000098280 001__ 98280
000098280 005__ 20230914083306.0
000098280 0247_ $$2doi$$a10.23919/CinC49843.2019.9005931
000098280 0248_ $$2sideral$$a121998
000098280 037__ $$aART-2019-121998
000098280 041__ $$aeng
000098280 100__ $$0(orcid)0000-0002-6264-4229$$aRiccio, J.$$uUniversidad de Zaragoza
000098280 245__ $$aCharacterization of Propagation Patterns with Omnipolar EGM in Epicardial Multi-Electrode Arrays
000098280 260__ $$c2019
000098280 5060_ $$aAccess copy available to the general public$$fUnrestricted
000098280 5203_ $$aOmnipolar Electrogram (OP-EGM) is a recently proposed technique to characterize myocardial propagation in multi-electrode catheters regardless of the angle between propagation direction and catheter bipolar. This work aims to evaluate the accuracy of atrial propagation parameters obtained with OP-EGM in sinus rhythm (SR) and in different patterns of atrial fibrillation (AF).Real and simulated unipolar electrograms (u-EGMs) were used in this study. For both types of data, conduction velocity was obtained for each clique of 4 neighbour electrodes using OP-EGM. As a reference, conduction velocity was also computed from local activation times (LATs) using a linear propagation model.Analysis of simulated data showed that conduction velocity had good concordance with propagation patterns for both estimations, although the LAT-based errors were lower in most of the cases. When conduction velocity magnitude (CV) was 1 mm/ms, its estimation errors (expressed as mean ± std) calculated with OP-EGM and from LATs were 0.053 ± 0.005 mm/ms and 0.003 ±2.1 ×10-5 mm/ms, respectively, when focus was at 30 mm from the bottom of the tissue slice, while propagation direction angular errors were 6.64 ± 4.3°and 4.35 ± 2.8°. In real data, maps obtained with OP-EGM presented smoother and more coherent patterns than those based on LATs.
000098280 536__ $$9info:eu-repo/grantAgreement/EC/H2020/766082/EU/MultidisciplinarY training network for ATrial fibRillation monItoring, treAtment and progression/MY-ATRIA$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 766082-MY-ATRIA
000098280 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000098280 592__ $$a0.296$$b2019
000098280 593__ $$aComputer Science (miscellaneous)$$c2019
000098280 593__ $$aCardiology and Cardiovascular Medicine$$c2019
000098280 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000098280 700__ $$0(orcid)0000-0002-0166-2837$$aAlcaine, A.
000098280 700__ $$aDe Groot, N.M.S.
000098280 700__ $$aHouben, R.
000098280 700__ $$0(orcid)0000-0003-3434-9254$$aLaguna, P.$$uUniversidad de Zaragoza
000098280 700__ $$0(orcid)0000-0002-7503-3339$$aMartínez, J.P.$$uUniversidad de Zaragoza
000098280 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000098280 773__ $$g46 (2019), [4 pp]$$pComput. cardiol.$$tComputing in Cardiology$$x2325-8861
000098280 8564_ $$s255707$$uhttps://zaguan.unizar.es/record/98280/files/texto_completo.pdf$$yVersión publicada
000098280 8564_ $$s2745056$$uhttps://zaguan.unizar.es/record/98280/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000098280 909CO $$ooai:zaguan.unizar.es:98280$$particulos$$pdriver
000098280 951__ $$a2023-09-13-10:56:09
000098280 980__ $$aARTICLE