
Interfaz gestual para el control de
un robot humanoide con una

cámara RGB-d

PROYECTO FIN DE CARRERA

Autor: Luis Parrilla Bel

Director: Ana Cristina Murillo Arnal

Ingenieŕıa en Informática
Curso 2012-2013

Departamento de Informática e Ingenieŕıa de Sistemas

Escuela de Ingenieŕıa y Arquitectura

Universidad de Zaragoza

Noviembre de 2012

Interfaz gestual para el control de un robot humanoide mediante
cámaras RGB-d

RESUMEN

La divulgación cient́ıfica, cuya finalidad es hacer accesible la ciencia al público en general,
es una tarea que cada vez está tomando mayor relevancia. Este proyecto trata el estudio de dos
campos de investigación atractivos para el público en general y con muchos resultados interesantes
en los últimos años, como son la robótica y la visión por computador. En particular, el proyecto se
centra en el uso del dispositivo Kinect como interfaz para la interacción con el robot RoboNova-1,
y en el diseño de una actividad basada en ello para utilizar como taller de divulgación cient́ıfica.

La aparición del sensor Kinect ha supuesto una revolución en el campo de la visión por com-
putador y de la robótica, por las posibilidades que ofrece el mapa de profundidad capturado (imagen
aumentada con información de distancia a la cámara del elemento representado en cada ṕıxel) y
por su bajo coste. Gracias al mapa de profundidad que Kinect aporta en tiempo real, se facilita
mucho el trabajo de reconocimiento y segmentación de objetos en 3D.

Esta caracteŕıstica facilita la segmentación de las distintas partes de una persona enfrente de
la cámara, convirtiendo la kinect en un dispositivo muy apto para crear interfaces con gestos.
El objetivo general del proyecto es la implementación de un interfaz gestual, mediante cámaras
RGB-d, con un robot humanoide y diseñar con ello una actividad orientada a la divulgación de la
robótica y la inteligencia artificial para niños y jóvenes.

En el proceso de desarrollo podemos distinguir dos partes importantes, que son el reconocimien-
to de los gestos y la comunicación con el robot humanoide. Para el reconocimiento de los gestos
se usa la imagen con información 3D captada por la cámara RGB-d para identificar y segmentar
donde esta el usuario de la aplicación. La figura de la persona nos sirve para crear una estructura
de esqueleto que captará los movimientos de la persona y en los brazos se seleccionan las zonas
que determinarán las manos en 3D. Posteriormente este subconjunto de puntos en 3D se proyecta
en blanco sobre una imagen negra, obteniendo la mano en 2D. Tras el filtrado del ruido, estas
imágenes serán utilizadas por los métodos de clasificación para determinar a que gesto pertenece
cada captura.

El robot RoboNova-1 dispone de un software propio para su programación desde Windows.
Esta aplicación nos permitirá introducir programas y secuencias de movimiento en la memoria
interna del robot utilizando el programa RoboBasic. La comunicación con el robot se realizará
mediante un módulo diseñado para otro robot, por lo que hubo que adaptarlo a las especificaciones
de protocolos de comunicación utilizados por el chip MR-C3024 del RoboNova-1.

La aplicación desarrollada se divide en dos bloques. El primero contiene las aplicaciones que nos
servirán para capturar los datos necesarios en el entrenamiento de los métodos de clasificación de
gestos. En el segundo bloque encontramos la aplicación principal que hará uso del interfaz gestual
y con la que se evaluará el rendimiento de los métodos de clasificación.

Una vez desarrollado el interfaz se preparó un taller que se llevó a cabo durante la celebración
de la “V Semana de la ingenieŕıa y arquitectura”. En él participaron estudiantes desde 3� de ESO
hasta 2� de Bachiller. Durante una demostración se les explicó el funcionamiento del sistema y
posteriormente fue probado por los estudiantes. Se obtuvo un buen resultado en el funcionamiento
y buena aceptación entre los asistentes.

i

Índice general

1. Introducción 1
1. Motivación . 1
2. Objetivos y alcance del proyecto . 2
3. Herramientas y entorno . 2
4. Estructura del documento . 3
5. Planificación . 3

2. Reconocimiento de Gestos 5
1. Reconocimiento y segmentación de las manos en datos 3D 5
2. Preprocesado de las imágenes de las manos 2D . 8
3. Algoritmos de clasificación de las imágenes 2D para reconocer las distintas posturas

de la mano . 11
4. Pruebas y análisis de resultados . 12

3. Comunicación con robot humanoide RoboNova-1 17
1. Robobuilder-ros-pkg . 17
2. Programación del RoboNova-1 . 19

4. Aplicación realizada 21
1. Entrenamiento del sistema . 21
2. Uso del clasificador y el interfaz gestual. 23
3. Taller realizado . 26

5. Conclusiones y trabajos futuros 29
1. Conclusiones . 29
2. Trabajo futuro . 30
3. Valoración personal . 30

Anexos 35

A. ROS 35

B. Sensor Kinect 37

C. RoboNova-1 39

D. Pruebas y resultados 41
1. Fase 1: Selección de propiedades de las imágenes 41
2. Fase 2: Repetición de las pruebas con los mejores resultados 54
3. Fase 3: Selección de filtro . 61
4. Fase 4: Doble filtrado . 74
5. Fase 5: Inserción de más muestras para la calibración 75

iii

iv

Caṕıtulo 1

Introducción

1. Motivación

La divulgación cient́ıfica, cuya finalidad es hacer accesible la ciencia al público en general, es
una tarea que cada vez está tomando mayor relevancia. Una manera de hacer llegar estos temas
y trabajos al mayor número posible de personas, y de manera más comprensible y amena, es
presentándolo mediante talleres interactivos y con herramientas atractivas para ellos.

Este proyecto trata el estudio y divulgación de dos campos de investigación atractivos para el
público en general y con muchos resultados interesantes en los últimos años, como son la robótica
y la visión por computador. Recientemente, el campo de los videojuegos a acercado al público en
general muchos sensores que tradicionalmente se utilizan en robótica, y ahora son más comunes,
y también más asequibles debido a la mayor producción. Un ejemplo son las cámaras RGB-d
(cámaras de visión y profundidad), como la utilizada en el sensor Kinect.

Este proyecto se centra en el uso del dispositivo Kinect como interfaz para interacción con un
robot (ver Figura 1.1). El sensor Kinect1 es un producto de Microsoft comercializado para su uso
con la Xbox 360 (Anexo B). Los sensores RGB-d están generando grandes avances en el campo del
reconocimiento visual automático [1, 7], ofreciendo un complemento muy valioso a los algoritmos
de visión por computador que utilizan solamente sensores de visión [2, 10]. Por ejemplo, en el
caso concreto que se estudia en este proyecto, reconocimiento de gestos, permiten una captura y
segmentación de las zonas de interés de la imagen (las manos) mucho más eficaz que si usáramos
solamente una cámara convencional [3, 5, 9].

Figura 1.1: (1) El sensor Kinect captura al usuario. (2) Se reconoce el cuerpo del usuario y sus
manos. (3) Las manos son analizadas. (4) Se transmite la orden al robot.

1http://www.xbox.com/es-ES/kinect

1

Aprovechando por tanto las ventajas de este sensor para crear interfaces con gestos [4, 5, 6, 8],
se propone diseñar un interfaz para comunicar con un robot y diseñar una actividad orientada a
la divulgación de la robótica y la inteligencia artificial para estudiantes tanto de primaria, como
de secundaria y bachiller. La idea de este proyecto es formar parte de una serie de actividades de
divulgación realizadas periódicamente por el grupo de Robótica, Percepción y Tiempo Real del
DIIS.

2. Objetivos y alcance del proyecto

El objetivo general del proyecto es la implementación de un interfaz gestual mediante cámaras
RGB-d con un robot humanoide y diseñar con ello una actividad orientada a la divulgación de
robótica e inteligencia artificial para niños y jóvenes. Las tareas más en detalle realizadas en este
proyecto han sido las siguientes:

Estudio, instalación y familiarización con el entorno ROS [12], incluyendo drivers Openni
para comunicación con sensores Kinect y libreŕıas PCL [11] y OpenCv para facilitar las
operaciones con imágenes 3D y 2D respectivamente.

Puesta en marcha de la plataforma robótica a utilizar. Estudio de las especificaciones, utili-
dades y posibilidades de comunicación remota del robot humanoide disponible para el proyec-
to, el robot Robonova-1.

Estudio de algoritmos sencillos para detección de gestos mediante sensores RGB-d.

Implementación o adaptación/mejora de los métodos estudiados en la literatura, para que
funcionen como interfaz del sensor Kinect con el robot disponible (a través del sistema ROS
instalado en un ordenador portátil, donde se realizarán todos los cálculos relacionados con el
reconocimiento de gestos).

Diseño de una actividad/taller que haga uso de el interfaz/sistema de comunicación diseñado.

Realización de pruebas y documentación de las actividades a realizar, para permitir el uso
de los resultados de este proyecto en actividades próximas de divulgación cient́ıfica.

3. Herramientas y entorno

La ejecución del interfaz se ha realizado sobre ROS [12], un pseudo sistema operativo utilizado
para gestión de plataformas robóticas y sensores relacionados. ROS provee los servicios estándar
de un sistema operativo tales como abstracción del hardware, control de dispositivos de bajo nivel,
implementación de funcionalidad de uso común, paso de mensajes entre procesos y mantenimiento
de paquetes. Se ha utilizado la versión “ROS Electric”2, la calificada como estable. El proyecto se
ha desarrollado bajo un sistema operativo Ubuntu 10.04 “Lucid Lynx”3, siendo éste sobre el que
“Willow Garage”, principal desarrollador del sistema ROS, nos ofrece soporte.

El manejo del sensor Kinect se ha realizado mediante el driver Openni [22] y con las libreŕıas
PCL[11] y OpenCv [23] tenemos lo necesario para el tratamiento de imágenes en 3D y 2D. Estas
libreŕıas las podemos encontrar dentro de “ros-pkg”, un repositorio de paquetes aportados por la
contribución de usuarios. Para la comunicación con el robot RoboNova-1 se utiliza “Robobuilder-
ROS-package”4. Un script de Python para integrar las plataformas Robobuilder en ROS.

Las modificaciones en el código del RoboNova-1 se han realizado en el caṕıtulo 2 con el software
que el propio robot nos proporcionaba. Este software es un entorno de programación de Windows
basado en el lenguaje RoboBasic, especializado y orientado a robots.

2Robot Operating System: http://www.ros.org/wiki/
3http://www.ubuntu.com/
4https://code.google.com/p/robobuilder-ros-pkg/#Robobuilder ROS package written in Python

2

4. Estructura del documento

En esta memoria se describe el proceso para la creación de un interfaz gestual mediante cá-
maras RGB-d con un robot humanoide. En el caṕıtulo 2 se explicará el método utilizado para el
reconocimiento y segmentación de las manos, aśı como el tratamiento de las imágenes y los métodos
de clasificación probados. En el caṕıtulo 3 se explicará el sistema de comunicación con el robot
RoboNova-1 y su programación. En el caṕıtulo 4 se detallará la aplicación realizada. En el caṕıtulo
5, las conclusiones recopilan el resultado del proyecto, ĺıneas de trabajos futuros y una valoración
personal del proyecto fin de carrera. Finalmente encontraremos varios anexos con información de
interés sobre el sistema, dispositivos utilizados y los resultados completos de las pruebas realizadas.

5. Planificación

En el diagrama de Gantt que se muestra en la Figura 1.2 queda reflejada la gestión del tiempo
utilizada para la realización de este proyecto. En el se detallan las tareas que se han realizado
y el tiempo invertido en ellas. Entre las tareas realizadas hay tareas de estudio, documentación,
realización de tutoriales, prueba de programas de reconocimiento, implementación del interfaz y
presentación de talleres durante la celebración de la “V semana de la ingenieŕıa y arquitectura”5.

5http://www.semanaingenieriayarquitectura.com/

3

Figura 1.2: Diagrama de Gantt, que resume la distribución temporal de tareas del proyecto.

4

Caṕıtulo 2

Reconocimiento de Gestos

Tal y como se ha descrito en los objetivos, se requeŕıa implementar un interfaz gestual mediante
cámaras RGB-d con un robot humanoide.

En este proceso, podemos diferenciar dos partes importantes, el reconocimiento de los gestos y
la comunicación con el robot humanoide, que se describirán en éste y el siguiente caṕıtulo respec-
tivamente.

En el proceso para reconocer un gesto, debemos pasar por varias etapas como muestra el
diagrama de la Figura 2.1. En las diferentes secciones de este caṕıtulo se explicará los diferentes
pasos seguidos en el proceso de reconocimiento. En primer lugar deberemos reconocer y segmentar
las manos (Sección 1). A continuación, utilizar filtros que procesen la imagen de las manos para
facilitar el reconocimiento (Sección 2). Finalmente se realizará la clasificación del gesto capturado
(Sección 3).

Figura 2.1: Proceso de reconocimiento de gestos. (1)(2)(3) Reconocimiento y segmentación de las
manos. (4) Tratamiento de la imagen. (5) Clasificación del gesto .

1. Reconocimiento y segmentación de las manos en datos
3D

Los sensores RGB-d nos proporcionan una secuencia de imágenes en el formato t́ıpico RGB
sincronizado con la correspondiente imagen de profundidad en tiempo real, como se ve en la Figura
2.2. Esta segunda parte, las imágenes de profundidad, son la parte que se ha utilizado para el
reconocimiento y segmentación de las manos en el desarrollo del interfaz.

En el proceso de reconocimiento de gestos, debemos pasar por varias fases hasta llegar a poder
comparar diferentes muestras de manos, como se ha podido ver en la Figura 2.1.

5

Figura 2.2: Imagenes capturadas por el sensor kinect. En la derecha podemos ver la imagen de la
cámara RGB y en la izquierda la imagen captada por el sensor de profundidad.

Detección de la persona y las manos desde los datos 3D

Como se puede observar en el diagrama anterior (Figura 2.1), la primera parte de este proceso
es reconocer a la persona que va a utilizar el interfaz. Para ello, existen diferentes programas,
implementados con métodos diferentes, para el reconocimiento del cuerpo usando cámaras RGB-d.
Después de realizar un estudio entre varios, se decidió utilizar el siguiente por ser el más sencillo
de integrar con el entorno de programación requerido.

Se ha partido del programa “Hand Detection”1 del paquete KinectDemos de las libreŕıas de
ROS. Este programa se encarga de detectar, dentro de la imagen de profundidad, la figura de
personas. Esta selección la realiza mediante la búsqueda de zonas de la imagen con variaciones de
posición o de profundidad en la secuencia de v́ıdeo (Figura 2.3). Con este proceso se seleccionan
cuerpos móviles y se excluyen objetos que puedan aparecer dentro del área de visión de la Kinect.

Figura 2.3: Reconocimiento del usuario.

Con la persona en cuestión seleccionada, procede a buscar una silueta determinada de ésta,
con las manos a ambos lados de la cabeza, la cual debes imitar para que sea capaz de crear un
“esqueleto” (Figura 2.4) que determinará la posición del cuerpo y los movimientos que se realicen.
A partir de la estructura del esqueleto se localiza la posición final del brazo, las muñecas, y busca
la nube de puntos situados alrededor de esa posición creando las manos.

Finalmente, las nubes de puntos son “publicadas” en ROS como “/hand0 fullcloud” mano
izquierda y “/hand1 fullcloud” mano derecha para su posterior utilización, como podemos ver
en la Figura 2.5. más adelante en el anexo A se detalla en que consiste el proceso de publicación
de información en ROS, básicamente es una manera para compartir información entre procesos
ejecutados en paralelo.

1http://www.ros.org/wiki/mit-ros-pkg/KinectDemos

6

Figura 2.4: En primer lugar se realiza el reconocimiento del cuerpo y creación de un esqueleto, como
podemos ver en la imagen de la izquierda. Posteriormente se seleccionan los puntos que componen
la mano, como muestra la imagen de la derecha.

Segmentación de las manos y conversión a 2D

Figura 2.5: Diagrama de comunicación de procesos en ROS. Vemos como “interfaz” se subscribe
a /Hand0 fullcloud y /Hand1 fullcloud que publica “Detect Hands”. Interfaz convierte las manos
a 2D, clasifica las imágenes y posteriormente realiza el mismo proceso para comunicar al robot la
acción a realizar.

Cuando la aplicación principal comience su ejecución se subscribirá a los “/hand0 fullcloud” y
“/hand1 fullcloud”que detect hands estará publicando, y aśı comenzará recibir las nubes de puntos
encontradas correspondientes a ambas manos. En este momento poseemos unas nubes de puntos
en 3D que representan las manos (Figura 2.6), pero es dif́ıcil y costoso el trabajar con los datos
en este formato, por lo que el siguiente paso será la transformación de éstas a imágenes en 2D con
las que realizaremos la clasificación de las diferentes posturas de la mano. Para el análisis de las
imágenes se utilizan las bibliotecas de OpenCv.

7

Figura 2.6: La imagen superior muestra las nubes de puntos en 3D de las manos. La inferior,
imágenes en 2D de las nubes de puntos.

Debido a la versión de la libreŕıa perception pcl-1.0.2, libreŕıa de PCL soportada por ROS
Electric, no disponemos de muchas funciones incorporadas en versiones posteriores como conversión
de tipos o el guardar una nube de puntos como imagen. Por otro lado, ROS dispone también de
libreŕıas para la conversión de tipos, como cv bridge, pero en el caso de estas nubes de puntos no
ordenadas el resultado no era el deseado. Por lo tanto, se ha implementado un algoritmo propio que
convierte la nube de puntos en el tipo de datos requerido en opencv, en particular crea imágenes
(2D) proyectando cada punto de la nube en blanco sobre una imagen negra.

2. Preprocesado de las imágenes de las manos 2D

Al convertir las manos a imágenes en 2D, el primer problema encontrado es que dependiendo
de la posición de la mano, p.e. palma abierta o palma cerrada, tienen diferente tamaño, pero
también lo tienen dos manos a diferente distancia del sensor o las manos de un adulto y un niño.
Eso creaba un problema a la hora del reconocimiento del gesto. Una posible solución era insertar
muestras de diferentes tamaños de cada uno de los gestos, pero para llevar a cabo esta solución era
necesario insertar una cantidad de muestras muy superior y la necesidad de realizar las pruebas con
más gente, con diferentes tamaños de mano, y a diferentes distancias de la Kinect. Finalmente, la
solución a este problema fue el redimensionado de las capturas hasta igualarlas a las de las muestras
(Figura 2.7). Para ello, al arranque de la aplicación, se toma el tamaño actual de la palma de la
mano y se usa con las siguientes imágenes como referencia.

La creación de las imágenes se realiza dibujando, en color blanco, cada uno de los puntos que
componen las manos en 3D, sobre un fondo negro. Para la elección del tamaño a utilizar tuve que
tener en cuenta varios parámetros, de los cuales se seleccionaron los de mejores resultados tras las
pruebas.

8

Figura 2.7: Imagen palma (izquierda). Imagen puño desproporcionada (centro). Imagen puño man-
teniendo las proporciones (derecha).

Tamaño de la imagen y de la proyección de los puntos

Al haber una cantidad variable de puntos en la nube de cada mano, hubo que realizar pruebas
con el tamaño de la imagen y el tamaño del punto a utilizar. En la Figura 2.8 podemos ver varios
ejemplos.

Figura 2.8: muestras de diferentes configuraciones de la imagen

Tras las pruebas se pudo comprobar que se consegúıan rendimientos similares con imágenes de
diferentes tamaños, utilizando el grosor del punto adecuado. Tras finalizar las pruebas y analizar
los resultados se seleccionó las siguientes configuraciones:

Tamaño en ṕıxeles del lado de la imagen de la mano = 100

Propiedades del punto:

- Radio del ćırculo en ṕıxeles = 0

9

- Grosor de la ĺınea en ṕıxeles = 2

Este resultado coincide con la imagen inferior izquierda de la Figura 2.8.

Filtrado del ruido

Tras una preselección de varias combinaciones de tamaño de imagen y de punto, se repitieron
las pruebas incorporando pasos de filtrado a la imagen para suavizarla y evitar ruido, con la
intención de que mejorase el resultado del reconocimiento como se muestra en muchos ejemplos de
la literatura [13]. Las siguientes pruebas se realizaron con filtro Gaussiano [14] y filtro de mediana
[15].

El ı́ndice utilizado para los filtros indicará el tamaño del recuadro a tener en cuenta, centrado
en el ṕıxel que se va a modificar, utilizado para obtener el nuevo valor.

Filtro Gaussiano

Un desenfoque Gaussiano es el resultado de una imagen difuminada por una función Gaussiana.
Es un efecto ampliamente utilizado para reducir el ruido de la imagen y reducir los detalles. El
valor de cada ṕıxel sera el resultado del producto de la función Gaussiana aplicada en cada una de
las dimensiones [16]:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.1)

En un filtro Gaussiano, el ı́ndice utilizado nos determinara el valor de σ, la desviación de
la distribución Gaussiana (Figura 2.9). El valor resultado será una media ponderada, realizada
mediante ćırculos concéntricos, de los valores del recuadro seleccionado.

Figura 2.9: Imagen original (izquierda). Filtrado con Gaussian Blur con indice 7 (centro). Filtrado
con Gaussian Blur con ndice 23 (derecha).

Filtro de mediana

El filtro de mediana es una técnica de filtrado digital no lineal, a menudo utilizado para
eliminar el ruido. Tal reducción de ruido es un t́ıpico paso de tratamiento previo para mejorar los
resultados del procesamiento posterior, como la detección de bordes en una imagen. El Filtrado de
mediana es ampliamente utilizado en el procesamiento digital de la imagen, ya que, en determinadas
condiciones, conserva los bordes mientras elimina ruido de la imagen [17].

Este filtro reemplaza cada ṕıxel con la mediana de sus ṕıxeles vecinos localizados en el cuadrado
que rodea al ṕıxel en cuestión, como muestra el ejemplo de la Figura 2.10.

En este caso, el ı́ndice utilizado para los filtros indicará el tamaño del recuadro a tener en
cuenta, centrado en el ṕıxel que se va a modificar, utilizado para obtener el nuevo valor.

10

3 35 12

6 25 45
15 17 22

3 6 12 15 17 22 25 35 45

Figura 2.10: Ejemplo para la búsqueda del valor que se asignará (en verde, abajo) al ṕıxel central
(en verde, arriba) utilizando un filtro de mediana.

Figura 2.11: Imagen original (izquierda). Filtrado con Median Blur con indice 7 (centro). Filtrado
con Median Blur con ndice 23 (derecha).

3. Algoritmos de clasificación de las imágenes 2D para re-
conocer las distintas posturas de la mano

Una vez obtenidas las imagenes binarizadas de la mano detectada, se realiza el último paso
de decidir a que gesto se asemeja más. En una primera versión se realizó la comparación respecto
a unas muestras de cada gesto comparando la cantidad de ṕıxeles que se diferenciaban respecto a
cada muestra. El resultado fue bueno, pero con un número reducido de gestos y muestras por gesto.
Este sistema implica el comparar la nueva imagen capturada con todas las muestras y eso es un
proceso costoso si utilizamos un número elevado de muestras que nos permitan el reconocimiento
variando el ángulo o posición de la mano. Por el contrario, si se utilizan pocas muestras por gesto,
supone el tener que hacer el gesto con una posición muy semejante a la de las muestras, ya que en
caso contrario el resultado tenia una alta probabilidad de ser erróneo.

Para una segunda versión, se procedió a analizar los resultados obtenidos con otros dos métodos
de clasificación más complejos y eficientes. De los diferentes métodos de clasificación descritos en
la literatura [19] se decidió utilizar uno de los más populares de cada gran familia de clasificadores:
un método de tipo generativo, K Nearest Neighbors, y otro de tipo discriminativo, Support Vector
Machine.

K Nearest Neighbors

El método de clasificación basado en K Nearest Neighbors[18], KNN, es un método de clasi-
ficación “lazy learning” de tipo generativo, que estima, a partir de la información proporcionada
por un conjunto de vectores de entrenamiento, el valor de la función de densidad de probabilidad
de que un elemento pertenezca a una clase determinada. Para el reconocimiento de patrones, el
algoritmo KNN es un método de clasificación de objetos basado en los ejemplos del entrenamiento
más cercanos en el espacio de los elementos.

El entrenamiento se realiza con vectores en un espacio multidimensional, asignándole a cada
uno una etiqueta de la clase a la que pertenece. Para el proceso de clasificación se seleccionan los

11

k ejemplos más cercanos y el nuevo vector es clasificado como la clase que más se repita entre los
ejemplos seleccionados. Podemos ver un ejemplo en la Figura 2.12.

Figura 2.12: Ejemplo del algoritmo KNN. Deseamos clasificar el interrogante verde como triángulo
o cuadrado. Con k = 3, éste es clasificado como la clase triángulo, ya que hay un cuadrado y 2
triángulos, dentro del ćırculo que los contiene. Si k = 5, éste es clasificado como la clase cuadrado,
ya que hay 2 triángulos y 3 cuadrados, dentro del ćırculo externo.

Generalmente se utiliza la distancia eucĺıdea para determinar quienes son los vecinos más
cercanos:

d(xi, xj) =

�
�
�
�

p�

r=1

(xir − xjr)2 (2.2)

Support Vector Machines

El método de clasificación basado en Support Vector Machines [20], al contrario del anterior,
es un método de tipo discriminativo, que modela la dependencia de una variable no observada en
una variable observada. Dentro de un marco estad́ıstico, esto se hace mediante el modelado de la
distribución de probabilidad condicional[21] P (y|x), que se puede utilizar para predecir y a partir

de x. Éste método realiza la clasificación mediante la construcción de uno o varios hiperplanos
N-dimensionales que separan los datos de manera óptima en dos categoŕıas. En la Figura 2.13
vemos un ejemplo en 2D .

4. Pruebas y análisis de resultados

Para buscar los parámetros en los que se obtuviesen los mejores resultados se ha realizado
una bateŕıa de pruebas evaluando los diferentes parámetros y almacenando su mejor o peor com-
portamiento en la clasificación deseada. Para la evaluación se han utilizado las medidas estándar
utilizadas en problemas de clasificación, precision-recall2, que resumen lo obtenido en cada prueba
para su posterior comparación.

Las pruebas se han realizado mediante secuencias grabadas anteriormente para poder realizar
una evaluación exhaustiva sobre los mismos datos con distintas opciones. La grabación de estos
datos se realizaba siguiendo unos patrones para obtener una cantidad lo más similar posible de
muestras por cada gesto, y aśı realizar comparaciones más equitativas. Mediante el programa
analiza se obtienen unas tablas con los resultados de las clasificaciones de ambas manos para los
dos sistemas de clasificación a comparar.

2http://en.wikipedia.org/wiki/Precision and recall

12

Figura 2.13: Ejemplo en 2D de la separación entre dos clases con el máximo margen posible.

El programa analiza se invoca de la siguiente manera:

rosrun interfaz analiza nombre calibracion resolucion radio punto grosor linea
tipo linea filtro indice filtro video

nombre calibracion: nombre del directorio donde se encuentra las imágenes utilizadas para la
calibración

resolucion: dimensión del lado de la imagen en ṕıxeles

radio punto: radio del ćırculo utilizado para cada punto al proyectarlos en la imagen

grosor linea: grosor de la ĺınea utilizada en los ćırculos de cada ĺınea

tipo linea: tipo de ĺınea utilizado para el dibujo de cada punto

- 1= 8-connected line

- 2 = 4-connected line

- 3 = CV AA: antialiased line

filtro:

- 0 = sin filtro

- 2 = Gaussian Blur

- 3 = Median Blur

indice filtro: ı́ndice para el filtro que se utilizará. Este valor debe ser número impar.

video: Nombre del v́ıdeo del cual se desean obtener los resultados del análisis

Para cada uno de los experimentos se muestran dos tablas con los resultados obtenidos con cada
uno de los métodos de clasificación, como podemos observar en la Tabla 2.1. En cada una de ellas
la parte izquierda y derecha de la tabla corresponde a los resultados de reconocimiento de la mano
izquierda y derecha respectivamente.

Cada tabla muestra el resultado de reconocer los gestos 1 y 2 (ejemplos en Figura 2.14), y
el 0 se utiliza como caso “nulo” cuando el clasificador decide que la imagen no corresponde con

13

ninguno de los gestos. Las columnas muestran cuantos tests correspondientes a esa clase han sido
clasificados como cada una de las clases posibles. Es decir, el resultado óptimo seria obteniendo
una diagonal, con todos los tests en las casillas 1-1 y 2-2. El criterio que buscamos es el clasificador
con mayor porcentaje de aciertos obtenido.

Observando los resultados obtenidos de las pruebas, los cuales podemos encontrar en el anexo
D, se observa que dependiendo del método de búsqueda que se utilice los resultados vaŕıan. En
ambos casos coincide la configuración de la imagen que da resultados mejores, es decir, el tamaño
de la imagen, radio y grosor del ćırculo. Sin embargo, la mejor elección para el filtro utilizado vaŕıa
según el método de clasificación. Si realizamos la búsqueda por k nearest neighbor el mejor
resultado lo obtenemos si utilizamos un filtro Gaussiano con ı́ndice 19, como vemos en la tabla
2.1, y, en cambio, si utilizamos Support Vector Machine el mejor resultado lo obtenemos con
un filtro Median Blur con ı́ndice 5, que se encuentran en la tabla 2.2.

Los resultados han sido los siguientes:

Para la clasificación con KNN:

- rosrun interfaz analiza dos2-100-0-2-2-19 100 0 2 3 2 19 luisPalmOk2

◦ tamaño en ṕıxeles del lado = 100

◦ radio del ćırculo = 0

◦ grosor de la ĺınea = 2

◦ tipo de ĺınea = CV AA

◦ filtro = Gaussian Blur

◦ ı́ndice para el filtro = 19

Figura 2.14: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

Para la clasificación con SVM:

- rosrun interfaz analiza dos2-100-0-2-3-5 100 0 2 3 3 5 luisPalmOk2

◦ tamaño en ṕıxeles del lado = 100

◦ radio del ćırculo = 0

◦ grosor de la ĺınea = 2

◦ tipo de ĺınea = CV AA

◦ filtro = Median Blur

◦ ı́ndice para el filtro = 5

Tras realizar las pruebas y seleccionar el formato de imagen con el que se obtiene mejores
resultados, se ha realizado un nuevo análisis tras la inserción de más muestras para la calibración
del sistema. En las pruebas anteriores se analizaba partiendo de 50-60 muestras por gesto. En esta
ocasión se realizará el análisis con aproximadamente 300 muestras por gesto. Con los datos de la

14

LEFT 0 1 2

0 0 3 0
1 0 54 10
2 0 12 59

RIGHT 0 1 2

0 0 3 0
1 0 52 11
2 0 15 57

Precisión obtenida mediante KNN = 0.78

LEFT 0 1 2

0 0 2 1
1 0 59 5
2 0 56 15

RIGHT 0 1 2

0 0 0 3
1 0 13 50
2 0 56 16

Precisión obtenida mediante SVM = 0.37

Tabla 2.1: Resultados de las pruebas

Figura 2.15: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 1 1 1
1 1 40 22
2 0 10 62

RIGHT 0 1 2

0 0 2 1
1 0 28 35
2 0 6 66

Precisión obtenida mediante KNN = 0.71

LEFT 0 1 2

0 0 2 1
1 1 53 9
2 0 11 61

RIGHT 0 1 2

0 0 0 3
1 0 39 24
2 9 46 26

Precisión obtenida mediante SVM = 0.65

Tabla 2.2: Resultados de las pruebas utilizando un filtro de mediana

tabla 2.3 podemos observar que en el caso de KNN el resultado no vaŕıa, en cambio en el de SVM
mejora notablemente.

Estos resultados muestran que si se disponen de pocas muestras para el entrenamiento el uso
del método de clasificación “k-nearest neighbor” es más eficiente que con “Suport Vector Machine”.
En cambio, si aumentamos el número de muestras el resultado es similar con ambos métodos.

15

LEFT 0 1 2

0 0 4 0
1 0 48 8
2 0 8 34

RIGHT 0 1 2

0 0 4 0
1 0 46 9
2 0 8 34

Precisión obtenida mediante KNN = 0.79

LEFT 0 1 2

0 0 4 0
1 0 47 9
2 0 6 36

RIGHT 0 1 2

0 0 4 0
1 0 46 9
2 0 7 35

Precisión obtenida mediante SVM = 0.8

Tabla 2.3: Resultados de las pruebas utilizando un filtro de mediana

16

Caṕıtulo 3

Comunicación con robot
humanoide RoboNova-1

Como ya se ha indicado anteriormente, para el desarrollo de este proyecto se ha utilizado el
robot RoboNova-1(figura 3.1). El RoboNova-1 es un robot humanoide que lleva incorporados 16
servos digitales. A pesar de que también cuenta con un sensor de infrarrojos para su control desde
un mando a distancia, la comunicación se realizará por medio de una conexión ĺınea serie con el
ordenador. Si nos dirigimos al anexo C encontraremos información más detallada sobre el robot
RoboNova-1.

Figura 3.1: Robot humanoide RoboNova-1

1. Robobuilder-ros-pkg

Para el control del robot he utilizado el paquete Robobuilder-ros-pkg incorporado en el reposito-
rio de ROS por RoboSavvy[24]. En él encontramos un controlador para la plataforma“Robobuilder”,
la cual lleva un sistema de comunicación, por ĺınea serie, con algunas similitudes al que utiliza el
“RoboNova-1”. El controlador es un script Python1. Éste realiza una subscripción a“robobuilder motion”,
por donde se le mandarán las ordenes de las acciones a realizar entre las que tiene programadas en
el programa interno.

1Se necesita una versión de Python igual o superior a la 2.7

17

Debido a las diferencias entre los protocolos de comunicación entre estos dos modelos, hubo
que realizar algunas modificaciones en este script:

Modificar la velocidad de conexión a 9600 bits/seg.

Desactivar el modo de control directo.

Realizar comprobación del puerto al que esta conectado el robot.

Robobuilder utiliza una conexión a 11520 bits/seg y para el control directo utiliza otros protocolos
de comunicación diferentes a los de RoboNova-1. Por otro lado, el script está preparado para realizar
la conexión en el puerto USB0. Pero utilizándolo de manera simultanea con el sensor Kinect, éste
puede ser reconocido fácilmente en algún otro puerto y se debe comprobar el puerto al que se
encuentra conectado nuestro robot.

Para la comunicación con la memoria interna del robot, donde se encuentran las secuencias de
movimiento preprogramados, éste script es válido para este proyecto. En el modo de control directo,
comunicación inmediata con los motores del robot, debemos realizarla de manera independiente a
este script siguiendo las especificaciones de protocolo del chip “Hitec MR-C3024”23.

Para realizar una acción de la memoria interna del robot deberemos incluir el fichero robobuilder/Motion.h
en el que tenemos definida la variable que utiliza la comunicación con el robot y publicarlo ROS
para que el robot reciba la instrucción:

ros::Publisher motion ;
motion = n.advertise<robobuilder::Motion> (”robobuilder motion”, 1);
robobuilder::Motion m;
m.motion = (int8 t)7;
motion .publish(m);

Figura 3.2: Robot humanoide RoboNova-1 ejecutando la acción 7 programada en su memoria
interna.

2http://www.ceautomatica.es/sites/default/files/upload/10/CEABOT/recursos/C3024 Serial Protocol.pdf
3http://www.ceautomatica.es/sites/default/files/upload/10/CEABOT/recursos/controller%20serial%20interface.pdf

18

En el caso de control directo nos comunicaremos mandando las instrucciones directamente al
robot por medio de ĺınea serie:

std::vector<unsigned char> command;
command.push back(0xE6);
command.push back(0x07);
command.push back(0xB4);
sendCommand(command);

El valor “0xE6”indica la instrucción de cambiar la posición de un servo, el byte segundo indica el
servo a controlar y por ultimo la posición a la que debe trasladarse. En este caso el resultado seŕıa
el que muestra la Figura 3.3.

Figura 3.3: Robot humanoide RoboNova-1

2. Programación del RoboNova-1

El robot posee un software propio basado en el lenguaje RoboBasic, que como su nombre indica
es un lenguaje del tipo Basic pero especializado y orientado a robots(Figura 3.4).

Con la siguiente rutina como ejemplo, el robot procedeŕıa a sentarse y, tras esperar un segundo,
volveŕıa a levantarse a la velocidad indicada, en este caso 8:

SPEED 8
GOSUB sit down pose
DELAY 1000
GOSUB standard pose
GOTO main exit

sit down pose y standard pose son rutinas en las que se especifican los diferentes movimientos que
deben realizar cada uno de los motores del robot:

19

Figura 3.4: Entorno de programación roboBASIC

standard pose:

MOVE G6A, 100, 76, 145, 93, 100, 100
MOVE G6D, 100, 76, 145, 93, 100, 100
WAIT
MOVE G6B, 100, 30, 80, 100, 100, 100
MOVE G6C, 100, 30, 80, 100, 100, 100
WAIT
RETURN

Mediante el parámetro “G6?” indicamos la extremidad en la que debemos realizar el movimiento,
y los valores siguientes son la posición de cada uno de los servos. G6A y G6D se refieren a las
piernas del robot y G6B y G6C a los brazos.

Éste software nos permite el controlar en tiempo real los motores del robot y capturar la
posición de los motores para crear nuevos movimientos sin la necesidad de calcular los valores
necesarios para cada articulación (Figura 3.5).

Figura 3.5: Panel para el control de los servos del robot en tiempo real.

20

Caṕıtulo 4

Aplicación realizada

Como se ha ido describiendo a lo largo de la memoria, se ha creado un interfaz gestual para el
control de un robot humanoide.

Para ello se han implementado varias aplicaciones que realizarán las diferentes tareas necesarias
para el funcionamiento del interfaz. La aplicación se divide en dos bloques, tal como muestra la
Figura 4.1. El primero nos servirá para capturar las muestras necesarias en el entrenamiento de los
métodos de clasificación. El segundo hará uso del sistema de reconocimiento y del interfaz gestual.

Figura 4.1: Esquema de uso de recursos de la aplicación

1. Entrenamiento del sistema

Para el funcionamiento del interfaz gestual es necesario disponer de los archivos de muestras
con los que entrenar los métodos de clasificación. Si no se disponen de ellos, se podrán crear con
las aplicaciones implementadas para tal fin (Figura 4.2). El entrenamiento lo podemos realizar de
dos maneras diferentes, situándonos ante la Kinect directamente o mediante v́ıdeos realizados para
tal fin.

Grabar

El módulo “Grabar” realizará grabaciones que posteriormente nos servirán para la captura de
muestras necesarias para el entrenamiento de los sistemas de búsqueda y para realizar los análisis
de resultados para las pruebas.

Esta aplicación tiene dos modos de funcionamiento según los parámetros añadidos al lanzarla.

21

Figura 4.2: Esquema de uso de recursos del bloque de entrenamiento del sistema

rosrun interfaz grabar ’nombag’ [label]

En el caso de no introducir “label” la aplicación lanzará mensajes por pantalla con el gesto que se
debe realizar. Mientras tanto realizará publicaciones de las etiquetas correspondientes a lo indicado
en el mensaje de pantalla.

Si por el contrario introducimos un valor en el campo “label”, el gesto a realizar será el in-
troducido en “label” y los mensajes de pantalla nos indicarán el tiempo restante hasta concluir la
grabación y publicará constantemente el valor de “label”.

Al comenzar su ejecución y seleccionado el modo de funcionamiento, la aplicación solicitará
al usuario que suba y baje los brazos para comenzar. En este momento comenzará la grabación
del v́ıdeo “nombag”, que almacenará las publicaciones de “manos” y “esqueleto” realizadas por
“Detect hands”1 y las publicaciones “label” que ella misma realiza.

Hasta que se solicite la introducción de posturas de la mano determinadas, el valor publicado
del topic “label” para la captura del v́ıdeo será 0.

Calibrar

Calibrar tomará las muestras necesarias para el entrenamiento de los sistemas de clasificación.
Para lanzar calibrar utilizaremos el siguiente comando:

rosrun interfaz calibrar ’calibracion’ ’resolucion’ ’radio’ ’grosor’ ’tipo’ ’filtro’ ’indice-
Filtro’ [’nombag’]

calibracion: nombre del directorio donde se encuentra las imágenes utilizadas para la cali-
bración

resolucion: dimensión del lado de la imagen en ṕıxeles

radio: radio del ćırculo utilizado para cada punto al proyectarlos en la imagen

grosor: grosor de la ĺınea utilizada en los ćırculos de cada ĺınea

tipo: tipo de ĺınea utilizado para el dibujo de cada punto

- 1= 8-connected line

- 2 = 4-connected line

- 3 = CV AA: antialiased line

1demo de los repositorios ROS-pkg

22

filtro:

- 0 = sin filtro

- 2 = Gaussian Blur

- 3 = Median Blur

indiceFiltro: ı́ndice para el filtro que se utilizará. Este valor debe ser número impar.

nombag: Nombre del v́ıdeo del cual se desean obtener los resultados del análisis

Esta aplicación utilizará ’nomCalibracion’ para crear, en el caso de que no exista, las carpetas
usadas para almacenar las muestras en función de la mano y posteriormente en función del gesto,
tal y como indica la figura 4.3.

Figura 4.3: Esquema del almacenamiento de los datos de entrenamiento

Si hemos rellenado el campo ’nombag’ en este momento comenzará la reproducción de la
grabación la cual utilizará para su ejecución. Si no hemos introducido nada, la aplicación procederá
como “grabar” indicando por pantalla el gesto a realizar para la captura de muestras. El programa
insertará las muestras en la carpeta correspondiente según la mano y el gesto, indicado por el
mensaje en pantalla o por las publicaciones de “label” proporcionadas por el v́ıdeo.

2. Uso del clasificador y el interfaz gestual.

Con muestras almacenadas en los ficheros de entrenamiento ya se puede hacer uso del sistema.
En este bloque disponemos de otras dos aplicaciones, como podemos ver en la Figura 4.4. La
primera de ellas, analizar, nos servirá para analizar la eficiencia del sistema con cada uno de los
métodos de clasificación utilizados, KNN y SVM. La segunda, interfaz, hará uso del interfaz gestual
para interaccionar con el robot humanoide.

Analizar

Con esta aplicación obtendremos un fichero con los resultados de las clasificaciones obtenidas
mediante los métodos KNN y SVM. En ellas se mostrará, para cada gesto los aciertos y fallos
obtenidos, enumerando los errores en función del gesto a reconocer y el reconocido. La tabla
tendrá una fila y una columna por cada gesto. Cada fila corresponde a cada uno de los gestos.
Cada columna nos indicará la cantidad de reconocimientos obtenidos por cada gesto.

Para lanzar esta aplicación lanzaremos el siguiente comando:

23

Figura 4.4: Esquema de uso de recursos del interfaz

rosrun interfaz analiza ’calibracion’ ’resolucion’ ’radio’ ’grosor’ ’tipo’ ’filtro’ ’in-
dice filtro’ ’nombag’

calibracion: nombre del directorio donde se encuentra las imágenes utilizadas para la cali-
bración

resolucion: dimensión del lado de la imagen en ṕıxeles

radio: radio del ćırculo utilizado para cada punto al proyectarlos en la imagen

grosor: grosor de la ĺınea utilizada en los ćırculos de cada ĺınea

tipo: tipo de ĺınea utilizado para el dibujo de cada punto

- 1= 8-connected line

- 2 = 4-connected line

- 3 = CV AA: antialiased line

filtro:

- 0 = sin filtro

- 2 = Gaussian Blur

- 3 = Median Blur

indice filtro: ı́ndice para el filtro que se utilizará. Este valor debe ser número impar.

nombag: Nombre del v́ıdeo del cual se desean obtener los resultados del análisis

Al igual que en las anteriores, los campos ’resolucion’, ’radio’, ’grosor’, ’tipo’ y ’filtro’ son los
parámetros utilizados para el tratamiento de las imágenes. En el campo ’calibracion’ indicaremos
las muestras que usaremos para el entrenamiento de los métodos de clasificación. Con ’nombag’
indicaremos el v́ıdeo utilizado para el calculo de resultados.

Al finalizar la aplicación encontraremos en la carpeta ’calibracion’ el fichero de resultados,
’calibracion’.result, con dos tablas, una para cada mano para cada método de clasificación, KNN y
SVM. En el anexo D se encuentran las tablas obtenidas en los análisis realizados.

Por cada gesto reconocido de manera equivocada, se guardará una imagen de la captura para
poder analizar el motivo del fallo. Estas imágenes serán nombradas con el siguiente patrón:

’metodo’-’gesto’-’resultado’-’numResultado’.jpg

24

Por ejemplo, el archivo “knn-1-2-4.jpg” nos indicaŕıa que es la cuarta captura que el método KNN
ha reconocido como gesto de tipo 2 y se trata de gesto de tipo 1.

El gesto ’0’ nos servirá para la clasificación de posturas de la mano que no deben ser utilizadas.
En ellas encontraremos las muestras capturadas al comienzo del v́ıdeo hasta el comienzo de muestras
claras.

Interfaz

Mediante el comando:

rosrun interfaz interfaz ’nomCalibracion’

lanzaremos la aplicación que cumple con el objetivo principal de este proyecto. Al inicio de la
ejecución, se realizará el entrenamiento para el reconocimiento de los gestos. Para ello será nece-
sario el haber creado previamente una calibración, mediante el programa “calibar”, con el nombre
’nomCalibracion’. Tras el entrenamiento comenzará la comunicación gestual con el robot.

Funcionamiento de la aplicación

Al comienzo de la aplicación, el robot se encontrará en estado “espera”. Esto evitará el re-
conocimiento de gestos indeseados al inicio de la ejecución, tras el reconocimiento de las manos.

Disponemos de varios comandos con los que nos comunicaremos con el robot:

Activar/Desactivar: Levantar ambos brazos. El robot dispone de dos estados, espera y activo.
Solo realizará acciones cuando se encuentre activo. Durante el tiempo de “espera” el robot
estará sentado sin obedecer ninguna orden. Al levantar ambos brazos, pasará a estado“activo”
y comenzará a realizar las acciones indicadas hasta su desactivación. Al cambiar a su estado
inicial, el robot realizará una reverencia y procederá a sentarse hasta ser activado de nuevo.

Acciones:

- Palma Izquierda: caminar hacia delante

- Palma Derecha: caminar hacia atrás

- Ok Izquierdo: girar izquierda

- Ok Derecho: girar derecha

Requisitos del sistema

La aplicación esta implementada y probado su uso con el software siguiente:

Ubuntu 10.04 LTS “Lucid Lynx”

ROS Electric

Python 2.7

Paquete kinect-demos del repositorio “ros-pkg”

Instalar y lanzar la aplicación

En una terminal aparte arrancaremos el sistema ROS con:

roscore

Para el uso de la aplicación deberemos tener instalado el programa “Hand interaction” del paque-
te kinect-demos y posteriormente compilar el interfaz gestual. Para ello en una nueva terminal
usaremos los comandos:

25

rosmake hand interaction
rosmake interfaz

Si es el primer uso, será necesario realizar la captura de gestos para el entrenamiento del sistema.
para ello ejecuta el módulo “calibrar” introduciendo tu nombre en el campo nombreCalibración:

rosrun interfaz calibrar ’nombreCalibracion’ 100 0 2 3 2 19

Para lanzar el interfaz utilizaremos dos terminales, en la primera escribiremos:

roscd interfaz
python nodes/connector.py

y en la segunda:

rosrun interfaz interfaz ’nombreCalibracion’

Una vez lanzada la aplicación:

Sitúese delante del sensor Kinect y muévase para ser reconocido.

Levante los brazos situando las palmas abiertas a los lados de la cabeza hasta que sus manos
sean reconocidas

¡¡¡Comience a mandar instrucciones al robot!!!

3. Taller realizado

Durante la celebración de la “V semana de la ingenieŕıa y arquitectura” celebrada en la Escuela
de Ingenieŕıa y Arquitectura de la Universidad de Zaragoza, se realizó un taller durante las visitas
realizadas por distintos grupos de secundaria y bachiller al laboratorio del grupo de Robótica,
Percepción y Tiempo Real del DIIS.

En el taller se les explicó el funcionamiento del interfaz durante una demostración y posteri-
ormente fueron los alumnos los que probaron la aplicación (Figura 4.5).

Los resultados obtenidos fueron satisfactorios. La aplicación reconoció correctamente las in-
strucciones realizadas por los alumnos que probaron el interfaz. Además tuvo muy buena aceptación
entre los asistentes.

26

Figura 4.5: Talleres realizados durante la “V semana de la ingenieŕıa y arquitectura”.

27

28

Caṕıtulo 5

Conclusiones y trabajos futuros

1. Conclusiones

La aparición del sensor Kinect ha supuesto una revolución en el campo de la visión por com-
putador y de la robótica por las posibilidades que ofrece el sensor de profundidad y su bajo coste.
Gracias al mapa de profundidad que Kinect aporta en tiempo real, se facilita mucho el trabajo de
reconocimiento y segmentación de objetos.

Los objetivos de este proyecto fin de carrera eran la creación de un interfaz gestual para el
control de un robot humanoide mediante cámaras RGB-d y su uso en la creación de un taller
de divulgación orientado a estudiantes de secundaria y bachiller, objetivos que se han cumplido
de manera satisfactoria. Este interfaz se ha implementado utilizando el pseudo sistema operativo
ROS. Su diseño para el desarrollo de aplicaciones para robots fue muy útil en la implementación
del interfaz. Aunque el uso de ROS no es complejo fue necesario documentarse sobre éste y realizar
los tutoriales que se ofrecen en su pagina web para conocer las posibilidades que nos ofrece.

Para el desarrollo del interfaz, se ha utilizado el sensor Kinect en el reconocimiento de per-
sonas y la segmentación de sus manos. Ha sido necesaria una intensa búsqueda de información y
aplicaciones desarrolladas para tal fin, ya que hay muchos ejemplos en Internet, pero no siempre la
documentación es exacta o resulta fácil ponerlos en marcha. En muchos de los ejemplos encontrados,
no fue posible su instalación por incompatibilidades de software o por falta de documentación.

Respecto a los métodos estudiados para la clasificación de las imágenes de las manos, uno de
tipo generativo, K Nearest Neighbors, y otro de tipo discriminativo, Support Vector Machine, los
resultados muestran que con pocos gestos y pocas muestras es más efectivo el modelo generativo,
pero si aumentamos el número de muestras, el modelo discriminativo consigue unos resultados
semejantes.

El robot utilizado para el desarrollo del proyecto ha sido RoboNova-1. Al utilizar una platafor-
ma de hardware real (frente a un simulador), permite resultados más interesantes, pero también
problemas prácticos. Por ejemplo, surgieron problemas a la hora de realizar la comunicación con el
robot por ĺınea serie desde las aplicaciones, ya que RoboNova-1 no posee drivers en ROS. Partiendo
del driver creado para el robot Robobuilder y tras realizar algunas modificaciones se consiguió la
conexión con nuestro robot, pero fue necesario el estudio de los protocolos de comunicación, a
través de ĺınea serie, utilizados por RoboNova-1 y el estudio del lenguaje Python, lenguaje en el
que está implementado el driver utilizado.

Con el interfaz gestual en funcionamiento se realizó un taller, en el laboratorio de robótica
del I3A, durante la semana de la ingenieŕıa. En ellos, participaron estudiantes de diversos grupos,
desde 3� de la ESO hasta 2� de Bachiller. El resultado fue muy positivo ya que se comprobó el
correcto funcionamiento de la aplicación y obtuvo buena aceptación entre los estudiantes.

29

2. Trabajo futuro

Tras la realización de este proyecto, se proponen algunas ĺıneas de trabajo futuro:

Insertar más gestos a reconocer por el sistema. Se podŕıan insertar más gestos que implicaŕıan
más instrucciones para la comunicación con el robot. Para ello se debe hacer un estudio de
diferentes posturas de mano que los sistemas de clasificación puedan separar claramente en
clases diferenciadas e insertar muestras suficientes para su correcta clasificación.

Durante la calibración existen muestras que son etiquetadas en un determinado gesto pero,
por error en la captura de puntos de la Kinect o por error humano, son muestras que pueden
perjudicar en el posterior reconocimiento de manos. Para ello se puede mejorar la calibración
retirando todas aquellas muestras no deseadas.

Completar el driver para RoboNova-1 mediante la adaptación completa del script de Robobuilder
utilizado.

Incorporar sensores a RoboNova-1. El robot solo dispone de un sensor de infrarrojos que
comunica con un mando a distancia. El chip del robot posee varios conectores libres para
incorporar sensores que podŕıan ser muy útiles. Un sensor de posición nos seŕıa de mucha
utilidad debido a la poca estabilidad de este robot. Con este sensor instalado el robot podŕıa
incorporarse de nuevo al caer. Por otro lado una conex́ıon inalámbrica para la comunicación
con el robot daŕıa más libertad de movimientos a este.

Utilizar el interfaz gestual para el control de otro tipo de robots o dispositivos. La aplicación
se podŕıa adaptar para su uso con brazos de robots, para el control de robots domésticos o
como ratón del ordenador.

3. Valoración personal

La elección de este proyecto de fin de carrera fue por el interés personal que teńıa en los campos
de la robótica y la inteligencia artificial. Mi desconocimiento, tanto en el campo de la robótica
como en el de visión por computador, ha supuesto la dedicación de mucho tiempo al estudio de
las herramientas a utilizar, sus libreŕıas y sus posibilidades, aśı como de diferentes métodos de
clasificación para el reconocimiento de los gestos.

Tras la realización de los talleres durante la semana de la ingenieŕıa comprobé el resultado de
mi proyecto. Considero que es un buen método para que la gente aprenda algunos conocimientos
sobre robótica y visión por computador de manera comprensible y amena.

Este proyecto me ha supuesto una gran satisfacción personal, por la cantidad de conocimientos
obtenidos sobre temas que me parecen de gran interés, por el uso de software libre en el desarrollo
de la aplicación, por la buena aceptación que obtuvo por parte de los estudiantes en los talleres
realizados y por la motivación que me ha dado a seguir “trasteando”con la robótica y la inteligencia
artificial.

30

Bibliograf́ıa

[1] K. Lai, L. Bo, X. Ren, D. Fox. “RGB-D Object Recognition: Features, Algorithms, and a
Large Scale Benchmark”. Consumer Depth Cameras for Computer Vision: Research Topics
and Applications, 2013. 1

[2] M. Krainin, K. Konolige, D. Fox. “Exploiting Segmentation for Robust 3D Object Matching”.
ICRA, 2012. 1

[3] L Xia, CC Chen, JK Aggarwal. “Human detection using depth information by Kinect”. Com-
puter Vision and Pattern Recognition Workshops (CVPRW), IEEE Computer Society Con-
ference, 2011. 1

[4] Z Ren, J Meng, J Yuan, Z Zhang. “Robust hand gesture recognition with kinect sensor”.
Proceeding MM ’11 Proceedings of the 19th ACM international conference on Multimedia.
Pages 759-760. 2011. 1

[5] Z Ren, J Yuan, Z Zhang “Robust hand gesture recognition based on finger-earth mover’s
distance with a commodity depth camera”. Proceeding MM ’11 Proceedings of the 19th ACM
international conference on Multimedia. Pages 1093-1096. 2011. 1, 1

[6] JP Wachs, M Kölsch, H Stern, Y Edan.“Vision-based hand-gesture applications”.Magazine
Communications of the ACM CACM Homepage archive Volume 54 Issue 2. Pages 60-71.
2011. 1

[7] P. Henry, M. Krainin, E. Herbst, X. Ren, D. Fox. “RGB-D mapping: Using Kinect-style depth
cameras for dense 3D modeling of indoor environments”. International Journal of Robotics.
Research 31:5, 2012. 1

[8] MNK Boulos, BJ Blanchard, C Walke. “Web GIS in practice X: a Microsoft Kinect natural
user interface for Google Earth navigation”. International Journal of Health Geographics. 2011
1

[9] W. Choi,C. Pantofaru, S. Savarese. “Detecting and Tracking People using an RGB-D Camera
via Multiple Detector Fusion”. Workshop on Challenges and Opportunities in Robot Percep-
tion, at the International Conference on Computer Vision (ICCV). 2011 1

[10] David Bueno Monge , “Reconocimiento de Objetos en 3D Utilizando Sensores de Visión y
Profundidad de Bajo Coste”, 2012. Proyecto fin de carrera. 1

[11] Radu Bogdan Rusu and Steve Cousins, “3D is here: Point Cloud Library (PCL)”. In IEEE
International Conference on Robotics and Automation (ICRA), 2011. 2, 3

[12] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric
Berger, Rob Wheeler, Andrew Ng. ”ROS: an open-source Robot Operating System”. Retrieved
3 April 2010. 2, 3

[13] González, R.C., Wintz, P. “Procesamiento digital de imágenes”. Addison-Wesley. 1996 2

31

[14] Shapiro, L. G. & Stockman, G. C: ”Computer Vision”, page 137, 150. Prentence Hall, 2001 2

[15] G.R. Arce, ”Nonlinear Signal Processing: A Statistical Approach”, Wiley:New Jersey, USA,
2005. 2

[16] N. Hagen and E. L. Dereniak, ”Gaussian profile estimation in two dimensions,” Appl. Opt.
47:6842-6851, 2008 2

[17] E. Arias-Castro and D.L. Donoho, ”Does median filtering truly preserve edges better than
linear filtering?”, Annals of Statistics, vol. 37, no. 3, pp. 1172–2009. 2

[18] Stuart Russell and Peter Norvig. “Artificial Intelligence: A Modern Approach”, second edition,
p. 733. Prentice Hall 2003 3

[19] Richard O. Duda, Peter E. Hart, David G. Stork. “Pattern classification ”. 2001. 3

[20] Cortes, Corinna; and Vapnik, Vladimir N.; ”Support-Vector Networks”, Machine Learning, 20,
1995 3

[21] Papoulis, A. ”Conditional Probabilities and Independent Sets.” §2-3 in Probability, Random
Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 33-45, 1984. 3

[22] http://www.ros.org/wiki/openni 3

[23] http://opencv.willowgarage.com/documentation/cpp/index.html 3

[24] Robosavvy: http://robosavvy.com/site/ 1

32

Anexos

33

Anexo A

ROS

Figura A.1: Diagrama de sistema de comunicación utilizado en ROS.

ROS, cuyas siglas significan “Robot Operating System”, es un pseudo sistema operativo que
nos proporciona libreŕıas y herramientas para el desarrollo de software para robots. ROS provee
los servicios estándar de un sistema operativo tales como abstracción del hardware, control de
dispositivos de bajo nivel, implementación de funcionalidad de uso común, paso de mensajes entre
procesos y mantenimiento de paquetes. Está basado en una arquitectura de grafos donde el proce-
samiento toma lugar en los nodos, que pueden recibir, mandar y multiplexar: sensores, control,
estado, planificación y otros mensajes.

ROS implementa varios estilos diferentes de comunicación, incluyendo un sistema śıncrono de
estilo RPC1 de comunicación a través de los servicios, la transmisión aśıncrona de datos a través
de “topics”, y el almacenamiento de datos en un servidor de parámetros. Los diferentes nodos que
se ejecutan en ROS podán publicar los nuevos valores de los “topics” y subscribirse a éstos para
consultarlos. A pesar de que ROS no trabaja en un marco de tiempo real, si que es posible el
integrar en ROS código en tiempo real. Podŕıamos describir el grafo del tiempo de ejecución como
una red peer-to-peer de procesos que están débilmente acoplados utilizando la infraestructura de
comunicación ROS.

La libreŕıa está orientada para un sistema UNIX, siendo Ubuntu el sistema en el que ofrecen
soporte. Para el desarrollo de este proyecto se utiliza ROS Electric por ser la versión con soporte
más estable del momento. Dicha versión funciona bajo el sistema operativo “Ubuntu 10.04 Lucid
Lynx2”.

1Remote Procedure Call
2http://releases.ubuntu.com/lucid/

35

36

Anexo B

Sensor Kinect

Figura B.1: Sensor Kinect.

Kinect es un controlador de juego libre y entretenimiento creado por ALEX Kipman y desar-
rollado por Microsoft. En noviembre de 2010 fue lanzada para su uso con la videoconsola Xbox
360, y a partir de junio de 2011 también para PC, para su uso con Windows 7 y Windows 8.

El dispositivo cuenta con una cámara RGB, un sensor de profundidad, un micrófono de múlti-
ples matrices y un mecanismo de inclinación motorizado. El sensor de profundidad es un proyector
de infrarrojos combinado con un sensor CMOS monocromo que permite a Kinect ver el entorno en
3D en cualquier condición de luz ambiental. El rango de detección de la profundidad del sensor es
ajustable gracias al software de Kinect capaz de calibrar automáticamente el sensor, basado en la
jugabilidad y en el ambiente f́ısico del jugador, tal como la presencia de sofás.

El hardware de Kinect se ha confirmado que se basará en un diseño de referencia y la tecnoloǵıa
3D-calor fabricados por la compañ́ıa israeĺı de desarrollo PrimeSense Ltd.

El sensor proporciona v́ıdeo a una frecuencia de 30 Hz, con una resolución de 640x480 ṕıxeles,
utilizando una profundidad de 8 bits en el sensor RGB y 11 bits en el sensor de profundidad, ofre-
ciendo hasta 2048 niveles de sensibilidad. El sensor de infrarrojos tiene un rango de funcionamiento
que va desde 0.7 hasta 6 metros y tiene un campo de visión angular de 57� horizontalmente y de 43�
verticalmente, mientras que el pivote motorizado puede inclinar el sensor hasta 27� verticalmente.

En noviembre de 2010, Industrias Adafruit ofreció una recompensa por un controlador de códi-
go abierto para Kinect. El 10 de noviembre, se anunció al español Héctor Mart́ın como el ganador,
que usó métodos de ingenieŕıa inversa con Kinect y desarrolló un controlador para GNU/Linux
que permite el uso de la cámara RGB y las funciones de profundidad. Desde entonces han salido
diferentes controladores de código abierto para su uso con diferentes sistemas operativos. Actual-
mente, este sensor es una herramienta utilizada en multitud de investigaciones relacionadas con
la visión por computador, como la captura de gestos, reconstrucción de entornos 3D, detección y
reconocimiento de objetos...

37

38

Anexo C

RoboNova-1

Figura C.1: Robot RoboNova-1.

Rovonova-I es un robot humanoide que se compone de 16 servos digitales HSR 8498HB, es-
pecialmente desarrollados para este robot y que incluyen caracteŕısticas especiales como ”Motión
Feedback”, lo que le da posibilidad de leer externamente la posición real del servo y permite que
se pueda colocar el robot manualmente en cualquier posición y luego leer y guardar la posición en
un programa leyendo los valores de los 16 servos desde el propio controlador.

El robot RoboNova-1 incorpora el controlador Hitec MR-C3024, con el microcontrolador Atmel
ATMega 128 capaz de controlar hasta 24 servos. Éste controlador cuenta entre otras cosas con 40
puertos de entrada y salida digitales, puerto serie, bus I2C, 8 entradas analógicas, altavoz y led.
También dispone demás de 64 KBytes de memoria interna para almacenar programas.

El robot posee un software propio basado en el lenguaje RoboBasic (Figura C.2), que como
su nombre indica es un lenguaje del tipo Basic pero especializado y orientado a robots. Esto
significa que por un lado es muy fácil de aprender, de hecho si se sabe programar en basic, ya sabe
programar en RoboBasic y por otro lado que incluye gran variedad de comandos espećıficos para
controlar las funciones del robot que facilitan mucho la tarea y simplifican enormemente el proceso
de programación. Mediante la función ’Catch & Play’ podemos crear movimientos poniendo el
robot en la posición deseada manualmente y el programa creará el movimiento del robot.

39

Figura C.2: (Arriba) Entorno de programación roboBasic. (Centro) Panel para el control en tiempo
real de los servos. (Abajo) Otro panel para el control del robot de manera más visual.

Existen diferentes sensores para RoboNova-1:

Dispositivo inalámbrico

Sensor de infrarrojos

Sensor de inclinación

Sensor de ultrasonidos

Acelerómetro

Sensor de distancias por infrarrojos

Micrófono

Sensor de luz

40

Anexo D

Pruebas y resultados

En este anexo se adjuntan los resultados de las diferentes pruebas que se han ido realizando
para la elección del formato de imagen y sistema de reconocimiento ha utilizar.

Todas las pruebas realizadas en cada una de las fases se han realizado con el mismos v́ıdeo
utilizando el programa “analizar”. Con esta aplicación obtendremos un fichero, ’calibracion’.result,
con los resultados. En el encontraremos dos tablas, una para cada mano, por método de clasificación,
KNN y SVM, como la tabla D.1:

GESTOS 0 1 2

0
1
2

Tabla D.1: Tabla de resultados.

En ellas se mostrará, para cada gesto los aciertos y fallos obtenidos, enumerando los errores
en función del gesto a reconocer y el reconocido. La tabla tendrá una fila y una columna por cada
gesto. Cada fila corresponde a cada uno de los gestos. Cada columna nos indicará la cantidad de
reconocimientos obtenidos por cada gesto. El gesto ’0’ nos servirá para la clasificación de posturas
de la mano que no deben ser utilizadas. En ellas encontraremos las muestras capturadas al comienzo
del v́ıdeo hasta el comienzo de muestras claras.

1. Fase 1: Selección de propiedades de las imágenes

Resultados obtenidos en las pruebas para la selección del tamaño de la imagen y el grosor
del punto. Las pruebas se han realizado todas mediante la misma grabación “luisPalmOk.bag”,
para aśı poder comparar de manera más fiable los resultados obtenidos. A partir de los datos
expuestos a continuación, se observa que los mejores resultados se obtienen con las propiedades de
las imágenes que se recopilan en la tabla D.2, siendo en todas ellas los resultados muy similares.
En la selección realizada podemos ver que todas las pruebas mantienen una proporción entre el
tamaño de la imagen y el grosor del punto utilizado en la proyección. Si utilizamos un tamaño
de punto muy pequeño no obtenemos una imagen suficientemente ńıtida y si, por el contrario,
utilizamos un grosor muy grande, la imagen pierde detalle.

41

PRUEBA RESOLUCIÓN RADIO GROSOR LINEA KNN SVM

2 100 0 2 0.56 0.07
3 100 0 3 0.57 0.07
4 150 0 2 0.56 0.27
5 150 0 3 0.56 0.21
7 150 1 2 0.57 0.10
8 150 1 3 0.58 0.09
12 200 1 2 0.48 0.10
13 200 1 3 0.57 0.11

Tabla D.2: Pruebas seleccionadas y resultados de la precisión.

Prueba 1:

Ṕıxeles de lado: 100
Radio del ćırculo: 0
Grosor de ĺınea: 1

Figura D.1: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 0 0 4
1 0 13 43
2 0 9 33

RIGHT 0 1 2

0 0 1 3
1 0 6 48
2 0 2 41

Precisión obtenida mediante KNN = 0.45

LEFT 0 1 2

0 0 4 0
1 1 51 4
2 0 34 8

RIGHT 0 1 2

0 0 4 0
1 0 54 0
2 0 42 1

Precisión obtenida mediante SVM = 0.55

Tabla D.3: Resultados de la prueba 1

Prueba 2:

Ṕıxeles de lado: 100
Radio del ćırculo: 0

42

Grosor de ĺınea: 2

Figura D.2: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 0 4 0
1 0 46 9
2 0 7 36

RIGHT 0 1 2

0 4 0 0
1 45 1 9
2 8 1 33

Precisión obtenida mediante KNN = 0.56

LEFT 0 1 2

0 3 1 0
1 47 8 0
2 22 21 0

RIGHT 0 1 2

0 3 1 0
1 48 7 0
2 23 19 0

Precisión obtenida mediante SVM = 0.07

Tabla D.4: Resultados de la prueba 2

Prueba 3:

Ṕıxeles de lado: 100

Radio del ćırculo: 0

Grosor de ĺınea: 3

Figura D.3: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

43

LEFT 0 1 2

0 0 4 0
1 0 46 9
2 0 7 36

RIGHT 0 1 2

0 4 0 0
1 45 1 8
2 8 1 34

Precisión obtenida mediante KNN = 0.57

LEFT 0 1 2

0 3 1 0
1 48 7 0
2 22 21 0

RIGHT 0 1 2

0 3 1 0
1 47 7 0
2 19 23 1

Precisión obtenida mediante SVM = 0.07

Tabla D.5: Resultados de la prueba 3

Prueba 4:

Ṕıxeles de lado: 150

Radio del ćırculo: 0

Grosor de ĺınea: 2

Figura D.4: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

44

LEFT 0 1 2

0 0 4 0
1 1 46 9
2 0 7 35

RIGHT 0 1 2

0 4 0 0
1 46 1 8
2 7 1 34

Precisión obtenida mediante KNN = 0.56

LEFT 0 1 2

0 3 1 0
1 37 19 0
2 7 1 34

RIGHT 0 1 2

0 3 1 0
1 52 3 0
2 32 10 0

Precisión obtenida mediante SVM = 0.27

Tabla D.6: Resultados de la prueba 4

Prueba 5:

Ṕıxeles de lado: 150

Radio del ćırculo: 0

Grosor de ĺınea: 3

Figura D.5: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

45

LEFT 0 1 2

0 0 4 0
1 3 44 9
2 0 6 36

RIGHT 0 1 2

0 4 0 0
1 45 1 8
2 8 1 34

Precisión obtenida mediante KNN = 0.56

LEFT 0 1 2

0 3 1 0
1 47 9 0
2 16 24 2

RIGHT 0 1 2

0 3 1 0
1 45 1 8
2 12 1 30

Precisión obtenida mediante SVM = 0.21

Tabla D.7: Resultados de la prueba 5

Prueba 6:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 1

Figura D.6: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

46

LEFT 0 1 2

0 0 4 0
1 14 11 31
2 0 3 39

RIGHT 0 1 2

0 4 0 0
1 41 1 12
2 8 1 34

Precisión obtenida mediante KNN = 0.41

LEFT 0 1 2

0 3 1 0
1 22 33 1
2 2 35 5

RIGHT 0 1 2

0 3 1 0
1 47 6 1
2 20 15 8

Precisión obtenida mediante SVM = 0.25

Tabla D.8: Resultados de la prueba 6

Prueba 7:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 2

Figura D.7: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

47

LEFT 0 1 2

0 0 4 0
1 0 47 9
2 0 6 36

RIGHT 0 1 2

0 4 0 0
1 45 1 8
2 8 1 34

Precisión obtenida mediante KNN = 0.57

LEFT 0 1 2

0 3 1 0
1 47 9 0
2 18 24 0

RIGHT 0 1 2

0 3 1 0
1 47 6 1
2 23 15 5

Precisión obtenida mediante SVM = 0.10

Tabla D.9: Resultados de la prueba 7

Prueba 8:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 3

Figura D.8: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

48

LEFT 0 1 2

0 0 4 0
1 0 47 9
2 0 6 36

RIGHT 0 1 2

0 3 1 0
1 45 1 8
2 8 1 34

Precisión obtenida mediante KNN = 0.58

LEFT 0 1 2

0 3 1 0
1 45 11 0
2 25 17 0

RIGHT 0 1 2

0 3 1 0
1 47 7 0
2 21 22 0

Precisión obtenida mediante SVM = 0.09

Tabla D.10: Resultados de la prueba 8

Prueba 9:

Ṕıxeles de lado: 200

Radio del ćırculo: 0

Grosor de ĺınea: 2

Figura D.9: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

49

LEFT 0 1 2

0 0 4 0
1 14 29 13
2 0 7 35

RIGHT 0 1 2

0 2 1 1
1 38 6 10
2 8 1 34

Precisión obtenida mediante KNN = 0.51

LEFT 0 1 2

0 3 1 0
1 19 37 0
2 1 41 0

RIGHT 0 1 2

0 3 1 0
1 45 5 4
2 19 14 10

Precisión obtenida mediante SVM = 0.25

Tabla D.11: Resultados de la prueba 9

Prueba 10:

Ṕıxeles de lado: 200

Radio del ćırculo: 0

Grosor de ĺınea: 3

Figura D.10: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

50

LEFT 0 1 2

0 0 4 0
1 6 38 11
2 0 6 37

RIGHT 0 1 2

0 4 0 0
1 45 1 8
2 8 1 34

Precisión obtenida mediante KNN = 0.53

LEFT 0 1 2

0 3 1 0
1 28 27 0
2 4 39 0

RIGHT 0 1 2

0 4 0 0
1 46 8 0
2 21 22 0

Precisión obtenida mediante SVM = 0.17

Tabla D.12: Resultados de la prueba 10

Prueba 11:

Ṕıxeles de lado: 200

Radio del ćırculo: 1

Grosor de ĺınea: 1

Figura D.11: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

51

LEFT 0 1 2

0 1 2 1
1 0 8 48
2 0 3 39

RIGHT 0 1 2

0 0 2 2
1 1 29 25
2 0 5 37

Precisión obtenida mediante KNN = 0.55

LEFT 0 1 2

0 0 4 0
1 1 55 0
2 0 41 1

RIGHT 0 1 2

0 1 3 0
1 20 35 0
2 5 37 0

Precisión obtenida mediante SVM = 0.44

Tabla D.13: Resultados de la prueba 11

Prueba 12:

Ṕıxeles de lado: 200

Radio del ćırculo: 1

Grosor de ĺınea: 2

Figura D.12: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

52

LEFT 0 1 2

0 0 4 0
1 0 47 9
2 0 6 36

RIGHT 0 1 2

0 4 0 0
1 40 16 0
2 9 33 0

Precisión obtenida mediante KNN = 0.48

LEFT 0 1 2

0 3 1 0
1 40 16 0
2 9 33 0

RIGHT 0 1 2

0 3 1 0
1 50 4 0
2 30 13 0

Precisión obtenida mediante SVM = 0.10

Tabla D.14: Resultados de la prueba 12

Prueba 13:

Ṕıxeles de lado: 200

Radio del ćırculo: 1

Grosor de ĺınea: 3

Figura D.13: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

53

LEFT 0 1 2

0 0 4 0
1 0 46 9
2 0 7 36

RIGHT 0 1 2

0 4 0 0
1 45 1 8
2 8 1 34

Precisión obtenida mediante KNN = 0.57

LEFT 0 1 2

0 3 1 0
1 41 14 0
2 14 29 0

RIGHT 0 1 2

0 3 1 0
1 47 7 0
2 22 20 1

Precisión obtenida mediante SVM = 0.11

Tabla D.15: Resultados de la prueba 13

2. Fase 2: Repetición de las pruebas con los mejores resul-
tados

En esta segunda fase, se han repetido las pruebas para las caracteŕısticas que mejores resultados
han obtenido. En esta segunda fase se ha utilizado la grabación “luisPalmOk2.bag”.

Tras observar los resultados, que se mostrarán a continuación, se realizó una segunda criba de
resultados entre los que se seleccionaron los que muestra la tabla D.16.

PRUEBA RESOLUCIÓN RADIO GROSOR LINEA KNN SVM

1 100 0 2 0.73 0.61
2 100 0 3 0.74 0.62
5 150 1 2 0.73 0.58
6 150 1 3 0.76 0.56
8 200 1 3 0.72 0.61

Tabla D.16: Resultados de la prueba

Prueba 1:

Ṕıxeles de lado: 100
Radio del ćırculo: 0
Grosor de ĺınea: 2

Figura D.14: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

54

LEFT 0 1 2

0 0 2 1
1 1 44 18
2 0 10 62

RIGHT 0 1 2

0 0 2 1
1 0 30 33
2 0 6 66

Precisión obtenida mediante KNN = 0.73

LEFT 0 1 2

0 0 1 2
1 0 22 41
2 0 3 69

RIGHT 0 1 2

0 0 0 3
1 0 7 56
2 0 1 71

Precisión obtenida mediante SVM = 0.61

Tabla D.17: Resultados de la prueba 1

Prueba 2:

Ṕıxeles de lado: 100

Radio del ćırculo: 0

Grosor de ĺınea: 3

Figura D.15: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 0 2 1
1 1 49 14
2 0 11 60

RIGHT 0 1 2

0 0 1 2
1 0 30 34
2 0 5 66

Precisión obtenida mediante KNN = 0.74

LEFT 0 1 2

0 0 2 1
1 2 52 10
2 0 13 58

RIGHT 0 1 2

0 0 1 2
1 0 48 16
2 0 59 12

Precisión obtenida mediante SVM = 0.62

Tabla D.18: Resultados de la prueba 2

55

Prueba 3:

Ṕıxeles de lado: 150

Radio del ćırculo: 0

Grosor de ĺınea: 2

Figura D.16: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 0 1 2
1 0 13 50
2 0 1 71

RIGHT 0 1 2

0 0 2 1
1 0 25 40
2 0 6 64

Precisión obtenida mediante KNN = 0.62

LEFT 0 1 2

0 0 1 2
1 0 30 33
2 0 4 68

RIGHT 0 1 2

0 0 3 0
1 0 65 0
2 0 70 0

Precisión obtenida mediante SVM = 0.59

Tabla D.19: Resultados de la prueba 3

Prueba 4:

Ṕıxeles de lado: 150

Radio del ćırculo: 0

Grosor de ĺınea: 3

56

Figura D.17: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 0 2 1
1 1 37 26
2 0 7 64

RIGHT 0 1 2

0 0 1 2
1 0 17 46
2 0 5 67

Precisión obtenida mediante KNN = 0.67

LEFT 0 1 2

0 0 2 1
1 0 55 9
2 0 25 46

RIGHT 0 1 2

0 0 2 1
1 0 61 2
2 0 70 2

Precisión obtenida mediante SVM = 0.59

Tabla D.20: Resultados de la prueba 4

Prueba 5:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 2

Figura D.18: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

57

LEFT 0 1 2

0 1 1 1
1 1 49 14
2 0 11 60

RIGHT 0 1 2

0 0 3 0
1 0 30 33
2 0 7 65

Precisión obtenida mediante KNN = 0.73

LEFT 0 1 2

0 0 2 1
1 0 50 14
2 0 25 46

RIGHT 0 1 2

0 0 1 2
1 0 58 5
2 0 67 5

Precisión obtenida mediante SVM = 0.58

Tabla D.21: Resultados de la prueba 5

Prueba 6:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 3

Figura D.19: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

58

LEFT 0 1 2

0 0 2 1
1 1 52 11
2 0 11 60

RIGHT 0 1 2

0 0 3 0
1 0 37 28
2 0 9 61

Precisión obtenida mediante KNN = 0.76

LEFT 0 1 2

0 1 0 2
1 6 40 18
2 1 9 61

RIGHT 0 1 2

0 0 1 2
1 0 42 23
2 0 57 13

Precisión obtenida mediante SVM = 0.56

Tabla D.22: Resultados de la prueba 6

rueba 7:

Ṕıxeles de lado: 200

Radio del ćırculo: 1

Grosor de ĺınea: 2

Figura D.20: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

59

LEFT 0 1 2

0 1 1 1
1 1 31 32
2 0 7 64

RIGHT 0 1 2

0 0 1 2
1 0 22 44
2 0 4 65

Precisión obtenida mediante KNN = 0.66

LEFT 0 1 2

0 0 2 1
1 0 56 8
2 0 31 40

RIGHT 0 1 2

0 0 1 2
1 0 43 23
2 0 60 9

Precisión obtenida mediante SVM = 0.53

Tabla D.23: Resultados de la prueba 7

Prueba 8:

Ṕıxeles de lado: 200

Radio del ćırculo: 1

Grosor de ĺınea: 3

Figura D.21: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

60

LEFT 0 1 2

0 1 1 1
1 2 48 14
2 0 11 60

RIGHT 0 1 2

0 0 1 2
1 0 23 40
2 0 4 68

Precisión obtenida mediante KNN = 0.72

LEFT 0 1 2

0 0 2 1
1 0 47 17
2 0 12 59

RIGHT 0 1 2

0 0 3 0
1 0 63 0
2 0 72 0

Precisión obtenida mediante SVM = 0.61

Tabla D.24: Resultados de la prueba 8

3. Fase 3: Selección de filtro

A partir de los resultados obtenidos, se han realizado de nuevo las pruebas pasando las imágenes
por filtros que mejoren la imagen a reconocer. Se han utilizado los filtros“Median Blur”y“Gaussian
Blur” de las libreŕıas de OpenCv.

Tras estos experimentos se decidió que la mejor configuración a utilizar en la versión final de
la aplicación, para cada método, es:

En el caso de búsqueda por KNN utilizaremos:

- Ṕıxeles de lado: 100

- Radio del ćırculo:0

- Grosor de ĺınea: 2

- Filtro: Gaussian Blur

Para la búsqueda mediante SVM el mejor resultado lo obtenemos con:

- Pixeles de lado: 100

- Radio del ćırculo:0

- Grosor de ĺınea: 2

- Filtro: Median Blur

Prueba 1:

Ṕıxeles de lado: 100

Radio del ćırculo: 0

Grosor de ĺınea: 2

Filtro: ninguno

61

Figura D.22: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 0 2 1
1 1 44 18
2 0 10 62

RIGHT 0 1 2

0 0 2 1
1 0 30 33
2 0 6 66

Precisión obtenida mediante KNN = 0.73

LEFT 0 1 2

0 0 1 2
1 0 22 41
2 0 3 69

RIGHT 0 1 2

0 0 0 3
1 0 7 56
2 0 1 71

Precisión obtenida mediante SVM = 0.61

Tabla D.25: Resultados de la prueba 1

Prueba 2:

Ṕıxeles de lado: 100

Radio del ćırculo: 0

Grosor de ĺınea: 2

Filtro: Gaussian Blur

Figura D.23: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

62

LEFT 0 1 2

0 0 3 0
1 0 54 10
2 0 12 59

RIGHT 0 1 2

0 0 3 0
1 0 52 11
2 0 15 57

Precisión obtenida mediante KNN = 0.80

LEFT 0 1 2

0 0 2 1
1 0 59 5
2 0 56 15

RIGHT 0 1 2

0 0 0 3
1 0 13 50
2 0 56 16

Precisión obtenida mediante SVM = 0.37

Tabla D.26: Resultados de la prueba 2

Prueba 3:

Ṕıxeles de lado: 100

Radio del ćırculo: 0

Grosor de ĺınea: 2

Filtro: Median Blur

Figura D.24: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 1 1 1
1 1 40 22
2 0 10 62

RIGHT 0 1 2

0 0 2 1
1 0 28 35
2 0 6 66

Precisión obtenida mediante KNN = 0.71

LEFT 0 1 2

0 0 2 1
1 1 53 9
2 0 11 61

RIGHT 0 1 2

0 0 0 3
1 0 39 24
2 9 46 26

Precisión obtenida mediante SVM = 0.65

Tabla D.27: Resultados de la prueba 3

63

Prueba 4:

Ṕıxeles de lado: 100
Radio del ćırculo: 0
Grosor de ĺınea: 3
Filtro: Ninguno

Figura D.25: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 0 2 1
1 1 49 14
2 0 11 60

RIGHT 0 1 2

0 0 1 2
1 0 30 34
2 0 5 66

Precisión obtenida mediante KNN = 0.74

LEFT 0 1 2

0 0 2 1
1 2 52 10
2 0 13 58

RIGHT 0 1 2

0 0 1 2
1 0 48 16
2 0 59 12

Precisión obtenida mediante SVM = 0.61

Tabla D.28: Resultados de la prueba 4

Prueba 5:

Ṕıxeles de lado: 100
Radio del ćırculo: 0
Grosor de ĺınea: 3
Filtro: Gaussian Blur

Figura D.26: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

64

LEFT 0 1 2

0 0 3 0
1 1 59 10
2 0 12 59

RIGHT 0 1 2

0 0 3 0
1 0 52 11
2 0 15 57

Precisión obtenida mediante KNN = 0.82

LEFT 0 1 2

0 0 3 0
1 1 63 0
2 0 70 1

RIGHT 0 1 2

0 0 3 0
1 0 63 0
2 0 72 0

Precisión obtenida mediante SVM = 0.46

Tabla D.29: Resultados de la prueba 5

Prueba 6:

Ṕıxeles de lado: 100

Radio del ćırculo: 0

Grosor de ĺınea: 3

Filtro: Median Blur

Figura D.27: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 1 1 1
1 2 35 27
2 0 7 64

RIGHT 0 1 2

0 0 3 0
1 0 39 26
2 0 9 61

Precisión obtenida mediante KNN = 0.72

LEFT 0 1 2

0 0 2 1
1 0 44 20
2 0 9 61

RIGHT 0 1 2

0 0 3 0
1 0 65 0
2 0 70 0

Precisión obtenida mediante SVM = 0.61

Tabla D.30: Resultados de la prueba 6

65

Prueba 7:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 2

Filtro: Ninguno

Figura D.28: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 1 1 1
1 1 49 14
2 0 11 60

RIGHT 0 1 2

0 0 3 0
1 0 30 33
2 0 7 65

Precisión obtenida mediante KNN = 0.73

LEFT 0 1 2

0 0 2 1
1 0 50 14
2 0 25 46

RIGHT 0 1 2

0 0 1 2
1 0 58 5
2 0 67 5

Precisión obtenida mediante SVM = 0.57

Tabla D.31: Resultados de la prueba 7

Prueba 8:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 2

Filtro: Gaussian Blur

66

Figura D.29: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

LEFT 0 1 2

0 1 2 0
1 2 52 9
2 0 11 61

RIGHT 0 1 2

0 0 3 0
1 0 53 11
2 0 14 57

Precisión obtenida mediante KNN = 0.81

LEFT 0 1 2

0 0 0 3
1 3 0 60
2 0 0 72

RIGHT 0 1 2

0 0 3 0
1 0 64 0
2 0 71 0

Precisión obtenida mediante SVM = 0.49

Tabla D.32: Resultados de la prueba 8

Prueba 9:

Ṕıxeles de lado: 150
Radio del ćırculo: 1
Grosor de ĺınea: 2
Filtro: Median Blur

Figura D.30: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

67

LEFT 0 1 2

0 1 1 1
1 1 50 12
2 0 11 61

RIGHT 0 1 2

0 0 2 1
1 0 28 36
2 0 5 66

Precisión obtenida mediante KNN = 0.74

LEFT 0 1 2

0 2 0 1
1 21 33 9
2 1 10 61

RIGHT 0 1 2

0 0 0 3
1 0 5 59
2 0 0 71

Precisión obtenida mediante SVM = 0.61

Tabla D.33: Resultados de la prueba 9

Prueba 10:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 3

Filtro: ninguno

Figura D.31: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

68

LEFT 0 1 2

0 0 2 1
1 1 52 11
2 0 11 60

RIGHT 0 1 2

0 0 3 0
1 0 37 28
2 0 9 61

Precisión obtenida mediante KNN = 0.76

LEFT 0 1 2

0 1 0 2
1 6 40 18
2 1 9 61

RIGHT 0 1 2

0 0 1 2
1 0 42 23
2 0 57 13

Precisión obtenida mediante SVM = 0.56

Tabla D.34: Resultados de la prueba 10

Prueba 11:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 3

Filtro: Gaussian Blur

Figura D.32: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

69

LEFT 0 1 2

0 1 2 0
1 2 50 10
2 0 13 60

RIGHT 0 1 2

0 0 3 0
1 0 52 11
2 0 15 57

Precisión obtenida mediante KNN = 0.79

LEFT 0 1 2

0 0 0 3
1 0 17 45
2 0 60 13

RIGHT 0 1 2

0 0 2 1
1 0 63 0
2 0 71 1

Precisión obtenida mediante SVM = 0.34

Tabla D.35: Resultados de la prueba 11

Prueba 12:

Ṕıxeles de lado: 150

Radio del ćırculo: 1

Grosor de ĺınea: 3

Filtro: Median Blur

Figura D.33: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

70

LEFT 0 1 2

0 0 2 1
1 2 51 10
2 0 11 61

RIGHT 0 1 2

0 0 3 0
1 0 32 32
2 0 11 60

Precisión obtenida mediante KNN = 0.74

LEFT 0 1 2

0 1 1 1
1 14 38 11
2 1 19 52

RIGHT 0 1 2

0 0 1 2
1 0 38 26
2 0 57 14

Precisión obtenida mediante SVM = 0.51

Tabla D.36: Resultados de la prueba 12

Prueba 13:

Ṕıxeles de lado: 200

Radio del ćırculo: 1

Grosor de ĺınea: 3

Filtro: Ninguno

Figura D.34: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

71

LEFT 0 1 2

0 1 1 1
1 2 48 14
2 0 11 60

RIGHT 0 1 2

0 0 1 2
1 0 23 40
2 0 4 68

Precisión obtenida mediante KNN = 0.72

LEFT 0 1 2

0 0 2 1
1 0 47 17
2 0 12 59

RIGHT 0 1 2

0 0 3 0
1 0 63 0
2 0 72 0

Precisión obtenida mediante SVM = 0.61

Tabla D.37: Resultados de la prueba 13

Prueba 14:

Ṕıxeles de lado: 200

Radio del ćırculo: 1

Grosor de ĺınea: 3

Filtro: Gaussian Blur

Figura D.35: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

72

LEFT 0 1 2

0 2 1 0
1 2 52 10
2 0 11 60

RIGHT 0 1 2

0 0 3 0
1 0 49 14
2 9 15 57

Precisión obtenida mediante KNN = 0.79

LEFT 0 1 2

0 2 0 1
1 6 48 10
2 0 11 60

RIGHT 0 1 2

0 0 3 0
1 0 63 0
2 0 72 0

Precisión obtenida mediante SVM = 0.61

Tabla D.38: Resultados de la prueba 14

Prueba 15:

Ṕıxeles de lado: 200

Radio del ćırculo: 1

Grosor de ĺınea: 3

Filtro: Median Blur

Figura D.36: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

73

LEFT 0 1 2

0 1 1 1
1 2 49 12
2 0 11 61

RIGHT 0 1 2

0 0 2 1
1 0 23 41
2 0 4 67

Precisión obtenida mediante KNN = 0.72

LEFT 0 1 2

0 0 2 1
1 1 54 8
2 0 12 60

RIGHT 0 1 2

0 0 1 2
1 0 50 14
2 0 64 7

Precisión obtenida mediante SVM = 0.61

Tabla D.39: Resultados de la prueba 15

4. Fase 4: Doble filtrado

En esta prueba he utilizado las propiedades que mejor resultado han dado, es decir:

Ṕıxeles de lado: 100

Radio del ćırculo: 0

Grosor de ĺınea: 2

y le he pasado en primer lugar un filtro Gaussiano y posteriormente un filtro de mediana obteniendo
en este caso los mejores resultados para el caso de clasificación mediante SVM.

Figura D.37: Capturas de los gestos: a la izquierda el gesto 1, Palma abierta, y a la derecha el gesto
2, dedo ”ok”.

74

LEFT 0 1 2

0 0 2 1
1 1 43 20
2 0 11 60

RIGHT 0 1 2

0 0 2 1
1 0 28 35
2 0 5 67

Precisión obtenida mediante KNN = 0.71

LEFT 0 1 2

0 0 1 2
1 1 35 28
2 0 8 63

RIGHT 0 1 2

0 0 1 2
1 0 42 21
2 0 12 60

Precisión obtenida mediante SVM = 0.72

Tabla D.40: Resultados de la prueba de doble filtrado

Con los resultados obtenidos en esta cuarta fase de experimentos, se ha decidido el continuar
con la misma configuración para el método KNN:

Configuración para el método KNN:

- Ṕıxeles de lado: 100

- Radio del ćırculo:0

- Grosor de ĺınea: 2

- Filtro: Gaussian Blur

En cambio, para el método SVM se han obtenido mejores resultados, por lo que la nueva configu-
ración será:

Configuración para el método SVM:

- Pixeles de lado: 100

- Radio del ćırculo:0

- Grosor de ĺınea: 2

- Filtro: Gaussian Blur - Median Blur

5. Fase 5: Inserción de más muestras para la calibración

Tras realizar las pruebas anteriores y seleccionar el formato de imagen que nos da mejor
resultado, se ha procedido a la inserción de más muestras para la calibración del sistema. En las
pruebas anteriores se analizaba partiendo de 50-60 muestras por gesto. En esta ocasión se realizará
el análisis con aproximadamente 300 muestras por gesto.

En la tabla D.41 observaremos que en el caso de KNN el resultado no vaŕıa, en cambio en
el de SVM los resultado mejoran notablemente. Estos resultados muestran que si se disponen de
pocas muestras para el entrenamiento el uso del método de clasificación “k-nearest neighbor” es
más eficiente que con “Suport Vector Machine”. En cambio, si aumentamos el número de muestras
el resultado es similar con ambos métodos.

75

Figura D.38: Gestos reconocidos por el sistema: a la izquierda el gesto 1, Palma abierta, y a la
derecha el gesto 2, dedo ”ok”.

LEFT 0 1 2

0 0 4 0
1 0 48 8
2 0 8 34

RIGHT 0 1 2

0 0 4 0
1 0 46 9
2 0 8 34

Precisión obtenida mediante KNN = 0.79

LEFT 0 1 2

0 0 4 0
1 0 47 9
2 0 6 36

RIGHT 0 1 2

0 0 4 0
1 0 46 9
2 0 7 35

Precisión obtenida mediante SVM = 0.8

Tabla D.41: Resultados de las pruebas con 300 muestras por gesto.

76

