Resumen: P602
Exosomes are extracellular vesicles (50 -150 nm of diameter) considered key elements for the intercellular communication. Although they are proposed to be ideal vehicles for the targeting of novel therapies, very little is known about the selectiveness and specificity of the transference processes involving exosomes released from different cells. PEGylated Hollow gold nanoparticles (PEG-HGNs) are near-infrared (NIR) responsive nanoparticles (NPs) which are able to generate localized heat by the use of NIR light leading to cell death when applying optical hyperthermia. In this study, we demonstrate the selectivity of in vitro exosomal transfer between certain cell types and how this phenomenon can be exploited to develop new specific vectors for advanced therapies. Firstly, PEG-HGNs were successfully incorporated in the exosome biogenesis pathway of placental stem cells (MSCs) and they were released as PEG-HGNs-loaded exosomes (PEGHGNs_ MSCs_EXOs). Exosomes were characterized by confocal microscopy, western blot, nanosight, zeta potential and electronic microscopy. Afterwards, time lapse microscopy and atomic emission spectroscopy demonstrated the selective transfer of the ... Idioma: Inglés Año: 2019 Publicado en: HUMAN GENE THERAPY 30, 11 (2019), A192 ISSN: 1043-0342 Originalmente disponible en: Texto completo de la revista