000099083 001__ 99083
000099083 005__ 20241108104651.0
000099083 0247_ $$2doi$$a10.1103/PhysRevLett.125.256804
000099083 0248_ $$2sideral$$a122323
000099083 037__ $$aART-2020-122323
000099083 041__ $$aeng
000099083 100__ $$aBrey, L.
000099083 245__ $$aPlasmonic Dirac Cone in Twisted Bilayer Graphene
000099083 260__ $$c2020
000099083 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099083 5203_ $$aWe discuss plasmons of biased twisted bilayer graphene when the Fermi level lies inside the gap. The collective excitations are a network of chiral edge plasmons (CEP) entirely composed of excitations in the topological electronic edge states that appear at the AB-BA interfaces. The CEP form a hexagonal network with a unique energy scale ?p=(e2)/(?0?t0) with t0 the moiré lattice constant and ? the dielectric constant. From the dielectric matrix we obtain the plasmon spectra that has two main characteristics: (i) a diverging density of states at zero energy, and (ii) the presence of a plasmonic Dirac cone at â., ?~?p/2 with sound velocity vD=0.0075c, which is formed by zigzag and armchair current oscillations. A network model reveals that the antisymmetry of the plasmon bands implies that CEP scatter at the hexagon vertices maximally in the deflected chiral outgoing directions, with a current ratio of 4/9 into each of the deflected directions and 1/9 into the forward one. We show that scanning near-field microscopy should be able to observe the predicted plasmonic Dirac cone and its broken symmetry phases.
000099083 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-097018-B-100$$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-096955-B-C42$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-88358-C3-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-82260-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 881603-GrapheneCore3$$9info:eu-repo/grantAgreement/EC/H2020/881603/EU/Graphene Flagship Core Project 3/GrapheneCore3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 785219-GrapheneCore2$$9info:eu-repo/grantAgreement/EC/H2020/785219/EU/Graphene Flagship Core Project 2/GrapheneCore2$$9info:eu-repo/grantAgreement/ES/DGA/Q-MAD
000099083 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000099083 590__ $$a9.161$$b2020
000099083 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b7 / 84 = 0.083$$c2020$$dQ1$$eT1
000099083 592__ $$a3.688$$b2020
000099083 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000099083 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099083 700__ $$aStauber, T.
000099083 700__ $$0(orcid)0000-0003-3918-0275$$aSlipchenko, T.
000099083 700__ $$0(orcid)0000-0001-9273-8165$$aMartín-Moreno, L.$$uUniversidad de Zaragoza
000099083 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000099083 773__ $$g125, 25 (2020), 256804 [6 pp]$$pPhys. rev. lett.$$tPhysical Review Letters$$x0031-9007
000099083 85641 $$uhttp://revistainclusiones.org/index.php/inclu/article/view/1850/1910$$zTexto completo de la revista
000099083 8564_ $$s2792034$$uhttps://zaguan.unizar.es/record/99083/files/texto_completo.pdf$$yVersión publicada
000099083 8564_ $$s3058322$$uhttps://zaguan.unizar.es/record/99083/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099083 909CO $$ooai:zaguan.unizar.es:99083$$particulos$$pdriver
000099083 951__ $$a2024-11-08-10:44:44
000099083 980__ $$aARTICLE