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Interfaz gestual para el control de un robot humanoide mediante
camaras RGB-d

RESUMEN

La divulgacion cientifica, cuya finalidad es hacer accesible la ciencia al publico en general,
es una tarea que cada vez estd tomando mayor relevancia. Este proyecto trata el estudio de dos
campos de investigacién atractivos para el piiblico en general y con muchos resultados interesantes
en los dltimos anos, como son la robotica y la visién por computador. En particular, el proyecto se
centra en el uso del dispositivo Kinect como interfaz para la interaccién con el robot RoboNova-1,
y en el diseno de una actividad basada en ello para utilizar como taller de divulgacion cientifica.

La aparicién del sensor Kinect ha supuesto una revolucion en el campo de la visién por com-
putador y de la robética, por las posibilidades que ofrece el mapa de profundidad capturado (imagen
aumentada con informacién de distancia a la cdmara del elemento representado en cada pixel) y
por su bajo coste. Gracias al mapa de profundidad que Kinect aporta en tiempo real, se facilita
mucho el trabajo de reconocimiento y segmentacién de objetos en 3D.

Esta caracteristica facilita la segmentacion de las distintas partes de una persona enfrente de
la cdmara, convirtiendo la kinect en un dispositivo muy apto para crear interfaces con gestos.
El objetivo general del proyecto es la implementacién de un interfaz gestual, mediante cdmaras
RGB-d, con un robot humanoide y disenar con ello una actividad orientada a la divulgacion de la
robética y la inteligencia artificial para ninos y jévenes.

En el proceso de desarrollo podemos distinguir dos partes importantes, que son el reconocimien-
to de los gestos y la comunicacion con el robot humanoide. Para el reconocimiento de los gestos
se usa la imagen con informacién 3D captada por la cdimara RGB-d para identificar y segmentar
donde esta el usuario de la aplicacién. La figura de la persona nos sirve para crear una estructura
de esqueleto que captard los movimientos de la persona y en los brazos se seleccionan las zonas
que determinaran las manos en 3D. Posteriormente este subconjunto de puntos en 3D se proyecta
en blanco sobre una imagen negra, obteniendo la mano en 2D. Tras el filtrado del ruido, estas
imégenes seran utilizadas por los métodos de clasificacién para determinar a que gesto pertenece
cada captura.

El robot RoboNova-1 dispone de un software propio para su programacion desde Windows.
Esta aplicacién nos permitird introducir programas y secuencias de movimiento en la memoria
interna del robot utilizando el programa RoboBasic. La comunicacién con el robot se realizara
mediante un mdédulo disefiado para otro robot, por lo que hubo que adaptarlo a las especificaciones
de protocolos de comunicacion utilizados por el chip MR-C3024 del RoboNova-1.

La aplicacion desarrollada se divide en dos bloques. El primero contiene las aplicaciones que nos
servirdn para capturar los datos necesarios en el entrenamiento de los métodos de clasificaciéon de
gestos. En el segundo bloque encontramos la aplicacién principal que hara uso del interfaz gestual
y con la que se evaluard el rendimiento de los métodos de clasificacion.

Una vez desarrollado el interfaz se preparé un taller que se llevé a cabo durante la celebracion
de la “V Semana de la ingenieria y arquitectura”. En él participaron estudiantes desde 32 de ESO
hasta 22 de Bachiller. Durante una demostracién se les explicé el funcionamiento del sistema y
posteriormente fue probado por los estudiantes. Se obtuvo un buen resultado en el funcionamiento
y buena aceptacién entre los asistentes.
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Capitulo 1

Introduccion

1. Motivacion

La divulgacion cientifica, cuya finalidad es hacer accesible la ciencia al puiblico en general, es
una tarea que cada vez estd tomando mayor relevancia. Una manera de hacer llegar estos temas
y trabajos al mayor nimero posible de personas, y de manera mdas comprensible y amena, es
presentandolo mediante talleres interactivos y con herramientas atractivas para ellos.

Este proyecto trata el estudio y divulgacion de dos campos de investigacion atractivos para el
publico en general y con muchos resultados interesantes en los tltimos anos, como son la robdtica
y la visién por computador. Recientemente, el campo de los videojuegos a acercado al ptblico en
general muchos sensores que tradicionalmente se utilizan en robdtica, y ahora son mas comunes,
y también més asequibles debido a la mayor produccién. Un ejemplo son las cdmaras RGB-d
(cdmaras de visién y profundidad), como la utilizada en el sensor Kinect.

Este proyecto se centra en el uso del dispositivo Kinect como interfaz para interaccién con un
robot (ver Figura 1.1). El sensor Kinect! es un producto de Microsoft comercializado para su uso
con la Xbox 360 (Anexo B). Los sensores RGB-d estén generando grandes avances en el campo del
reconocimiento visual automaético [1, 7], ofreciendo un complemento muy valioso a los algoritmos
de visién por computador que utilizan solamente sensores de visién [2, 10]. Por ejemplo, en el
caso concreto que se estudia en este proyecto, reconocimiento de gestos, permiten una captura y
segmentacién de las zonas de interés de la imagen (las manos) mucho més eficaz que si usaramos
solamente una cdmara convencional [3, 5, 9].

L= l s

Figura 1.1: (1) El sensor Kinect captura al usuario. (2) Se reconoce el cuerpo del usuario y sus
manos. (3) Las manos son analizadas. (4) Se transmite la orden al robot.

Thttp:/ /www.xbox.com/es-ES/kinect



Aprovechando por tanto las ventajas de este sensor para crear interfaces con gestos [4, 5, 6, 8],
se propone disefiar un interfaz para comunicar con un robot y disenar una actividad orientada a
la divulgacion de la robética y la inteligencia artificial para estudiantes tanto de primaria, como
de secundaria y bachiller. La idea de este proyecto es formar parte de una serie de actividades de
divulgacién realizadas periédicamente por el grupo de Robdtica, Percepcién y Tiempo Real del
DIIS.

2. Objetivos y alcance del proyecto

El objetivo general del proyecto es la implementacién de un interfaz gestual mediante cimaras
RGB-d con un robot humanoide y disefiar con ello una actividad orientada a la divulgacién de
robdética e inteligencia artificial para ninos y jovenes. Las tareas més en detalle realizadas en este
proyecto han sido las siguientes:

= Estudio, instalacién y familiarizacién con el entorno ROS [12], incluyendo drivers Openni
para comunicacién con sensores Kinect y librerfas PCL [11] y OpenCv para facilitar las
operaciones con iméagenes 3D y 2D respectivamente.

= Puesta en marcha de la plataforma robdtica a utilizar. Estudio de las especificaciones, utili-
dades y posibilidades de comunicacién remota del robot humanoide disponible para el proyec-
to, el robot Robonova-1.

= Estudio de algoritmos sencillos para deteccién de gestos mediante sensores RGB-d.

= Implementacién o adaptacién/mejora de los métodos estudiados en la literatura, para que
funcionen como interfaz del sensor Kinect con el robot disponible (a través del sistema ROS
instalado en un ordenador portatil, donde se realizaran todos los calculos relacionados con el
reconocimiento de gestos).

= Disefo de una actividad/taller que haga uso de el interfaz/sistema de comunicacién disenado.

= Realizacién de pruebas y documentacién de las actividades a realizar, para permitir el uso
de los resultados de este proyecto en actividades préximas de divulgacion cientifica.

3. Herramientas y entorno

La ejecucién del interfaz se ha realizado sobre ROS [12], un pseudo sistema operativo utilizado
para gestion de plataformas robéticas y sensores relacionados. ROS provee los servicios estandar
de un sistema operativo tales como abstraccién del hardware, control de dispositivos de bajo nivel,
implementacién de funcionalidad de uso comun, paso de mensajes entre procesos y mantenimiento
de paquetes. Se ha utilizado la versién “ROS Electric’?, la calificada como estable. El proyecto se
ha desarrollado bajo un sistema operativo Ubuntu 10.04 “Lucid Lynx”3, siendo éste sobre el que
“Willow Garage”, principal desarrollador del sistema ROS, nos ofrece soporte.

El manejo del sensor Kinect se ha realizado mediante el driver Openni [22] y con las librerias
PCL[11] y OpenCv [23] tenemos lo necesario para el tratamiento de imdgenes en 3D y 2D. Estas
librerias las podemos encontrar dentro de “ros-pkg”, un repositorio de paquetes aportados por la
contribucion de usuarios. Para la comunicacién con el robot RoboNova-1 se utiliza “Robobuilder-
ROS-package™. Un script de Python para integrar las plataformas Robobuilder en ROS.

Las modificaciones en el cédigo del RoboNova-1 se han realizado en el capitulo 2 con el software
que el propio robot nos proporcionaba. Este software es un entorno de programaciéon de Windows
basado en el lenguaje RoboBasic, especializado y orientado a robots.

2Robot Operating System: http://www.ros.org/wiki/
Shttp://www.ubuntu.com/
4https://code.google.com/p/robobuilder-ros-pkg/# Robobuilder ROS_package written_in_Python



4. Estructura del documento

En esta memoria se describe el proceso para la creacién de un interfaz gestual mediante ca-
maras RGB-d con un robot humanoide. En el capitulo 2 se explicard el método utilizado para el
reconocimiento y segmentacion de las manos, asi como el tratamiento de las imagenes y los métodos
de clasificaciéon probados. En el capitulo 3 se explicara el sistema de comunicacién con el robot
RoboNova-1 y su programacion. En el capitulo 4 se detallara la aplicacion realizada. En el capitulo
5, las conclusiones recopilan el resultado del proyecto, lineas de trabajos futuros y una valoracion
personal del proyecto fin de carrera. Finalmente encontraremos varios anexos con informacién de
interés sobre el sistema, dispositivos utilizados y los resultados completos de las pruebas realizadas.

5. Planificacion

En el diagrama de Gantt que se muestra en la Figura 1.2 queda reflejada la gestion del tiempo
utilizada para la realizaciéon de este proyecto. En el se detallan las tareas que se han realizado
y el tiempo invertido en ellas. Entre las tareas realizadas hay tareas de estudio, documentacion,
realizacién de tutoriales, prueba de programas de reconocimiento, implementacién del interfaz y

presentacién de talleres durante la celebracién de la “V semana de la ingenierfa y arquitectura™.

Shttp://www.semanaingenieriayarquitectura.com/
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Capitulo 2

Reconocimiento de Gestos

Tal y como se ha descrito en los objetivos, se requeria implementar un interfaz gestual mediante
camaras RGB-d con un robot humanoide.

En este proceso, podemos diferenciar dos partes importantes, el reconocimiento de los gestos y
la comunicacién con el robot humanoide, que se describiran en éste y el siguiente capitulo respec-
tivamente.

En el proceso para reconocer un gesto, debemos pasar por varias etapas como muestra el
diagrama de la Figura 2.1. En las diferentes secciones de este capitulo se explicard los diferentes
pasos seguidos en el proceso de reconocimiento. En primer lugar deberemos reconocer y segmentar
las manos (Seccién 1). A continuacién, utilizar filtros que procesen la imagen de las manos para
facilitar el reconocimiento (Seccién 2). Finalmente se realizard la clasificacién del gesto capturado
(Seccién 3).

(1) (2) (3) (4) (5)

Figura 2.1: Proceso de reconocimiento de gestos. (1)(2)(3) Reconocimiento y segmentacién de las
manos. (4) Tratamiento de la imagen. (5) Clasificacién del gesto .

1. Reconocimiento y segmentacion de las manos en datos
3D

Los sensores RGB-d nos proporcionan una secuencia de imagenes en el formato tipico RGB
sincronizado con la correspondiente imagen de profundidad en tiempo real, como se ve en la Figura
2.2. Esta segunda parte, las imdgenes de profundidad, son la parte que se ha utilizado para el
reconocimiento y segmentacion de las manos en el desarrollo del interfaz.

En el proceso de reconocimiento de gestos, debemos pasar por varias fases hasta llegar a poder
comparar diferentes muestras de manos, como se ha podido ver en la Figura 2.1.



Figura 2.2: Imagenes capturadas por el sensor kinect. En la derecha podemos ver la imagen de la
camara RGB y en la izquierda la imagen captada por el sensor de profundidad.

Detecciéon de la persona y las manos desde los datos 3D

Como se puede observar en el diagrama anterior (Figura 2.1), la primera parte de este proceso
es reconocer a la persona que va a utilizar el interfaz. Para ello, existen diferentes programas,
implementados con métodos diferentes, para el reconocimiento del cuerpo usando cdmaras RGB-d.
Después de realizar un estudio entre varios, se decidié utilizar el siguiente por ser el mas sencillo
de integrar con el entorno de programacién requerido.

Se ha partido del programa “Hand Detection” del paquete KinectDemos de las librerias de
ROS. Este programa se encarga de detectar, dentro de la imagen de profundidad, la figura de
personas. Esta seleccion la realiza mediante la busqueda de zonas de la imagen con variaciones de
posicién o de profundidad en la secuencia de video (Figura 2.3). Con este proceso se seleccionan
cuerpos moviles y se excluyen objetos que puedan aparecer dentro del drea de visién de la Kinect.

Figura 2.3: Reconocimiento del usuario.

Con la persona en cuestion seleccionada, procede a buscar una silueta determinada de ésta,
con las manos a ambos lados de la cabeza, la cual debes imitar para que sea capaz de crear un
“esqueleto” (Figura 2.4) que determinard la posicién del cuerpo y los movimientos que se realicen.
A partir de la estructura del esqueleto se localiza la posicién final del brazo, las munecas, y busca
la nube de puntos situados alrededor de esa posicién creando las manos.

Finalmente, las nubes de puntos son “publicadas” en ROS como “/hand0_fullcloud” mano
izquierda y “/handl_fullcloud” mano derecha para su posterior utilizacién, como podemos ver
en la Figura 2.5. més adelante en el anexo A se detalla en que consiste el proceso de publicacién
de informacién en ROS, basicamente es una manera para compartir informacién entre procesos
ejecutados en paralelo.

Thttp:/ /www.ros.org/wiki/mit-ros-pkg/Kinect Demos



Figura 2.4: En primer lugar se realiza el reconocimiento del cuerpo y creaciéon de un esqueleto, como
podemos ver en la imagen de la izquierda. Posteriormente se seleccionan los puntos que componen
la mano, como muestra la imagen de la derecha.

Segmentacion de las manos y conversién a 2D

1

Detect_hands

Publica

Subscribe

/HandO_fullcolud

Publica

/Hand1_fullcloud

Subscribe

Robobuilder

Motion

Figura 2.5: Diagrama de comunicacién de procesos en ROS. Vemos como “interfaz” se subscribe
a /Hand0_fullcloud y /Hand1_fullcloud que publica “Detect_Hands”. Interfaz convierte las manos
a 2D, clasifica las imégenes y posteriormente realiza el mismo proceso para comunicar al robot la
accién a realizar.

Cuando la aplicacién principal comience su ejecucién se subscribird a los “/hand0_fullcloud” y
“/hand1_fullcloud” que detect_hands estard publicando, y asf comenzard recibir las nubes de puntos
encontradas correspondientes a ambas manos. En este momento poseemos unas nubes de puntos
en 3D que representan las manos (Figura 2.6), pero es dificil y costoso el trabajar con los datos
en este formato, por lo que el siguiente paso serd la transformacion de éstas a imagenes en 2D con
las que realizaremos la clasificaciéon de las diferentes posturas de la mano. Para el andlisis de las
imagenes se utilizan las bibliotecas de OpenCv.



Figura 2.6: La imagen superior muestra las nubes de puntos en 3D de las manos. La inferior,
iméagenes en 2D de las nubes de puntos.

Debido a la versién de la libreria perception_pcl-1.0.2, libreria de PCL soportada por ROS
Electric, no disponemos de muchas funciones incorporadas en versiones posteriores como conversion
de tipos o el guardar una nube de puntos como imagen. Por otro lado, ROS dispone también de
librerias para la conversién de tipos, como cv_bridge, pero en el caso de estas nubes de puntos no
ordenadas el resultado no era el deseado. Por lo tanto, se ha implementado un algoritmo propio que
convierte la nube de puntos en el tipo de datos requerido en opencv, en particular crea imagenes
(2D) proyectando cada punto de la nube en blanco sobre una imagen negra.

2. Preprocesado de las imagenes de las manos 2D

Al convertir las manos a imagenes en 2D, el primer problema encontrado es que dependiendo
de la posiciéon de la mano, p.e. palma abierta o palma cerrada, tienen diferente tamano, pero
también lo tienen dos manos a diferente distancia del sensor o las manos de un adulto y un nifno.
Eso creaba un problema a la hora del reconocimiento del gesto. Una posible solucion era insertar
muestras de diferentes tamafnos de cada uno de los gestos, pero para llevar a cabo esta solucién era
necesario insertar una cantidad de muestras muy superior y la necesidad de realizar las pruebas con
mas gente, con diferentes tamanos de mano, y a diferentes distancias de la Kinect. Finalmente, la
solucién a este problema fue el redimensionado de las capturas hasta igualarlas a las de las muestras
(Figura 2.7). Para ello, al arranque de la aplicacién, se toma el tamafio actual de la palma de la
mano y se usa con las siguientes imégenes como referencia.

La creacién de las imagenes se realiza dibujando, en color blanco, cada uno de los puntos que
componen las manos en 3D, sobre un fondo negro. Para la eleccién del tamano a utilizar tuve que
tener en cuenta varios parametros, de los cuales se seleccionaron los de mejores resultados tras las
pruebas.
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Figura 2.7: Imagen palma (izquierda). Imagen puno desproporcionada (centro). Imagen pufio man-
teniendo las proporciones (derecha).

Tamano de la imagen y de la proyeccion de los puntos

Al haber una cantidad variable de puntos en la nube de cada mano, hubo que realizar pruebas
con el tamano de la imagen y el tamano del punto a utilizar. En la Figura 2.8 podemos ver varios
ejemplos.

Figura 2.8: muestras de diferentes configuraciones de la imagen

Tras las pruebas se pudo comprobar que se conseguian rendimientos similares con imagenes de
diferentes tamanos, utilizando el grosor del punto adecuado. Tras finalizar las pruebas y analizar
los resultados se seleccioné las siguientes configuraciones:

= Tamano en pixeles del lado de la imagen de la mano = 100
= Propiedades del punto:

- Radio del circulo en pixeles = 0



- Grosor de la linea en pixeles = 2

Este resultado coincide con la imagen inferior izquierda de la Figura 2.8.

Filtrado del ruido

Tras una preseleccion de varias combinaciones de tamano de imagen y de punto, se repitieron
las pruebas incorporando pasos de filtrado a la imagen para suavizarla y evitar ruido, con la
intencion de que mejorase el resultado del reconocimiento como se muestra en muchos ejemplos de
la literatura [13]. Las siguientes pruebas se realizaron con filtro Gaussiano [14] y filtro de mediana
[15].

El indice utilizado para los filtros indicara el tamano del recuadro a tener en cuenta, centrado
en el pixel que se va a modificar, utilizado para obtener el nuevo valor.

Filtro Gaussiano

Un desenfoque Gaussiano es el resultado de una imagen difuminada por una funciéon Gaussiana.

Es un efecto ampliamente utilizado para reducir el ruido de la imagen y reducir los detalles. El

valor de cada pixel sera el resultado del producto de la funcién Gaussiana aplicada en cada una de

las dimensiones [16]:
1 m2+y2

G(r,y) = ——=e 22 2.1

(r.9) = 5 (21)

En un filtro Gaussiano, el indice utilizado nos determinara el valor de o, la desviacién de

la distribucién Gaussiana (Figura 2.9). El valor resultado serd una media ponderada, realizada
mediante circulos concéntricos, de los valores del recuadro seleccionado.

¥y

Figura 2.9: Imagen original (izquierda). Filtrado con Gaussian Blur con indice 7 (centro). Filtrado
con Gaussian Blur con ndice 23 (derecha).

Filtro de mediana

El filtro de mediana es una técnica de filtrado digital no lineal, a menudo utilizado para
eliminar el ruido. Tal reduccién de ruido es un tipico paso de tratamiento previo para mejorar los
resultados del procesamiento posterior, como la deteccién de bordes en una imagen. El Filtrado de
mediana es ampliamente utilizado en el procesamiento digital de la imagen, ya que, en determinadas
condiciones, conserva los bordes mientras elimina ruido de la imagen [17].

Este filtro reemplaza cada pixel con la mediana de sus pixeles vecinos localizados en el cuadrado
que rodea al pixel en cuestién, como muestra el ejemplo de la Figura 2.10.

En este caso, el indice utilizado para los filtros indicard el tamano del recuadro a tener en
cuenta, centrado en el pixel que se va a modificar, utilizado para obtener el nuevo valor.

10
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Figura 2.10: Ejemplo para la bisqueda del valor que se asignaréd (en verde, abajo) al pixel central
(en verde, arriba) utilizando un filtro de mediana.

¥y

Figura 2.11: Imagen original (izquierda). Filtrado con Median Blur con indice 7 (centro). Filtrado
con Median Blur con ndice 23 (derecha).

3. Algoritmos de clasificacion de las imagenes 2D para re-
conocer las distintas posturas de la mano

Una vez obtenidas las imagenes binarizadas de la mano detectada, se realiza el tltimo paso
de decidir a que gesto se asemeja mas. En una primera version se realizé la comparacion respecto
a unas muestras de cada gesto comparando la cantidad de pixeles que se diferenciaban respecto a
cada muestra. El resultado fue bueno, pero con un nimero reducido de gestos y muestras por gesto.
Este sistema implica el comparar la nueva imagen capturada con todas las muestras y eso es un
proceso costoso si utilizamos un nimero elevado de muestras que nos permitan el reconocimiento
variando el dngulo o posicién de la mano. Por el contrario, si se utilizan pocas muestras por gesto,
supone el tener que hacer el gesto con una posicién muy semejante a la de las muestras, ya que en
caso contrario el resultado tenia una alta probabilidad de ser erréneo.

Para una segunda version, se procedié a analizar los resultados obtenidos con otros dos métodos
de clasificacion mas complejos y eficientes. De los diferentes métodos de clasificacion descritos en
la literatura [19] se decidié utilizar uno de los més populares de cada gran familia de clasificadores:
un método de tipo generativo, K Nearest Neighbors, y otro de tipo discriminativo, Support Vector
Machine.

K Nearest Neighbors

El método de clasificacién basado en K Nearest Neighbors[18], KNN, es un método de clasi-
ficacion “lazy learning” de tipo generativo, que estima, a partir de la informacién proporcionada
por un conjunto de vectores de entrenamiento, el valor de la funcién de densidad de probabilidad
de que un elemento pertenezca a una clase determinada. Para el reconocimiento de patrones, el
algoritmo KNN es un método de clasificacién de objetos basado en los ejemplos del entrenamiento
mads cercanos en el espacio de los elementos.

El entrenamiento se realiza con vectores en un espacio multidimensional, asigndndole a cada
uno una etiqueta de la clase a la que pertenece. Para el proceso de clasificacién se seleccionan los
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k ejemplos mas cercanos y el nuevo vector es clasificado como la clase que mas se repita entre los
ejemplos seleccionados. Podemos ver un ejemplo en la Figura 2.12.

\
v
\
'
'
'
'
i
’

Figura 2.12: Ejemplo del algoritmo KNN. Deseamos clasificar el interrogante verde como tridngulo
o cuadrado. Con k = 3, éste es clasificado como la clase tridngulo, ya que hay un cuadrado y 2
tridngulos, dentro del circulo que los contiene. Si k = 5, éste es clasificado como la clase cuadrado,
ya que hay 2 tridngulos y 3 cuadrados, dentro del circulo externo.

Generalmente se utiliza la distancia euclidea para determinar quienes son los vecinos mas
cercanos:

Support Vector Machines

El método de clasificacion basado en Support Vector Machines [20], al contrario del anterior,
es un método de tipo discriminativo, que modela la dependencia de una variable no observada en
una variable observada. Dentro de un marco estadistico, esto se hace mediante el modelado de la
distribucién de probabilidad condicional[21] P (y|z), que se puede utilizar para predecir y a partir
de z. Este método realiza la clasificacién mediante la construccién de uno o varios hiperplanos
N-dimensionales que separan los datos de manera 6ptima en dos categorias. En la Figura 2.13
vemos un ejemplo en 2D .

4. Pruebas y analisis de resultados

Para buscar los pardametros en los que se obtuviesen los mejores resultados se ha realizado
una bateria de pruebas evaluando los diferentes pardmetros y almacenando su mejor o peor com-
portamiento en la clasificacién deseada. Para la evaluacién se han utilizado las medidas estandar
utilizadas en problemas de clasificacién, precision-recall®, que resumen lo obtenido en cada prueba
para su posterior comparacién.

Las pruebas se han realizado mediante secuencias grabadas anteriormente para poder realizar
una evaluacién exhaustiva sobre los mismos datos con distintas opciones. La grabacién de estos
datos se realizaba siguiendo unos patrones para obtener una cantidad lo mds similar posible de
muestras por cada gesto, y asi realizar comparaciones més equitativas. Mediante el programa
analiza se obtienen unas tablas con los resultados de las clasificaciones de ambas manos para los
dos sistemas de clasificacién a comparar.

2http://en.wikipedia.org/wiki/Precision_and_recall
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Figura 2.13: Ejemplo en 2D de la separacién entre dos clases con el méximo margen posible.

El programa analiza se invoca de la siguiente manera:

rosrun interfaz

analiza nombre_calibracion
tipo_linea filtro indice_filtro video

resolucion radio_punto

grosor_linea

nombre_calibracion: nombre del directorio donde se encuentra las imagenes utilizadas para la

calibracion

resolucion: dimensién del lado de la imagen en pixeles

radio_punto: radio del circulo utilizado para cada punto al proyectarlos en la imagen

grosor_linea: grosor de la linea utilizada en los circulos de cada linea

tipo_linea: tipo de linea utilizado para el dibujo de cada punto

- 1= 8-connected line
- 2 = 4-connected line
- 3 = CV_AA: antialiased line

filtro:

- 0 = sin filtro
- 2 = Gaussian Blur
- 3 = Median Blur

indice_filtro: indice para el filtro que se utilizard. Este valor debe ser niimero impar.

video: Nombre del video del cual se desean obtener los resultados del andlisis

Para cada uno de los experimentos se muestran dos tablas con los resultados obtenidos con cada
uno de los métodos de clasificacién, como podemos observar en la Tabla 2.1. En cada una de ellas
la parte izquierda y derecha de la tabla corresponde a los resultados de reconocimiento de la mano
izquierda y derecha respectivamente.

Cada tabla muestra el resultado de reconocer los gestos 1 y 2 (ejemplos en Figura 2.14), y
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ninguno de los gestos. Las columnas muestran cuantos tests correspondientes a esa clase han sido
clasificados como cada una de las clases posibles. Es decir, el resultado 6ptimo seria obteniendo
una diagonal, con todos los tests en las casillas 1-1 y 2-2. El criterio que buscamos es el clasificador
con mayor porcentaje de aciertos obtenido.

Observando los resultados obtenidos de las pruebas, los cuales podemos encontrar en el anexo
D, se observa que dependiendo del método de busqueda que se utilice los resultados varian. En
ambos casos coincide la configuracion de la imagen que da resultados mejores, es decir, el tamano
de la imagen, radio y grosor del circulo. Sin embargo, la mejor eleccién para el filtro utilizado varia
segin el método de clasificacién. Si realizamos la busqueda por k nearest neighbor el mejor
resultado lo obtenemos si utilizamos un filtro Gaussiano con indice 19, como vemos en la tabla
2.1, y, en cambio, si utilizamos Support Vector Machine el mejor resultado lo obtenemos con
un filtro Median Blur con indice 5, que se encuentran en la tabla 2.2.

Los resultados han sido los siguientes:

= Para la clasificacién con KNN:

- rosrun interfaz analiza dos2-100-0-2-2-19 100 0 2 3 2 19 luisPalmOk2

o tamano en pixeles del lado = 100
o radio del circulo = 0

[¢]

grosor de la linea = 2
o tipo de linea = CV_AA
filtro = Gaussian Blur

[¢]

o indice para el filtro = 19

Figura 2.14: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

= Para la clasificacién con SVM:

- rosrun interfaz analiza dos2-100-0-2-3-5 100 0 2 3 3 5 luisPalmOk2

o tamano en pixeles del lado = 100
o radio del circulo = 0

o grosor de la linea = 2

o tipo de linea = CV_AA

o filtro = Median Blur

o indice para el filtro = 5

Tras realizar las pruebas y seleccionar el formato de imagen con el que se obtiene mejores
resultados, se ha realizado un nuevo analisis tras la inserciéon de mas muestras para la calibracion
del sistema. En las pruebas anteriores se analizaba partiendo de 50-60 muestras por gesto. En esta
ocasién se realizard el analisis con aproximadamente 300 muestras por gesto. Con los datos de la
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 J0[3]0 0 J0[37]0
1 [0[54][10 1 Jo0[52]11
2 [0[12[59 | 2 [0][15]57

Precision obtenida mediante KNN = 0.78

LEFT [0] 1 [ 2 [RIGHT[O] 1 [ 2 |
0 Jof[2]1 0 0] 013
1 J0[59]5 1 0 | 13 ] 50
2 [0]56]15 2 0] 56| 16

Precision obtenida mediante SVM = 0.37

Tabla 2.1: Resultados de las pruebas

Figura 2.15: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

[LEFT [0 1 [ 2 [RIGHT [0 1 [ 2 |
0 J1]J1 1 0 0[2]1
1 [1]40]22 1 0]28]35
2 [0]10]62 2 0] 6|66

Precision obtenida mediante KNN = 0.71

LEFT[0] 1 [ 2 [RIGHT[O0] 1 [ 2 |
0 Jo[2T1 0 0] 073
1 J1]53]9 1 0]39]24
2 JoJ11]e1 2 9146 ] 26

Precision obtenida mediante SVM = 0.65

Tabla 2.2: Resultados de las pruebas utilizando un filtro de mediana

tabla 2.3 podemos observar que en el caso de KNN el resultado no varia, en cambio en el de SVM
mejora notablemente.

Estos resultados muestran que si se disponen de pocas muestras para el entrenamiento el uso
del método de clasificacion “k-nearest neighbor” es mas eficiente que con “Suport Vector Machine”.
En cambio, si aumentamos el nimero de muestras el resultado es similar con ambos métodos.
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[LEFT [0 ] 1 [ 2 [RIGHT [0 1 ] 2 |
0 Jo[4T]o0 0 Jo[4]o0
1 [0[48]8 1 [0[46] 9
2 |08 34| 2 Jo[s8[™:

Precision obtenida mediante KNN = 0.79

LEFT [0 1 [ 2 [RIGHT[O0[ 1 | 2 |
0 Jo[4To 0 0] 4

1 Jo[47]9 1 0[46] 9
2 0] 636 2 0] 7135

Precision obtenida mediante SVM = 0.8

Tabla 2.3: Resultados de las pruebas utilizando un filtro de mediana
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Capitulo 3

Comunicacion con robot
humanoide RoboNova-1

Como ya se ha indicado anteriormente, para el desarrollo de este proyecto se ha utilizado el
robot RoboNova-1(figura 3.1). El RoboNova-1 es un robot humanoide que lleva incorporados 16
servos digitales. A pesar de que también cuenta con un sensor de infrarrojos para su control desde
un mando a distancia, la comunicacién se realizard por medio de una conexién linea serie con el
ordenador. Si nos dirigimos al anexo C encontraremos informacién mas detallada sobre el robot
RoboNova-1.

Figura 3.1: Robot humanoide RoboNova-1

1. Robobuilder-ros-pkg

Para el control del robot he utilizado el paquete Robobuilder-ros-pkg incorporado en el reposito-
rio de ROS por RoboSavvy[24]. En él encontramos un controlador para la plataforma “Robobuilder”,
la cual lleva un sistema de comunicacion, por linea serie, con algunas similitudes al que utiliza el
“RoboNova-1”. El controlador es un script Python'. Este realiza una subscripcién a “robobuilder_motion”,
por donde se le mandaran las ordenes de las acciones a realizar entre las que tiene programadas en
el programa interno.

1Se necesita una versién de Python igual o superior a la 2.7
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Debido a las diferencias entre los protocolos de comunicacién entre estos dos modelos, hubo
que realizar algunas modificaciones en este script:

= Modificar la velocidad de conexién a 9600 bits/seg.
= Desactivar el modo de control directo.
= Realizar comprobacién del puerto al que esta conectado el robot.

Robobuilder utiliza una conexién a 11520 bits/seg y para el control directo utiliza otros protocolos
de comunicacién diferentes a los de RoboNova-1. Por otro lado, el script esta preparado para realizar
la conexién en el puerto USBO. Pero utilizandolo de manera simultanea con el sensor Kinect, éste
puede ser reconocido facilmente en algin otro puerto y se debe comprobar el puerto al que se
encuentra conectado nuestro robot.

Para la comunicacién con la memoria interna del robot, donde se encuentran las secuencias de
movimiento preprogramados, éste script es valido para este proyecto. En el modo de control directo,
comunicacion inmediata con los motores del robot, debemos realizarla de manera independiente a
este script siguiendo las especificaciones de protocolo del chip “Hitec MR-C3024723.

Para realizar una accién de la memoria interna del robot deberemos incluir el fichero robobuilder/Motion.h
en el que tenemos definida la variable que utiliza la comunicacién con el robot y publicarlo ROS
para que el robot reciba la instruccién:

ros::Publisher motion_;

motion_ = n.advertise<robobuilder::Motion> ("robobuilder_motion”, 1);
robobuilder::Motion m;

m.motion = (int8_t)7;

motion_.publish(m);

Figura 3.2: Robot humanoide RoboNova-1 ejecutando la accién 7 programada en su memoria
interna.

2http://www.ceautomatica.es/sites/default /files/upload/10/CEABOT /recursos/C3024_Serial Protocol.pdf
Shttp://www.ceautomatica.es/sites/default /files/upload/10/CEABOT /recursos/controller %20serial %20interface.pdf
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En el caso de control directo nos comunicaremos mandando las instrucciones directamente al
robot por medio de linea serie:

std::vector<unsigned char> command;
command.push_back(0xE6);
command.push_back(0x07);
command.push_back(0xB4);
sendCommand(command);

El valor “OxE6”indica la instruccién de cambiar la posiciéon de un servo, el byte segundo indica el
servo a controlar y por ultimo la posicién a la que debe trasladarse. En este caso el resultado seria
el que muestra la Figura 3.3.

Figura 3.3: Robot humanoide RoboNova-1

2. Programacion del RoboNova-1

El robot posee un software propio basado en el lenguaje RoboBasic, que como su nombre indica
es un lenguaje del tipo Basic pero especializado y orientado a robots(Figura 3.4).

Con la siguiente rutina como ejemplo, el robot procederia a sentarse y, tras esperar un segundo,
volveria a levantarse a la velocidad indicada, en este caso 8:

SPEED 8

GOSUB sit_down_pose
DELAY 1000

GOSUB standard_pose
GOTO main_exit

sit_down_pose y standard_pose son rutinas en las que se especifican los diferentes movimientos que
deben realizar cada uno de los motores del robot:
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Figura 3.4: Entorno de programacién roboBASIC

standard_pose:

MOVE G6A, 100,
MOVE G6D, 100,

WAIT

MOVE G6B, 100,
MOVE G6C, 100,

WAIT
RETURN

76,
76,

145, 93,
145, 93,

100,
100,

100
100

100
100

30,
30,

80, 100,
80, 100,

100,
100,

Mediante el parametro “G6?” indicamos la extremidad en la que debemos realizar el movimiento,
y los valores siguientes son la posicién de cada uno de los servos. G6A y G6D se refieren a las

piernas del robot y G6B y G6C' a los brazos.

Este software nos permite el controlar en tiempo real los motores del robot y capturar la
posicién de los motores para crear nuevos movimientos sin la necesidad de calcular los valores
necesarios para cada articulacién (Figura 3.5).
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Figura 3.5: Panel para el control de los servos del robot en tiempo real.
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Capitulo 4

Aplicacion realizada

Como se ha ido describiendo a lo largo de la memoria, se ha creado un interfaz gestual para el
control de un robot humanoide.

Para ello se han implementado varias aplicaciones que realizaran las diferentes tareas necesarias
para el funcionamiento del interfaz. La aplicacién se divide en dos bloques, tal como muestra la
Figura 4.1. El primero nos servird para capturar las muestras necesarias en el entrenamiento de los
métodos de clasificacion. El segundo hara uso del sistema de reconocimiento y del interfaz gestual.

Entrenamiento

Uso del Interfaz

Figura 4.1: Esquema de uso de recursos de la aplicacién

1. Entrenamiento del sistema

Para el funcionamiento del interfaz gestual es necesario disponer de los archivos de muestras
con los que entrenar los métodos de clasificacién. Si no se disponen de ellos, se podran crear con
las aplicaciones implementadas para tal fin (Figura 4.2). El entrenamiento lo podemos realizar de
dos maneras diferentes, situdndonos ante la Kinect directamente o mediante videos realizados para
tal fin.

Grabar

El médulo “Grabar” realizara grabaciones que posteriormente nos servirdn para la captura de
muestras necesarias para el entrenamiento de los sistemas de bisqueda y para realizar los anélisis
de resultados para las pruebas.

Esta aplicacion tiene dos modos de funcionamiento segin los pardametros anadidos al lanzarla.
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Calibrar

Figura 4.2: Esquema de uso de recursos del bloque de entrenamiento del sistema

rosrun interfaz grabar ‘nombag’ [label]

En el caso de no introducir “label” la aplicacién lanzara mensajes por pantalla con el gesto que se
debe realizar. Mientras tanto realizara publicaciones de las etiquetas correspondientes a lo indicado
en el mensaje de pantalla.

Si por el contrario introducimos un valor en el campo “label”; el gesto a realizar serd el in-
troducido en “label” y los mensajes de pantalla nos indicaran el tiempo restante hasta concluir la
grabacién y publicara constantemente el valor de “label”.

Al comenzar su ejecucién y seleccionado el modo de funcionamiento, la aplicacién solicitard
al usuario que suba y baje los brazos para comenzar. En este momento comenzara la grabacion
del video “nombag”, que almacenard las publicaciones de “manos” y “esqueleto” realizadas por
“Detect_hands™ y las publicaciones “label” que ella misma realiza.

Hasta que se solicite la introducciéon de posturas de la mano determinadas, el valor publicado
del topic “label” para la captura del video serd O.

Calibrar

Calibrar tomard las muestras necesarias para el entrenamiento de los sistemas de clasificacion.
Para lanzar calibrar utilizaremos el siguiente comando:

Filtro’ ['nombag’]

rosrun interfaz calibrar ’calibracion’ ’resolucion’ ’radio’ ’grosor’ ’tipo’ ’filtro’ “indice-

= calibracion: nombre del directorio donde se encuentra las imagenes utilizadas para la cali-
bracién

= resolucion: dimensién del lado de la imagen en pixeles
= radio: radio del circulo utilizado para cada punto al proyectarlos en la imagen
= grosor: grosor de la linea utilizada en los circulos de cada linea
= tipo: tipo de linea utilizado para el dibujo de cada punto
- 1= 8-connected line

- 2 = 4-connected line
- 3 = CV_AA: antialiased line

Ldemo de los repositorios ROS-pkg
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= filtro:

- 0 = sin filtro
- 2 = Gaussian Blur
- 3 = Median Blur

= indiceFiltro: indice para el filtro que se utilizara. Este valor debe ser nimero impar.
= nombag: Nombre del video del cual se desean obtener los resultados del andlisis

Esta aplicacién utilizard 'nomCalibracion’ para crear, en el caso de que no exista, las carpetas
usadas para almacenar las muestras en funcién de la mano y posteriormente en funcién del gesto,
tal y como indica la figura 4.3.

n
3

Left

H

fallos

Training %
| —

—
Right E

Figura 4.3: Esquema del almacenamiento de los datos de entrenamiento

Si hemos rellenado el campo 'nombag’ en este momento comenzard la reproduccion de la
grabacién la cual utilizard para su ejecucion. Si no hemos introducido nada, la aplicacién procedera
como “grabar” indicando por pantalla el gesto a realizar para la captura de muestras. El programa
insertard las muestras en la carpeta correspondiente segin la mano y el gesto, indicado por el
mensaje en pantalla o por las publicaciones de “label” proporcionadas por el video.

2. Uso del clasificador y el interfaz gestual.

Con muestras almacenadas en los ficheros de entrenamiento ya se puede hacer uso del sistema.
En este bloque disponemos de otras dos aplicaciones, como podemos ver en la Figura 4.4. La
primera de ellas, analizar, nos servird para analizar la eficiencia del sistema con cada uno de los
métodos de clasificacién utilizados, KNN y SVM. La segunda, interfaz, hara uso del interfaz gestual
para interaccionar con el robot humanoide.

Analizar

Con esta aplicacién obtendremos un fichero con los resultados de las clasificaciones obtenidas
mediante los métodos KNN y SVM. En ellas se mostrara, para cada gesto los aciertos y fallos
obtenidos, enumerando los errores en funcién del gesto a reconocer y el reconocido. La tabla
tendra una fila y una columna por cada gesto. Cada fila corresponde a cada uno de los gestos.
Cada columna nos indicard la cantidad de reconocimientos obtenidos por cada gesto.

Para lanzar esta aplicacion lanzaremos el siguiente comando:
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Interfaz

Figura 4.4: Esquema de uso de recursos del interfaz

rosrun interfaz analiza ’calibracion’ ’resolucion’ ’radio’ ’‘grosor’ ’tipo’ ’filtro’
dice_filtro’ 'nombag’

In-

= calibracion: nombre del directorio donde se encuentra las imagenes utilizadas para la cali-
bracién

= resolucion: dimension del lado de la imagen en pixeles
= radio: radio del circulo utilizado para cada punto al proyectarlos en la imagen
= grosor: grosor de la linea utilizada en los circulos de cada linea

= tipo: tipo de linea utilizado para el dibujo de cada punto

- 1= 8-connected line
- 2 = 4-connected line
- 3 = CV_AA: antialiased line

= filtro:

- 0 = sin filtro
- 2 = Gaussian Blur
- 3 = Median Blur

= indice_filtro: indice para el filtro que se utilizard. Este valor debe ser niimero impar.

= nombag: Nombre del video del cual se desean obtener los resultados del anélisis

Al igual que en las anteriores, los campos ’resolucion’, 'radio’, ’grosor’, ’tipo’ y ’filtro’ son los
parametros utilizados para el tratamiento de las imégenes. En el campo ’calibracion’ indicaremos
las muestras que usaremos para el entrenamiento de los métodos de clasificacién. Con 'nombag’
indicaremos el video utilizado para el calculo de resultados.

Al finalizar la aplicacién encontraremos en la carpeta ’calibracion’ el fichero de resultados,

‘calibracion’.result, con dos tablas, una para cada mano para cada método de clasificacién, KNN y
SVM. En el anexo D se encuentran las tablas obtenidas en los anélisis realizados.

Por cada gesto reconocido de manera equivocada, se guardara una imagen de la captura para

poder analizar el motivo del fallo. Estas imagenes seran nombradas con el siguiente patrén:

‘metodo’-"gesto’-resultado’- 'numResultado’.jpg
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Por ejemplo, el archivo “knn-1-2-4.jpg” nos indicaria que es la cuarta captura que el método KNN
ha reconocido como gesto de tipo 2 y se trata de gesto de tipo 1.

El gesto '0’ nos servira para la clasificacion de posturas de la mano que no deben ser utilizadas.
En ellas encontraremos las muestras capturadas al comienzo del video hasta el comienzo de muestras
claras.

Interfaz

Mediante el comando:

’ rosrun interfaz interfaz ‘nomCalibracion’

lanzaremos la aplicacién que cumple con el objetivo principal de este proyecto. Al inicio de la
ejecucion, se realizard el entrenamiento para el reconocimiento de los gestos. Para ello serd nece-
sario el haber creado previamente una calibraciéon, mediante el programa “calibar”, con el nombre
'nomCalibracion’. Tras el entrenamiento comenzara la comunicacién gestual con el robot.

Funcionamiento de la aplicacién

Al comienzo de la aplicacién, el robot se encontrard en estado “espera’. Esto evitara el re-
conocimiento de gestos indeseados al inicio de la ejecucion, tras el reconocimiento de las manos.
Disponemos de varios comandos con los que nos comunicaremos con el robot:

= Activar/Desactivar: Levantar ambos brazos. El robot dispone de dos estados, espera y activo.
Solo realizard acciones cuando se encuentre activo. Durante el tiempo de “espera” el robot
estard sentado sin obedecer ninguna orden. Al levantar ambos brazos, pasard a estado “activo”
y comenzara a realizar las acciones indicadas hasta su desactivacion. Al cambiar a su estado
inicial, el robot realizard una reverencia y procedera a sentarse hasta ser activado de nuevo.

= Acciones:

Palma Izquierda: caminar hacia delante

- Palma Derecha: caminar hacia atras

Ok Izquierdo: girar izquierda

Ok Derecho: girar derecha

Requisitos del sistema
La aplicacion esta implementada y probado su uso con el software siguiente:
= Ubuntu 10.04 LTS “Lucid Lynx”
= ROS Electric
= Python 2.7

= Paquete kinect-demos del repositorio “ros-pkg”

Instalar y lanzar la aplicacion
En una terminal aparte arrancaremos el sistema ROS con:
roscore

Para el uso de la aplicaciéon deberemos tener instalado el programa “Hand_interaction” del paque-
te kinect-demos y posteriormente compilar el interfaz gestual. Para ello en una nueva terminal
usaremos los comandos:

25



rosmake hand_interaction
rosmake interfaz

Si es el primer uso, serd necesario realizar la captura de gestos para el entrenamiento del sistema.
para ello ejecuta el médulo “calibrar” introduciendo tu nombre en el campo nombreCalibracién:

rosrun interfaz calibrar 'nombreCalibracion’ 100 0 2 3 2 19
Para lanzar el interfaz utilizaremos dos terminales, en la primera escribiremos:

roscd interfaz
python nodes/connector.py

y en la segunda:
rosrun interfaz interfaz 'nombreCalibracion’
Una vez lanzada la aplicacion:
= Situese delante del sensor Kinect y muévase para ser reconocido.

= Levante los brazos situando las palmas abiertas a los lados de la cabeza hasta que sus manos
sean reconocidas

= jjjComience a mandar instrucciones al robot!!!

3. Taller realizado

Durante la celebraciéon de la “V semana de la ingenieria y arquitectura” celebrada en la Escuela
de Ingenieria y Arquitectura de la Universidad de Zaragoza, se realizé un taller durante las visitas
realizadas por distintos grupos de secundaria y bachiller al laboratorio del grupo de Robética,
Percepcién y Tiempo Real del DIIS.

En el taller se les explicé el funcionamiento del interfaz durante una demostracién y posteri-
ormente fueron los alumnos los que probaron la aplicacién (Figura 4.5).

Los resultados obtenidos fueron satisfactorios. La aplicacién reconocié correctamente las in-
strucciones realizadas por los alumnos que probaron el interfaz. Ademads tuvo muy buena aceptacion
entre los asistentes.
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Figura 4.5: Talleres realizados durante la “V semana de la ingenieria y arquitectura”.
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Capitulo 5

Conclusiones y trabajos futuros

1. Conclusiones

La aparicién del sensor Kinect ha supuesto una revolucion en el campo de la visién por com-
putador y de la robdtica por las posibilidades que ofrece el sensor de profundidad y su bajo coste.
Gracias al mapa de profundidad que Kinect aporta en tiempo real, se facilita mucho el trabajo de
reconocimiento y segmentacién de objetos.

Los objetivos de este proyecto fin de carrera eran la creacion de un interfaz gestual para el
control de un robot humanoide mediante caAmaras RGB-d y su uso en la creacién de un taller
de divulgacién orientado a estudiantes de secundaria y bachiller, objetivos que se han cumplido
de manera satisfactoria. Este interfaz se ha implementado utilizando el pseudo sistema operativo
ROS. Su diseno para el desarrollo de aplicaciones para robots fue muy 1til en la implementacion
del interfaz. Aunque el uso de ROS no es complejo fue necesario documentarse sobre éste y realizar
los tutoriales que se ofrecen en su pagina web para conocer las posibilidades que nos ofrece.

Para el desarrollo del interfaz, se ha utilizado el sensor Kinect en el reconocimiento de per-
sonas y la segmentacién de sus manos. Ha sido necesaria una intensa bisqueda de informacién y
aplicaciones desarrolladas para tal fin, ya que hay muchos ejemplos en Internet, pero no siempre la
documentacién es exacta o resulta facil ponerlos en marcha. En muchos de los ejemplos encontrados,
no fue posible su instalacién por incompatibilidades de software o por falta de documentacién.

Respecto a los métodos estudiados para la clasificacién de las imagenes de las manos, uno de
tipo generativo, K Nearest Neighbors, y otro de tipo discriminativo, Support Vector Machine, los
resultados muestran que con pocos gestos y pocas muestras es mas efectivo el modelo generativo,
pero si aumentamos el nimero de muestras, el modelo discriminativo consigue unos resultados
semejantes.

El robot utilizado para el desarrollo del proyecto ha sido RoboNova-1. Al utilizar una platafor-
ma de hardware real (frente a un simulador), permite resultados méds interesantes, pero también
problemas practicos. Por ejemplo, surgieron problemas a la hora de realizar la comunicacién con el
robot por linea serie desde las aplicaciones, ya que RoboNova-1 no posee drivers en ROS. Partiendo
del driver creado para el robot Robobuilder y tras realizar algunas modificaciones se consiguid la
conexién con nuestro robot, pero fue necesario el estudio de los protocolos de comunicacién, a
través de linea serie, utilizados por RoboNova-1 y el estudio del lenguaje Python, lenguaje en el
que estd implementado el driver utilizado.

Con el interfaz gestual en funcionamiento se realizé un taller, en el laboratorio de robdtica
del I3A, durante la semana de la ingenieria. En ellos, participaron estudiantes de diversos grupos,
desde 3° de la ESO hasta 2° de Bachiller. El resultado fue muy positivo ya que se comprobé el
correcto funcionamiento de la aplicacion y obtuvo buena aceptacion entre los estudiantes.
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2. Trabajo futuro

Tras la realizacion de este proyecto, se proponen algunas lineas de trabajo futuro:

= Insertar mas gestos a reconocer por el sistema. Se podrian insertar mas gestos que implicarian
mas instrucciones para la comunicacién con el robot. Para ello se debe hacer un estudio de
diferentes posturas de mano que los sistemas de clasificacién puedan separar claramente en
clases diferenciadas e insertar muestras suficientes para su correcta clasificacion.

= Durante la calibracién existen muestras que son etiquetadas en un determinado gesto pero,
por error en la captura de puntos de la Kinect o por error humano, son muestras que pueden
perjudicar en el posterior reconocimiento de manos. Para ello se puede mejorar la calibracion
retirando todas aquellas muestras no deseadas.

= Completar el driver para RoboNova-1 mediante la adaptaciéon completa del script de Robobuilder
utilizado.

= Incorporar sensores a RoboNova-1. El robot solo dispone de un sensor de infrarrojos que
comunica con un mando a distancia. El chip del robot posee varios conectores libres para
incorporar sensores que podrian ser muy utiles. Un sensor de posicién nos seria de mucha
utilidad debido a la poca estabilidad de este robot. Con este sensor instalado el robot podria
incorporarse de nuevo al caer. Por otro lado una conexion inalambrica para la comunicacién
con el robot daria més libertad de movimientos a este.

= Utilizar el interfaz gestual para el control de otro tipo de robots o dispositivos. La aplicacién
se podria adaptar para su uso con brazos de robots, para el control de robots domésticos o
como ratén del ordenador.

3. Valoracion personal

La eleccion de este proyecto de fin de carrera fue por el interés personal que tenia en los campos
de la robdtica y la inteligencia artificial. Mi desconocimiento, tanto en el campo de la robética
como en el de visiéon por computador, ha supuesto la dedicacién de mucho tiempo al estudio de
las herramientas a utilizar, sus librerias y sus posibilidades, asi como de diferentes métodos de
clasificacién para el reconocimiento de los gestos.

Tras la realizacion de los talleres durante la semana de la ingenieria comprobé el resultado de
mi proyecto. Considero que es un buen método para que la gente aprenda algunos conocimientos
sobre robdtica y visién por computador de manera comprensible y amena.

Este proyecto me ha supuesto una gran satisfaccion personal, por la cantidad de conocimientos
obtenidos sobre temas que me parecen de gran interés, por el uso de software libre en el desarrollo
de la aplicacién, por la buena aceptacién que obtuvo por parte de los estudiantes en los talleres
realizados y por la motivaciéon que me ha dado a seguir “trasteando” con la robética y la inteligencia
artificial.
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Anexo A

ROS

Figura A.1: Diagrama de sistema de comunicacién utilizado en ROS.

ROS, cuyas siglas significan “Robot Operating System”, es un pseudo sistema operativo que
nos proporciona librerias y herramientas para el desarrollo de software para robots. ROS provee
los servicios estandar de un sistema operativo tales como abstraccién del hardware, control de
dispositivos de bajo nivel, implementacién de funcionalidad de uso comin, paso de mensajes entre
procesos y mantenimiento de paquetes. Esta basado en una arquitectura de grafos donde el proce-
samiento toma lugar en los nodos, que pueden recibir, mandar y multiplexar: sensores, control,
estado, planificacién y otros mensajes.

ROS implementa varios estilos diferentes de comunicacién, incluyendo un sistema sincrono de
estilo RPC! de comunicacién a través de los servicios, la transmisién asincrona de datos a través
de “topics”, y el almacenamiento de datos en un servidor de parametros. Los diferentes nodos que
se ejecutan en ROS podédn publicar los nuevos valores de los “topics” y subscribirse a éstos para
consultarlos. A pesar de que ROS no trabaja en un marco de tiempo real, si que es posible el
integrar en ROS c6digo en tiempo real. Podriamos describir el grafo del tiempo de ejecucién como
una red peer-to-peer de procesos que estan débilmente acoplados utilizando la infraestructura de
comunicacién ROS.

La libreria estd orientada para un sistema UNIX, siendo Ubuntu el sistema en el que ofrecen
soporte. Para el desarrollo de este proyecto se utiliza ROS Electric por ser la versién con soporte
mas estable del momento. Dicha version funciona bajo el sistema operativo “Ubuntu 10.04 Lucid

Lynx?”.

!Remote Procedure Call
2http://releases.ubuntu.com/lucid/
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Anexo B

Sensor Kinect

e ——

-

XBOX 360

;_\‘

Figura B.1: Sensor Kinect.

Kinect es un controlador de juego libre y entretenimiento creado por ALEX Kipman y desar-
rollado por Microsoft. En noviembre de 2010 fue lanzada para su uso con la videoconsola Xbox
360, y a partir de junio de 2011 también para PC, para su uso con Windows 7 y Windows 8.

El dispositivo cuenta con una camara RGB, un sensor de profundidad, un micréfono de multi-
ples matrices y un mecanismo de inclinacién motorizado. El sensor de profundidad es un proyector
de infrarrojos combinado con un sensor CMOS monocromo que permite a Kinect ver el entorno en
3D en cualquier condicién de luz ambiental. El rango de deteccion de la profundidad del sensor es
ajustable gracias al software de Kinect capaz de calibrar automaticamente el sensor, basado en la
jugabilidad y en el ambiente fisico del jugador, tal como la presencia de sofés.

El hardware de Kinect se ha confirmado que se basara en un disenio de referencia y la tecnologia
3D-calor fabricados por la compaiiia israeli de desarrollo PrimeSense Ltd.

El sensor proporciona video a una frecuencia de 30 Hz, con una resoluciéon de 640x480 pixeles,
utilizando una profundidad de 8 bits en el sensor RGB y 11 bits en el sensor de profundidad, ofre-
ciendo hasta 2048 niveles de sensibilidad. El sensor de infrarrojos tiene un rango de funcionamiento
que va desde 0.7 hasta 6 metros y tiene un campo de visién angular de 57° horizontalmente y de 43°
verticalmente, mientras que el pivote motorizado puede inclinar el sensor hasta 27° verticalmente.

En noviembre de 2010, Industrias Adafruit ofrecié una recompensa por un controlador de cédi-
go abierto para Kinect. El 10 de noviembre, se anuncié al espanol Héctor Martin como el ganador,
que usé métodos de ingenierfa inversa con Kinect y desarrollé un controlador para GNU/Linux
que permite el uso de la cimara RGB y las funciones de profundidad. Desde entonces han salido
diferentes controladores de cédigo abierto para su uso con diferentes sistemas operativos. Actual-
mente, este sensor es una herramienta utilizada en multitud de investigaciones relacionadas con
la visién por computador, como la captura de gestos, reconstruccién de entornos 3D, deteccion y
reconocimiento de objetos...
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Anexo C

RoboNova-1

Figura C.1: Robot RoboNova-1.

Rovonova-I es un robot humanoide que se compone de 16 servos digitales HSR 8498HB, es-
pecialmente desarrollados para este robot y que incluyen caracteristicas especiales como "Motién
Feedback”, lo que le da posibilidad de leer externamente la posicién real del servo y permite que
se pueda colocar el robot manualmente en cualquier posicién y luego leer y guardar la posicion en
un programa leyendo los valores de los 16 servos desde el propio controlador.

El robot RoboNova-1 incorpora el controlador Hitec MR-C3024, con el microcontrolador Atmel
ATMega 128 capaz de controlar hasta 24 servos. Este controlador cuenta entre otras cosas con 40
puertos de entrada y salida digitales, puerto serie, bus 12C, 8 entradas analdgicas, altavoz y led.
También dispone demés de 64 KBytes de memoria interna para almacenar programas.

El robot posee un software propio basado en el lenguaje RoboBasic (Figura C.2), que como
su nombre indica es un lenguaje del tipo Basic pero especializado y orientado a robots. Esto
significa que por un lado es muy fécil de aprender, de hecho si se sabe programar en basic, ya sabe
programar en RoboBasic y por otro lado que incluye gran variedad de comandos especificos para
controlar las funciones del robot que facilitan mucho la tarea y simplifican enormemente el proceso
de programacion. Mediante la funcién 'Catch & Play’ podemos crear movimientos poniendo el
robot en la posicién deseada manualmente y el programa creard el movimiento del robot.
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Figura C.2: (Arriba) Entorno de programacién roboBasic. (Centro) Panel para el control en tiempo
real de los servos. (Abajo) Otro panel para el control del robot de manera més visual.

Existen diferentes sensores para RoboNova-1:
= Dispositivo inalambrico

= Sensor de infrarrojos

= Sensor de inclinacién

= Sensor de ultrasonidos

= Acelerémetro

= Sensor de distancias por infrarrojos

= Micréfono

= Sensor de luz
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Anexo D

Pruebas y resultados

En este anexo se adjuntan los resultados de las diferentes pruebas que se han ido realizando
para la eleccion del formato de imagen y sistema de reconocimiento ha utilizar.

Todas las pruebas realizadas en cada una de las fases se han realizado con el mismos video
utilizando el programa “analizar”. Con esta aplicacién obtendremos un fichero, ’calibracion’.result,
con los resultados. En el encontraremos dos tablas, una para cada mano, por método de clasificacién,
KNN y SVM, como la tabla D.1:

| GESTOS [0 [1]2]
0
1
2

Tabla D.1: Tabla de resultados.

En ellas se mostrard, para cada gesto los aciertos y fallos obtenidos, enumerando los errores
en funcién del gesto a reconocer y el reconocido. La tabla tendra una fila y una columna por cada
gesto. Cada fila corresponde a cada uno de los gestos. Cada columna nos indicard la cantidad de
reconocimientos obtenidos por cada gesto. El gesto '0’ nos servird para la clasificacién de posturas
de la mano que no deben ser utilizadas. En ellas encontraremos las muestras capturadas al comienzo
del video hasta el comienzo de muestras claras.

1. Fase 1: Seleccion de propiedades de las imagenes

Resultados obtenidos en las pruebas para la seleccién del tamano de la imagen y el grosor
del punto. Las pruebas se han realizado todas mediante la misma grabacién “luisPalmQOk.bag”,
para asi poder comparar de manera més fiable los resultados obtenidos. A partir de los datos
expuestos a continuacién, se observa que los mejores resultados se obtienen con las propiedades de
las imagenes que se recopilan en la tabla D.2, siendo en todas ellas los resultados muy similares.
En la seleccién realizada podemos ver que todas las pruebas mantienen una proporcién entre el
tamano de la imagen y el grosor del punto utilizado en la proyeccién. Si utilizamos un tamafio
de punto muy pequeno no obtenemos una imagen suficientemente nitida y si, por el contrario,
utilizamos un grosor muy grande, la imagen pierde detalle.
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PRUEBA | RESOLUCION | RADIO | GROSOR LINEA | KNN | SVM |

2 100 0 2 0.56 | 0.07
3 100 0 3 0.57 | 0.07
4 150 0 2 0.56 | 0.27
5 150 0 3 0.56 | 0.21
7 150 1 2 0.57 | 0.10
8 150 1 3 0.58 | 0.09
12 200 1 2 0.48 | 0.10
13 200 1 3 0.57 | 0.11

Tabla D.2: Pruebas seleccionadas y resultados de la precision.

Prueba 1:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 1

Figura D.1: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT[0] 1 [ 2 [RIGHT [0 [1] 2 |
0 [o[O0]4 0 0[1]3
1 |0[13]43 1 0[6]48
2 0] 933 2 024

Precision obtenida mediante KNN = 0.45

[LEFT [0 ] 1 [2[RIGHT [0] I [ 2]
0 [o[4J0] o0 Jo[4]o0
1 [1[51]4 1 [0[54]0
2 0|38 2 Jol4]1

Precisién obtenida mediante SVM = 0.55

Tabla D.3: Resultados de la prueba 1
Prueba 2:

Pixeles de lado: 100
Radio del circulo: 0
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Grosor de linea: 2

Figura D.2: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT [0] 1 [ 2 [RIGHT[ 0 [1] 2 |
0 Jo[4To 0 4700
1 Jo]46] 9 1 451119
2 [0 736 2 8 [1[33

Precision obtenida mediante KNN = 0.56

LEFT [0 [ 1 [2[RIGHT [ 0 [ 1 [2]
0 [3[1]0] o© 3[1]0
1 [47[8]0 1 [ 48 0
2 [2[21[0] 2 [23][19]0

Precision obtenida mediante SVM = 0.07

Tabla D.4: Resultados de la prueba 2

Prueba 3:

Pixeles de lado: 100
Radio del circulo: 0

Grosor de linea: 3

Figura D.3: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



LEFT [0] 1 [ 2 [RIGHT [ 0 [1] 2 |
0 Jo[4]0 0 400
1 [0[46] 09 1 [45[1]38
2 [0 7 [36] 2 8 [1[34

Precision obtenida mediante KNN = 0.57

LEFT [ 0 [ 1 [2[RIGHT[ 0 [ 1 [2]
0 3[1]0 0 31110
1 [48]7]0 1 AT 710
2 [22]21]0 2 19231

Precision obtenida mediante SVM = 0.07

Tabla D.5: Resultados de la prueba 3

Prueba 4:

Pixeles de lado: 150

Radio del circulo: 0

Grosor de linea: 2

Figura D.4: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [ 0 [1] 2 |
0 Jo[4]0 0 400
1 [1[46] 9 1 [46 138
2 [0[7[35 2 7 [1]34

Precision obtenida mediante KNN = 0.56

LEFT[ 0 [ 1 [ 2 JRIGHT | 0 [ 1 | 2]
0 31110 0 3170
1 [37]19]0 1 52 3]0
2 71 ]34 2 32 [10]0

Precision obtenida mediante SVM = 0.27

Tabla D.6: Resultados de la prueba 4

Prueba 5:

Pixeles de lado: 150

Radio del circulo: 0

Grosor de linea: 3

Figura D.5: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT\O\1\2|RIGHT\O\1\2‘
0 0] 4 0 0 4 (0] O
1 31441 9 1 45111 8
2 0] 6 | 36 2 8 | 1] 34
Precision obtenida mediante KNN = 0.56

LEFT [ 0 [ 1 [2[RIGHT[ 0 [1] 2 |
0 3 110 0 31110
1 471 9 |0 1 45111 8
2 16 | 24 | 2 2 12 11| 30

Precision obtenida mediante SVM = 0.21

Tabla D.7: Resultados de la prueba 5

Prueba 6:

Pixeles de lado: 150

Radio del circulo: 1

Grosor de linea: 1

Figura D.6: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT \ 0 \ 1 \ 2 | RIGHT \ 0 \ 1 \ 2 \
0 0 4 0 0 4 (0] 0
1 14 | 11 | 31 1 41 | 1] 12
2 0 3 139 2 8 | 1| 34
Precision obtenida mediante KNN = 0.41

LEFT [ 0 [ 1 [2[RIGHT[ 0 [ 1 [2]
0 3 110 0 3 110
1 22 133 |1 1 47 6 1
2 2 13515 2 20 | 15 | 8

Precision obtenida mediante SVM = 0.25

Tabla D.8: Resultados de la prueba 6

Prueba 7:

Pixeles de lado: 150

Radio del circulo: 1

Grosor de linea: 2

Figura D.7: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



LEFT [0] 1 [ 2 [RIGHT [ 0 [1] 2 |
0 Jo[4]0 0 400
1 [0[47[ 09 1 [45[1]38
2 [0[6[36] 2 8 [1[34

Precision obtenida mediante KNN = 0.57

LEFT [ 0 [ 1 [2[RIGHT[ 0 [ 1 [2]
0 3[1]0 0 31110
1 (4717910 1 a7 6 |1
2 [18]24]0 2 23[15 |5

Precision obtenida mediante SVM = 0.10

Tabla D.9: Resultados de la prueba 7

Prueba 8:

Pixeles de lado: 150

Radio del circulo: 1

Grosor de linea: 3

Figura D.8: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



LEFT\O\1\2|RIGHT\O\1\2‘
0 0| 4 0 0 31110
1 01471 9 1 45111 8
2 0] 6 | 36 2 8 | 1] 34
Precision obtenida mediante KNN = 0.58

LEFT [ 0 [ 1 [2[RIGHT[ 0 [ 1 [2]
0 3 110 0 3 110
1 45 11110 1 471 7 10
2 25 117 1 0 2 21 12210

Precision obtenida mediante SVM = 0.09

Tabla D.10: Resultados de la prueba 8

Prueba 9:

Pixeles de lado: 200

Radio del circulo: 0

Grosor de linea: 2

Figura D.9: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [ 0 [ 1 | 2 [RIGHT [ 0 1] 2 |
0 [0[47]o0 0 2 [1] 1
1 [14[29[13 1 [38]6]10
2 [0 [ 73] 2 8 [1[34

Precision obtenida mediante KNN = 0.51

LEFT][ 0 [ 1 [2[RIGHT [ 0 [ 1 | 2 |

0 3 110 0 3 1
1 19 [ 37 |0 1 45 | 5 | 4
2 114110 2 19 | 14 | 10

Precision obtenida mediante SVM = 0.25

Tabla D.11: Resultados de la prueba 9

Prueba 10:

Pixeles de lado: 200

Radio del circulo: 0

Grosor de linea: 3

Figura D.10: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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[LEFT [0 ] 1 [ 2 [RIGHT [ 0 [1] 2 |
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45
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38
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1
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ierda el gesto 1, Palma abi

a la izqu

Capturas de los gestos

Figura D.11
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LEFT [0[1] 2 [RIGHT [0 I [ 2 |
0 [1]2]1 0 [O0[2]z2
1 [0[8]48 1 12925
2 [0[3]39 2 (0[5 [37

Precision obtenida mediante KNN = 0.55

LEFT [0] 1 [2[RIGHT [ 0 [ 1 [2]
0 Jof[4]o0 0 11310
1 1[50 1 20 [35]0
2 J[o]41]1 2 5 137]0

Precision obtenida mediante SVM = 0.44

Tabla D.13: Resultados de la prueba 11

Prueba 12:

Pixeles de lado: 200

Radio del circulo: 1

Grosor de linea: 2

Figura D.12: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT\O\ 1 \ 2 |RIGHT\ 0 \ 1 \2‘
0 0] 4 0 0 4 010
1 01471 9 1 40 | 16 | O
2 0] 6 | 36 2 9 13310
Precision obtenida mediante KNN = 0.48

LEFT [ 0 [ 1 [2[RIGHT[ 0 [ 1 [2]
0 3 110 0 3 110
1 40 | 16 | O 1 50| 4 |0
2 9 3310 2 3011310

Precision obtenida mediante SVM = 0.10

Tabla D.14: Resultados de la prueba 12

Prueba 13:

Pixeles de lado: 200

Radio del circulo: 1

Grosor de linea: 3

Figura D.13: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



LEFT [0] 1 [ 2 [RIGHT [ 0 [1] 2 |
0 Jo[4]0 0 400
1 [0[46] 09 1 [45[1]38
2 [0 7 [36] 2 8 [1[34

Precision obtenida mediante KNN = 0.57

LEFT [ 0 [ 1 [2[RIGHT[ 0 [ 1 [2]
0 3[1]0 0 31110
1 |41 ]14]0 1 A7 0

1

2 14129 |0 2 22 | 20

Precision obtenida mediante SVM = 0.11

Tabla D.15: Resultados de la prueba 13

2. Fase 2: Repeticion de las pruebas con los mejores resul-
tados

En esta segunda fase, se han repetido las pruebas para las caracteristicas que mejores resultados
han obtenido. En esta segunda fase se ha utilizado la grabacién “luisPalmOk2.bag”.

Tras observar los resultados, que se mostraran a continuacién, se realizé una segunda criba de
resultados entre los que se seleccionaron los que muestra la tabla D.16.

PRUEBA | RESOLUCION | RADIO | GROSOR LINEA | KNN [ SVM |

1 100 0 2 0.73 | 0.61
2 100 0 3 0.74 | 0.62
) 150 1 2 0.73 | 0.58
6 150 1 3 0.76 | 0.56
8 200 1 3 0.72 | 0.61

Tabla D.16: Resultados de la prueba

Prueba 1:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 2

Figura D.14: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 Jo[2]1 0 J0[2]1
1 [1[44]18 1| 03033
2 [0]10]62 2 [0] 6 |66

Precision obtenida mediante KNN = 0.73

LEFT[0] 1 [ 2 [RIGHT [0 [1] 2 |
0 [of[1]2 0 0[0] 3
1 Jo[22]4 1 0[7]56
2 0] 369 2 0[1]T

Precision obtenida mediante SVM = 0.61

Tabla D.17: Resultados de la prueba 1

Prueba 2:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 3

Figura D.15: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT [0 1 [ 2 [RIGHT[O0[ 1 | 2 |
0 Jo[2T]1 0 0[1
1 [1[49]14 1 0]30]34
2 [0]11]60 2 0] 5 ]66

Precision obtenida mediante KNN = 0.74

[LEFT [0 ] 1 [ 2 [RIGHT [0 1 | 2 |
0 Jo[z2]1 0 JO0][1]2
1 [2[52]10 1 [0[48]16
2 [0[13[58] 2 [0[59]12

Precision obtenida mediante SVM = 0.62

Tabla D.18: Resultados de la prueba 2
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Prueba 3:

Pixeles de lado: 150
Radio del circulo: 0

Grosor de linea: 2

Figura D.16: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto

2, dedo "ok”.
LEFT [0 1 [ 2 [RIGHT[O0[ 1 | 2 |
0 0] 1 2 0 0| 2
1 0] 13| 50 1 0| 25| 40
2 0] 1|71 2 0| 6 | 64
Precision obtenida mediante KNN = 0.62
LEFT‘O‘1‘2|RIGHT‘O‘1‘2‘
0 0 1 2 0 0] 3]0
1 0| 30| 33 1 01650
2 0| 4 | 68 2 0]701]0
Precision obtenida mediante SVM = 0.59
Tabla D.19: Resultados de la prueba 3
Prueba 4:

Pixeles de lado: 150
Radio del circulo: 0

Grosor de linea: 3
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Figura D.17: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT (0] 1 [ 2 [RIGHT 0] 1] 2 |
0 Jo[2]1 0 JO0[1]2
1 [1[37[2 1 [0][17]46
2 0|7 64| 2 [0[5 |67

Precision obtenida mediante KNN = 0.67

LEFT [0 1 [ 2 [RIGHT [0 [ 1 [2]
0 Jo[2T1 0 0[27]1
1 [o[55]9 1 0612
2 [0]25]46 2 0[70]2

Precisién obtenida mediante SVM = 0.59

Tabla D.20: Resultados de la prueba 4

Prueba 5:

Pixeles de lado: 150
Radio del circulo: 1

Grosor de linea: 2

Figura D.18: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 J1]1]1 0 J0[37]0
1 [1[49 |14 1| 03033
2 [o[11[60] 2 [0]7][65

Precision obtenida mediante KNN = 0.73

LEFT[0] 1 [ 2 [RIGHT [0 [ 1 [2]
0 Jo[2]1 0 01 ]2
1 |0[50]14 1 0[58]5
2 [0]25]46 2 0[67]5

Precision obtenida mediante SVM = 0.58

Tabla D.21: Resultados de la prueba 5

Prueba 6:

Pixeles de lado: 150

Radio del circulo: 1

Grosor de linea: 3

Figura D.19: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 Jo[2]1 0 J0[37]0
1 [1[52 [0 1 [0][37[28
2 [o[11]60| 2 Jo0|09 61

Precision obtenida mediante KNN = 0.76

LEFT [0] 1 [ 2 [RIGHT[O] 1 [ 2 |

0 110 ] 2 0 0] 1
1 6 | 40 | 18 1 0|42 | 23
2 119 |61 2 0157 |13

Precision obtenida mediante SVM = 0.56

Tabla D.22: Resultados de la prueba 6

rueba 7:

Pixeles de lado: 200

Radio del circulo: 1

Grosor de linea: 2

Figura D.20: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 J1]1]1 0 JO0][1]2
1 [T[31]32 1 Jo0[22]4
2 (o[ 764 2 J0[4]65

Precision obtenida mediante KNN = 0.66

LEFT [0] 1 [ 2 [RIGHT[O] 1 [ 2 |
0 Jof[2]1 0 0] 1
1 ]0]56]8 1 0]43]23
2 [0]31]40 2 0]60] 9

Precision obtenida mediante SVM = 0.53

Tabla D.23: Resultados de la prueba 7

Prueba 8:

Pixeles de lado: 200

Radio del circulo: 1

Grosor de linea: 3

Figura D.21: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



[LEFT [O[ 1 [ 2 [RIGHT[O[ 1 [ 2 |
0 J1J1]1 0 0] 1
1 [2]48]14 1 0[23]40
2 |o0]11]60 2 0[ 4768

Precision obtenida mediante KNN = 0.72

LEFT[0] 1 [ 2 [RIGHT [0 [ 1 [2]
0 Jo[2]1 0 0[3]0
1 o477 1 0[63]0
2 [0]12]59 2 0[72]0

Precision obtenida mediante SVM = 0.61

Tabla D.24: Resultados de la prueba 8

3. Fase 3: Seleccidon de filtro

A partir de los resultados obtenidos, se han realizado de nuevo las pruebas pasando las imdgenes
por filtros que mejoren la imagen a reconocer. Se han utilizado los filtros “Median Blur” y “Gaussian
Blur” de las librerias de OpenCyv.

Tras estos experimentos se decidié que la mejor configuracién a utilizar en la version final de
la aplicacién, para cada método, es:
= En el caso de busqueda por KNN utilizaremos:

- Pixeles de lado: 100
Radio del circulo:0

- Grosor de linea: 2

Filtro: Gaussian Blur

= Para la bisqueda mediante SVM el mejor resultado lo obtenemos con:

- Pixeles de lado: 100
Radio del circulo:0

Grosor de linea: 2

- Filtro: Median Blur

Prueba 1:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 2
Filtro: ninguno
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Figura D.22: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT [0] 1 [ 2 [RIGHT [0 ] 1 [ 2 |
0 Jo[2T1 0 0[27]1
1 J1]44]18 1 0]30]33
2 [o]10]62 2 0] 6 ]66

Precision obtenida mediante KNN = 0.73

LEFT [0] 1 | 2 [RIGHT [0 [1] 2 |
0 Jo[1]2 0 [O0]0[3
1 [o0[22]41 1 |[0][7]56
2 [0[3]6]| 2 Jo[1]|Tmt

Precision obtenida mediante SVM = 0.61

Tabla D.25: Resultados de la prueba 1

Prueba 2:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 2

Filtro: Gaussian Blur

K
h

Figura D.23: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.




LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 J0[3]0 0 J0[37]0
1 [0[54][10 1 Jo0[52]11
2 [0[12[59 | 2 [0][15]57

Precision obtenida mediante KNN = 0.80

LEFT [0] 1 [ 2 [RIGHT[O] 1 [ 2 |

0 0] 2|1 0 010
1 01591 5 1 0] 13 | 50
2 0156 | 15 2 0156 |16

Precision obtenida mediante SVM = 0.37

Tabla D.26: Resultados de la prueba 2

Prueba 3:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 2

Filtro: Median Blur

Figura D.24: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT [0 1 [ 2 [RIGHT[O0[ 1 | 2 |

0 111 1 0 0] 2
1 1|40 | 22 1 0| 28| 35
2 0] 10 | 62 2 0] 6 | 66

Precision obtenida mediante KNN = 0.71

[LEFT [0 ] 1 [ 2 [RIGHT [0 1 | 2 |
0 Jo[z2]1 0 J[0[0]3
1 [1[53]0 1 [0[39]24
2 [0 11 6l 2 [9]46[26

Precision obtenida mediante SVM = 0.65

Tabla D.27: Resultados de la prueba 3
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Prueba 4:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 3
Filtro: Ninguno

Figura D.25: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT [0 1 [ 2 [RIGHT[O0[ 1 | 2 |
0 Jo[2T1 0 0[172
1 [1[49]14 1 0]30]34
2 [o]11]60 2 0] 5 ]66

Precision obtenida mediante KNN = 0.74

LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 Jo[z2]1 0 JO0[1]2
1 [2[52]10 1 [0[48]16
2 [0[13[58] 2 [0[59]12

Precision obtenida mediante SVM = 0.61

Tabla D.28: Resultados de la prueba 4

Prueba 5:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 3
Filtro: Gaussian Blur

Figura D.26: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 J0[3]0 0 J0[37]0
1 [1[59]10 1 Jo0[52]11
2 [0[12[59 | 2 [0][15]57

Precision obtenida mediante KNN = 0.82

LEFT [0 ] 1 J2[RIGHT [0 ] 1 [2]
0 [0[3]0 0 0] 3]0
1 |[1]63]0 1 0[63]0
2 [o]70]1 2 0]72]0

Precision obtenida mediante SVM = 0.46

Tabla D.29: Resultados de la prueba 5

Prueba 6:

Pixeles de lado: 100
Radio del circulo: 0
Grosor de linea: 3

Filtro: Median Blur

Figura D.27: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT [0 1 [ 2 [RIGHT[O0[ 1 | 2 |
0 J1iJ1TJ1 0 0] 3
1 [2[35]27 1 01]39]26
2 J0[ 7 [64 2 0] 9 el

Precision obtenida mediante KNN = 0.72

[LEFT [0] 1 [ 2 [RIGHT [0] 1 [ 2]
0 Jo[z2]1 0 [0[37]0
1 [0[44[20 1 [0[65]0
2 [0]9 |6l 2 [0[70]0

Precision obtenida mediante SVM = 0.61

Tabla D.30: Resultados de la prueba 6

65



Prueba 7:

Pixeles de lado: 150
Radio del circulo: 1
Grosor de linea: 2

Filtro: Ninguno

Figura D.28: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |

0 111 1 0 0] 3
1 1149 14 1 013033
2 0] 11 | 60 2 0] 7 | 65

Precision obtenida mediante KNN = 0.73

LEFT[0] 1 [ 2 [RIGHT [0 [ 1 [2]
0 Jo[2]1 0 0[] 172
1 |0][50]14 1 0[58]5

5

2 0] 25|46 2 0| 67

Precision obtenida mediante SVM = 0.57

Tabla D.31: Resultados de la prueba 7

Prueba 8:

Pixeles de lado: 150
Radio del circulo: 1
Grosor de linea: 2

Filtro: Gaussian Blur
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Figura D.29: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.

LEFT [0 1 [ 2 [RIGHT[O0[ 1 | 2 |

0 11210 0 0] 3
1 21529 1 0153 |11
2 0] 11 |61 2 0] 14 | 57

Precision obtenida mediante KNN = 0.81

LEFT [0[1[ 2 [RIGHT [0] I [ 2]
0 [0]0]3 0 J[0[3]0
1 [3]0]60 1 [0[64]0
2 [0]0[7 2 0710

Precision obtenida mediante SVM = 0.49

Tabla D.32: Resultados de la prueba 8

Prueba 9:

Pixeles de lado: 150
Radio del circulo: 1

Grosor de linea: 2
Filtro: Median Blur

Figura D.30: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 J1]1]1 0 J0[2]1
1 [1[50]12 1 [0[28]36
2 [0 116l 2 [0[5 |66

Precision obtenida mediante KNN = 0.74

LEFT [ 0 [ 1 [ 2 [RIGHT [0 [1] 2 |

0 210 1 0 010 3
1 21 13319 1 05139
2 1 |10 |61 2 00|71

Precision obtenida mediante SVM = 0.61

Tabla D.33: Resultados de la prueba 9

Prueba 10:

Pixeles de lado: 150

Radio del circulo: 1

Grosor de linea: 3

Filtro: ninguno

Figura D.31: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 Jo[2]1 0 J0[37]0
1 [1[52 [0 1 [0][37[28
2 [o[11]60| 2 Jo0|09 61

Precision obtenida mediante KNN = 0.76

LEFT [0] 1 [ 2 [RIGHT[O] 1 [ 2 |
0 [1]0]2 0 0[1 ]2
1 [6]40]18 1 0[42]23
2 [1]9 61 2 0]57]13

Precision obtenida mediante SVM = 0.56

Tabla D.34: Resultados de la prueba 10

Prueba 11:

Pixeles de lado: 150

Radio del circulo: 1

Grosor de linea: 3

Filtro: Gaussian Blur

Figura D.32: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 [I[2]0 0 J0[37]0
1 [2[50][10 1 Jo0[52]11
2 [0[13]60] 2 [0][15]57

Precision obtenida mediante KNN = 0.79

LEFT[0] 1 [ 2 [RIGHT [0 [ 1 [2]
0 0013 0 021
1 |0[17]45 1 0[63]0
2 ]0]60]13 2 07 |1

Precision obtenida mediante SVM = 0.34

Tabla D.35: Resultados de la prueba 11

Prueba 12:

Pixeles de lado: 150

Radio del circulo: 1

Grosor de linea: 3

Filtro: Median Blur

Figura D.33: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 Jo[2]1 0 J0[37]0
1 [2[51[10 1 [0][32]32
2 [0 116l 2 [0]11]60

Precision obtenida mediante KNN = 0.74

LEFT[ 0 [ 1 [ 2 JRIGHT [0 [ 1 | 2 |
0 1 1]1 0 01
1 |14[38]11 1 0[33]26
2 1 |19 52 2 0]57] 14

Precision obtenida mediante SVM = 0.51

Tabla D.36: Resultados de la prueba 12

Prueba 13:

Pixeles de lado: 200
Radio del circulo: 1
Grosor de linea: 3

Filtro: Ninguno

Figura D.34: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.



LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 J1]1]1 0 JO0][1]2
1 [2[48] 14 1 [023]40
2 [o[11[60] 2 [0 4]68

Precision obtenida mediante KNN = 0.72

LEFT[0] 1 [ 2 [RIGHT [0 [ 1 [2]
0 Jo[2]1 0 0[3]0
1 |o[47]17 1 0[63]0
2 [0]12]59 2 0[72]0

Precision obtenida mediante SVM = 0.61

Tabla D.37: Resultados de la prueba 13

Prueba 14:

Pixeles de lado: 200
Radio del circulo: 1
Grosor de linea: 3

Filtro: Gaussian Blur

Figura D.35: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 [2[1]0 0 J0[37]0
1 [2[52]10 1 |0[49]14
2 [o0[11[60] 2 [9][15]57

Precision obtenida mediante KNN = 0.79

LEFT[0] 1 [ 2 [RIGHT [0 [ 1 [2]
0 [2][0]1 0 0[3]0
1 | 6[48]10 1 0[63]0
2 [0]11]60 2 0[72]0

Precision obtenida mediante SVM = 0.61

Tabla D.38: Resultados de la prueba 14

Prueba 15:

Pixeles de lado: 200
Radio del circulo: 1
Grosor de linea: 3

Filtro: Median Blur

Figura D.36: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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LEFT [0] 1 [ 2 [RIGHT [0 1] 2 |
0 J1]1]1 0 J0[2]1
1 [2[49]12 1 Jo0[23]4
2 [0 116l 2 |0 467

Precision obtenida mediante KNN = 0.72

LEFT [0] 1 [ 2 [RIGHT[O] 1 [ 2 |
0 Jof[2]1 0 0] 1
1 [1[54]38 1 0]50] 14
2 [0]12]60 2 0[64] 7

Precision obtenida mediante SVM = 0.61

Tabla D.39: Resultados de la prueba 15

4. Fase 4: Doble filtrado

En esta prueba he utilizado las propiedades que mejor resultado han dado, es decir:

= Pixeles de lado: 100

= Radio del circulo: 0

= Grosor de linea: 2

y le he pasado en primer lugar un filtro Gaussiano y posteriormente un filtro de mediana obteniendo
en este caso los mejores resultados para el caso de clasificacion mediante SVM.

Figura D.37: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo "ok”.
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[LEFT [0[ 1 [ 2 [RIGHT [0] 1 | 2 |
0 Jo[2]1 0 J0]2
1 [1[43]20 1 [0[28]35
2 [0[11[60] 2 [0]5 67

Precision obtenida mediante KNN = 0.71

LEFT [0] 1 [ 2 [RIGHT[O] 1 [ 2 |
0 Jof[1]2 0 0[1 ]2
1 [1[35]28 1 0[42]21
2 0] 8 ]63 2 0] 1260

Precision obtenida mediante SVM = 0.72

Tabla D.40: Resultados de la prueba de doble filtrado

Con los resultados obtenidos en esta cuarta fase de experimentos, se ha decidido el continuar
con la misma configuracién para el método KNN:

= Configuracion para el método KNN:
- Pixeles de lado: 100

- Radio del circulo:0

Grosor de linea: 2

- Filtro: Gaussian Blur

En cambio, para el método SVM se han obtenido mejores resultados, por lo que la nueva configu-
racién sera:

= Configuracién para el método SVM:

- Pixeles de lado: 100
- Radio del circulo:0
- Grosor de linea: 2

- Filtro: Gaussian Blur - Median Blur

5. Fase 5: Insercion de mas muestras para la calibracién

Tras realizar las pruebas anteriores y seleccionar el formato de imagen que nos da mejor
resultado, se ha procedido a la inserciéon de més muestras para la calibracion del sistema. En las
pruebas anteriores se analizaba partiendo de 50-60 muestras por gesto. En esta ocasion se realizara
el anélisis con aproximadamente 300 muestras por gesto.

En la tabla D.41 observaremos que en el caso de KNN el resultado no varia, en cambio en
el de SVM los resultado mejoran notablemente. Estos resultados muestran que si se disponen de
pocas muestras para el entrenamiento el uso del método de clasificacién “k-nearest neighbor” es
mas eficiente que con “Suport Vector Machine”. En cambio, si aumentamos el nimero de muestras
el resultado es similar con ambos métodos.
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Figura D.38: Gestos reconocidos por el sistema: a la izquierda el gesto 1, Palma abierta, y a la
derecha el gesto 2, dedo "ok”.

[LEFT [0 ] 1 [ 2 [RIGHT [0 1 ] 2 |
0 Jo[4]0 0 Jo0[47]o0
1 [0[48][8 1 [0[46] 9
2 [0[8[34] 2 Jo[8 ™.

Precisién obtenida mediante KNN = 0.79

LEFT [0] 1 [ 2 [RIGHT[O0] 1 [ 2 |
0 Jo[4]o0 0 0] 4

1 J0[47]9 1 046 ] 9
2 [0[6]36 2 0] 71[35

Precisién obtenida mediante SVM = 0.8

Tabla D.41: Resultados de las pruebas con 300 muestras por gesto.
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