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Abstract: The development in mathematical flexibility should be included in the mathematics 
teaching training of students in Primary Education Degree. Teachers in training have to acquire 
the skill to modify the problem resolution and be able to break with stereotyped methods. 

This document presents an analysis of spontaneous mathematical flexibility developed by teachers 
in training against problems in which the calculation of the area is requested. At the same time 
what type of statement can promote is analysed, in a more effective way, a flexible thought and the 
comparison of the possible mathematical flexibility between the different problems is established. 

Keywords: Mathematical flexibility; area; pre-service teaching learning; Primary Education; 
Pick’s Theorem 

INTRODUCTION 

Many students propose a single way of solving, replicating the same procedure over and over 
again, in the different mathematical problems posed. Possibly this is due to the absence of flexible 
mathematical reasoning during their school years (Joglar-Prieto, Abánades & Star, 2018). This 
happens at different educational levels and in different branches of knowledge of mathematics. On 
the other hand, the use of manipulative materials can encourage the consideration of works or 
strategies that had not been thought of before, awakening curiosity and reflection in teachers in 
training about different mathematical concepts that they will teach in the future (García-Lázaro, 
Garrido-Abia & Marcos-Calvo, 2020). 

In particular, this study analyses the answers of 63 students of a Mathematics subject and its 
Didactics of the Primary Education Degree of a Spanish public university to a problem of 
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calculation of the area of a simple polygon on an orthometric geoplane or grid, in both cases made 
in paper and pencil. 

To do this, the different types of geoplane had to be introduced beforehand: isometric, ortometric 
and circular grid. In view of the impossibility of having enough geoplanes, and due to its 
dynamism, it was decided to use the free digital orthometric geoplane from Math Learning Center. 

Later, the students were proposed to calculate the areas of different concave polygons, always on 
square frames. In the classroom, from the different activities of area calculation on a square grid, 
as already collected by Jiménez-Gestal and Blanco (2017), procedures of decomposition, 
complementation and the use of the formula of the area of the triangle emerged. Immediately 
afterwards, the Pick’s Theorem was introduced as an additional strategy, in which the application 
of a formula is sufficient. 

This is intended to achieve the following objectives: 

 To analyze the spontaneous mathematical flexibility of the teaching staff in training. 

 To analyze what kind of statements promote flexible thinking. 

 To compare mathematical flexibility in the face of different area calculation problems. 

In order to achieve them, a bibliographic review of research on learning of the area magnitude 
and the theoretical framework that supports mathematical flexibility is carried out. Through a 
written and individual evaluation, two problems of calculation of areas of a simple polygon are 
proposed, to later carry out the analysis of the results. 

THEORETICAL FRAMEWORK 

This section is composed by two subsections: the first one is dedicated to the bibliographical 
review of the researches that analyze the area magnitude; and the second one to the mathematical 
flexibility, the fundamental pillar of the present research. 

Learning the area magnitude 

The magnitudes have a practical application in the resolution of problems, daily life situations, 
commercial exchanges, needs of the technical trades, that means, needs of quantification present 
throughout history in the different civilizations and programs of obligatory education (Chamorro, 
2001). Although there is no unanimity in the different curricula, the following have always been 
included: usual and legal units of measurement, and knowledge and handling of measuring 
instruments. 

Determining the area of a given figure is interesting because it involves the coordination of two 
dimensions. This coordination makes it possible to provide various examples: relationship with 
the concept of a unit and its iteration, the number of units and calculation with formulas (Outhred 
& Mitchelmore, 2000). In the teaching-learning processes, a qualitative and quantitative treatment 
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of the area must be carried out. These processes are sometimes reduced to poor instruction, 
reducing their determination to the use of formulas (Freudenthal, 1983). 

Caviedes-Barrera, Gamboa-Rojas and Badillo-Rojas (2019), when analysing the procedures or 
justification, carried out by teachers in training, showed a tendency to associate the area with the 
use of routine calculations and formulas, even if they had to spend more time on solving the task. 
For this reason, these authors state that teachers in training in Primary Education have a little 
knowledge of some mathematical elements: unit of measurement, conservation of area, additive 
and multiplicative relationships. Moreover, the numerical context was easier for them than the 
intuitive geometric context. 

This same trend is followed by Codina, Romero and Abellán (2017), who state that the importance 
given to the use of formulas, even at very early levels, to the detriment of understanding, hinders 
the development of measurement in students. This statement is supported by previous studies, such 
as that of Segovia, Castro and Flores (1996), who pointed out that reducing the calculation of areas 
in teaching to the use of formulas may justify the lack of significance of students in surface units. 

The fact is that learning the area magnitude is not only memorizing formulas, but it is a complex 
process that requires a series of concepts, processes and skills, such as: perception, comparison, 
measurement and estimation (Zapata & Cano, 2008). 

Mathematical flexibility 

Flexibility has been studied from both psychology and mathematical education (Callejo & 
Zapatera, 2014). These authors, compile the different meanings of the term: as the amount of 
variations that a person can introduce in the notions and mental operations (Demetriou, 2004); as 
the ability of a person to modify the resolution of a problem by modifying the task (Krems, 1995); 
and as the ability to solve problems by breaking with stereotypical methods of resolution 
(Krutetskii, 1976). In our study we will address the second of these meanings. 

Going a step further, Joglar, Abanades and Star (2017) opt for the meaning of mathematical 
flexibility as the capacity to produce different strategies to solve a problem and to distinguish 
between them the most effective for each case. However, Star and Rittle-Johnson (2008) 
determined that knowledge of different strategies, including the most effective one, does not imply 
that students are able to choose the most appropriate one for each problem posed. Therefore, a 
distinction is made between competence -knowledge of different strategies- and performance -
choosing the most appropriate strategy for a specific circumstance. 

In addition, it is important to note that flexibility can occur spontaneously or induced. The first of 
these refers to performance: the individual provides an innovative strategy in the first of his 
responses; while the second refers to competence: the person offers an innovative solution when 
asked to provide other solutions. Non-flexible students are those who do not provide any 
innovative response (Xu et al., 2017). 

Among the researches that analyze mathematical flexibility, we highlight those that have teachers 
in training, such as the one carried out by Lee (2017) for fraction division problems. In addition, 
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Aguilar and Telese (2018) highlight that trainee teachers who solve a problem in different ways 
can better help their students. The mathematical flexibility must be made latent in the teaching 
staff as well. This occurs when in certain situations teachers change their plan according to the 
unexpected responses of their students (Leikin & Dinur, 2007). 

METHODOLOGY 

In this study we have collected, in a written form, the performance of two mathematical activities 
in which the area of a quadrilateral is involved. 

During this section, the sample of participants, the context in which the students were, and the 
protocol of action followed in the theoretical classes and in the evaluation session are collected. 

Participants 

The sample has been elaborated with 63 students of a subject Mathematics and its Didactics of the 
Degree of Primary Education of a Spanish public university. 

Design 

In this subject, students are expected to acquire the following knowledge: measurement of a 
magnitude and reality; origin and historical evolution of measurement; concepts and procedures 
related to magnitudes and their measurement; stages in the measurement process; study of some 
magnitudes; and basic considerations in teaching and learning about measurement. In addition, 
these students enroll in the subject after passing the previous two courses in this educational branch 
associated with arithmetic and geometry. In particular, they must acquire the mathematical and 
didactic knowledge associated with the area magnitude. Among this knowledge is the 
decomposition into simpler geometric forms and the Pick’s Theorem. 

As a reminder, Pick’s Theorem determines the area of a simple polygon, that is, its sides do not 
cut into each other, and its vertices are nodes in a square-weave geoplane. The area is determined 

௕ 
by the formula1 𝑖 + − 1 where i is the number of interior points and b is the number of points on 

ଶ 

one side of the polygon. 

For the latter, and in view of the impossibility of having enough geo-planes in the classroom, it 
was decided to use the free digital application of Math Learning Center, giving it great dynamism. 
It allows working with orthometric geo-planes, that is, with a square grid. 

1 Students use 𝑑 + 
௙

− 1 express themselves in Spanish language. 
ଶ 
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Instrument 

The way to collect the development given by the students to the proposed mathematical activities 
was through a written test. There were two quadrilaterals from which their area had to be 
determined. At no time was it requested which procedure should be used to resolve it. 

In the first of the exercises, a quadrilateral located on an orthometric geoplane was contemplated, 
and the area inside was requested to that geometric form. See Figure 1. 

Figure 1. Area activity of a quadrilateral on an orthometric geoplane. 

In the second one, the calculation of the inner area of a rectangle on a grid was proposed, where 
the latter was not visible inside the geometrical shape (see Figure 2). This task had already been 
proposed during the Spring Contest for 5th-6th grade Primary Education students before. 

Figure 2. Area activity of a rectangle on a grid. 

In addition, it should be noted that no calculation mistakes are contemplated in the resolution of 
the different exercises by the teachers in training, since they had a calculator in that test. 

Readers are free to copy, display, and distribute this article as long as the work is attributed to the author(s) and Mathematics 
Teaching-Research Journal Online, it is distributed for non-commercial purposes only, and no alteration or transformation is made in 

the work. All other uses must be approved by the author(s) or MTRJ. MTRJ is published by the City University of New York. 

http://www.hostos.cuny.edu/mtrj/ 

http://www.hostos.cuny.edu/mtrj


                                            
                                  
                                
 

 
 

                      
                  

                       

 
 

 

                
                

         
                

 

 

 

               
               
 

     

                   
              

              
                  

             
             

          

                  
                  

              

           

  

 

        

26 MATHEMATICS TEACHING RESEARCH JOURNAL 
Vol 12, no 4 
WINTER 2020/21 

Procedure 

Qualitative techniques were used in order to establish the categories in the resolution of the two 
tasks described, from the procedure used by the student, and thus be able to determine the 
spontaneous flexibility with which the teachers-in-training act. Subsequently, quantitative 
techniques were used to be able to analyze the frequency of each of these categories, with 
percentages. 

RESULTS 

In the presentation of the results obtained, it has been considered necessary to establish the 
presentation of each of the tasks separately in order to subsequently address their similarities and 
differences. 

Results of the geoplanning activity 

In the task in which it is asked to calculate the area of a quadrilateral on a square-frame geoplane, 
a total of two different resolutions are observed: application of the Pick’s Theorem and 
decomposition into right triangles of the complementary figure. In addition to these two resolution 
categories, it is necessary to point out the existence of teachers in training who are not capable of 
solving this exercise. One of the possible resolutions contemplated, because it was developed 
assiduously in the classroom (decomposition into simpler geometric shapes, such as right triangles 
and squares), was not used by any of the students. 

For the first case, in which the exercise was solved using the Pick’s Theorem (see Figure 3), the 
students count the number of interior points, denoted as i (inside) or b (border); and the number of 

border points, those points through which the segments pass. They then apply the formula 𝑖 + 
௕

− 
ଶ 

1, giving rise to the inner area of the geometric form. 

Figure 3. Student Resolution. Use of Pick’s Theorem. 
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In the second case, the teachers in training calculated the area of the entire geoplane and then 
determined the area of the four triangles outside the quadrilateral (see Figure 4). Since the latter 
are complementary, it was sufficient to subtract both amounts. 

Figure 4. Student Resolution. Calculation of the area with complementary triangles. 

Among the students who failed to solve the problem we find two situations: those who did not find 
did not even try to find any solution to the problem and those who made a mistake. Among the 
mistakes we find the confusion between magnitudes, Figure 5, where the hypotenuses of triangles 
are calculated from the Pythagoras’ Theorem to determine the area. 

Figure 5. Wrong student resolution. 

The frequency of these resolutions is not uniform. 41.27% of students solve the exercise using 
Pick’s Theorem, 7.94% with the area of complementary triangles, and 50.79% of teachers in 
training do not successfully solve this task. 
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Figure 6. Frequency of each resolution. 

Among all the answers, this exercise considers spontaneous mathematical flexibility to the 
calculation of the area through complementary triangles, because the student must perform a 
reflection task. However, the application of Pick’s Theorem is not considered mathematical 
flexibility since it is the direct use of a mathematical formula. 

Results of the grid activity 

In the second task, in which it is asked to calculate the area of a rectangle on a grid and its hidden 
interior, a total of six different resolutions are contemplated: application of Pick’s Theorem, 
decomposition of the complementary figure into right triangles, use of Pythagoras' Theorem, sum 
of the squares and triangles, sum of the squares and complementary triangles, and from the 
diagonal. In addition, as in the exercise described above, there are teachers in training who were 
not able to solve this exercise. The first two resolutions already appeared for the first exercise, 
while the other four came up in response to this task. 

In the first of the resolutions addressed, students used Pick’s Theorem (see Figure 7). To do this, 
they had to draw the grid inside the rectangle, as it was hidden, and then consider this grid as an 
orthometric geoplane. The following steps are identical to those already explained for the first task: 

application of the formula . 

Figure 7. Student Resolution. Use of Pick’s Theorem. 
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The second of the resolutions analyzed had also been found in the first exercise. The students 
calculated the triangles outside the rectangle and subtracted the sum of all of them from the area 
of the outer square (see Figure 8). This strategy has been presented in students who did not solve 
the first task, and who could have replicated it in an almost analogous manner. 

Figure 8. Student Resolution. Calculating the area with complementary triangles. 

In the third resolution we find the use of the Pythagoras’ Theorem (see Figure 9). Although none 
of the students proved that the geometric shape was a rectangle, some considered it as such directly 
because of its visual appearance. They applied this theorem to determine the base and height of 
the rectangle in order to apply the formula they are most used to from the figure: base per height, 
𝑏 · ℎ. 

Figure 9. Student Resolution. Use Pythagoras’ Theorem. 

The fourth of the resolutions could have been made without any mathematical knowledge, because 
you need to know about the symmetry of the square. Since the colored rectangle is made up of full 
and half squares, it would be sufficient to count them (see Figure 10). 
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Figure 10. Student Resolution. Calculating the area as the sum of squares and triangles. 

The same applies to the fifth of the resolutions. The students who chose this form of calculation 
counted all the squares on the grid and subtracted the exterior squares that were visible, without 
having to reconstruct the grid on the inside (see Figure 11). 

Figure 11. Student Resolution. Calculation of the area with sum of squares and complementary 
triangles. 

The sixth of the resolutions offered by the teachers in training was not foreseen by the teachers of 
the subject, having to develop also the mathematical flexibility for its correction. In it, the rectangle 
is divided into two equal squares and the diagonal of the outer square is calculated. Later, the side 
of the square is determined, being this the third part of the diagonal. Finally, the area of one of the 
squares into which the rectangle has been divided is calculated and multiplied by two. See Figure 
12. 

Figure 12. Student Resolution. Calculation of the area from the diagonal. 
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As was the case in the first exercise, with the square-frame geo-plan, the frequency of these 
resolutions is not uniformly presented. In this case, the highest percentage of students is found in 
those using the Pythagoras’ Theorem, 26.98%, followed by those using the Pick’s Theorem, 
17.46%. The rest of the resolutions are given with a low incidence: 6.35% from complementary 
triangles, 4.76%, 3 people, with the sum of squares and triangles, 4.76% with the sum of squares 
and complementary triangles, and 1.59%, 1 person, with the calculation of the diagonal. Once 
again, a high percentage of students do not successfully complete the exercise, 38.1% despite the 
fact that it was designed for 5th and 6th grade Primary School students who participated in the 
Spring Contest2. See Figure 13). 

Figure 13. Percentages of each resolution. 

In this exercise, spontaneous mathematical flexibility is considered in the calculation of area 
through the complementary triangles, as it already happened in the first exercise; and also that 
which involves the diagonal of the outer square in its development. In addition, with the latter, the 
subject's teachers also had to develop a mathematical flexibility, as mentioned above. The counting 
of squares and triangles (half squares) and the counting of complementary squares and triangles 
are not considered spontaneous mathematical flexibility, since they could be done without any 
mathematical knowledge. Neither is the resolution using Pick’s Theorem or Pythagoras' Theorem 

2 Mathematical Competition for 10-18 years old students 
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since the aim is to use a mathematical formula and not a reflection on its resolution, despite having 
to perform a greater number of calculations than for other options. 

Comparison between the results of the two tasks 

Despite the fact that we found two exercises of similar characteristics and difficulty -even the first 
exercise is a little easier- the results in both have been very different, as far as mathematical 
flexibility is concerned. 

While in the first exercise two different resolutions have been observed, in the second one up to 
six different ways of reaching a correct and reasoned solution to the proposed problem have been 
counted. Furthermore, the two resolutions of the first exercise have also been perceived in the 
second one. 

Not all students solved both exercises in the same way; in fact, while Pick’s Theorem was used in 
the first exercise by 41.27% of the students, this percentage was reduced to 17.46% in the second. 
This percentage reduction is justified because during the explanation of Pick’s Theorem in the 
classroom it was used with a problem similar to the first case, with the use of the orthometric 
geoplane and the interior of the visible polygon. Its use in both cases, despite the percentage 
difference, was a non-flexible resolution, even more so for the first case because it is an exact 
replica of an exercise already carried out. 

Similar percentage is presented for the resolution from the complementary triangles: 7.94% in the 
first exercise and 6.35% in the second one. The steps to be carried out in both cases were similar, 
and with them the mathematical flexibility was developed. 

In the case of the second task, students did perform the decomposition into simpler geometric 
shapes: 4.76%, 3 of them each, directly and 4.76% with the complementary ones. This strategy, 
moreover, has been presented in students who did not solve the first task, and who could have 
replicated it in an almost analogous manner. 

With the characteristics of the first problem, for the calculation of the area of a quadrilateral it was 
not possible to apply the Pythagoras’ Theorem or the calculation of the diagonal, although there 
could be other strategies not contemplated by the teacher and the research team. 

The high percentages of unsuccessful resolution of both problems are striking. It should be 
remembered that the level for which they are intended is 5th-6th grade Primary Education. 
Specifically, the first of the problems was not carried out correctly or was left blank for 50.79% of 
the students. Although the percentage in the second case is lower, it also reaches a high value, 
38.1%. In both cases, these percentages are higher than those of any resolution strategy. 

If we analyze the percentages together and contemplating the resolution strategies (see Figure 14), 
flexible or not flexible, we obtain that, while in the first exercise the students using the Pick’s 
Theorem and calculating the area of the complementary triangles represent 49.21% of the total, 
for the second, these same two cases represent 23.81%. From this we can deduce that at least 
25.4% of students in the Primary Education grade are able to modify their resolution strategy, 
adapting it to the data and geometric forms provided. In addition, 12.69% are able to carry out a 
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strategy if any of the data or geometric forms vary, despite not being able to solve other similar 
problems. 

Figure 14. Sectorial chart second problem. 

Conclusions 

In this research, we have been able to deepen our understanding of the spontaneous mathematical 
flexibility that students in the Primary Education grade have when they face an area calculation 
problem. The purpose of this theoretical framework is not only to address the fact that students 
correctly and justifiably perform a certain problem, but also that they are capable of adapting this 
resolution to each problem and innovate with the development of their answer, even going so far 
as to perform procedures not expected by their teachers (Xu et al., 2017). 

Analysis of the responses of teachers in training shows that only in 7.94% (area by complementary 
triangles) of cases is there mathematical flexibility for the calculation of the area requested in the 
first problem, and 25.4% (Pick, complementary and diagonal triangles) of students are flexible for 
the second problem. 

In addition, among all the individuals that make up the sample, we highlight the 12.69% that are 
capable of modifying the resolution strategy for the data and geometric shapes provided. 

With the difference between the results of both exercises we can affirm that mathematical 
flexibility is encouraged depending on the type of problem requested. In the first case, it was an 
exercise similar to the explanation offered for Pick’s Theorem in the classroom; consequently, a 
good number of students, 41.27%, opted for this strategy, without having to make any additional 
reflection to that of the application of a previously memorized formula. In the second case, a 
reflection by the university student is further enhanced by not exactly replicating a problem in the 

Readers are free to copy, display, and distribute this article as long as the work is attributed to the author(s) and Mathematics 
Teaching-Research Journal Online, it is distributed for non-commercial purposes only, and no alteration or transformation is made in 

the work. All other uses must be approved by the author(s) or MTRJ. MTRJ is published by the City University of New York. 

http://www.hostos.cuny.edu/mtrj/ 

http://www.hostos.cuny.edu/mtrj


                                            
                                  
                                
 

 
 

                      
                  

                       

 
 

                   
  

              
      

               
              

               
        

                
               
       

 

  

                
        

 

 

             
        

        

                
           

               
            

   

          
            
     

             
           

           
         

    

34 MATHEMATICS TEACHING RESEARCH JOURNAL 
Vol 12, no 4 
WINTER 2020/21 

classroom, even if only a geoplane is modified by a grid and the visibility of the interior of the 
geometric form. 

This fact should promote a reflection by active teachers on how statements condition resolution 
strategies and can inhibit flexible reasoning. 

This study has some limitations, as already occurred in the analysis of mathematical flexibility for 
fractions in Lee's research (Lee, 2017). This happens because the problems posed have some 
particularities that can influence the strategies used by students, having to adapt, in a cyclical 
manner, the tests carried out on the students. 

The research foresees as a future perspective to deal with the evaluation of the analyzed resolutions 
by other teachers in training, being able to analyze the mathematical flexibility that they develop 
as teachers and not only as students. 
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