000098273 001__ 98273
000098273 005__ 20210902121608.0
000098273 0247_ $$2doi$$a10.1016/j.ultsonch.2019.104833
000098273 0248_ $$2sideral$$a114702
000098273 037__ $$aART-2020-114702
000098273 041__ $$aeng
000098273 100__ $$0(orcid)0000-0002-8852-9229$$aMartínez, Juan M.
000098273 245__ $$aOrganic-solvent-free extraction of carotenoids from yeast Rhodotorula glutinis by application of ultrasound under pressure
000098273 260__ $$c2020
000098273 5060_ $$aAccess copy available to the general public$$fUnrestricted
000098273 5203_ $$aThe extraction of Rhodotorula glutinis carotenoids by ultrasound under pressure (manosonication) in an aqueous medium has been demonstrated. The influence of treatment time, pressure, and ultrasound amplitude on R. glutinis inactivation and on the extraction of carotenoids was evaluated, and the obtained data were described mathematically. The extraction yields were lineal functions of those three parameters, whereas inactivation responded to a more complex equation. Under optimum treatment conditions, 82% of carotenoid content was recovered. Extraction of carotenoids in an aqueous medium was attributed to the capacity of ultrasound for cell disruption and emulsification. Cavitation caused the rupture of cell envelopes and the subsequent formation of small droplets of carotenoids surrounded by the phospholipids of the cytoplasmic membrane that would stabilize the emulsion. Analysis of the dispersed particle size of the extracts demonstrated that a fine, homogeneous emulsion was formed after treatment (average size: 230 nm; polydispersity <0.22). This research describes an innovative green process for extracting carotenoids from fresh biomass of R. glutinis in which only two unit operations are required: ultrasonic treatment, followed by a centrifugation step to discard cell debris. The extract obtained thanks to this procedure is rich in carotenoids (25 mg/L) and could be directly incorporated as a pigment in foods, beverages, and diet supplements; it can also be utilized as an ingredient in drugs or cosmetics.
000098273 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000098273 590__ $$a7.491$$b2020
000098273 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b34 / 178 = 0.191$$c2020$$dQ1$$eT1
000098273 591__ $$aACOUSTICS$$b1 / 32 = 0.031$$c2020$$dQ1$$eT1
000098273 592__ $$a1.633$$b2020
000098273 593__ $$aAcoustics and Ultrasonics$$c2020$$dQ1
000098273 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000098273 593__ $$aRadiology, Nuclear Medicine and Imaging$$c2020$$dQ1
000098273 593__ $$aInorganic Chemistry$$c2020$$dQ1
000098273 593__ $$aOrganic Chemistry$$c2020$$dQ1
000098273 593__ $$aEnvironmental Chemistry$$c2020$$dQ1
000098273 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000098273 700__ $$0(orcid)0000-0003-4744-8649$$aDelso, Carlota$$uUniversidad de Zaragoza
000098273 700__ $$aAguilar, Diederich E.
000098273 700__ $$0(orcid)0000-0003-2430-858X$$aÁlvarez, Ignacio$$uUniversidad de Zaragoza
000098273 700__ $$0(orcid)0000-0003-3957-9091$$aRaso, Javier$$uUniversidad de Zaragoza
000098273 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000098273 773__ $$g61 (2020), 104833 [9 pp.]$$pUltrason. sonochem.$$tUltrasonics Sonochemistry$$x1350-4177
000098273 85641 $$uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073980178&doi=10.1016%2fj.ultsonch.2019.104833&partnerID=40&md5=b4fa6b76fb2ee18cf22d852e1fc2d983$$zTexto completo de la revista
000098273 8564_ $$s1908901$$uhttps://zaguan.unizar.es/record/98273/files/texto_completo.pdf$$yVersión publicada
000098273 8564_ $$s2697584$$uhttps://zaguan.unizar.es/record/98273/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000098273 909CO $$ooai:zaguan.unizar.es:98273$$particulos$$pdriver
000098273 951__ $$a2021-09-02-08:38:59
000098273 980__ $$aARTICLE