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Distributed relative localization using the
multi-dimensional weighted centroid

Rosario Aragues1,∗, Antonio González1, Gonzalo López–Nicolás1 and Carlos Sagues1

Abstract—A key problem in multi-agent systems is the dis-
tributed estimation of the localization of agents in a common ref-
erence from relative measurements. Estimations can be referred
to an anchor node or, as we do here, referred to the weighted
centroid of the multi-agent system. We propose a Jacobi Over–
Relaxation method for distributed estimation of the weighted cen-
troid of the multi-agent system from noisy relative measurements.
Contrary to previous approaches, we consider relative multi-
dimensional measurements with general covariance matrices not
necessarily diagonal. We prove our weighted centroid method
converges faster than anchor-based solutions. We also analyze
the method convergence and provide mathematical constraints
that ensure avoiding ringing phenomena.

Index Terms—Distributed Sensor Networks; Noisy Rela-
tive Measurements; Multi–agent Localization; Jacobi Over–
Relaxation; Weighted Centroid

I. INTRODUCTION

Localization is a central task in multi-agent systems. For
example, in order to cooperatively manipulate a load, agents
need to know their positions in a common frame [1]. Agents
usually start at unknown locations, and they can only perceive
nearby agents (neighbors). Each agent combines bearing and
range measurements [2] of the position of its neighbors and
it builds a 2D or 3D representation of the relative positions
of the neighbors in its own local frame (multi–dimensional
relative full-position measurements). This multi–dimensional
sensed data is corrupted with noise, whose associated covari-
ance matrices are not necessarily diagonal. In this paper we
address the distributed relative localization problem [3]–[14],
which consists of combining the noisy relative measurements
taken by stationary agents to build an estimate of the agents’
positions in a common frame.

A. Related Work on Distributed Relative Localization

First, we discuss the works from the literature [3]–[14]
that address a problem close to the one considered in this
paper: a distributed localization scenario with stationary agents
that take a single set of measurements of nearby agents.
The relative measurements represent the p−dimensional full–
position of the neighbors, e.g., 2D or 3D relative positions,
being these measurements corrupted with noise. Solutions
to this problem often rely on linear methods [15], such as
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the Jacobi [3]–[6], the Jacobi Over–Relaxation (JOR) [16],
the Successive Over–Relaxation (SOR) [17], [18], the Gauss–
Seidel (GS), and the Richardson’s method or gradient–descent
strategies [7]–[9], [11]–[14], which are also connected with
distributed consensus ideas [7]–[14] and are thus resilient to
delays and link failures [3], [7].

In addition to the linear method used, the solutions can
be classified according to several ideas that we discuss next.
Several works fix an anchor node [3]–[6]. The intuition behind
anchors is that it is well known that the relative localization
problem can only be solved up to an additive constant [3]–
[13]. This ambiguity can thus be removed by fixing the
position of one of the agents (the anchor) at the origin of
the common reference frame, while the other agents compute
their positions relative to the anchor [3], [6]. The placement
of the anchor influences the accuracy of the final results and
it is common to analyze the estimation errors at the agents as
a function of their distances to the anchor [19]. However, it is
also common to assume that the first agent is the anchor. Thus,
other works prefer not fixing any anchor [7], [8], [10]–[12],
[14] and compute the agents positions relative to a different
coordinate frame, for instance, the centroid. Here, we propose
using the weighted centroid of the multi-agent system as the
origin of the the reference frame, and we do not use any anchor
since, as we show, this slows down the process.

Localization methods can also be classified depending on
their requirements on additional synchronization strategies, or
on the required knowledge of global data for their adjustment.
The inconvenience of SOR [17], [18] and GS compared to
JOR, Jacobi, Richardson’s or gradient–descent methods is that
they force a specific state update ordering [15], and thus, they
require more sophisticated network synchronization policies.
Thus, it is interesting to use methods that do not impose
this requirement such as the JOR, Jacobi, Richardson’s or
gradient–descent methods. Solutions based on the Jacobi [3]–
[6] require fixing an anchor, but a benefit of these solutions is
that they do not require additional information for adjusting the
algorithm. On the other hand, the Richardson’s and gradient–
descent methods include a parameter h which must be adjusted
using global information on the network topology and on the
noise in order to ensure convergence [7]–[9], [11]–[13], which
is a limitation. Instead, some versions based on the JOR [16]
or on gradient–descent [10] establish values for the parameter
h without knowing any global information, e.g., 0 < h ≤ 1,
which is a strong advantage. This is the approach we follow
in this paper.

We can further classify the localization methods depending
on whether they consider measurements and states that are
scalar values or multi–dimensional variables. Most of the
works on distributed localization assume scalar states, or
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diagonal covariance matrices [3], [5], [7]–[13]. In this paper,
we consider more realistic scenarios, where the covariance ma-
trices associated to multi–dimensional relative measurements
are full (instead of diagonal), since each relative measurement
may be the result of fusing different sensory data [2]. An
example of these covariance matrices can be seen in Fig. 2(a)
(gray ellipses). Dismissing the off–diagonal covariance terms
has the effect of missing information, e.g., the line of sight
between the agents involved in the relative measurement (Fig.
2(d)). As far as we know, only [4], [6] have addressed multi–
dimensional measurements with full covariance matrices, al-
though in both cases they involved the use of an anchor agent
and the Jacobi method in some part of the process.

Finally, most of the previous works on distributed localiza-
tion discuss the asymptotic convergence of the algorithms, but
they do not pay attention to the way in which the solution
is achieved. The transient performance is key. In [14], it is
studied to establish conditions on the stopping criteria for
the relative localization methods. Here, we consider the phe-
nomena of ringing, which appears in some cases in discrete–
time systems [20]. This makes the estimates at each time
step change drastically, making it hard to use these oscillating
estimates within a higher level task. Here, we propose using a
Jacobi Over–Relaxation (JOR) scheme, that includes a tuning
parameter h. We also propose mathematical constraints on h
to avoid ringing which, remarkably, do not depend on any
global information on the network topology or on the noise.

B. Additional Works Related to the Localization Problem
For the sake of completeness, in this section we give an

overview of relevant works connected with localization ideas.
Cooperative localization methods [22], estimate the location

of agents that move, so that their relative positions change
along time. These methods require the existence of a good
quality initial estimate of the localization of the agents in their
initial positions, which could be generated by the proposed the
method.

The problem of localization in sensor networks [26] is
sometimes addressed by placing a small subset of anchor
nodes, with known positions in global coordinates. The re-
maining nodes compute their positions using a weighted
average (weighted centroid) of the positions of the other nodes.
Here, instead, we do not require any anchor.

Instead of considering noisy measurements of the relative
p−dimensional full-position of their neighbors, several local-
ization algorithms rely on range-only [23], [24], or bearing-
only [25] relative measurements. Other related works involving
localization [27] and multi-robot graph–SLAM [17], [18]
methods, consider not only the agents’ positions, but also
their orientations, i.e., they consider full poses. The method
presented in this paper can also be applied to scenarios that
consider robot poses (orientations and positions), provided
the agents perform a synchronization [16], [28] to align their
orientations, or they estimate a common orientation for their
reference frames in a first stage [29]. In addition, agents
can express relative measurements in a common alignment
frame using sensors that measure the north (compasses or
magnetometers) [30].

Finally, formation control [16] and localization are related
problems. Although some works discuss the effect of noise
in the final result [16], formation algorithms usually assume
noise–free measurements.

C. Statement of Contributions

From the previous discussion, we summarize the main ideas
and contributions of this paper: (i) We propose a relative
distributed localization method that considers noisy multi-
dimensional relative measurements with covariance matrices
not necessarily diagonal. (ii) We propose a JOR scheme
for connected undirected graphs and establish mathematical
constraints on the JOR parameter h to ensure convergence and
to avoid ringing. The conditions on h do not depend on any
global information on the network topology or on the noise.
(iii) We do not fix any anchor. Here, agents compute their
locations relative to a common reference frame that depends
on the weighted centroid of their initial unknown estimates.
We prove this weighted centroid method converges faster than
the anchor-based alternative.

Compared to our previous work [4], we avoid using any
anchors. In order to avoid rinnging, instead of the Jacobi
method used in [4], here we propose a JOR scheme with
a tuning parameter h.

To reach these goals (no anchor, full covariance matrices,
JOR scheme), we cope here with system matrices (Section IV,
eq. (12)) which do not satisfy the properties (row–stochastic,
non–negative, primitive, a single eigenvalue equal to one) used
to study the convergence in classical scalar consensus [16],
[31]. Thus, we adapt in a non trivial way several results that
were established for classical scalar consensus.

II. PRELIMINARIES

The ideas that appear in this section are a compilation of
similar formulations in [3]–[14], conveniently expressed in
terms of multi–dimensional relative measurements.

We let In be the n×n identity matrix, 0n1×n2 be a n1×n2

matrix with all entries equal to 0, and 1n and 0n be column
vectors with its n entries equal to 1 and to 0. The dimensions
are omitted when they can be easily inferred. The Kronecker
product is denoted by ⊗.

Consider n ∈ N stationary agents. Each agent i ∈
{1, . . . , n} has a p−dimensional state xi ∈ Rp and it observes
the states of a subset of the agents relative to its own
state. There are m relative measurements. This information
is represented by an undirected graph G = (V, E), where
V = {1, . . . , n} are the agents. There is an edge e = (i, j) ∈ E
from i to j if node i has a relative measurement ze ∈ Rp of
the state of agent j,

ze = xj − xi + ve, ve ∼ N (0p×p,Σze
) , (1)

where ve is a Gaussian additive noise.
Each agent i communicates with its neighbors in the graph

G, and we assume G is connected. A measurement ze from
i to j as in (1) also represents a measurement from j to i
by reversing its sign, i.e., −ze. Thus, we define the incidence
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matrix A ∈ {0, 1,−1}n×m of G by choosing an orientation
for each edge (a source and a destination):

Ai,e =

 1, if e = (j, i) ∈ E
−1, if e = (i, j) ∈ E
0, otherwise

,∀i ∈ V, e ∈ E , (2)

where the edge orientation is encoded by the out–edges (e =
(i, j) ∈ E) and in–edges (e = (j, i) ∈ E) of agent i ∈ V .

We let z,v ∈ Rmp and Σz ∈ Rmp×mp contain the
information of all the measurements ze, ve, Σze

, following
some order {1, . . . ,m}, i.e.,

z = (zT1 , . . . , z
T
m)T , v = (vT1 , . . . ,v

T
m)T ,

Σz = blkDiag(Σz1
, . . . ,Σzm

).

We assume that the measurements are independent since
they were acquired individually by the agents, and thus the
covariance matrix Σz is block diagonal. Note that matrix Σz

would be diagonal for fully uncorrelated noises, and Σz = Imp
for noise–free data. Also, recall that agents are stationary, i.e.,
xi ∈ Rp is constant, and agents compute their states using the
measurements z they collected initially.

The estimation from relative measurements problem con-
sists of estimating the states of the n agents using z. It is well
known [3]–[8], [10]–[14] that in relative localization problems,
solutions can be determined only up to an additive constant.
Usually, one agent a ∈ V , e.g., the first one, is taken as an
anchor with fixed state, e.g., x̂aa = 0, and the states x̂ai of all
the other agents relative to the anchor are computed. We call
such approaches anchor-based and we add the superscript a
to their associated variables. We let Va = V \ {a} contain
the non-anchor nodes, and Aa ∈ R(n−1)×m be as A in (2)
but without the row associated to the anchor. The Best Linear
Unbiased Estimator [3] for xaVa is

x̂aVa = Σx̂a
Va
ηa, where Σx̂a

Va
= (Υa)

−1
, (3)

ηa = (Aa ⊗ Ip) Σ−1
z z, Υa = (Aa ⊗ Ip) Σ−1

z (Aa ⊗ Ip)
T
.

We let x̂aV ∈ Rnp and Σx̂a
V
∈ Rnp×np include the anchor state,

x̂aV = (0, (x̂aVa)T )T , Σx̂a
V

= blkDiag(0,Σx̂a
Va

). (4)

Anchor–based methods make agents compute in a distributed
way x̂aVa as in (3) satisfying

Υa x̂aVa = ηa. (5)

More details on eqs. (3) to (5) can be found, e.g., in [3].
The anchor–free expression is similar to (5), but using the

original A ∈ Rn×m instead of Aa ∈ R(n−1)×m:

Υ x? = η, where η = (A⊗ Ip) Σ−1
z z, and

Υ = (A⊗ Ip) Σ−1
z (A⊗ Ip)

T
, where (6)

Υ =

 Υ11 . . . Υ1n

...
. . .

...
Υn1 . . . Υnn

 , where, ∀i, j ∈ V :

Υii =
∑

e=(i,j)∈E or e=(j,i)∈E

Σ−1
ze
,

Υij = −Σ−1
ze
, if e = (i, j) ∈ E or e = (j, i) ∈ E ,

Υij = 0p×p, otherwise.

This anchor–free expression (6) is similar to expressions ob-
tained in, e.g., [8] for the scalar case, being here conveniently
adapted to the multi–dimensional case.

Following the same convention as in [3], [14], we will
refer to x̂aV ((3) to (5)) and to x? (6) as, respectively, the
anchor–based and anchor–free optimal estimates. The anchor–
free expression (6) is more general than (5). As discussed
later in Lemma 3.1, the anchor–free optimal estimates x? (6)
include all anchor–based optimal estimates x̂aV as in (3)–(5),
plus an additive term, which is equivalent to expressing x̂aV
relative to a different coordinate frame. The goal is that the
agents compute in a distributed and fast way a vector x?

satisfying (6), as explained next.

III. WEIGHTED CENTROID REFERENCE FRAME

In this section, we describe the proposed method and
we establish a theoretical framework to address the stability
analysis. First, we define the proposed weighted centroid
representation of the agents’ states.

Definition 3.1 (Weighted Centroid): Given matrix Υ in (6),
we define the weighting matrix w ∈ Rnp×p and weighted
centroid matrix M c

? ∈ Rnp×np, as follows. Note that w is not
a single vector but several.

w = D(1n ⊗ Ip) = [Υ11,Υ22, . . . ,Υnn]
T
, with

D = blkDiag (Υ11,Υ22, . . . ,Υnn) ,

M c
? = (1n ⊗ Ip)(w

T (1n ⊗ Ip))
−1wT , (7)

We define the weighted optimal 1 estimates x̂cV as the optimal
estimates xaV ((3) to (5)) and x? (6), with the positions
expressed relative to their weighted centroid:

x̂cV = Πx̂aV , with Π = Inp −M c
? . (8)

As the following results show, the weighted centroid repre-
sentation of the optimal estimates is unique.

Lemma 3.1 (Anchor-free optimal estimates): The vectors x?

satisfying the equality given in (6), Υx? = η, are given by:

x? = x̂aV + (1n ⊗ Ip)x
?
a (9)

for all possible x?a ∈ Rp, with x̂aV as in (4).
Proof: See Appendix A.

Lemma 3.2 (Weighted optimal estimates): Given all possible
anchor agents: a, a′, ..., and their associated optimal esti-
mates in (3)–(4), x̂aV , x̂a

′

V , ... obtained by the selected anchor:
a, a′, ..., the weighted optimal estimates x̂cV , x̂c

′

V , ... obtained
with (8) are the same:

x̂cV = Πx̂aV = x̂c
′

V = Πx̂a
′

V . (10)

Proof: See Appendix A.
Remark 3.1: Figure 3 shows some examples of weighted

optimal estimates x̂cV (Def. 3.1) and optimal estimates in
(3)–(4) (red circles). These values can only be computed
immediately if the multi–agent system is centralized, e.g.,
if all relative position measurements are available to each

1We use the term weighted optimal estimates for x̂c
V following the same

naming convention in [3], [14], as we did for the anchor–based and anchor–
free optimal estimates.
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agent. Since we deal with distributed systems, we have to
compute these values iteratively. In a distributed scenario, each
agent i ∈ V only knows the relative measurements ze, Σze

associated to its neighbors, e = (j, i) ∈ E or e = (i, j) ∈ E ,
and the estimate of its own position. Besides, each agent i
can only exchange its estimated position with its neighbors.
The goal is that agents iteratively obtain an estimated position
that converges asymptotically to the same optimal estimates
or weighted optimal estimates as the ones discussed so far.
In the next sections, we present a distributed solution to this
problem and we discuss its properties.

IV. WEIGHTED CENTROID LOCALIZATION

In this section, we present a distributed iterative method
to let each agent i estimate its associated entries within x?

(6). We use a Jacobi Over–Relaxation scheme and discuss the
selection of its parameter h. From all the possible vectors x?,
we prove that the agents’ estimates converge to an expression
that depends on the weighted centroid of the initial estimates.

Matrix Υ in (6) is decomposed into a matrix D with the
p× p blocks in the main diagonal of Υ, and a matrix N with
the remaining elements,

Υ = D −N, with D = blkDiag (Υ11,Υ22, . . . ,Υnn) ,

N =

 N11 . . . N1n

...
. . .

...
Nn1 . . . Nnn

 , where, ∀i, j ∈ V : (11)

Nij =

{
Σ−1

ze
if e = (i, j) ∈ E or e = (j, i) ∈ E ,

0 otherwise.

From this, the JOR system equations for multi–dimensional
noisy centroid–based localization used to compute x? (6) in
a distributed way are:

x(k + 1) = MJOR x(k) + hD−1η, with

MJOR = (1− h)Inp + hD−1N = Inp − hD−1Υ. (12)

Matrix MJOR does not change at each iteration. The method
is distributed and each agent i runs (12) to estimate its entries
xi(k) ∈ Rp within x(k) using local information and from its
neighbors:

xi(k + 1) = hΥ−1
ii

 ∑
e=(i,j)∈E

Σ−1
ze

(xj(k)− ze)

 (13)

+ hΥ−1
ii

 ∑
e=(j,i)∈E

Σ−1
ze

(xj(k) + ze)

+ (1− h)xi(k).

The multi–dimensional noisy centroid–based distributed lo-
calization method (12) is connected with scalar weighted con-
sensus problems [31], [16]. However, MJOR in (12) does not
satisfy the properties (row-stochastic, non-negative, primitive,
a single eigenvalue equal to one) used in classical scalar
consensus [31], [16] to establish the convergence for connected
graphs. We extend several properties from scalar weighted
consensus and we show that algorithm (12) makes the agents
states converge to an expression that depends on the weighted

centroid (Def. 3.1). Lemmas 4.1 and 4.2 study the solutions
of the JOR equations, and the eigenvectors of matrix MJOR,
and Propositions 4.1 and 4.2 study the convergence of the
resulting closed-loop system. These results are used to prove
Theorem 4.1. The proofs of these results appear at Appendices
B, to E, and use the following definitions.

Definition 4.1 (Anchor–based JOR matrix): We let Ma
JOR,

Υa, Da, Na be as MJOR, Υ, D, N in (11)–(12) but removing
the rows and columns associated to the anchor agent.

Definition 4.2 (Spectral radius and convergence rates): We
let ρ(M) be the spectral radius of a matrix M . We define the
convergence rate of the anchor-based method as ρ(Ma

JOR),
and the convergence rate of the weighted centroid algorithm
as ρess(MJOR) = ρ (MJOR −M c

?), with Ma
JOR, M c

? , MJOR

as in Def. 4.1, and in (7), (12).
Definition 4.3 (Eigenvalues of JOR and Jacobi matri-

ces): Let MJOR, Υ, D, N be as in (11)–(12), and Ma
JOR,

Υa, Da, Na be as in Def. 4.1. The Jacobi matrices associated
to the JOR matrices MJOR and Ma

JOR are, respectively,
D−1N and (Da)−1Na. We use the following notation to refer
to the eigenvalues of the JOR and Jacobi matrices:

λi,r(MJOR), λi,r(D
−1N), for i = 1, . . . , n, r = 1, . . . , p.

λai,r(M
a
JOR), λai,r((D

a)−1Na),

for i = 1, . . . , n− 1, r = 1, . . . , p.

Lemma 4.1 (Solutions of the JOR equations): The vectors
x? satisfying (11)–(12), i.e.,

x? = MJORx
? + hD1η, (14)

where η, D and MJOR are defined in (6), (11) and (12), are
given by

x? = x̂aV + (1n ⊗ Ip)x
?
a, (15)

for all possible x?a ∈ Rp, with x̂aV as in (4).
Proof: See Appendix B.

Lemma 4.2 (Eigenvectors of the JOR matrix): The weight-
ing matrix in Definition 3.1 are left eigenvectors of the MJOR

system matrix (12), associated to the eigenvalue 1,

wTMJOR = wT . (16)

In addition, the following results hold:

Υ · (1n ⊗ Ip) = 0np×p, and (17)
MJOR · (1n ⊗ Ip) = 1n ⊗ Ip, (18)

with Υ as in (6).
Proof: See Appendix B.

Proposition 4.1 (Eigenvalues of JOR): For connected graphs
G, with 0 < h < 1, the JOR system matrix MJOR in (12) has
p eigenvalues equal to 1, and the remaining eigenvalues are
real and have modulus strictly smaller than one.

Proof: See Appendix C.
Proposition 4.2 (Convergence of the powers of the JOR

matrix): Let MJOR be the system matrix associated to a
connected graph G and the JOR iterations as described in (12).
Let M c

? be as in Definition 3.1, and let 0 < h < 1. Then,

lim
k→∞

(MJOR)k = M c
? . (19)
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Fig. 1. Example with 10 agents in a chain graph. Evolution along iterations
of the estimated x−coordinate relative to the weighted centroid of the team.
Left: The ringing oscillatory behavior can be observed for h = 0.99. At each
step, the estimates change their values sharply. Right: The ringing oscillatory
behavior is removed with h = 0.49. The estimates converge now smoothly.

Proof: See Appendix D.
Now we present the main result in this section.
Theorem 4.1 (JOR Weighted Centroid iterations): If agents

execute the multi–dimensional noisy centroid–based local-
ization method (11)–(12) under a connected graph G, with
0 < h < 1, their estimates asymptotically converge to the
optimal estimates relative to the centroid x̂cV (Definition 3.1),
plus the weighted centroid of the initial states,

lim
k→∞

x(k) = x̂cV +M c
?x(0). (20)

Proof: See Appendix E.

V. CONDITIONS ON h FOR AVOIDING RINGING

The convergence of the JOR localization method is asymp-
totic (Theorem 4.1). In the literature on relative localization, it
is common to focus on studying the asymptotic convergence of
the methods. Aside from mere stability analysis, the transient
performance is a key aspect to take into account [14].
Not only convergence is a necessary requirement in practice,
but it is also convenient that localization estimates evolve
smoothly without oscillating behaviors. This would allow
using stable and predictable data in higher level methods. It
is well known that real and positive eigenvalues implies the
absence of oscillatory behavior (ringing) [20]. Conversely, if
poles are negative or have imaginary components, undesirable
oscillations will appear. An example of a convergent system
with this behavior can be seen in Fig. 1. Thus, we propose
alleviating this behavior by forcing the system eigenvalues to
be real, positive, and smaller than 1, as we propose next.

Lemma 5.1: The system matrix MJOR in (12) with 0 < h <
1/2 and G connected, has p eigenvalues equal to 1, and all its
remaining eigenvalues are real, strictly positive, and smaller
than 1.

Proof: See Appendix F.
Observe in Fig. 1 this ringing behavior is avoided with h

close to 1/2. Note that the selection of 0 < h < 1/2 does not
require knowing global information of the graph.

In our previous work [4], we used the Jacobi algorithm,
which is like the JOR with h = 1. This condition does not
satisfy Lemma 5.1, and therefore, the method given in [4] and
other Jacobi-based approaches, cannot guarantee the removal
of the ringing behavior.

Observe that the interest of the conditions on h given in
Theorem 4.1 and Lemma 5.1 is that they only require G
to be connected. Additional information could be used to
speed up the method as follows. Suppose that we knew the
eigenvalues of the Jacobi matrix D−1Υ (Def. 4.3), and let
λmax(D−1Υ) and λmin(D−1Υ) be respectively its maximum
and its minimum nonzero eigenvalues. Observe that matrices
D−1Υ and MJOR are related by MJOR = Inp − hD−1Υ
(eq. (12)), and thus, their eigenvalues (Def. 4.3) are related by
λi,r(MJOR) = 1− hλi,r(D−1Υ), for all i ∈ V, r = 1, . . . , p.
Thus, we could follow a similar reasoning as it is often done
for relating Perron and Laplacian matrices, e.g., as in [32].
We could easily build optimal expressions on h from the
point of view of the speed of convergence. For instance, if
we want the eigenvalues of MJOR to remain positive while
speeding up the method, we could use h = 1

λmax(D−1Υ) . If
instead, we want to speed up the method, allowing for both
positive and negative eigenvalues in MJOR, we could use
h = 2

λmin(D−1Υ)+λmax(D−1Υ) . While these adjustments of h
will give rise to a faster convergence, the main inconvenience
compared to the approach proposed in this paper, is that they
require prior knowledge of the eigenvalues of matrix D−1Υ,
which has dependence on the graph structure and the noise
covariance matrices of measured data. Thus, we prefer for
generality to use Lemma 5.1 and avoid requirements on global
data.

VI. COMPARISON BETWEEN ANCHOR AND
CENTROID–BASED STRATEGIES

Both anchor-based and weighted centroid localization meth-
ods are convergent for connected graphs. However, we demon-
strate next that our proposed weighted centroid approach
converges faster than fixing an anchor node.

Lemma 6.1: Let 0 < h < 1/2 and G be connected. The
convergence rate of the anchor-based ρ(Ma

JOR) and of the
weighted centroid algorithms ρess(MJOR) = ρ (MJOR −M c

?)
(Definition 4.2), satisfy

ρess(MJOR) ≤ ρ(Ma
JOR). (21)

Proof: See Appendix F.

VII. SIMULATIONS

Fig. 2 illustrates the difference of performance discussed
in Lemma 6.1. There are 10 agents placed randomly in a 2D
region of 10 × 10 meters. Fig. 2(a) Each agent i gets noisy
measurements (crosses and ellipses) of the relative position
(arrows) of some of its neighbors j (out–edges e = (i, j) ∈
E). Equivalently, all agents in the neighborhood of agent i
know the noisy measurements of the relative position of agent
i. The noise covariance matrix Σze

depends on the relative
measurements (ρij , αij in polar coordinates) between agents
i, j, with e = (i, j) as follows:

Σze
= RTijdiag(σ2

1 , σ
2
2)Rij ,

where σ1 = 0.15ρij , σ2 = 0.1ρij , are the standard deviations
in the parallel and perpendicular directions of the arrow, and

Rij =

[
cos(αij) sin(αij)
− sin(αij) cos(αij)

]
.



6

0 2 4 6 8 10

0

2

4

6

8

10

R 1

R 2

R 3

R 4

R 5

R 6R 7

R 8

R 9

R 10

0 100 200 300 400
−8

−6

−4

−2

0

2

4

6
Weighted Centroid (h=0.49)

0 100 200 300 400
−8

−6

−4

−2

0

2
Anchor (h=0.49)

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

R 1

R 2

R 3

R 4

R 5

R 6R 7

R 8

R 9

R 10

Getting rid of the off−diagonal terms in the covariances

(a) (b) (c) (d)

Fig. 2. (a): Initial scenario. (b), (c): Evolution of the estimated x− (in black) and y− coordinates (in red) of the agents positions along 400 iterations (x−axis)
when agents run the weighted centroid (b) and anchor–based (c) localization methods. (d): The same example as in (a), but with relative measurements with
diagonal covariances to show that, contrary to our proposal, the directionality of the information is lost.
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Fig. 3. Estimated agents positions (blue crosses) after k = 20 (Left), k = 100 (Center) and k = 200 iterations (Right) of the weighted centroid (Top) and
anchor–based (Bottom) localization methods, for the initial scenario in Fig. 2. The red circles represent the optimal estimates in (3)–(4), with the positions
expressed relative to their weighted centroid as in (8) (Top), and relative to the anchor agent R1 (Bottom). The green axis represent the frame used as the
origin. In the bottom figures (anchor–based methods), we also display with a green axis the weighted centroid, which is located at position (−4.97,−0.19).

We plot the uncertainty ellipses with the 95% of noisy mea-
surements (±2σ1,±2σ2), centered around the noisy measure-
ment. Circles represent instead the true initial robot positions.
Note that the covariance matrices associated to the relative
measurements are full, i.e., they are not diagonal. For instance,
for the measurement between agents i = 5 and j = 2, we have

Σze =

[
0.0659 −0.0273
−0.0273 0.0954

]
.

This covariance matrix is full, and the uncertainty ellipse is
correctly aligned with the direction of the relative measure-
ment between agents i = 5 and j = 2. Thus, our method
can be applied to relative measurements obtained with sensors
such as stereo cameras, or RGB-D devices, that have different
precision in the depth and in the orientation data. Note from
Fig. 2(d) that, since we consider the off diagonal terms in
the covariance matrices, we do not lose any information about

the direction of the relative measurements. Fig. 2(b): Agents
run the distributed weighted centroid localization method with
h = 0.49 in order to avoid ringing (Lemma 5.1). The estimates
converge fast and without exhibiting the ringing oscillatory
behavior. Fig. 2(c): The estimated agent positions when fixing
node 1 as an anchor at the (0, 0) position, which clearly
converge slower than using the weighted centroid approach,
as stated by Lemma 6.1. Fig. 3 shows the evolution of the
estimated agents positions for the methods in Fig. 2. After
few steps, the estimated positions (blue crosses) obtained with
the distributed weighted centroid localization (Fig. 3, top) are
very close to the optimal estimates (red circles). Fig. 3 bottom:
after k = 200 iterations, the estimated agent positions (blue
circles) when fixing node 1 as an anchor at the (0, 0) position,
have not converged yet to the optimal estimates (red circles).
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VIII. CONCLUSIONS

We have presented a distributed method that allows a set
of agents to estimate their positions, expressed relative to the
weighted centroid, using noisy relative measurements of the
positions of their neighbors. Our method is based on the Jacobi
Over–Relaxation (JOR), and it includes a tuning parameter h.
A novel feature of our JOR based distributed method is that the
noisy relative measurements can be multidimensional with full
covariance matrices, as opposed to the common assumption
in the literature of diagonal covariance matrices. Thus, our
approach is more flexible and practical, since very often the
measurements are fused from several sensors. We also defined
the conditions that guarantee smoother performance of the
estimates. This is a desirable feature if, for example, the
estimates are used in a higher level task sensitive to oscillating
signals. Additionally, we proved our weighted-centroid method
converges faster than its counterpart based on a fixed anchor.

A: PROOFS OF LEMMAS 3.1 AND 3.2

Proof of Lemma 3.1: We focus on (6). The relation
between the incidence matrices, with and without the anchor
row is

A =

[
−1Tn−1

In−1

]
Aa, Aa =

[
0n−1 In−1

]
A.

Υx? = η (6) can be expressed, distinguishing between the
elements of x? = [x?a, (x

?
Va)T ]T ,

(A⊗ Ip)Σ
−1
z (Aa ⊗ Ip)

T (x?Va − (1n−1 ⊗ Ip)x
?
a) = η,

giving two rows of equations. The first row is redundant (it
equals the second row, multiplied by −1Tn−1⊗ Ip). Using Υa,
ηa (3), the second row is:

Υa(x?Va − (1n−1 ⊗ Ip)x
?
a) = ηa. (22)

Since Υax̂aVa = ηa (5), then all x? satisfy

x̂aVa = x?Va − (1n−1 ⊗ Ip)x
?
a, (23)

and, finally, x̂aV = x? − (1n ⊗ Ip)x
?
a as in (9).

Proof of Lemma 3.2: From Lemma 3.1, vectors x?

satisfying (6) include all anchor–based vectors x̂aV as in (3)–
(5), plus an additive term, which is equivalent to expressing
x̂aV relative to a different coordinate frame, so that

x̂aV = x̂a
′

V + (1n ⊗ Ip)x̂
a
a′ . (24)

Substituting this in (8), we get

x̂cV = Πx̂aV = Π(x̂a
′

V + (1n ⊗ Ip)x̂
a
a′),

= Πx̂a
′

V + (Inp −M c
?)(1n ⊗ Ip)x̂

a
a′ . (25)

Now we use (7), that gives M c
?(1n⊗Ip) = (1n⊗Ip), which

combined with (25), gives x̂cV = Πx̂a
′

V + 0 = x̂c
′

V as in (10),
concluding the proof.

B: PROOFS OF LEMMAS 4.1 AND 4.2

Proof of Lemma 4.1: Since all x? satisfying (14) also
satisfy (6), the proof is completed by using Lemma 3.1.

Proof of Lemma 4.2: From the definition of Υ in (6),
(17) immediately follows. Now we consider MJOR in (12):

MJOR · (1n ⊗ Ip) = 1n ⊗ Ip − hΥ · (1n ⊗ Ip), (26)

where the second term vanishes (17), and we get (18). Finally,
from MJOR in (12), we have

wTMJOR = wT − hwTD−1Υ, (27)

which combined with Def. 3.1 gives

wTMJOR = wT − h(1n ⊗ Ip)
TΥ. (28)

Since Υ is symmetric, the term (1n ⊗ Ip)
T

Υ also vanishes
in (12), and we finally get (16), concluding the proof.

C: PROOF OF PROPOSITION 4.1

In this proof, we compare the eigenvalues of matrices MJOR

(12) and Ma
JOR (Def. 4.1). To study their properties, we relate

MJOR and Ma
JOR with symmetric matrices, and with Jacobi

matrices (Def. 4.3), using the following auxiliary results.
Lemma C.1 (Matrix similarity): Matrices MJOR in (12)

and Ma
JOR in Definition 4.1 are similar, according to [33,

Definition 1.3.1], to the following symmetric matrices:

MJOR v D1/2MJORD
−1/2 = (1− h)Inp + hD−1/2ND−1/2.

Ma
JOR v (Da)1/2Ma

JOR(Da)−1/2

= (1− h)I(n−1)p + h(Da)−1/2Na(Da)−1/2. (29)

MJOR and Ma
JOR have the same eigenvalues as their simi-

lar symmetric counterparts ( [33, Corollary 1.3.4]). Matrices
MJOR and Ma

JOR are diagonalizable ( [33, Theorem 4.1.5],
[33, Observation 1.3.2], [33, Theorem 1.3.7]). The eigenvalues
of MJOR and Ma

JOR are real ( [33, Theorem 4.1.3]).
Proof of Lemma C.1: The fact that matrices

D1/2MJORD
−1/2 and (Da)1/2Ma

JOR(Da)−1/2 are symmet-
ric is concluded from (29) and from the fact that N (11) and
Na (Def. 4.1) are symmetric. The remaining ideas follow from
using the mentioned results in [33] with symmetric matrices.

Lemma C.2 (Spectral radius of Jacobi matrices): Let Υ, D,
and N be as in (11), let Da, Na be as in Definition 4.1, and
let graph G be connected. The spectral radii (Def. 4.2) of the
following Jacobi matrices satisfy:

ρ(D−1N) ≤ 1, and ρ((Da)−1Na) < 1 (30)

Proof of Lemma C.2: We first consider the Jacobi matrix
D−1N . According to [34, Notation 2.3], which studies the
convergence of block iterative methods, matrix Υ in (6) is of
type Zpn and also of type Ẑpn for a connected graph. Matrix Υ
also satisfies [34, Condition (3.2), Proposition 3.1]:

Υii +
1

2

n∑
j 6=i,j=1

(Υij + Υji)
T ≥ 0,∀i ∈ V. (31)
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This comes from the fact that, from (6), we have Υji = ΥT
ij

and Υij + ΥT
ji = 2Υij , so that (31) gives

Υii +

n∑
j 6=i,j=1

Υij = 0p×p ≥ 0,∀i ∈ V. (32)

Therefore, according to [34, Proposition 4.6],ρ(D−1N) ≤ 1,
with Υ, D, and N as in (11).

The convergence of the anchor-based Jacobi method was
proved in [4, Theorem 2], using results from [34], and con-
cluding that, for connected graphs, ρ((Da)−1Na) < 1.

Proof of Proposition 4.1: From Lemma 4.2, we conclude
that MJOR has at least p eigenvalues equal to one. Next, we
study if the modulus of the remaining eigenvalues is strictly
less than 1.

We pay attention to MJOR in (12) and to the Jacobi matrix
D−1N . From Lemma C.2, ρ(D−1N) ≤ 1, with Υ, D, and
N as in (11). The eigenvalues of the JOR system matrix (12)
and of the Jacobi matrix D−1N (Def. 4.3) are related ∀i ∈
V, r = 1, . . . , p by

λi,r(MJOR) = 1− h+ hλi,r(D
−1N), (33)

Since h > 0, and using (30), we get:

− h ≤ hλi,r(D−1N) ≤ h,
1− 2h ≤ λi,r(MJOR) ≤ 1− h+ h = 1. (34)

Now, using h < 1, we get that, ∀i ∈ V, r = 1, . . . , p,

−1 < λi,r(MJOR) ≤ 1. (35)

From (35), we discard the existence of eigenvalues equal
to −1. Recall from Lemma 4.2 that MJOR has at least
p eigenvalues equal to one. Next, we prove that exactly p
eigenvalues are equal to 1, and all the other eigenvalues are
strictly smaller than 1. We will use Lemma C.2, that refer
to anchor–based methods, together with relations between
eigenvalues of anchor–based and centroid–based systems.

We let Ma
JOR, Υa, Da, Na be as in Def. 4.1. The anchor–

based JOR system matrix Ma
JOR is related to the anchor–based

Jacobi matrix (Da)−1Na as follows:

Ma
JOR = (1− h)I(n−1)p + h(Da)−1Na, (36)

λai,r(M
a
JOR) = 1− h+ hλai,r((D

a)−1Na),

∀i = 1, . . . , (n − 1), r = 1, . . . , p. From Lemma C.2,
ρ((Da)−1Na) < 1. Besides, since h > 0,

−h < hλai,r((D
a)−1Na) < h. (37)

Using (36) and (37), and following a similar reasoning as
in (33)–(35), we conclude that, for connected graphs,

− 1 < 1− 2h < λai,r(M
a
JOR) < 1, (38)

∀i = 1, . . . , (n− 1), r = 1, . . . , p.
Now, we use a simplified notation for the eigenvalues of

matrices Ma
JOR and MJOR. We define ∀r = 1, . . . , p,

λi,r = λi,r(MJOR), with i = 1, . . . , n, and

λai,r = λai,r(M
a
JOR), with i = 1, . . . , n− 1. (39)

We consider these eigenvalues are sorted as follows:

λ1,1 ≤ . . . λ1,p ≤ · · · ≤ λn,1 ≤ · · · ≤ λn,p, (40)
λa1,1 ≤ . . . λa1,p ≤ · · · ≤ λan−1,1 ≤ · · · ≤ λan−1,p.

From (35), (38), for connected graphs:

−1 < λ1,1 ≤ · · · ≤ · · · ≤ λn−1,p ≤ 1, and

λn,1 = · · · = λn,p = 1,

−1 < λa1,1 ≤ . . . λan−1,p < 1. (41)

Now we relate the eigenvalues λn−1,p and λan−1,p to prove
that λn−1,p < 1 for connected graphs. We apply results
of symmetric matrices. Although matrices MJOR and Ma

JOR

in (12) and Definition 4.1 are not symmetric, from Lemma C.1,
they are similar symmetric matrices, and they have the same
eigenvalues as their symmetric counterparts. Thus, the eigen-
values of MJOR and Ma

JOR are real.
We can now use [33, Theorem 4.3.15], which applies to

Hermitian matrices, using our non-symmetric matrices MJOR

and Ma
JOR, which states

λi,r ≤ λai,r ≤ λi+1,r, (42)

∀i = 1, . . . , (n − 1), and r = 1, . . . , p. In particular, for i =
n− 1 and r = p,

λn−1,p ≤ λan−1,p ≤ λn,p. (43)

Since, for connected graphs λan−1,p < 1 (41), then

λn−1,p < 1, (44)

which, together with (35) gives

−1 < λ1,1 ≤ · · · ≤ λn−1,p < 1, (45)

i.e., the remaining eigenvalues of MJOR have modulus strictly
smaller than 1, concluding the proof.

D: PROOF OF PROPOSITION 4.2

Proof of Proposition 4.2: First, note that MJOR is
diagonalizable by applying Lemma C.1. Hence, considering
w the weighting matrix given in Def. 3.1, we can write the
left and right eigenvectors of MJOR (VL and VR respectively)
as

V TL =


wT

V TLn−1,p

...
V TL1,1

 =

[
wT

V̄ TL

]
,

VR =
[

(1n ⊗ Ip) VRn−1,p
. . . VR1,1

]
=
[

(1n ⊗ Ip) V̄R
]
. (46)

From Lemma 4.2 and eq. (18), w and (1n ⊗ Ip) are left and
right eigenvectors of MJOR associated to the eigenvalue 1.
VL1,1

, VL1,p
. . . , VLn−1,p

have been chosen to be orthogonal to
w, and VR1,1 , VR1,p . . . , VRn−1,p are orthogonal to (1n ⊗ Ip).
Note that [Vn,1, . . . , Vn,p] = w are not necessarily orthogonal
among them.
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Let λM be the diagonal matrix with the eigenvalues of
MJOR. Then,

V TL MJOR = λMV
T
L , and MJORVR = VRλM ,

(MJOR)k = VRλ
k
MV

−1
R = (V TL )−1λkMV

T
L ,

(MJOR)2k = VRλ
k
M (V TL VR)−1λkMV

T
L . (47)

We focus on term (V TL VR)−1. From [33, Theorem 1.4.7],

V TLi,r
VRj,s

= 0, for all λi,r(MJOR) 6= λj,s(MJOR),

and thus

V TL VR =

[
wT (1n ⊗ Ip) 0

0 V̄ TL V̄R

]
, and (48)

(V TL VR)−1 =

[
(wT (1n ⊗ Ip))

−1 0
0 (V̄ TL V̄R)−1

]
.

Now we consider λM . From Prop. 4.1, for a connected graph,

λn,1(MJOR) = · · · = λn,p(MJOR) = 1, (49)
− 1 < λ1,1(MJOR) ≤ · · · ≤ λn−1,p(MJOR) < 1,

Thus, λM = diag(λn,p(MJOR), . . . , λ1,1(MJOR)), satisfies:

lim
k→∞

λkM =

[
Ip 0
0 0

]
. (50)

Therefore, using (48),

lim
k→∞

(MJOR)k = lim
k→∞

(MJOR)2k

= lim
k→∞

VRλ
k
M (V TL VR)−1λkMV

T
L

= VR

[
Ip 0
0 0

]
(V TL VR)−1

[
Ip 0
0 0

]
V TL

= [(1n ⊗ Ip),0](V TL VR)−1

[
wT

0

]
= (1n ⊗ Ip)(w

T (1n ⊗ Ip))
−1wT , (51)

as M c
? in Definition 3.1, giving (19).

E: PROOF OF THEOREM 4.1
Proof of Theorem 4.1: We let e(k) be he error containing

the difference between the agents estimates x(k) and the
solution x? as in Lemma 4.1

e(k) = x(k)− x?, x(k) = e(k) + x?, (52)

Then, (11)–(12) becomes

e(k + 1) = MJORe(k), e(k) = (MJOR)ke(0). (53)

Using Proposition 4.2,

lim
k→∞

e(k) = lim
k→∞

(MJOR)ke(0) = M c
?e(0). (54)

Reversing (52) we get

lim
k→∞

x(k) = M c
?x(0) + Πx?, (55)

with Π as in Definition 3.1 and x? as in (14). Using Lemma
4.1, x? = x̂aV + (1⊗ Ip)x

?
a,

lim
k→∞

x(k) = Mc
?x(0) + Πx̂a

V + Π(1⊗ Ip)x?
a. (56)

Since Π(1 ⊗ Ip) = 0p×p, and x̂cV = Πx̂aV (Definition 3.1),
we get (20).

F: PROOFS OF LEMMAS 5.1 AND 6.1
Proof of Lemma 5.1: The result follows from the

proof of Proposition 4.1, using h < 1/2 in (34) to get
0 < λi,r(MJOR) ≤ 1, instead of (35).

Proof of Lemma 6.1: From Lemma 5.1, and Prop. 4.1
and 4.2, the eigenvalues of MJOR are positive, and

ρess(MJOR) = ρ (MJOR −M c
?) = λn−1,p, (57)

with λn−1,p as in (43)–(45). From (38) with 0 < h < 1/2,
the eigenvalues of Ma

JOR are positive,

and ρ(Ma
JOR) = λan−1,p, (58)

with λan−1,p as in (43). And thus, (21) can be concluded
from (43), (57) and (58).
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mento de Informática e Ingenierı́a de Sistemas, Uni-
versidad de Zaragoza, where he has also occupied
the Head Teacher position. Since 2009, he has been a
Full Professor with this department. He is a member
of the Instituto de Investigación en Ingenierı́a de

Aragón. His current research interests include control systems, computer
vision, visual robot navigation, and multivehicle cooperative control.


	Introduction
	Related Work on Distributed Relative Localization
	Additional Works Related to the Localization Problem
	Statement of Contributions

	Preliminaries
	Weighted Centroid Reference Frame
	Weighted Centroid Localization
	Conditions on h for Avoiding Ringing
	Comparison between Anchor and Centroid–based strategies
	Simulations
	Conclusions
	 A: Proofs of Lemmas 3.1 and 3.2
	 B: Proofs of Lemmas 4.1 and 4.2
	 C: Proof of Proposition 4.1
	 D: Proof of Proposition 4.2
	 E: Proof of Theorem 4.1
	 F: Proofs of Lemmas 5.1 and 6.1
	References
	Biographies
	Rosario Aragues
	Antonio González
	Gonzalo López–Nicolás
	Carlos Sagues


