).
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Proposition 3.10. The only roots of unity in Q(ζp) are ±ζ s
p, s ∈ Z.

Proof. Every element in {±ζ s
p} is a root of the polynomial x2p−1 and these are its only roots. Recall

that in C the only roots of unity are by definition of the form ζn = exp 2πri
n r,n ∈ Z. We only have to

show that there is no primitive k-root inQ(ζp) if k - 2p, as any root of unity is a power of some primitive
root. Let’s prove first that if k, p are relatively prime, k 6= 1, then there is no primitive k-root of unity ζk
in Q(ζp). For that, we will show Q(ζp,ζk) =Q(ζkp), where ζkp is any primitive kp-root of unity. It is
clear that ζpζk is a primitive kp-root of unity as p,k are relatively prime, so Q(ζkp)⊂Q(ζp,ζk) as any
primitive kp-root of unity generates the same number field. On the other hand, ζ

p
pk,ζ

k
kp ∈ Q(ζkp) are

primitive k, p-roots of unity respectively, so we have the other containment. Now, from the remark after
Corollary 3.4 we know that for any n ∈ N, [Q(ζn) :Q] = deg(Φn(x)) and Φkp(x) = Φk(x)Φp(x), so we
have

deg(Φkp(x)) = [Q(ζkp) :Q] = [Q(ζp,ζk) :Q] = [Q(ζp,ζk) :Q(ζp)][Q(ζp) :Q]

and we deduce [Q(ζp,ζk) :Q(ζp)] = deg(Φk(x)) 6= 1, as ζk 6= 1, which implies ζk /∈Q(ζp).
It only remains to show that same happens just with the condition k - 2p. For that, as p is an odd

prime, we can write k = apn, where a, p are relatively prime. If a = 1 deg(Φpn(x)) > p− 1. If a > 1,
apn 6= 2p. Assume that, for some primitive k-root of unity, ζk ∈Q(ζp). Then ζ

pn

k ∈Q(ζp) is a primitive
a- root of unity, which is a contradiction to what we have said above, since a, p are relatively prime.

The following standard result is a nice tool to know if an element is a root of unity.

Theorem 3.11. ([7, Prop 2.5]) Let α ∈DK , K number field, all of whose K-conjugates have complex
absolute value bounded by 1. Then α is a root of unity.

Using these two propositions and Corollary 3.4 we find out a nice result that will be much helpful
in the proof of the First case of Fermat’s Last Theorem.

Lemma 3.12. Let u ∈ Z[ζp] be a unit. Then u/ū ∈ {1,ζp, ...,ζ
p−1
p }.

We have now almost all the ingredients to start the proof of the First case of Fermat’s Last Theorem.
The following technical lemma is the last result we need.

Lemma 3.13. For any odd prime p, take α ∈ DK , where K = Q(ζp), and let ᾱ denote the complex
conjugate of α . Then α p ≡ ᾱ p(mod 〈p〉).

Proof. Using the integral basis {1,ζp, ...,ζ
p−2
p }, we write α = ∑

p−2
i=0 aiζ

i
p , ai ∈ Z ∀i. Then

α p = (∑
p−2
i=0 aiζ

i
p)

p ≡ ∑
p−2
i=0 ap

i (ζ
i
p)

p = ∑
p−2
i=0 ap

i (mod 〈p〉), as paiζ
i
p ≡ 0 (mod 〈p〉) and (ζ i

p)
p = 1, ∀i.

On the other hand, ᾱ p = (∑
p−2
i=0 āiζ

i
p)

p ≡ ∑
p−2
i=0 āi

p(ζ i
p)

p = ∑
p−2
i=0 ap

i (mod 〈p〉), as cp = cp for any c ∈ C
and z̄ = z ∀z ∈ Z.

We are going to start firstly with the case p = 3, which is a regular prime and then we will prove it
for the rest of regular primes.

Theorem 3.14. Let 0 6= x,y,z ∈ Z pairwise relatively prime. Then, if 3 - x,y,z, the equation
x3 + y3 + z3 = 0 does not have a solution.

Proof. Assume there is solution x,y,z, so if we look at the equation mod 9 we have
x̄3 + ȳ3 + z̄3 ≡ 0 (mod 9). Now, as 3 - x,y,z, x,y,z are of the form 9k+ r, r 6= 0,3,6. So looking at the
congruences we have x3,y3,z3 ≡±1 (mod 9). But then

x̄3 + ȳ3 + z̄3 ≡ 0 (mod 9)⇔±1±1±1≡ 0 (mod 9)

which is impossible.
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Theorem 3.15. (Fermat’s Last Theorem-First case) Let p≥ 5 be a regular prime and let 0 6= x,y,z ∈ Z
pairwise relatively prime. Then , if p - x,y,z, the equation xp + yp + zp = 0 does not have a solution.

Proof. Assume there is a solution x,y,z. So xp + yp + zp = 0⇔ (x+ y)(x+ ζpy)...(x+ ζ
p−1
p y) = −zp

factorizes in Z[ζp]. Lemma 2.3 implies that 〈x+ y〉〈x+ζpy〉...〈x+ζ
p−1
p y〉= 〈z〉p.

Claim 1. 〈x+ζ i
py〉,〈x+ζ

j
py〉 are coprime ∀i 6= j

Assume there is a prime ideal P such that, for some i 6= j P|〈x+ ζ i
py〉 and P|〈x+ ζ

j
py〉. Then, P

divides the difference , that is, P|〈(ζ i
p− ζ

j
p)y). Also, by the above factorization of ideals, P|〈z〉p and,

as P is prime, P|〈z〉. By Lemma 2.3 and Corollary 3.7 P|〈λp〉〈y〉, so either P|〈λp〉 or P|〈y〉. In the first
case , P and 〈λp〉 are prime ideals, so they are maximal, and hence P = 〈λp〉. But in that case 〈λp〉|〈z〉,
and taking norms we have p = NK(〈λp〉)|NK(〈z〉) = zp, so p|z, which is a contradiction as p and z are
coprime. In the second case we have P|〈y〉 and P|〈z〉, so y,z ∈ P, but y,z coprime implies, by Bezout’s
theorem, that ∃r,s ∈ Z such that ry+ sz = 1 ∈ P. Hence, P = Z[ζp], which is a contradiction as P is
prime.

So they are pairwise relatively prime and, as given Pi prime ideal such that Pi|〈x+ ζ i
py〉, we have

Pi|〈z〉 and so Pp
i |〈z〉p, the unique factorization of ideals in terms of prime ideals implies that , for any

i = 0, ..., p−1, 〈x+ ζ i
py〉 = Mp

i , for some ideal Mi. Hence, Mp
i is a principal ideal so, by Lemma 3.1,

Mi is principal and x+ ζ i
p = uiα

p
i , where ui is a unit and Mi = 〈αi〉. Since x+ ζ

p−i
p y = x+ ζ i

py ∀i, we
can choose αi,ui such that αp−i = ᾱi, up−i = ūi ∀i = 0, ..., p−1.

By Lemma 3.12 ∃k ∈ N such that u1/ū1 = ζ k
p and by Lemma 3.13

x+ζpy = u1α
p
1 ≡ u1ᾱ

p ≡ ζ
k
p ū1ᾱ1

p = ζ
k
p(x+ yζ

−1
p ) (mod 〈p〉)

Claim 2. x+ζpy−ζ k
px−ζ k−1

p y≡ 0 (mod 〈p〉) only if k = 1:

Suppose k = 0, then 〈p〉 divides the ideal 〈y(ζp−ζ−1
p )〉= 〈y〉〈λp〉 by Corollary 3.7, so as 〈λp〉p−1 =

〈p〉, 〈λp〉p−2|〈y〉 . In particular 〈λp〉|〈y〉, and taking norms we get p|y, which is a
contradiction. In the same way, if k = 2 then we get 〈p〉|〈x〉〈(1−ζ 2

p )〉= 〈x〉〈λp〉 and by the same argu-
ment p|x, which is again a contradiction. Assume now 2 < k < p−1 , and suppose
x+ζpy−ζ k

px−ζ k−1
p y = pα , α ∈ Z[ζp]. Take the integral basis {1,ζp, ...,ζ

p−2
p } of Z[ζp]. Then,

α = ∑
p−2
i=0 aiζ

i
p, ai ∈ Z and x+ ζpy− ζ k

px− ζ k−1
p y = ∑

p−2
i=0 paiζ

i
p. Thus, as {1,ζp, ...,ζ

p−2
p } is a basis,

the coefficients in both sides must be identical. From here we deduce p|x which is a contradiction. The
case k = p− 1 is different as the element ζ

p−1
p is not an element on the basis, so we cannot apply the

same argument. But, multiplying both sides by ζ 2
p , we get ζ 2

p x+ζ 3
p y−ζpx− y = ∑

p−2
i=0 paiζ

i+2
p and we

can apply it now. We get p|y, which is again a contradiction.

Hence, the only option is k = 1. But then we can write x+ ζpy− ζpx− y = (x− y) + ζp(y− x)
and applying the basis coefficient argument again we get p|(x− y) or x ≡ y (mod 〈p〉). Finally, as the
equation xp + yp + zp = 0 is symmetric in x,y,z we can apply the whole argument to

〈x+ z〉〈x+ζpz〉...〈x+ζ
p−1
p z〉= 〈y〉p

and get x≡ z (mod 〈p〉) So, we get xp + yp + zp ≡ 3xp ≡ 0 (mod 〈p〉). Hence, p|3xp, but p≥ 5, so p|x,
which is a contradiction.



Chapter 4

Regular primes: Second case

Most part of the proof we have just seen depends on the fact that p - x,y,z, so in order to prove the
Second case we need to go further. In his original paper, Kummer proved this second case thanks to a
deeper understanding of the units in Z[ζp]. This study led him to find the last important piece he needed
to prove the theorem, which is his well-known Lemma: Any unit in Z[ζp] which is congruent to an
integer modulo 〈p〉 is a pth power of some unit in Z[ζp]. His original proof just uses elementary notions
as the ones we introduced in chapter 1 but it is a bit tedious. We will take a different approach to prove
a weaker version of this lemma, which will be enough to give a complete proof of this second case. In
order to do that, we will do a small trip to class field theory, one of the nicest topics in modern number
theory.

Let L/K be a finite extension of number fields. We have seen that this extension leads to an extension
of rings of integers DL/DK . Let P be a prime ideal in DK , then P extends to the ideal PDL in DL. The
unique factorization of ideals into prime ideals implies that PDL = Qr1

1 ...Q
rs
s for some unique distinct

prime ideals Q j ≤ DL. We say that P ramifies in DL if ri > 1 for some i, otherwise we say that P is
unramified.

Recall that DK/P, DL/Q j are fields for any j, as every nonzero prime ideal in a ring of integers is
maximal. Furthermore, any of these fields is finite. Calling F =DK/P, F j

q =DL/Q j, then F j
q /F is a

finite field extension as DK ⊂DL and P⊂ Q j, as Q j|P. Under these conditions, calling f j = [F j
q : F ] it

can be checked that [L : K] = n = ∑
s
i=1 r j f j.

Assume now that L/K is a Galois extension. In that case the situation is better because Gal(L/K)
fixes DK and acts transitively on the set of primes {Q j} lying over P. That is, given any Qi,Q j then
σ(Qi) = Q j for some σ ∈ Gal(L/K). From this fact and the unique factorization into prime ideals it
follows that r ≡ ri = r j , f ≡ fi = f j ∀i, j = 1, ...s. So, PDL = (Q1...Qs)

r and n = rs f . Choose now
any of these Q j and define DQ j := {σ ∈ Gal(L/K) : σ(Q j) = Q j}, which is a subgroup of Gal(L/K) of
order r f . For any σ ∈ DQ j , in particular σ ∈ Gal(L/K) so σ(k) = k ∀k ∈ K and σ(P) = P. Therefore,
for any a+P ∈ F , σ(a+P) = σ(a)+σ(P) = a+P. Thus, DQ j leaves F fixed. Also, any σ ∈ DQ j

is an automorphism of L that leaves Q j fixed, so σ induces an automorphism of F j
q . Hence, there is a

reduction map Γ j : DQ j → Gal(F j
q /F), which can be checked to be surjective.

Any finite extension of finite fields is a Galois extension, so |Gal(F j
q /F)| = [F j

q : F ] = f for any
j = 1, ...,s. Therefore, if P is unramified in DL, then r = 1, so the order of DQ j is equal to f and as Γ j

is a surjective map we have DQ j
∼= Gal(F j

q /F), and this happens for every such Q j.
Recall that F is a finite field, so |F | = pm for some m ∈ N, where p is the characteristic of F . The

theory of finite field extensions tells us that F j
q is a finite field of the same characteristic than F and

|F j
q |= pm+ f j as [F j

q : F ] = f j. Every element of F has order pm−1, so apm
= a ∀a ∈ F , and as F j

q has
characteristic p, the map ϕ

j
q : F j

q → F j
q given by ϕ

j
q(a) = apm ∀a ∈ F j

q is an automorphism of F j
q that

fixes F , that is ϕ
j

q ∈ Gal(F j
q /F). Furthermore, the order of ϕ

j
q is precisely f , so it is a generator of the

cyclic group Gal(F j
q /F). This ϕ

j
q is known as the Frobenius element of F j

q .

18
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We have said that if P is unramified in DL then DQ j
∼= Gal(F j

q /F) for every Q j lying over P. Hence,
DQ j is a cyclic group with generator Γ

−1
j (ϕ j

q). Recall that DQ j is a subgroup of Gal(L/K) so we can
say that every Q j induces an element Γ

−1
j (ϕ j

q) ∈Gal(L/K). Furthermore, it can be checked that for any
Qi,Q j lying over P, ∃τ ∈ Gal(L/K) such that Γ

−1
i (ϕ i

q) = τ−1 Γ
−1
j (ϕ j

q) τ .

Assume now that L/K is an abelian extension, that is it is a Galois extension and Gal(L/K) is an
abelian group. Then we deduce Γ−1(ϕq) := Γ

−1
j (ϕ j

q) = Γ
−1
i (ϕ i

q) ∀i, j = 1, ...,s, so every Q j lying over
P induces the same element of Gal(L/K). Therefore, if L/K is an unramified extension, meaning that
every prime ideal of DK is unramified in DL, we can say that every prime ideal P induces an element
(L K

P ) := Γ−1(ϕq) ∈ Gal(L/K). The map that sends any prime ideal P to (L K
P ) is called the Artin map,

and it can be extended in a multiplicative way to every fractional ideal of K as follows. By Theorem
2.10 we deduce that any fractional ideal I of K can be written as I = Pr1

1 ...Prs
s , for some ri ∈ Z and some

different prime ideals Pi. Then, as every (L K
Pi
) is invertible, we can define (L K

I ) = ∏
s
i=1(

L K
Pi
)ri .

I think we are in good conditions now to appreciate the beauty of the following astonishing theorem:

Theorem 4.1. ([10, Ch.8 Thm 7]) Given a number field K, let L be the unique unramified abelian
extension of K which contains all other unramified abelian extensions of K. Then the Artin map of K
induces an isomorphism HK ∼= Gal(L/K).

This L is normally called the Hilbert class field of K because its existence was conjetured by Hilbert.
Philipp Furtwngler proved the conjecture and the result was extended by Emil Artin as the Artin’s Reci-
procity Law, which is one of the cornerstones of Class field theory.

Going back to the number fields we are interested in , which are of the form K =Q(ζp), when p is
a regular prime, this theorem is telling us that if we find an unramified abelian extension K′ of K then
this extension K′ is contained in the Hilbert class field L of K. Also, as K′/K is a Galois extension, then
|Gal(K′/K)| = [K′ : K] and |HK |=|Gal(L/K)| = [L : K] = [L : K′][K′ : K], so as p is regular, p cannot
divide [K′ : K]; and this happens for any unramified abelian extension of K. Therefore, if we find some
field extension K′/K such that p|[K′ : K], then some prime ideal of K must ramify at K′. So, we wonder
if there is a good criteria to know exactly under which conditions a prime ideal ramifies in a further
extension. In fact it exists in the case that K =Q , and it is related to the discriminant of a number field.

Theorem 4.2. ([8, Thm 5.5]) Let K be a number field and ∆K its discriminant. Then a prime ideal
〈p〉 ≤ Z ramifies in K ⇔ p|∆K .

Corollary 4.3. Only a finite number of prime ideals of Z ramifies in K.

Example 8. Consider the case K = Q(ζp) for some prime number p. Then {1,ζp, ...,ζ
p−2
p } is an

integral basis of K, so ∆K = ∆[1, ...,ζ p−2
p ] = (−1)

p−1
2 pp−2 and the only prime ideal that ramifies in K is

〈p〉= 〈λp〉p−1.

Notice that for this theorem we are only considering finite field extensions of the form K/Q. If
we want to study ramifications in arbitrary number field extensions L/K we need to refine a bit the
definition of the discriminant.

Definition. Let L/K be a number field extension and let {σ1, ...,σn} the different monomorphisms
σi : L→ C that are the identity on K. For any K-basis of L of the form {α1, ...,αn}, where αi ∈DL ∀i,
we call ∆[α1, ...,αn] = (det[σi(α j)])

2. Then the ideal of DL generated by the set {∆[α j
1 , ...,α

j
n ]}, where

{α j
i } runs over all K-basis of L with α

j
i ∈DL ∀i, is called the relative discriminant of L/K.

We can always find a K-basis of L consisting of algebraic integers. Appart from that, in chapter 1 we
saw that, given a number field K such that [K :Q] = n then there are exactly n different monomorphisms
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from K into C that fix Q. In the more general case with [L : K] = n this result is also true, so the defini-
tion makes sense. Also, it is clear that the relative discriminant L/K is an ideal of DL as it is generated
by elements of DL because DL is a ring. Recall that if we take K =Q in the definition, then the relative
discriminant of K/Q is precisely the principal ideal generated by the discrminant of K. We may think
that for any two basis {α1, ...,αn}, {β1, ...,βn} in the definition then ∆[α1, ...,αn] = det(C)2∆[β1, ...,βn],
for some matrix C with coefficients in DK as happens when we consider K =Q and the integral basis of
K, but for that we need that some of these basis to be a DK-basis for DL, and that basis may not exist.
That is why we cannot define the relative discriminant as an element rather than as an ideal, because is
not a principal ideal in general.

Anyway, we still have a nice criteria to determine if a prime ideal of K ramifies in L.

Theorem 4.4. ([9, Corollary 4.8]) Let L/K be an extension of number fields. Then a prime ideal
P≤DK ramifies in DL if and only if P|∆L

K , where ∆L
K denotes the relative discriminant of L/K.

Corollary 4.5. Let α1, ...,αn be a K-basis for L where αi ∈DL ∀i. If a prime ideal P≤DK ramifies in
DL, then NL(P)|∆[α1, ...,αn].

Proof. We can see P as an ideal of DL. Also, ∆[α1, ...,αn] is one of the generators of ∆L
K ,

so 〈∆[α1, ...,αn]〉 ⊂ ∆L
K and then ∆L

K |〈∆[α1, ...,αn]〉 as they are both ideals of the same number field.
If P is ramified in DL, then P|∆L

K |〈∆[α1, ...,αn]〉 and taking norms we have in particular
NL(P)|NL(〈∆[α1, ...,αn]〉) = ∆[α1, ...,αn].

We are ready now to prove our weaker version of Kummer’s Lemma.

Theorem 4.6. Let p ≥ 3 be a regular prime and let e be a unit in Z[ζp] which is congruent to a pth

power modulo 〈λp〉p. Then e is the pth power of some unit in Z[ζp].

Proof. Recall that e1/p is a root of the monic polynomial f (x) = xp−e ∈ Z[ζp], so as Z[ζp] is integrally
closed, if e1/p ∈Q(ζp), then e1/p must belong to Z[ζp]. Therefore, it suffices to show e1/p ∈Q(ζp).

Assume e1/p /∈Q(ζp) and consider the extension K :=Q(ζp,e1/p). So, [K :Q(ζp)]> 1. The roots
of f (x) are of the form ζ k

pe1/p, k = 0,1..., p− 1 and clearly every root is in K so every root ζ k
pe1/p

induces an element σk ∈ Gal(L/K) by σk(e1/p) = ζ k
pe1/p. As deg( f (x)) = p this implies that L/K is a

Galois extension and [L : K] = |Gal(L/K)|= p.
Also, {e1/p, ...,ζ p−1

p e1/p} is a Q(ζp)-basis for K. Furthermore, by Example 7 we know that if an
element is a root of a polynomial whose coefficients are algebraic integers then the element is also an
algebraic integer so, as f (x) ∈ Z[ζp][x], every element of the basis is an algebraic integer that belongs
to K. Therefore, ζ k

pe1/p ∈DK ∀k = 0, ..., p−1. Computing the discriminant of this basis, we get

∆[e1/p, ...,ζ p−1
p e1/p] =±ppep−1

As e is a unit and 〈p〉= 〈λp〉p−1, the unique factorization into prime ideals and Corollary 4.5 tell us that
the only prime ideal of Z[ζp] that may ramify in DK is 〈λp〉.

We are going to show that in fact 〈λp〉 does not ramify. By assumption ∃α ∈ Z[ζp] such that
α p ≡ e (mod 〈λp〉p). Take the polynomial g(x) := (λpx+α)p−e

λ
p
p

. It can be checked that g(x) ∈ Z[ζp][x].

The roots of g(x) are τi := ζ i
pe1/p−α

λp
, i = 0, ..., p−1.

Calling K′ = Q(ζp,τ0), as deg( f (x)) = deg(g(x)) = p and τi ∈ K ∩K′ ∀i, we have K = K′. Now,
by the same reason above, τ0, ...,τp−1 are algebraic integers, and also they form a Q(ζp)-basis for K.
So, computing ∆[τ0, ...,τp−1] we must have λp = NK(〈λp〉)|∆[τ0, ...,τp−1]. But,

∆0 := ∆[τ0, ...,τp−1] =± e · ∏
0≤i< j≤p−1

ζ i
p−ζ

j
p

λp
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and ζ i
p−ζ

j
p

λp
= ζ

j
p

1−ζ i
p

1−ζp
is a unit as ζ

j
p is a unit and 1−ζ i

p
1−ζp

is a unit by Theorem 3.5, ∀0 ≤ i < j ≤ p− 1.
Hence, as e is a unit by assumption, we conclude that ∆0 is a unit. But then the ideal generated by ∆0 is
the whole ring Z[ζp], so if 〈λp〉 ramifies then by Corollary 4.5 p = NK(〈λp〉)|NK(〈∆0〉) = 1, which is
impossible.

Thus, K/Q(ζp) is an unramified Galois extension of degree p, so |Gal(K/Q(ζp))|= p and
Gal(K/Q(ζp)) is an abelian group because it is cyclic (p prime). Therefore, K is contained in the Hilbert
Class field L ofQ(ζp), and by Theorem 4.1, hQ(ζp) = |Gal(L/Q(ζp))|= [L :Q(ζp)] = [L : K][K :Q(ζp)],
so p|hQ(ζp), which is a contradiction since p is regular. Hence, e1/p ∈ Z[ζp], and as e is a unit, ee′ = 1
for some e′ ∈ Z[ζp] so e1/p((e1/p)p−1e′) = 1 and we conclude that e1/p is a unit in Z[ζp].

We need a technical lemma before going through the proof of the Second case.

Lemma 4.7. Let v ∈ Z[ζp] such that 〈v〉,〈λp〉 are relatively prime. Then ∃k ∈ Z such that
ζ k

pv≡ m (mod λ 2
p), with m ∈ Z.

Proof. Recall that {1,λp, ...,λ
p−2
p } is also a basis for Z[ζp] and 〈p〉= 〈λp〉p−1, so we can write

v ≡ m+ nλp (mod λ 2
p), where m,n ∈ Z and m and p are relatively prime. By the binomial theorem

we have ζ k
p = (1+λp)

k ≡ 1+ kλp (mod λ 2
p). As m and p are coprime we can choose k ∈ Z such that

n+mk ≡ 0 (mod p). We know that 〈p〉 ⊂ 〈λ 2
p〉. Therefore,

ζ
k
pv≡ (1+ kλp)(m+nλp)≡ m+(n+ km)λp ≡ m (mod λ

2
p)

Theorem 4.8. (Fermat’s Last Theorem-Second Case). Let p≥ 3 be a regular prime. Then the equation
xp + yp + zp = 0 does not have any non-trivial solution in Z if p|xyz.

Proof. Assume there is a solution. As 〈λp〉p−1 = 〈p〉 we may, without loss of generality, assume that
x,y,z are pairwise relatively prime with 〈λp〉|〈z〉. It follows that 0 6=−z = λ m

p z0 with 〈λp〉,〈z0〉 relatively
prime and λp - x,y, because otherwise it would divide all three coefficients. Therefore, to prove the
theorem it is enough to show that there are no non-trivial solutions x,y,z ∈ Z[ζp] to the equation
xp +yp = uλ

pm
p zp with 〈x〉,〈y〉,〈z〉,〈λp〉 pairwise relatively prime, m≥ 1 and u a unit in Z[ζp]; which is

in fact a stronger result.
We are going to show first that m> 1. Assume there is a solution of this form. Recall that ζ i

p is a unit
∀i, so by Lemma 4.7 ∃k,r ∈ Z such that x≡ aζ k

p (mod λ 2
p), y≡ bζ r

p (mod λ 2
p), for some a,b ∈ Z. Also,

∃s∈ {0,1, ..., p−1} such that ζ r
pζ s

p = ζ k
p , and then we have x≡ aζ k

p (mod λ 2
p) and yζ s

p ≡ bζ k
p (mod λ 2

p).
Passing to ideals we have 〈x+ y〉...〈x+ζ

p−1
p 〉 = 〈λp〉pm〈z〉. By the unique factorization into prime

ideals, 〈λp〉 must divide some ideal on the left hand side of the above equation. Also, in the proof of the
first case we showed that 〈λp〉 divides the difference 〈(x+ζ i

py)− (x+ζ
j
py)〉 for any i 6= j, so 〈λp〉 must

divide any ideal 〈x+ζ i
py〉. In particular, 〈λp〉|〈x+ζ s

py〉. Then as x+ζ s
py≡ ζ k

p(a+b) (mod λ 2
p) we have

〈λp〉|〈ζ k
p(a+b)〉= 〈a+b〉 and taking norms we get p|a+b. Recall that 〈λp〉p−1 = 〈p〉, so p,a+b∈ 〈λ 2

p〉
and x+ζ s

py≡ ζ k
p(a+b)≡ 0 (mod λ 2

p). Hence,〈λ 2
p〉|〈x+ζ s

py〉 and therefore 〈λ p+1
p 〉 divides the left hand

side, so m > 1.
Notice that, writing x1 = ζ−k

p x, y1 = ζ−r
p y, then xp

1 + yp
1 = xp + yp, so if x,y,z is a solution, then

x1,y1,z is another solution. Therefore, we may assume k = r = 0 and x+ y≡ a+b (mod λ 2
p).

Let x,y,z be a solution to the equation xp + yp = uλ m
p zp with minimal m. We have x + ζ i

py =

(x+y)+(ζ i
p−1)y, so for i> 1, as 〈λ 2

p〉|〈x+y〉 and 〈ζ i
p−1〉= 〈λp〉 by Corollary 3.7, then 〈λ 2

p〉 - 〈x+ζ i
py〉

because otherwise 〈λp〉|〈y〉 which is a contradiction as both ideals are relatively prime. Hence, we find
out that

〈x+ y〉= 〈λp〉p(m−1)+1C0

〈x+ζ
i
py〉= 〈λp〉Ci ∀i = 1, ..., p−1
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where the ideals Ci are principal and prime to 〈λp〉.

Claim 3. The ideals Ci are pairwise relatively prime

If there exists a prime ideal P dividing 〈x+ ζ i
py〉,〈x+ ζ

j
py〉 for some i 6= j, then in the proof of the

first case we showed that either P = 〈λp〉 or P|〈y〉. The first case is impossible since any Ci is coprime to
〈λp〉. For the second case, by the same reason, and the unique factorization into prime ideals, it follows
that P|〈z〉, which is a contradiction with 〈y〉, 〈z〉 being coprime.

From here we deduce C0C1...Cp−1 = 〈z〉p and therefore each Ci equals Dp
i for some ideal Di. Since

p is a regular prime and Ci is principal, Di must be principal too and we can write Di = 〈αi〉 for some
αi ∈ Z[ζp]. By lemma 2.2 we have

x+ y = u0λ
p(m−1)+1
p α

p
0 (4.1)

x+ζpy = u1λpα
p
1 (4.2)

x+ζ
2
p y = u2λpα

p
2 (4.3)

for some units u0,u1,u2 ∈ Z[ζp]. Solving the system of equations (4.2) and (4.3) we get

x = u2α
p
2 −ζpu1α

p
1

y = ζ
−1
p (u1α

p
1 −u2α

p
2 )

and substituting into (4.1) we have

−λpζ
−1
p ((1+ζp)u1α

p
1 −u2α

p
2 ) = u0λ

p(m−1)+1
p α

p
0

By corollary 3.6, 1+ζp is a unit so−ζ−1
p (1+ζp)u1 is also unit. Therefore we can cancel λp from both

sides and multiply by (−ζ−1
p (1+ζp)u1)

−1. Thus, e := u0(−ζ−1
p (1+ζp)u1)

−1 and
e2 := u2((1+ζp)u1)

−1 are units in Z[ζp] and we have

α
p
1 + e2α

p
2 = eλ

p(m−1)
p α

p
0 (4.4)

Notice that as C2 and 〈λp〉 are coprime then so D2 and 〈λp〉p are. Therefore, Z[ζp] = D2 + 〈λp〉p, so in
particular 1 = rα2 +hλ

p
p for some r,h ∈ Z[ζp], and taking congruences modulo 〈λp〉p we get

rα2 ≡ 1 (mod 〈λp〉p), which implies (rα2)
p ≡ 1 (mod 〈λp〉p). So, taking congruences modulo 〈λp〉p in

(4.4) we have, as m> 1 and p is odd, α
p
1 ≡−e2α

p
2 (mod 〈λp〉p) which implies e2≡ (−α1r)p (mod 〈λp〉p).

In other words, e2 is congruent to a pth power modulo 〈λp〉p, so applying Theorem 4.6 we have e2 = f p

for some unit f in Z[ζp]. Finally, setting x′ = α1, y′ = f α2, z′ = α0, we see that x′,y′,z′ is a solution
of the equation xp + yp = eλ

pm′
p zp, with 〈x′〉,〈y′〉,〈z′〉,〈λp〉 pairwise relatively prime, m′ = m− 1 and

e unit in Z[ζp]. This is a contradiction with m being minimal. Thus, the second case of Fermat’s Last
Theorem is proved.



Chapter 5

Final breaktrough

In retrospective, the introduction of the notion of regular primes has allowed us to prove Fermat’s
Last Theorem for a quantitative amount of prime numbers just carrying information from the unique
factorization into prime ideals of some number rings into the factorization of its elements, but what
happens with the primes that are not regular? In fact, there are infinitely many irregular primes and the
methods we have introduced are not enough to prove those cases in a general way, so we need to take
a different approach. It was not until the second half of last century when some mathematicians started
to think that a deeper connection between two apparently distinct branches of mathematics could help
to give a general proof of Fermat’s Last Theorem. These two topics are respectively elliptic curves and
modular forms.

Definition. An elliptic curve E over Q, denoted by E/Q, is an algebraic curve defined by an equation
of the form y2 = x3 +ax+b, a,b ∈Q, which is non-singular, meaning that P(x) = x3 +ax+b does not
have a multiple root.

An elliptic curve can be defined in an arbitrary field L but we are just interested in what happens
when L =Q. Any solution (x,y) of y2 = P(x) lies on C×C. Let K be any field extension of Q. We say
that any of these solutions (x,y) is a K-rational point of E if x,y ∈ K or (x,y) = O, where O denotes the
point at infinity we add to the curve. We denote the set of K-rational points of E as E(K). By symmetry
of y2 = P(x) to the x-axis, if P ∈ E(K), then −P ∈ E(K) too. Also, given any O 6= P,Q ∈ E(K), with
Q 6= −P, we can associate P+Q to an unique R ∈ E(K). Furthermore, defining P+O = P = O+P
and P+(−P) = O for any P ∈ E(K) we get that (E(K),+) is an abelian group with identity O. In
particular, this happens when we consider K = Q. A point P ∈ E(Q) is called an n-torsion point if its
order divides n. We denote by E[n] the set of all n-torsion points in E(Q), which can be checked to be
a finite subgroup of (E(Q)+).

Let p be a prime number, we have Z(p) := {m
n ∈Q : m,n∈Z m,n prime to p}. For any a= m

n ∈Z(p)
we define the reduction of a mod p as (a mod p) = (m mod p)(n−1 mod p), which is an element of the
finite field Zp. It is well-defined since n is prime to p. If we take an elliptic curve E/Q we can always
find a change of coordinates such that each coefficient of P(x) belongs to Z(p). Therefore, its reduction
mod p will be an equation with coefficients in Fp := Zp. This motivates the following definitions:

Definition. Let E/Q be an elliptic curve and p an odd prime number. We say that E/Q has good
reduction mod p if we can choose a change of coordinates such that the reduced equation in Fp does not
have a multiple root. We say that E/Q has a multiplicative reduction if the reduced equation contains a
double root but not a triple root. Otherwise we say that E/Q has an additive reduction.

Remark. These definitions may make sense also when p = 2 but the characterizations is quite different
(see [11, Def 1.5]).

If an elliptic curve E/Q has either good or multiplicative reduction at all primes we say that E
is semistable. It can be seen that any elliptic curve has good reduction at almost all primes. For a
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semistable elliptic curve E/Q we define the conductor of E, written NE , as the product of all primes at
which E has not a good reduction.

Let p an odd prime at which E/Q has a good reduction and consider the reduced elliptic curve
mod p defined by y2 = P(x) ∈ Fp[x], and let Ep(Fp) := {(x,y) ∈ Fp×Fp : y2 = P(x)}∪O. We define
ap(E) := p+1−|Ep(Fp)|. We can also define a2(E) and ap(E) and for odd primes with multiplicative
reduction, but the construction is a bit different (see [11, Def 1.13]). One nice property of these coef-
ficients ap(E) is that they do not depend neither on the defining equation for E/Q nor on the reduced
equation in Fp. Thus, these coefficients contain plenty of information about the elliptic curve.

We introduce now the concept of a modular form. Let’s denote H := {z∈C : Imz> 0}. The special
linear group SL(2,Z) acts on H by fractional linear transformations with

(
a b
c d

)
∈ SL(2,Z) acting as

z→ az+b
cz+d . For any N ∈N, we define Γ0(N) := {

(
a b
c d

)
∈ SL(2,Z) : c≡ 0 (mod N)}, which is a subgroup

of SL(2,Z). Modular forms arise as holomorphic functions on H that behave nicely under the action
induced by certain of these subgroups of SL(2,Z). More concretely:

Definition. For k ∈Z, a weight-k modular form of level N is a holomorphic function f : H →C, which
is also holomorphic at i∞, and satisfies

f
(az+b

cz+d

)
= (cz+d)k f (z) ∀

(
a b
c d

)
∈ Γ0(N)

From this definition we deduce f (z+1) = f (z) ∀z ∈H , so f is 1-periodic. As f is holomorphic, it
can be deduced from these two facts that f has a power series expansion f (z) = ∑

∞
i=1 an( f )qn for any

z ∈H , where q = e2πiz and an( f ) ∈ C ∀n ∈ N. We call such series the q-expansion of f .

We will only consider weight-2 modular forms from now on. Let’s denote by S(N) the set of all
weight-2 modular forms of level N, which is a finite dimensionl vector space over C. For each integer
n≥ 1, we have the so-called nth Hecke operator Tn , which is an endomorphism of S(N). The elements
of S(N) having special arithmetic interest are the normalized eigenforms of S(N). These are non-zero
f = ∑

∞
i=1 an( f )qn which are eigenvectors for all the Tn and which satisfy the normalizing condition

a1 = 1. Furthermore, for such eigenforms, Tn( f ) = an( f ) f ∀n≥ 1, and any an = an( f ) is an algebraic
integer. In fact, the subfield K ⊂ C generated by all the coefficients an is a number field. We say that
any f = ∑

∞
i=1 an( f )qn ∈ S(N) is a new form if it is a normalized eigenform of S(N) for which the space

{g ∈ S(N) : Tp(g) = ap(g)g for all p prime to N} contains only f and its multiples.

The main point that led to prove Fermat’s Last Theorem was the hidden relation between elliptic
curves and modular forms. We say that an elliptic curve E/Q is modular if there exists a new form
f ∈ S(NE) that satisfies ap(E) = ap( f ) for all primes p such that p - NE . In the 1950s and 1960s Goro
Shimura, drawing on ideas posed by Yutaka Taniyama, conjectured that every elliptic curve E/Q was
modular. This conjecture was known as the Taniyama-Shimura conjecture. André Weil made some
advances on the conjecture giving conceptual evidence for that, but its possible proof looked inacessible
for the techniques of those years. In 1985 Gerhard Frey made a crucial connection between Taniyama-
Shimura conjecture and Fermat’s Last Theorem. He assumed that for some prime p ≥ 5 there is a
non-trivial integral solution ap + bp = cp. After manipulating the coefficients he could assume b even
and c≡ 1 (mod 4). Then he defined the elliptic curve y2 = x(x−ap)(x+bp), which is known as a Frey
curve. This elliptic curve is therefore defined over Z⊂Q and satisfies some interesting properties. For
example, it is semistable and all its 2-torsion points are Q-rational. In 1986 Ken Ribet proved that any
Frey curve is not modular. Therefore, if Taniyama-Shimura conjecture was true this curve could not
exist, which would imply that there cannot be a counterexample for Fermat’s Last Theorem. Hence,
as any Frey curve is semistable, the only step needed for achieving a general proof of Fermat’s Last
Theorem was to prove Taniyama-Shimura conjecture for the semistable case.
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For any n ∈ Z, E[n] is a free module of rank 2 over Z/nZ. Also, it is clear that for any P ∈ E[n],
the coordinates of P are algebraic numbers, so E[n] is stable under the action of the absolute Galois
group Gal(Q/Q) on E(Q). Therefore, any σ ∈ Gal(Q/Q) induces an automorphism of E[n]. The main
disadvantage of Gal(Q/Q) is that it is an infinite group, so we may not be able to apply all Galois
Theory we know. But it has also a structure of topological group, meaning a group with an atttached
topology, which let us find analogous theorems to the ones in finite Galois groups. Finite groups can
also be attached with a topology. In fact, chosen a Z/nZ- basis for E[n] and the accurate topologies, we
have a (continuous) homomorphism, called a representation of Gal(Q/Q)

ρE,n : Gal(Q/Q)→ GL(2,Z/nZ)

as Aut(E[n])∼= GL(2,Z/nZ). Looking at H = KerρE,n we see that it is a normal subgroup of Gal(Q/Q)
so, thanks to the topological structure of Gal(Q/Q), it can be related to a finite Galois extension Kn/Q
in a unique way. More concretly, Kn is the number field generated by the coordinates of every element in
E[n] and H = Gal(Q/Kn). Even if some of these extensions are infinite we can apply first isomorphism
theorem and say

ImρE,n ∼= Gal(Q/Q)/Gal(Q/Kn)∼= Gal(Kn/Q)

Thus, we can identify Gal(Kn/Q) with the image of ρE,n, which is a subgroup of GL(2,Z/nZ). A very
nice property of this extension Kn/Q is that if there is a prime p - n such that E/Q has good reduction at
p then p is unramified in Kn. So, regarding what we did in the last chapter, for any prime ideal Qi lying
over 〈p〉 in DKn we can find an unique element σpi ∈ Gal(Kn/Q) related to the Frobenius element ϕp of
the residue field DKn/Qi. This σpi is also known as the Frobenius element for Q j. We said also that any
of this σpi is conjugate to all the others, where Qi runs over all prime ideals lying over 〈p〉, so writing σp

for one of them, it is well-defined up to conjugation. By linear algebra we know that the trace of a matrix
is independent of the basis we choose and also it is invariant under conjugation of matrices. Therefore,
for any prime number p - n with good reduction, tr(σp) is well-defined. Furthermore, we have the nice
relation tr(σp) ≡ ap (mod n). Thus, these representations ρE,n encapsulates lot of information about
E/Q.

On the other hand, we know that the coefficients an( f ) of any normalized eigenform f ∈ S(N) are
algebraic integers and that K = Q(a1( f ),a2( f ), ...) is a number field. Let p a prime number and let λ

a prime ideal DK lying over 〈p〉. Therefore, Fλ = DK/λ is a finite field of characteristic 0 6= l. We
can also define, for any p prime, a conjugacy class Frobp of Gal(Q/Q) in a slightly different way from
what we have done for Kn. Similarly as above, we can find a (continuous) representation

ρ f ,λ : Gal(Q/Q)→ GL(2,Fλ )

which is characterized by the property that for any prime number p - Nl then
tr(ρ f ,λ (Frobp))≡ ap( f ) (mod λ ).

We see that these representations, known as Galois representations, could let us find deeper relations
between elliptic curves and modular forms. In fact, it was through the study of Galois representations
attached to elliptic curves and modular forms how Andrew Wiles after several years of effort, with the
final help of Richard Taylor, proved Taniyama-Shimura conjecture for semistable elliptic curves over Q
and, finally, Fermat’s Last Theorem.
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