000099092 001__ 99092
000099092 005__ 20210902121600.0
000099092 0247_ $$2doi$$a10.1142/S0219519419500647
000099092 0248_ $$2sideral$$a113274
000099092 037__ $$aART-2020-113274
000099092 041__ $$aeng
000099092 100__ $$0(orcid)0000-0001-6727-563X$$aUrdeitx, Pau$$uUniversidad de Zaragoza
000099092 245__ $$aRole of oxygen concentration in the osteoblasts behavior: A finite element model
000099092 260__ $$c2020
000099092 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099092 5203_ $$aOxygen concentration plays a key role in cell survival and viability. Besides, it has important effects on essential cellular biological processes such as cell migration, differentiation, proliferation and apoptosis. Therefore, the prediction of the cellular response to the alterations of the
oxygen concentration can help significantly in the advances of cell culture research. Here, we present a 3D computational mechanotactic model to simulate all the previously mentioned cell processes under different oxygen concentrations. With this model, three cases have been studied. Starting with mesenchymal stem cells within an extracellular matrix with mechanical properties suitable for its differentiation into osteoblasts, and under different oxygen conditions to evaluate their behavior under normoxia, hypoxia and anoxia. The obtained results, which are consistent with the experimental observations, indicate that cells tend to migrate toward zones with higher oxygen concentration where they accelerate their differentiation and proliferation. This technique can be employed to control cell migration toward fracture zones to accelerate the healing process. Besides, as expected, to avoid cell apoptosis under conditions of anoxia and to avoid the inhibition of the differentiation and proliferation processes under conditions of hypoxia, the state of normoxia should be maintained throughout the entire cell-culture process.
000099092 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T24-17R$$9info:eu-repo/grantAgreement/ES/ISCIII/CIBER-BBN$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-76039-C4-4-R
000099092 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000099092 590__ $$a0.897$$b2020
000099092 591__ $$aENGINEERING, BIOMEDICAL$$b86 / 90 = 0.956$$c2020$$dQ4$$eT3
000099092 591__ $$aBIOPHYSICS$$b67 / 71 = 0.944$$c2020$$dQ4$$eT3
000099092 592__ $$a0.235$$b2020
000099092 593__ $$aBiomedical Engineering$$c2020$$dQ4
000099092 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000099092 700__ $$aFarzaneh, Solmaz
000099092 700__ $$0(orcid)0000-0003-0509-1450$$aMousavi, S. Jamaleddin
000099092 700__ $$0(orcid)0000-0003-0088-7222$$aDoweidar, Mohamed H.$$uUniversidad de Zaragoza
000099092 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000099092 773__ $$g19, 5 (2020), 1950064 [24 pp.]$$pJournal of Mechanics in Medicine and Biology$$tJournal of Mechanics in Medicine and Biology$$x0219-5194
000099092 8564_ $$s2045359$$uhttps://zaguan.unizar.es/record/99092/files/texto_completo.pdf$$yPostprint
000099092 8564_ $$s1197347$$uhttps://zaguan.unizar.es/record/99092/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000099092 909CO $$ooai:zaguan.unizar.es:99092$$particulos$$pdriver
000099092 951__ $$a2021-09-02-08:34:36
000099092 980__ $$aARTICLE