000098279 001__ 98279
000098279 005__ 20230914083306.0
000098279 0247_ $$2doi$$a10.23919/CinC49843.2019.9005875
000098279 0248_ $$2sideral$$a121997
000098279 037__ $$aART-2019-121997
000098279 041__ $$aeng
000098279 100__ $$0(orcid)0000-0001-5935-9454$$aPalacios, S.$$uUniversidad de Zaragoza
000098279 245__ $$aResponse of Ventricular Repolarization to Simulated Microgravity Measured by Periodic Repolarization Dynamics Using Phase-Rectified Signal Averaging
000098279 260__ $$c2019
000098279 5060_ $$aAccess copy available to the general public$$fUnrestricted
000098279 5203_ $$aHead-Down Bed Rest (HDBR) microgravity simulation induces cardiovascular deconditioning, including effects on ventricular repolarization. The index of Periodic Repolarization Dynamics (PRD) was developed to quantify low-frequency oscillations of cardiac repolarization. In this study, PRD was quantified by Phase Rectified Signal Averaging (PRDPRSA) and Continuous Wavelet Transform (PRDCWT) methods. PRD was analyzed in ECGs from 22 volunteers at rest and during orthostatic Tilt-Table Test (TTT) performed before and after -6° 60-days HDBR. Significant correlation was found between PRD measured by PRSA and CWT (Pearson''s ¿ = 0.93, p < 10-54 and Kendall''s t = 0.79 p < 10-38). A highly significant increase was found when PRDPRSA values were measured at POST-HDBR with respect to PRE-HDBR in the tilt phase: 1.40 [1.10] deg and 0.97 [0.90] deg (median [IQR]), p = 0.008, respectively. PRDPRSA also increased significantly in the tilt phase with respect to baseline, both at POST-HDBR (0.90 [0.57] deg, p = 0.003) and at PRE-HDBR (0.75 [0.45] deg, p = 0.011). PRD, either measured with PRSA or with CWT, is able to measure changes in ventricular repolarization induced by microgravity simulation as well as following sympathetic provocation.
000098279 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T39-17R-BSICoS$$9info:eu-repo/grantAgreement/EUR/ERC-2014-StG-638284$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-75458-R
000098279 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000098279 592__ $$a0.296$$b2019
000098279 593__ $$aComputer Science (miscellaneous)$$c2019
000098279 593__ $$aCardiology and Cardiovascular Medicine$$c2019
000098279 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000098279 700__ $$aCaiani, E.G.
000098279 700__ $$0(orcid)0000-0002-1960-407X$$aPueyo, E.$$uUniversidad de Zaragoza
000098279 700__ $$0(orcid)0000-0002-7503-3339$$aMartínez, J.P.$$uUniversidad de Zaragoza
000098279 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000098279 773__ $$g46 (2019), [4 pp]$$pComput. cardiol.$$tComputing in Cardiology$$x2325-8861
000098279 8564_ $$s179738$$uhttps://zaguan.unizar.es/record/98279/files/texto_completo.pdf$$yVersión publicada
000098279 8564_ $$s2790879$$uhttps://zaguan.unizar.es/record/98279/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000098279 909CO $$ooai:zaguan.unizar.es:98279$$particulos$$pdriver
000098279 951__ $$a2023-09-13-10:56:09
000098279 980__ $$aARTICLE