000099086 001__ 99086 000099086 005__ 20210902121941.0 000099086 0247_ $$2doi$$a10.1088/1367-2630/abcb70 000099086 0248_ $$2sideral$$a122328 000099086 037__ $$aART-2020-122328 000099086 041__ $$aeng 000099086 100__ $$0(orcid)0000-0002-2789-9250$$aMaciel Cardoso, F.$$uUniversidad de Zaragoza 000099086 245__ $$aDynamics of heuristics selection for cooperative behaviour 000099086 260__ $$c2020 000099086 5060_ $$aAccess copy available to the general public$$fUnrestricted 000099086 5203_ $$aSituations involving cooperative behaviour are widespread among animals and humans alike. Game theory and evolutionary dynamics have provided the theoretical and computational grounds to understand what are the mechanisms that allow for such cooperation. Studies in this area usually take into consideration different behavioural strategies and investigate how they can be fixed in the population under evolving rules. However, how those strategies emerged from basic evolutionary mechanisms continues to be not fully understood. To address this issue, here we study the emergence of cooperative strategies through a model of heuristics selection based on evolutionary algorithms. In the proposed model, agents interact with other players according to a heuristic specified by their genetic code and reproduce—at a longer time scale—proportionally to their fitness. We show that the system can evolve to cooperative regimes for low mutation rates through heuristics selection while increasing the mutation decreases the level of cooperation. Our analysis of possible strategies shows that reciprocity and punishment are the main ingredients for cooperation to emerge, and the emerging heuristics would likely cooperate in one-shot interactions. Additionally, we show that if in addition to behavioural rules, genetic relatedness is included, then kinship plays a relevant role, changing emerging strategies significantly. Our results illustrate that our evolutionary heuristics model is a generic and powerful tool to study the evolution of cooperative behaviour. 000099086 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E36-20R$$9info:eu-repo/grantAgreement/ES/DGA/UZ-I-2015-022-PIP$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2017-87519-P 000099086 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000099086 590__ $$a3.729$$b2020 000099086 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b22 / 85 = 0.259$$c2020$$dQ2$$eT1 000099086 592__ $$a1.584$$b2020 000099086 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1 000099086 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000099086 700__ $$0(orcid)0000-0002-9769-8796$$aGracia-Lázaro, C.$$uUniversidad de Zaragoza 000099086 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Y.$$uUniversidad de Zaragoza 000099086 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica 000099086 773__ $$g22, 12 (2020), 123037 [21 pp]$$pNew j. phys.$$tNew Journal of Physics$$x1367-2630 000099086 8564_ $$s967658$$uhttps://zaguan.unizar.es/record/99086/files/texto_completo.pdf$$yVersión publicada 000099086 8564_ $$s2442482$$uhttps://zaguan.unizar.es/record/99086/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000099086 909CO $$ooai:zaguan.unizar.es:99086$$particulos$$pdriver 000099086 951__ $$a2021-09-02-11:01:22 000099086 980__ $$aARTICLE