Fundamental solutions for semidiscrete evolution equations via Banach algebras
Resumen: We give representations for solutions of time-fractional differential equations that involve operators on Lebesgue spaces of sequences defined by discrete convolutions involving kernels through the discrete Fourier transform. We consider finite difference operators of first and second orders, which are generators of uniformly continuous semigroups and cosine functions. We present the linear and algebraic structures (in particular, factorization properties) and their norms and spectra in the Lebesgue space of summable sequences. We identify fractional powers of these generators and apply to them the subordination principle. We also give some applications and consequences of our results.
Idioma: Inglés
DOI: 10.1186/s13662-020-03206-7
Año: 2021
Publicado en: Advances in Difference Equations 35, 1 (2021), [32 pp]
ISSN: 1687-1839

Factor impacto JCR: 3.761 (2021)
Categ. JCR: MATHEMATICS, APPLIED rank: 15 / 267 = 0.056 (2021) - Q1 - T1
Categ. JCR: MATHEMATICS rank: 5 / 333 = 0.015 (2021) - Q1 - T1

Factor impacto CITESCORE: 5.8 - Mathematics (Q1)

Factor impacto SCIMAGO: 0.755 - Analysis (Q1) - Algebra and Number Theory (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E26-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77710-P
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-05-18-15:19:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2021-02-12, last modified 2023-05-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)