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Resumen 

 

La provisión de servicios por los ecosistemas podría empeorar considerablemente y 

rápidamente durante la primera mitad del presente siglo si no se restauran eficientemente 

ecosistemas degradados. Frente a la aproximación clásica de la restauración basada en 

sistemas de referencia a imitar, existe el reto de obtener metodologías para territorio amplio y 

complejo y no solo para un sitio con un tipo de ecosistema. Existen muchas opciones para 

conservar o fortalecer servicios específicos de los ecosistemas de forma que se reduzcan las 

elecciones negativas que nos veamos obligados a hacer o que se creen sinergias positivas con 

otros servicios de los ecosistemas. En esta tesis se ha desarrollado una metodología basada en 

la evaluación de servicios de los ecosistemas, como variables de estado, y  del riesgo de 

erosión, como factor de disturbio, para establecer  una jerarquización espacial de actuaciones 

de restauración a escala de cuenca hidrográfica. Para ello se ha realizado la evaluación de 

servicios de los ecosistemas, modelización de la erosión y se han utilizado sistemas de 

información geográfica (SIG) para la elaboración de cartografía jerárquica y análisis espacial. El 

área de estudio utilizada es la cuenca del Río Martín (Teruel, NE España, 1938 km2) como 

unidad funcional que, por su susceptibilidad natural a la erosión y con su elevada 

heterogeneidad paisajística y diferentes usos del suelo (agrícola, minería, ganadera) se presta 

como un valioso territorio donde aplicar y testar la metodología propuesta. La cartografía 

elaborada para la estimación de las tasas de erosión ha sido extrapolada con el modelo RUSLE 

(Ecuación de pérdida de suelo revisada) utilizando un innovador índice de vegetación (GPVI). 

Este índice fue elaborado mediante una técnica de inteligencia artificial llamada programación 

genética, la cual fue calibrada con los datos de campo del factor C de RUSLE (muestreo de 

suelos, transectos de vegetación) del presente estudio.  Los datos de campo utilizados para 

crear el mapa de erosión han sido complementados con imágenes satelitales Landsat 5-TM y 

mapas disponibles de las características del territorio (litología, uso del suelo, ortofotos 

aéreas). Las tasas de erosión observadas en la cuenca del Martín tienen una media de 13.8 t 

ha-1 año-1 siendo notablemente mayores en la parte sur (20 t ha-1 año-1) debido a su irregular 

orografía que en las zonas de llanura del norte (10 t ha-1 año-1). Los servicios de los ecosistemas 

se evaluaron mediante indicadores obtenidos a partir de  bases de datos nacionales y 

regionales complementados con datos de campo. Los datos son expresados para cada servicio 

en las unidades de medida correspondientes y se basan en el análisis de los mapas de 

diferentes datos físico-químicos y biológicos. Los datos de los servicios relacionados con el 

agua han sido proporcionados para la Confederación Hidrográfica del Ebro (CHE), los datos de 

acumulación de carbono en pies mayores han sido proporcionados por el Departamento de 

Recursos forestales del Centro de Investigación de tecnología y investigación agraria de Aragón 

(CITA). Los datos de acumulación de carbono en el suelo son disponibles en el Portal de Suelos 

Europeo (European Soil Portal). Las rutas de eco-turismo han sido descargadas de la pagina de 
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rutas wiki-loc y la pagina de senderos de Aragón. La retención de suelo fue modelizada 

combinando datos del factor C para estimar el porcentual de cobertura vegetal y las tasas de 

erosión del modelo RUSLE-SIG. Los servicios de los ecosistemas variaron también entre 

amplios y diferentes rangos. La acumulación de carbono varía entre 0 y 4648 t CO2 eq  en zonas 

menos densas de vegetación y 40442 y 118073 t CO2 eq  en las zonas forestales densas; la 

provisión de agua superficial en el norte varía entre 0 y 13 mm y  100 y 210 en el sur de la 

cuenca, principalmente en fondos de valles; el control de la escorrentía (recarga acuíferos) es 

más alto en zonas montañosas del sur de la cuenca con valores entre 8 y 81 mm año-1 con 

valores mínimos entre 8 y 34 mm año-1 en el norte y máximos de 81 mm año-1 en el sur; la 

retención del suelo se ha expresado en valores relativos que varían de 1 a 5  dependiendo de 

la relación entre porcentaje de cobertura vegetal y perdida del suelo (estimada por la RUSLE-

SIG en 5 clases de muy baja a muy alta), con valor máximo de retención de suelo a coberturas 

mayores de 70% y erosión menor de 12 t ha-1 año-1, y mínimo a zonas de cobertura inferior a 

30% y erosión mayor de 17 t ha-1 año-1. El servicio de eco-turismo se ha evaluado como 

presencia-ausencia, asignando valor 1 a las áreas de la cuenca que se observan desde los 

senderos usando la herramienta de visualización de cuenca en SIG (viewshed) y 0 en el resto 

de la cuenca que no se observa  desde los senderos según el modelo digital del terreno 

utilizado. Tratándose de datos con unidades diferentes, entre ellos se utilizó una agrupación en 

el rango relativo de 1 a 5 de cada servicio por cortes naturales (Natural Breaks) en SIG, que 

genera clases cuyos límites se ubican donde hay diferencias relativamente grandes en los 

valores de los datos por cada servicio. Ecoturismo tenía un valor 0 o 1 según la ausencia o 

posibilidad de visualización del paisaje en el recorrer los caminos. El valor más elevado de un 

determinado servicio se considera un área de elevado valor definido como hotspot, que es un 

área de una importancia máxima para ese servicio. Análisis de solapamiento han sido 

realizados  para entender las relaciones entre servicios. Finalmente a través de la creación de 

mapas jerárquicos los datos de erosión y servicios ecosistémicos han sido relacionados 

analizando la congruencia espacial y los patrones espaciales a diferentes escalas anidadas 

entre ellas, dándonos la posibilidad de analizar el comportamiento de los dos factores, y 

contrastar el factor de  disturbio y las variables de estado a diferentes escalas espaciales. Se ha 

identificado la zona sur de la cuenca del área de estudio, como el área donde se presentan más 

servicios y se observan las tasas de erosión más altas debido a factores topográficos, entre 

otros. En ésta zona, y particularmente en las subcuencas con zonas mineras no restauradas 

(donde la erosión muestra tasas máximas y los servicios son muchas veces nulos y en 

subcuencas con altas tasas de erosión y alto número de servicios las acciones de restauración 

han de ser  prioritarias si no se quieren perder servicios que benefician aguas abajo en la 

cuenca. Claramente según los objetivos del gestor las prioridades pueden modificarse y 

nuestra metodología fácilmente adaptarse. En la zona norte, llana y mayoritariamente usada 

para agricultura de cereal de secano,  la erosión es relativamente baja y la provisión de 



servicios de regulación también. Es la zona de menor interés para realizar acciones de 

restauración dado que la mejora de los servicios no está asegurada y se podría entrar en 

conflicto con intereses de usos (trade off) de otros servicios (por ej., producción de alimentos) 

incluidos sociales. También se ha demostrado la utilidad de realizar evaluaciones a diferentes 

resoluciones espaciales para la mejor identificación de las zonas óptimas de restauración. Se 

propone un modelo conceptual general de toma de decisiones de restauración a escala de 

cuenca en función de la provisión de servicios de los ecosistemas y de los factores de 

alteración ecológica. Finalmente la metodología aquí propuesta, desarrollada con  SIG con la 

creación de mapas jerárquicos, ha resultado fácilmente adaptable a la escala de paisaje. Esto 

hace que nuestro modelo dependiendo de la disponibilidad de datos, sea una herramienta útil 

y fácilmente aplicable para la restauración a escala de cuenca hidrográfica o de paisaje, donde 

los servicios ecosistémicos estén alterados por diferentes factores de disturbio. 
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1.1. Ecosystem service trends in basin-scale restoration initiatives 

Human-induced changes and damage of the Earth’s ecosystems make ecological 

restoration one of the key strategies of the present and beyond (Hobbs and Harris, 2001). 

Restoration is vital for stemming both the current loss of biodiversity and the associated 

decline of ecosystem services (Dobson et al. 1997; Millenium Ecosystem Assessment (MA) 

2005). The purpose of restoration is to initiate, or accelerate, the recovery of an ecosystem 

with respect to its health, integrity and sustainability (SER 2004). Ecological restoration and 

associated efforts are rapidly increasing and are being implemented throughout the world 

(Clewell and Aronson 2007). This growth is supported by global and regional policy 

commitments, such as the Convention on Biological Diversity ([article 8(f)] 2007) and the 

Commission of the European Community (2008), among others. Restoration can be 

undertaken at different scales ranging from local and habitat-specific actions to the biome and 

regional levels. Although small-scale short-term projects can be valuable, these experiments 

do not resemble real-world ecosystem management. Many authors recognize the urgent need 

to greatly expand the scale of ecosystem restoration and conservation (Comín 2010; Moreno-

Mateos et al. 2012; Naveh 1994; Palmer 2009; Hobbs and Norton 1996; Wohl et al. 2005). 

Large-scale ecosystem restoration is required to arrest and reverse the degradation of 

landscapes around the world, particularly focusing on biodiversity as a positive relationship has 

been observed between biodiversity and ecosystem services after restoration (Rey-Benayas et 

al. 2009). Also focus on river systems is encouraged as increasing evidence suggests that the 

biodiversity of freshwater ecosystems is among the most endangered in the world (Driver et 

al. 2005; Dudgeon et al. 2006; Jenkins 2003; WWF 2004).  

The emerging policy focus on ecosystem services represents a significant shift in the 

objectives of restoration (Bullock et al. 2011). Economic valuation of ecosystem services has 

accentuated interest in using these services as a basis for restoration and conservation 

programs (Ehrenfeld 2000). European Environment Agency (EEA) initiated the EURECA project 

which is intended to contribute to a European Ecosystem Assessment is strong evidence of the 

institutional interest in integrating ecosystem services in future socio-economic decisions. 

Recent progress in the assessment and evaluation of ecosystem services is likely to increase 

the inclusion of ecosystem services in restoration planning and implementation (Fiedler et al. 

2008; Martinez et al. 2008; Moberg and Ronnback 2003; Nelson et al. 2009; Reyers et al. 

2009). While a single restoration project is unlikely to ameliorate the state of a large degraded 

basin, ecologists can help to identify combinations of projects that will best restore ecosystem 
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services within watersheds. To obtain a full understanding of the services provided in a study 

area, research should ideally be conducted at multiple, nested scales, as environmental effects 

may be uncorrelated across scales (MA 2003), although the large-size, long-term ecological 

services and functions constrain or control the small-size, periodical ecosystem services and 

functions (Limburg et al. 2002). Such “strategic” restoration would prioritize the location, size 

and type of network of restoration projects needed for a watershed that can be compared 

with the stakeholder needs in order for it to provide optimal levels of ecosystem services 

(Zedler and Kercher 2005). Biophysical and, increasingly, socio-economic values are currently 

used to define priority areas for planning conservation and environmental management 

measures (Raymond et al., 2009) as well as for evaluating the benefits of restoration projects 

(Aronson et al. 2010; Palmer et al. 2005). However, the degree to which ecosystem services 

have been incorporated into basin-scale restoration actions to date is unclear. To address this 

knowledge gap, we conducted a survey of peer-reviewed international scientific literature to 

reveal global trends. Furthermore, we explored the emerging issues related to ecosystem 

service classification, mapping approaches, tools and software. We identified opportunities for 

the increased integration of ecosystem services in basin-scale restoration projects, suggesting 

a framework based on new hierarchical maps. This is based on congruence among threat maps 

(e.g., thresholds of impacts) and ecosystem service maps. The resultant new map will facilitate 

the targeting of threatened service supply at different scales. The inclusion of ecosystem 

services in restoration projects provides an opportunity for defining clear goals for generating 

public support and funding sources, which are necessary conditions to enhance the planning 

and implementation of restoration projects (Choi 2007; Ehrenfeld 2000; Hobbs 2007). 

1.1.1. Literature search and data extraction 

In order to understand how ES have been used in basin-scale restoration we search for 

peer-reviewed publications in using the ISI Web of Science from 1998-2010 (February) written 

in the English language, follow the methodology of Egoh et al. (2007). 

(http://www.newisiwebofknowledge.com). We limited our search to 1998 and beyond 

because this is when the terminology “ecosystem services” was introduced in the published 

literature by Daily (1997) and Costanza (1997). This publication, among others, created a clear 

increase in the number of studies citing ecosystem services (see Fig. 1 in Fisher et al. 2009). We 

searched for the term “restoration project” in an advanced search on ISI using the Boolean 

AND associated with a number of terms related to restoration (see Appendix 9.1.). For Data 

extraction we followed the data extraction methodology of Rey-Benayas et al. (2009) in part 

(see Appendix 9.1.), examining the titles and abstracts of each reference to determine how 

closely they aligned with our selection criterion of ecosystem services classification based on 

MA (2005) within basin areas, thereby determining their inclusion in this review. If the 
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1.2.1. Types of services that have been included 

Four categories of services were addressed in the 13 studies that made explicit 

reference to ecosystem services: supporting, regulating, cultural and provisioning services. The 

supporting service was the most common (appearing in eight studies), followed by regulatory 

(three studies), cultural (one studies) and provisioning services (one study). We note that these 

categories are not mutually exclusive; most of the restoration studies potentially included 

multiple services that were not stated, thus preventing the positive results of restoration from 

being represented in their totality, downplaying the effort undertaken. The supporting service 

of habitat/refugia/nursery functions, which is generally linked to target species that benefit 

from habitat restoration, was the most common. Flood/drought prevention, water regulation 

and erosion control also received attention in restoration studies, either through their explicit 

inclusion or through the inclusion of ecological processes linked to them. The provisioning 

services addressed in the studies were focused on water production in a river basin, while the 

cultural services were focused on landscape restoration and the local inhabitants’ perceptions 

of the projects, which were evaluated by means of local surveys (see Table 8 in Appendix). Our 

review indicated that no study at the basin scale explicitly mapped ecosystem services 

targeting restoration; instead, they identified and, in some cases, mapped processes and 

Ecosystem Service Providers (ESPs), which are mostly habitats, species and populations that 

are in some way responsible for the provision of services. 

1.2.2. Classifying ecosystem services 

Despite the fact that ecosystem services now feature prominently in ecological studies 

and the many calls that have been made to introduce them into restoration plans (Dodds et al. 

2008; Ormerod 2003; Peterson and Lipcius 2003), prior to 2006, few peer-reviewed studies on 

restoration at the basin scale actually did so. Our review found an increasing trend from this 

date onward towards the inclusion of this concept (Fig. 1). This growth may be due to an 

emerging societal consciousness that resources are becoming increasingly degraded and 

scarce (Costanza et al. 1997). The main reason for these declines is the rapid increase 

projected globally in the demand for food, fresh water, energy, and other resources over the 

next few decades, which implies greatly intensifying human impacts (Daily 2000).  But the 

great catalyst was the MA work which made a thorough effort to assess the effects of policies 

on ecosystem services and human well-being in 2005 (MA 2005), and provided a base for 

further studies (Carpenter et al. 2009). 

Notwithstanding the most difficult task in this review was the identification of 

ecosystem services, which was due to the lack of consistency and absence of the use of 

universally accepted classifications (e.g., Costanza et al. 1997; de Groot et al. 2002). Instead, 
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the selected studies mostly referred to restoration of ESPs, ecological functions and processes 

to support biodiversity. This was a normal practice in past studies, where functions were 

identified and studied for years with no reference to services for humans, which they also 

provide (Fisher et al. 2009). Current debates about how to best define the distinction between 

ecosystem functions and services and how to classify the services to make them quantifiable in 

a consistent manner are ongoing (Fisher et al. 2009; de Groot et al. 2010). In a recent review, 

Rey-Benayas et al. (2009) also found that only a small minority of studies explicitly referred to 

the concept of ecosystem services, whereas a larger number referred to the concept of 

ecosystem function. In turn, Wallace (2007) found many relevant authors who examined the 

classification of ecosystem services combining means (processes) and ends (services) within 

the same category level, making the categories unusable for effective decision making. In our 

study case, for example, it was found that different services may be linked through processes, 

which may result in an unconscious double counting of services if services are not explicitly 

included in the study. The inconsistency in ecosystem service classification has been noted in 

many studies as Fu et al. (2011) highlighted in a recent review, causing uncertainty and a lack 

of reliability with respect to the estimation of the value of ecosystem services.    

1.2.3. Functions, processes and services?  

Ecosystem services are generated by ecosystem functions, which, in turn, are 

underpinned by biophysical structures and processes classified in the MA (2005). Moreover, 

biophysical processes are essential for the provision of ecosystem services, but processes are 

not synonymous with services (Tallis and Polasky 2009). Processes and functions become 

services if there are benefits for humans from them (Fisher et al. 2009); nevertheless, it is 

common to find many authors who treat them as synonyms (Wallace 2007). It is clear that a 

coherent and integrated approach for practical application of the concept of ecosystem 

functions and services in planning, management and decision making is still lacking (ICSU et al. 

2008).    

1.2.4. Missed opportunities  

Every restoration project directly or indirectly aims to improve ecological processes, 

and based on the degree to which a degraded area is restored, it can potentially improve 

ecosystem services and create new ones, changing the conditions of degraded sites and 

improving the delivery of services. This is why some studies include multiple overlapping 

services, either intentionally or not. For example, in the present review, it was found that 

studies that attempt to restore habitat (see: Battin et al. 2007; Fullerton et al. 2006; Fullerton 

et al. 2009; Katz et al. 2007) for a target species (e.g., salmon) can be included among both 

supporting services (habitat provision) and provisioning services (food). Additionally, 
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restoration of salmon habitat could enhance other services, such as regulating and cultural 

services (e.g., if the salmon are fished). However, the different services will often not be cited 

and are even less likely to be quantified. In studies addressing the dynamics of land use in a 

watershed, such as that of Rayburn and Schulte (2009), the addition of ecosystem service 

maps could complement, enrich and drive future land use scenarios as a basis for restoration 

planning.  

Unfortunately, this lack of awareness regarding the use of ecosystem services is 

partially due to the poor understanding of the quantitative relationships between biodiversity, 

ecosystem components and processes and services. As de Groot et al. (2010) highlight, criteria 

and indicators are required to comprehensively describe the interaction between the 

ecological processes and components of an ecosystem and their services. Reaching this point, 

it is extremely important to create standardized terms and definitions, eliminating any doubts 

and inconsistencies and standardizing the classification and the methodology. Despite the 

tremendous resources required for this ambitious approach (Kremen and Ostfeld 2005), some 

progress has been made. If the opportunity to achieve concrete results is not to be lost, then it 

is time to standardize methodologies, definitions and key concepts to describe and quantify 

ecosystem services (de Groot et al. 2010; Wallace 2007). 

1.2.5. Learning from previous studies 

Given the amount of attention that the ecosystem services concept has received in the 

past few years, it seems surprising that the services are not yet widely used to drive and target 

restoration projects (e.g., at landscape and basin scale). A likely cause of this oversight is the 

use of a traditional ad hoc restoration approach instead of a more holistic view, which 

constitutes the basis of sustainability. We therefore need to move away from the ad hoc site- 

and situation-specific approach that has been prevalent in restoration activities (Hobbs and 

Norton, 1996). For example, in a river restoration project, a broad knowledge of the 

characteristics of the watershed and river is required to identify not only environmental 

impacts but also their origins (Comín et al. 2009). In the present review, Fullerton et al. (2006) 

can be a good example of ecological data required for future translation from process into 

services. They used land use maps, aerial photos and field observations to map riparian areas 

according to their in-stream functions (organic matter inputs, filtration of pollutants and 

sediment, bank stabilization, temperature control), linking them with services such as 

disturbance prevention and nutrient cycling. Fewer explicit guidelines are available at the 

landscape/basin scale beyond non-quantitative generalities about size and connectivity. The 

global-scale ecological decline (Global Footprint Network 2010) requires the development of 

general guiding principles for restoration projects to address the global challenges that 

humanity faces (Comín 2010). Development of these guidelines should be prioritized so that 
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urgently required large-scale restoration can be planned and implemented effectively (Hobbs 

and Norton 1996). 

1.2.6. Mapping ecosystem services  

Unfortunately, the quantitative relationships between biodiversity, ecosystem 

components and processes and services are still poorly understood (de Groot et al. 2010). 

Current landscape maps normally include land cover and/or related uses. Quantifying 

ecosystem services in a spatially explicit manner and analyzing tradeoffs between them can 

lead to making more effective, efficient and defensible decisions related to natural resource. 

Mapping ESPs is one of the most explicit methods for including ecosystem services in 

conservation activities (Egoh et al. 2007), though no consistent mapping protocol or official 

accepted framework exists that can be followed for this purpose. One of the main research 

questions to be resolved is how ecosystem services can be spatially mapped and visualized in a 

universal way (de Groot et al. 2010). In this review, ecosystem services were generally found to 

be both biotic (Grundel and Pavlovic 2008) or abiotic (Fullerton et al. 2006; Nienhuis et al. 

2002) attributes, such as vegetation type (Vesk et al. 2008) or scenic rivers being mapped 

(Junker and Buchecker 2008). Mapping could also be applied in restoration planning, providing 

the opportunity to locate and quantify services for the purpose of making decisions and 

prioritizing future restoration activities. Unfortunately, the extent to which ecosystem services 

can be included in restoration studies remains largely untested, but there are some interesting 

new attempts focusing on some areas or some types of ecosystems of a territory (Orsi et al. 

2011; Pert et al. 2010; Tong et al. 2007).  

1.2.7. Prioritization through mapped congruence 

Ecosystem services coupled with climate, demographic, economic and social models 

and data are becoming more common. The widespread use of geographic information systems 

(GIS), statistics and geostatistics currently provides a powerful and complementary suite of 

tools for spatial analysis in the agricultural, earth and environmental sciences (Burrough 2001). 

Studies at the basin and landscape scales have begun to include ecosystem service mapping 

and evaluation into management and restoration plans (see: Egoh et al. 2011; Nelson et al. 

2009; O’Farrell et al. 2010; Wendland et al. 2010). These authors follow the common 

framework of comparing services with one or more datasets, such as datasets addressing 

biodiversity conservation, vegetation diversity, needs of the local population, or commodity 

production. Following these examples of data intersection, we suggest a framework based on 

evaluation of the congruence among degrading processes or threat areas (e.g., erosion, 

deforestation, point and non-point pollution areas) and ecosystem service maps (Raymond et 



 

al. 2009) for the generation of new hierarchical maps based on thresholds of impacts (e.g., 

estimation of erosion limits for soil formation) and services (e.g., the number per area or level 

of importance required for the wellbeing of the beneficiary).

 

Fig. 2. Schematic map showing the building of a hierarchy map

or scale (e.g. subwatershed, river order) for data analysis

disturbance factor (e.g. mapping)

reclassification and overlapping of the disturbance factor and the ecosystem services. 

 

 Congruence among ecosystem services or ecological processes and threats areas will 

be exported as a new map (

supplied at different scales from the basin scale to the scale of the restoration site. This 

systematic approach is well recognized a

neration of new hierarchical maps based on thresholds of impacts (e.g., 

estimation of erosion limits for soil formation) and services (e.g., the number per area or level 

of importance required for the wellbeing of the beneficiary).  

 

Schematic map showing the building of a hierarchy map: first select a pixel aggregation 

or scale (e.g. subwatershed, river order) for data analysis; second, spatial analysis of the 

(e.g. mapping) and of the ecosystem services (e.g. mapping)

overlapping of the disturbance factor and the ecosystem services. 

Congruence among ecosystem services or ecological processes and threats areas will 

(Fig. 2) which will facilitate the targeting of threatened services 

supplied at different scales from the basin scale to the scale of the restoration site. This 

systematic approach is well recognized as the essential next step toward informing decision 
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making for a systematic approach that combines the rigor of small-scale studies with the 

breadth of broad-scale assessments (Tallis et al., 2009). The development and application of 

these hierarchical maps is a step in this direction, providing the opportunity to obtain an 

overview of the ecological state of a basin to understand and locate key ecosystem service 

priority areas for the purpose of maintaining, improving or restoring strategically identified 

targets. In these cases, the resolution of the available data is key for the downscale approach 

to be effective. Changing the spatial scale from a basin to prioritized areas requires optimum 

dataset support, depending on the scale of the target (e.g., at finer scales, a smaller pixel size 

will be required) to achieve more accurate targeting. Depending on the cell size of our maps, 

we would be able to downscale gradually from the basin to the subwatershed until we arrive 

at more defined and specific threatened areas (e.g., slopes, opencast mines, riparian areas, 

forest patches)  

In the next chapters we will provide a practical approach to the proposed framework for the 

creation of hierarchical maps based in erosion and ecosystem services maps in Martín Basin 

(NE Spain). 

 

1.3. Mapping erosion risk at the basin scale with opencast coal mines to 

target restoration actions 

Restoring eroded lands is a major objective to give back value to large parts of the 

world where erosion is a major environmental problem (Pimentel et al. 1995). However, 

defining areas for restoration in a vast territory requires establishing the magnitude of the 

problem and the benefits of the solutions at an adequate spatial scale (Boardman 2003).   

Soil is often lost through erosion, a natural process that can be fostered by 

inappropriate land use and intense precipitation, among other factors (Garcia-Ruiz 2010). The 

European Union considers soil to be a nonrenewable resource, and soil degradation has strong 

impacts on soil and water resources (Montanarella 2000). The loss of topsoil and changes in its 

properties will cause the decline of the ecological processes that rely on it. Soil erosion 

increases the impact on streams through high sediment delivery, which has been identified as 

a leading cause of river degradation (USEPA 2000). Consequently, soil erosion causes the loss 

of the services provided by ecosystems (Van Wilgen et al. 1996) and knowing the spatial 

distribution of erosion rates is a primary step for planning restoration at the watershed scale. 

In Mediterranean areas, developing efficient tools for decision making regarding land 

use management is a major objective (Simoncini 2009) because of the multiple environmental 

problems arising from the intensive use of the land since long ago (Tabara and Ihlan 2008), 
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particularly problems related to erosion (Boardman et al. 2003, Bazzoffi 2009). Opencast 

mining is one such activity, which contributes mostly to erosion (Wu and Wang 2007).  

Opencast mines are sources of high sediment yield to rivers if restoration is not properly 

carried out (Balamurugan 1991; Taylor and Owens 2009). Subsequently, human intervention in 

failed reclamation areas, especially opencast mines with highly eroded slopes connected with 

the river network, is necessary to prevent water pollution and to slow irreversible erosion 

(Pimentel et al. 1995; Palmer et al. 2010). 

Mapping ecological processes and restoring areas with high sediment delivery would 

help avoid irreversible degradation that removes nutrients and reduces fertility (DeFries and 

Eshleman 2004), thus limiting the sedimentation and eutrophication of nearby rivers, which 

would represent a potential hazard for the long-term sustainability of agriculture and 

ecosystem services at the basin scale (Krauze and Wagner 2007). For this reason, the number 

of projects on sediment-related river restoration at the river basin scale is increasing (Kondolf 

1998; Ward and Fockner 2001; Pizzuto 2002; Pennisi 2004). Successful restoration projects on 

river basins require an understanding of sediment transport processes. This understanding is 

achieved by identifying the suspended sediment sources on the basis of sediment monitoring 

and modeling (Gao 2008). 

1.4. Mapping ecosystem services for management and targeting 

restoration efforts  

Human use and manipulation of ecosystems has increased rapidly over the last 

century. Currently, approximately 60% of worldwide ecosystem services are considered to be 

either degraded or used in an unsustainable manner (Millennium Ecosystem Assessment 

2005). Agriculture and mining are vital human activities that generate essential products for 

human subsistence and well-being; however, both agriculture and mining have major impacts 

on the services provided by ecosystems (Power 2010). If we are to retain vital ecological 

functions, trends in ecosystem degradation need to be either halted or reversed through 

restoration actions (Global Footprint Network GFN, 2008; Comín 2010).   

Mapping ecosystem services has become a popular tool for achieving different 

environmental objectives. Carreño et al. (2011) assessed the tradeoffs between the 

provisioning of ecosystem and economic services over the course of 50 years of land-use 

change in Argentina. Egoh et al. (2011) identified spatial priority areas for ecosystem services 

in grasslands in South Africa and evaluated whether biodiversity priority areas can be aligned 

with those for ecosystem services. Nelson et al. (2009) used a spatially explicit modeling tool to 

predict changes in ecosystem services, biodiversity conservation, and commodity production 

levels in a United States river basin. O’ Farrell et al. (2010) engaged stakeholders and experts in 

identifying key services for determining the congruence between biodiversity priorities and 
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ecosystem service hotspots. The inclusion of ecosystem services in environmental research will 

be a major challenge and will bring multiple positive advantages. For example, promoting the 

variety of ecosystem services that modern agricultural systems can provide would increase the 

value of agricultural areas in watersheds that require restoration (Swift et al. 2004). The need 

for aligning restoration objectives and ecosystem services has been recognized, and a growing 

number of studies are offering examples at appropriate local scales where this alignment has 

been attempted (Trabucchi et al. Submitted).  

Planning the management and restoration of a region requires the identification and 

evaluation of the services provided by different types of land use and the prioritization of 

areas according to these findings. Two key issues have emerged from such planning. The first 

relates to the availability of data about ecosystem services (Troy and Wilson 2006). Detailed 

spatial information is needed to locate and quantify ecosystem services so that ecosystem 

services can be integrated into plans for management and restoration. The Millenium 

Ecosystem Assessment (MA 2005) attempted to address the lack of ecosystem service 

information required for decision making by assessing current knowledge, scientific literature 

and data. The findings of this study gave rise to the creation of ecosystem service databases at 

regional and national scales. The second issue pertains to recognizing the need for restoration 

initiatives that utilize ecosystem service information to reverse ecological degradation, recover 

habitats and restore biodiversity, ecological functions and services. Such restoration initiatives 

include erosion control, reforestation, removal of non-native species and weeds, re-vegetation 

of disturbed areas and the reintroduction of native species (SER 2004).  

The 2006 Biodiversity Communication and its detailed Action Plan (Commission of the 

European Community 2006) acknowledged the need for restoration initiatives within the 

European Union. A recent review by Rey-Benayas et al. (2009) showed that ecological 

restoration supports biodiversity and ecosystem services by 44 and 25%, respectively, and that 

increases in both biodiversity and ecosystem services were positively correlated. Ecosystem 

service identification and evaluation is increasingly used to locate important natural resources 

and services for conservation, protection, restoration and management (Egoh et al. 2008; 

Nelson et al. 2009; O’Farrell et al. 2010; Reyers et al. 2009; Viglizzo et al. 2011). Furthermore, 

this information allows for the prioritization of investments (Johnson 1995). Areas for 

restoration can be selected in terms of their ability to reduce environmental risks while 

enhancing ecosystem service delivery. Clearly, we should be developing restoration programs 

that explicitly state priorities or goals (Forsyth et al. 2012) in the planning stages to guide 

investment decisions. Spatial congruence between areas targeted for restoration and areas 

that deliver ecosystem services needs to be examined and possibly aligned beforehand. Multi-

scale analysis is especially important to Mediterranean ecosystems, which are characterized by 

high heterogeneity and provide society with a great diversity of ecosystem services at different 
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scales (Martín-Lopez et al. 2012). River basins consist of a mosaic of ecosystems typically 

classified at subwatershed levels. Planning restoration at such scales requires the prioritization 

of subwatersheds according to their potential for delivering benefits from the restoration. 

1.5. Multi-scale approach for establishing restoration priorities in a 

degraded Mediterranean landscape through the evaluation of 

ecosystem services 

Soil erosion is a major threat to the continued provision of ecosystem services in large 

parts of the world (Brown 1981), particularly in arid and semi-arid areas (Gisladottir and 

Stocking 2005; García-Ruiz 2010). The future global change scenario corroborates the negative 

effects of increasing drought in Mediterranean regions on vegetation (Schroter et al. 2005), 

with runoff and sediment yields increasing in association with decreasing plant cover (from a 

certain threshold of cover) (Quinton et al. 1997). These suggested conditions are likely to 

result in greater amounts of soil being exposed to water and wind erosion (López et al. 1998). 

Additional factors that determine the predominance of erosion include the spatial scale, 

topographic thresholds, rainfall magnitude-frequency-duration characteristics, the initial soil 

moisture content and soil biological activity (Cammeraat 2002). Intensive agriculture and 

mining are land-use practices that are responsible for increasing erosion rates. These activities 

cause serious environmental problems across vast areas and result in enforced critical trade-

offs for the associated societies (Zhang et al. 2007; Bernhardt and Palmer 2011; Carreño et al. 

2011). 

A key issue in semi-arid environments is determining how to prioritize areas for 

restoration to optimize erosion control. However, the challenge is increasingly how to combine 

this goal with the improved provision of vital ecosystem services, particularly water-related 

services and reduce the negative consequences for human development (Reynolds et al. 

2007). Emerging policies are focused on ecosystem services and their inclusion in measures 

aimed at the restoration and the control of erosion. This represents a significant shift in the 

objectives of restoration (Bullock et al. 2011). Different organizations have set targets for 

ceasing biodiversity losses and the degradation of ecosystem services and restoring them ‘so 

far as feasible’ (EU Biodiversity Strategy 2020, MA 2003). To meet these policy objectives, 

there is growing interest in the development of tools and methods for identifying and 

evaluating ecosystem services and incorporating these measures into policies related to 

landscape planning, management and the allocation of environmental resources (Ruiz-Navarro 

et al. 2012; de Groot et al. 2010). This is particularly the case with regard to degraded areas 

and when attempting to understand trade-offs that arises related to land use and land cover 

planning (Rodríguez et al. 2006).  
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Mapping of ecosystem services has been identified as a useful aid in decision making 

during the allocation of efforts aimed at land use planning and management, particularly for 

the restoration of degraded areas (Reyers et al. 2009; Pert et al. 2010; Carreño et al. 2011). To 

obtain a complete understanding of the services provided in a study area, research should 

ideally be conducted at multiple, nested scales, as environmental effects may be uncorrelated 

across scales (MA 2003). The extent to which ecosystem services can be integrated into basin-

scale restoration projects that are focused on reversing these trends remains largely untested, 

despite the recent and growing number studies focused on this broader topic (Fisher et al. 

2009).   

To understand how landscapes affect and are affected by biophysical and 

socioeconomic activities, we must be able to quantify spatial heterogeneity and its scale 

dependence (i.e., how patterns change with scale) (Wu 2004). Hierarchy theory is applied to 

the development and organization of landscape patterns and is best understood if tested 

across spatial and temporal scales (Bourgeron and Jensen 1993). Disturbance events that 

maintain landscape patterns and ecosystem sustainability are also spatial-temporal scale-

dependent phenomena (Turner et al. 1993). Acknowledgment of this situation is critical for the 

development of management strategies aimed at ecosystem sustainability (McIntosh et al. 

1994). Watershed risk analysis procedures can be used to consider the effects of rehabilitation 

treatments on watershed-level hazards, the consequences of inaction and the resources at 

stake (Milne and Lewis 2011). The combined analysis of areas that are important for the supply 

or provision of a suite of services employing erosion maps representing multiple scales should 

provide useful information for the establishment of priority areas for the restoration of 

watersheds (Orsi et al. 2011; Su et al. 2012; Trabucchi et al. 2012b). Historic restoration efforts 

have been primarily focused at a single scale (such as on stands or stream reaches) (Bailey 

et al. 1993; Milne 1994) and have relied on site-level information to direct restoration actions 

(Bohn and Kershner 2002). As a result, many restoration programs lack the ability to scale up 

their findings. This situation has prompted the call for the adoption of a multi-scale approach 

in planning ecological restoration policies (Ziemer 1997; Hobbs and Harris 2001; Comín 2010). 

Here, each restoration activity should be evaluated across a hierarchy of scales ranging from a 

broad region to an individual site, as the success of a local project depends on how well that 

project contributes to a comprehensive restoration strategy (Ziemer 1999; Palik et al. 2000). 

Landscape-level empirical studies are required for determining the kinds of scaling 

relationships that may exist and how variable or consistent they are (Wu 2004).  
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1.6. Objectives 

The general aim of this study is to check an approach for targeting and prioritizing sites 

for land management and restoration actions based on the assessment of ecosystem services 

in a Mediterranean semi-arid watershed with a marked spatial distribution of eroded areas. 

The specific objectives are: 

• Modelling the erosion in Martín River Basin. 

• Evaluating a bundle of ecosystem services (water surface supply and flow regulation, 

soil retention and accumulation, carbon storage and ecotourism) and creating 

integrated maps of ecosystem services provision for the bundle of ecosystem services. 

• Elucidating the spatial patterns of erosion and ecosystem services provision in Martín 

Basin. 

• Create a spatial hierarchy of restoration actions against erosion for Martín Basin based 

on the evaluation of ecosystem services.  
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2. Study area 
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The Martín River watershed

the Ebro River basin (NE Spain) (

 

Fig. 3. Map of the Martín River 
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heterogeneously distributed both in space and time (Fig. 4). A few big storms are recorded 

every summer, more frequently in the upper (south) part of the watershed. 

 

Fig. 4. Spatial rainfall pattern per year of the period 1970-2000 in Martín Basin. 

The water deficit ranges between 530 mm and 758 mm, extending the dry period from 

May until October. The mean annual temperature range is 13-16 ºC, with minimum and 

maximum average temperatures of 5 and 25 ºC, respectively. Dryness, which has increased in 

recent years (Moreno-de las Heras et al. 2009), is the main limitation for natural plant 

development in the region and for the development of agriculture, which is the major 

socioeconomic activity in the lowland part of the basin (Fig. 5), covering 53% of this  part of the 

basin. This land is mostly used for dry cereal farming (Foto 1 p. 39), except in the narrow belts 

along the river’s sides near the villages, where an old canal network is still in use to irrigate 

vegetable and fruit tree fields. The meso-Mediterranean garrigue (Quercus ilex), accompanied 

by sabine (Juniperus sabina) in a few zones in the southern sector, is replaced northward by 

Kermes oak (Quercus coccifera), rosemary (Rosmarinus officinalis) formations, and steppe with 

small species (Macrochloa tenacissima, Stipa tenacissima, Ligeum spartum, Tamarix africana, 

Juniperus phoenicea). The only significant forests are located in the central part of the basin, 

and they consist mainly of Aleppo pine (Pinus halepensis). Riparian vegetation is extremely 

degraded because of the extensive cover of agricultural practices, and the intensive effects of 

some mining derived impacts and regulated river flows.  
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Fig. 5. Map of the Martín River watershed showing the different land cover units. 
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Fig. 6. Simplified map of land use in Martín Basin, red areas represent mines, quarries and 

towns. 

Regosol is the most widespread soil type in the Martín River basin, covering 41% of the 

total area. This soil is composed of medium and fine-textured materials derived from a wide 

range of rocks, which are normally extensive in eroding lands (FAO-UNESCO 1988), particularly 

in arid and semi-arid areas and in mountain regions (Sánchez-Andrés et al. 2010). Rendsina-

lithosol and cambisol, which are shallow soils with medium and fine-textured materials, cover 

11.7% and 12.6% of the Martín Basin, respectively (Fig. 7). Calcic yermosol, defined as a 

surface horizon that usually consists of surface accumulations of rock fragments ("desert 

pavement") embedded in a loamy vesicular crust and covered by a thin aeolian sand or loess 

layer, extends over 8% of the study area. These qualities make these soils prone to erosion if 

combined with land cover-management misuse and steep slopes.  



 

 

Fig. 7. Description of the study area by soil ty

spots for soil analysis. 

A large coalfield is located in the southern part of the basin (

was the main socioeconomic activity for people living in this region from 1960 to 

period of great prosperity of opencast mining during the 1980

(27 Km2), the activity has strongly declined and only three mines are currently operating 

(Comín et al. 2009). The mining zones (

to their restoration status.  

  

Description of the study area by soil types showing with red-black dots soil 

A large coalfield is located in the southern part of the basin (Fig. 3 and

was the main socioeconomic activity for people living in this region from 1960 to 

of opencast mining during the 1980’s with 17 active opencast mines 

), the activity has strongly declined and only three mines are currently operating 

(Comín et al. 2009). The mining zones (Fig. 8) contribute to the emission of sediment according 
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Fig. 8. Erosion rates by mine restoration status, the lower values correspond with the third 

generation restoration status

These mining zones are classified as 

second generation Fig. 10), and third generation

restored by depositing materials following the platform

These mines have large areas

connected to the river network

group of mines was restored with the same model but with slopes of 15º and deep pit zones 

that accumulate runoff discharges

extensive application of soil and plant material to restore the plant community

The third generation mines were subject to a topographic restoration model that tries to 

simulate natural landforms and recreate a 

2003) (Fig. 11.). In addition to the three groups described above, a few mines abandoned after 

exploitation remain as non-restored mine zones in the region

laws forcing to mine companies

Erosion rates by mine restoration status, the lower values correspond with the third 

generation restoration status (From Trabucchi et al.2012a). 

These mining zones are classified as abandoned (Fig. 9 A, B), first generation (

, and third generation (Fig. 11). The first generation mines were 

restored by depositing materials following the platform-slope-ditch model during the 1980s. 

areas of steep slopes (>22º), with ditches formed from rill erosion 

connected to the river network and an absence of pits (Fig. 9 C, D). The second generation 

group of mines was restored with the same model but with slopes of 15º and deep pit zones 

that accumulate runoff discharges (Fig. 10 C, D). Moreover, these mines have received 

extensive application of soil and plant material to restore the plant community

The third generation mines were subject to a topographic restoration model that tries to 

and recreate a natural drainage to decrease peak flows (Nicolau 

In addition to the three groups described above, a few mines abandoned after 

restored mine zones in the region (Fig. 9 A, B,) due to 

ies to restore exploited lands were established in
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Erosion rates by mine restoration status, the lower values correspond with the third 

(Fig. 9 C, D, p. 37), 

The first generation mines were 

model during the 1980s. 

, with ditches formed from rill erosion 

. The second generation 

group of mines was restored with the same model but with slopes of 15º and deep pit zones 

. Moreover, these mines have received 

extensive application of soil and plant material to restore the plant community (Fig. 10 A, C). 

The third generation mines were subject to a topographic restoration model that tries to 

to decrease peak flows (Nicolau 

In addition to the three groups described above, a few mines abandoned after 

A, B,) due to the fact that  

exploited lands were established in 1985. 



 

 Fig. 9. Abandoned opencast coal mine

bodies most of the time. Example of first generation mine restoration following the platform

bank model with a pyramidal topography

Cueva la Hiedra in Montalbán

Fig. 10. Second generation of restoration 

a gentle slope (≤22º degrees) 

system. 

 

 

Abandoned opencast coal mines (A and B, Palomar mine), where runoff reach

. Example of first generation mine restoration following the platform

bank model with a pyramidal topography of 30 degrees (C Murcielago mine in 

iedra in Montalbán). 

 

Second generation of restoration (Barrabasa, A, and Corta Alloza, B, in Val Ariño) 

rees) including creation of constructed wetland as part of the drainage 
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runoff reaches water 

. Example of first generation mine restoration following the platform-

in Utrillas and D 

in Val Ariño) with 

including creation of constructed wetland as part of the drainage 



 

 

Fig. 11. Third generation of restoration (

hydrological basin as a restoration unit. Reservoir works as a firebreaks line avoiding sediment 

emission to the natural watercourse and reducing peak

 

of restoration (Utrillas) based on the understanding of the 

hydrological basin as a restoration unit. Reservoir works as a firebreaks line avoiding sediment 

emission to the natural watercourse and reducing peak flow.  
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based on the understanding of the 

hydrological basin as a restoration unit. Reservoir works as a firebreaks line avoiding sediment 



39 

 

PICTURES OF THE STUDY AREA 

  

    

Foto 1. Tipos de zonas agrícolas frecuentes en la parte norte de la cuenca del Martín: 

Agricultura mecanizada con métodos tradicionales (en sentido horario desde la izquierda 

arriba) dos campos utilizados para secano que durante el invierno se quedan completamente 

expuestos a los agentes erosivos (Escatrón, Hijar). Campo dedicado a secano protegido 

residuos de cultivo cerca de Albalate del Arzobispo. 
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Foto 2. Diferentes paisajes dominantes en la parte central de la cuenca del Martín. En el 

sentido horario desde arriba a la izquierda: Olivares, campos de almendros y viñas; paisaje 

prevalentemente agrícola con una mayor componente natural de matorral; zona más rocosa y 

abrupta dominada por bajo matorral a la embocadura del embalse de Cueva Foradada 

conocida por su alto valor recreativo al interior del Parque Cultural del Río Martín; paisaje 

agrícola en Alloza. 
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Foto 3. Paisajes típicos de la parte sur de la cuenca (en sentido horario desde arriba e 

izquierda): Penyarroya, una atracción natural del Parque Cultural del Martín, se aprecian los 

bosques riparios  formados por caducifolias; zona forestal en el municipio de Utrillas. 

“Humanización” del río en Obón, el bosque de ribera ha sido substituido por cultivos y caminos; 

zonas  encañonadas del Río Martín, nótese los fenómenos de desprendimiento y acumulación 

de roca  en las laderas de los montes 
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3. Methods 



 

 

 

  



45 

 

3.1.  Estimating erosion with RUSLE-GIS model 

Erosion rates have been estimated at the regional scale using the RUSLE model (Fu et al. 2005, 

Onori et al. 2006; Pizzuto 2002; Pennisi 2004). European environmental researchers (Panagos 

et al. 2011) have recently mapped a soil erodibility dataset at the European scale. The 

objective was to overcome problems of limited data availability for the application of the USLE 

(Universal Soil Loss Equation) model and to present a high quality resource for modelers who 

aim to estimate soil erosion at the local/regional, national or European scale. Following this 

direction, the location of eroded areas and the estimation of the average annual soil loss from 

rill and sheet erosion in the Martín Basin (Ebro Basin, Northeast Spain) were determined by 

using the RUSLE (Renard et al. 1997) and an updated version of USLE (Wischmeier and Smith 

1978), coupled with GIS (Geographic Information System).  

Many authors have used GIS/RUSLE models to estimate sheet wash erosion and non-point 

source material discharges in watersheds (Fu et al. 2005; Lim et al. 2005; Smith et al. 2007) and 

for environmental assessment (Boellstorff and Benito, 2005; Erdogan et al. 2007; Ozcan et al. 

2008). An increasing number of studies on restoration ecology are using this model to identify 

potential restoration areas (Güneralp et al. 2003; Vellidis et al. 2003) and to design 

reclamation plans for degraded areas such as opencast mines (Toy et al. 1999; Martín-Moreno 

et al. 2008; Moreno-de las Heras et al. 2009). 

Despite some uncertainties regarding RUSLE, such as the overestimation of soil loss on 

plots with low erosion rates and the underestimation of soil loss on plots with high erosion 

rates (Nearing 1998; Risse et al. 1993), we decided to use this model because it requires data 

that are relatively common and inexpensive to be processed with GIS. One of the highlights is 

the formulation of results that can be used for comparative or complementary future studies 

(Millward and Mersey 1999; Wang et al. 2003; Beguería 2006). 

3.1.1. The RUSLE model 

We used GIS commercial software (using a Spatial Analyst tool) to examine spatial variations in 

erosion using elevation data at a 20-m grid scale within the study area. Digital land cover data 

are available as shape files at the Aragon Territorial Information Centre (CINTA 2006). The 

Universal Soil Loss Equation (USLE) was used for this study because it is the most used 

empirical model that assesses long-term averages of sheet and rill erosion. This model is based 

on plot data collected in the USA (Wischmeier and Smith 1978). The USLE and its adapted 

version RUSLE (Renard et al. 1997) have been applied to various spatial scales and region sizes 

in different environments worldwide (Vrieling 2008).  



46 

 

The USLE and RUSLE are statistically based water erosion models related to six erosion factors 

(for a detailed description of the factors and data collection methods, see the appendix at 

points 9.3 and 9.4): 

A = R * K * L * S * C * P 

Where:  

A is the average soil loss from sheet and rill erosion, reported here in tons per hectare per year 

(t ha−1 yr−1) (Fig. 17, p. 65).  

R is the rainfall-runoff factor and represents the erosion energy in MJ mm ha−1 h−1 yr−1 based 

on the methodology of Renard et al. (1997), and it represents the average annual summation 

(EI) values in a normal year's rainfall (Fig. 12 B). 

K is the soil erodibility factor, which represents both the susceptibility of soil to erosion and 

the rate of runoff, as measured under the standard unit plot condition expressed in (t h MJ−1 

mm−1) (Renard et al. 1991) (Fig. 12 A).  

Only R and K have units; those units, multiplied together, give erosion in units of mass per area 

and time. Each of the other terms scales the erosion relative to specified experimental 

conditions (>1 is faster than erosion under those experimental conditions, and <1 is slower). 

The remaining factors are non-dimensional scaling factors. 

LS is the topographic factor describing the combined effect of slope length and steepness and 

is calculated with the approach of Moore and Wilson (1992) (Fig. 13 C),  



 

Fig. 12. Input data derived from the database of the Martín watershed: A) soil erodibility map 

(K-factor in RUSLE, Mg h MJ
-1

 

yr
-1

). 

 

Input data derived from the database of the Martín watershed: A) soil erodibility map 

 mm
-1

); B) rainfall erosivity map (R-factor in RUSLE, MJ mm ha
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Input data derived from the database of the Martín watershed: A) soil erodibility map 

factor in RUSLE, MJ mm ha
-1

 h
-1

 



 

Fig. 13. Input data derived from the database of the Martín watershed: C) length slope factor 

(LS-factor en RUSLE) and D) crop management.

 

 

Input data derived from the database of the Martín watershed: C) length slope factor 

factor en RUSLE) and D) crop management. 
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Input data derived from the database of the Martín watershed: C) length slope factor 
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From the standpoint of soil conservation planning, the C factor is the most essential factor 

because land use changes that characterize, reduce or increase soil erosion are represented by 

this factor (Khanna et al. 2007); however, the C factor is also the most costly (in time, at least) 

to estimate locally and then to extrapolate from the local measurements to the entire system 

of interest. Vegetation cover acts as a buffer layer between the atmospheric elements and the 

soil, absorbing most of the energy of raindrops and surface water to decrease the volume of 

rain reaching the soil surface (Khanna et al. 2007). Soil constantly tilled or disturbed has a 

maximum potential for erosion (C=1). Soil not recently disturbed has a nominal value of 0.45. 

Live or dead vegetation and rocks reduce C, reaching a maximum of 1.0 in constantly tilled soil. 

In places where total ground cover by live or dead material remains, C is taken as 0. In this 

study, several field samples were collected to determine the C factor following the approach of 

González-Botello and Bullock (2012). The next step was to extrapolate the punctual C factor 

values to the entire study area using the Genetic Programming methodology described by 

Puente et al. (2011) to obtain Vegetation Indices (VI's) designed exclusively for our area. For a 

detailed description of the methodology used to calculate each factor, see the appendix 9.3.1., 

p. 151. 

3.1.2. Connectivity 

Connectivity means the physical linkage of sediment through the channel system, which is the 

transfer of sediment from one zone or location to another and the potential for a specific 

particle to move through the channel system (Hooke 2003). In an attempt to evaluate the 

sediment connectivity in the Martín River Basin, we created a buffer zone of 500 m wide at the 

sides of the main channel and its effluents. The area directly connected to the conveyor belt 

varies over different timeframes or under various flow conditions. We used this buffer size 

because it reflects a situation of moderate magnitude (Fryirs et al. 2007) over which sediments 

can readily reach the water without being intercepted by depositional areas. Then, we visually 

identified (color graduation) the higher eroded areas included in the buffer and marked them. 

In an effort to locate the areas and test the prediction of the model, we conducted a field and 

photographic survey in the degraded areas included within the buffer described by the model. 

3.1.3. Statistical analysis methodology 

To assess the relationship between erosion and the available covariates, a Generalized Linear 

Model (GLM, McCullagh and Nelder 1997) with a Gaussian response was selected. Among the 

various relevant factors that normally influence erosion, we chose cover, slope (LS), and rain 

(R) because they result in the best fit with erosion values. The response (erosion) and one of 

the covariates (LS) were log-transformed to reach normality. The regression models were 

fitted with the open-source R software (R Development Core Team 2010). For model selection 
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an all-subset regression with K-fold cross-validation was performed (Miller 2002), with 

Bayesian Information Criterion (BIC) as selection criteria. The one-standard-deviation rule was 

applied for making the model selection more stable and for selecting the most parsimonious 

and adequate model (Hastie et al. 2009). 

3.2. Ecosystem services surrogate in Martín Basin, description and 

analysis 

3.2.1. Identifying and mapping services 

Identifying and selecting ecosystem services to be mapped should be based upon the 

ecological problems facing the study area (Wallace 2007). The Martín Basin, as with many 

other Spanish basins, has been deforested repeatedly, and erosion is a major environmental 

problem (García-Ruiz 2010) affecting the ecological functioning of the whole watershed. From 

de Groot et al. (2002), we selected a suite of regulating ecosystem services that are linked to 

major ecological functions: water flow regulation, surface water supply, carbon storage and 

soil retention and accumulation. We also investigated the potential for recreation/ecotourism 

services related to recreational-heritage activities that could be a major alternative or 

complementary socio-economic activity. We quantified and mapped these services to guide 

the prioritization of restoration actions and best management practices in the basin. The 

methods adopted and data used for quantifying and mapping are presented for every service.  

3.2.2.  Surface water supply  

Surface water supply relates directly to the quantity of water available for human use. Surface 

water supply or water provision is predominantly regulated by meteorological factors but is 

also influenced by terrain features such as topography and vegetation cover, both of which 

determine the water balance of the ecosystem. Egoh et al. (2008) argued that many studies 

used volume of water produced and/or accumulated in an area as the ecosystem service 

surrogate of surface water supply and that runoff is positively correlated with water supply. 

Following this approach, a raster dataset of total runoff was obtained from the Spanish 

Integrated Water Information System (SIA http://servicios2.marm.es/sia/visualizacion/lda). 

Data were extracted from this national dataset and used as a surrogate surface water supply. 

The raster layer was expressed in mm/year per 1 km resolution cell size (Fig. 15 C). In this 

region, reservoirs are considered high water supply areas due to their capacity to provide 

water for human uses, though this is despite the fact that most of this water comes from other 

ecosystems and that reservoirs are artificially constructed systems. 
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3.2.3. Water flow regulation 

Ecosystems can play a key role in regulating surface water flow, which is directly related to the 

water storage capacity of the ecosystem, the magnitude of the aquifer and characteristics of 

the vadose zone, the vegetation cover in terrestrial ecosystems and the water retention time 

in aquatic systems. Water flow regulation reduces the impacts of flooding and drought on 

downstream communities (Myers 1996). Important ground water recharge areas typically have 

low surface runoff volumes due to their increased infiltration capacity and high water storage. 

These characteristics, along with other factors such as plant cover, also limit erosion 

(Sophocleous 2002). Water recharge areas for the entire Ebro Basin have been mapped by the 

water authority Confederación Hidrografica del Ebro (CHE) and expressed in mm/year at 350 

m resolution cell size (http://iber.chebro.es/geoportal/index.htm) using the Curve Number 

(USDA-SCS 1972). Data for the Martín Basin were extracted and used in this research (Fig. 14 B). 

Water flow regulation is an important service within the Martín Basin because of the negative 

impact of erosion and flooding on both natural and man-made systems. Vegetation cover plays 

a key role in the delivery of this service, reducing surface flows to nearby waterways. 

Therefore, reducing forest cover and density decreases moisture retention, which in turn 

reduces the growth of remaining trees and increases surface water yield from watersheds. 

These changes can be short-lived, however, and depend on climate, soil characteristics and the 

percentage and type of vegetation removal. 

  



 

Fig. 14. Ecosystem services surrogates in Martín Basin: ecotour

aquifer recharge (B). 

 

Ecosystem services surrogates in Martín Basin: ecotourism paths and relative’s viewsh
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ism paths and relative’s viewshed (A), 



 

Fig. 15. Ecosystem services surrogates in Martín Basin: runoff 

 

Ecosystem services surrogates in Martín Basin: runoff (C), soil retention (D)
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(C), soil retention (D). 



 

Fig. 16. Ecosystem services surrogates in Martín Basin:

(F). 

 

Ecosystem services surrogates in Martín Basin: carbon storage (E), soil organic carbon 
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E), soil organic carbon 
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3.2.4. Carbon storage in woody vegetation 

The amount of carbon stored and its fixation rate was mapped across a large region, which 

included the Martín Basin, by the Agrifood Research and Technology Centre of Aragon (CITA 

unpublished,http://www.aragon.es/estaticos/GobiernoAragon/Departamentos/MedioAmbiente/Areas/03_Cambio_cli

matico/06_Proyectos_actuaciones_Emisiones_GEI/estudio.pdf). This report focused on modeling different 

forest management alternatives for CO2 sequestration, such as woody vegetation, and 

understanding the role of forests as CO2 sinks. The method used estimates of biomass and CO2 

conversion using allometric equations (Montero et al., 2005) and data on tree diameters 

measured during the National Forest Inventory (IFN3 2005). Allometric equations related the 

diameter of a single tree species to the dry matter existing in different fractions or parts of the 

tree, i.e., the trunk, roots, leaves and branches of three different sizes. The information, which 

was linked to the sampling points of the National Forest Inventory, was extrapolated to surface 

units using the comprehensive 1:50.000 Spanish Forest Map (developed in coordination with 

the Third Spanish National Forest Inventory). GIS data layers for storage and sequestration 

rate, expressed in metric tons of CO2 equivalent (t CO2 eq), were available for the Martín River 

Basin in this cited report. The GIS layers were extracted as a polygon layer and converted to a 

raster layer to facilitate calculation (Fig. 16 E).   

3.2.5. Potential soil retention 

Soil erosion represents a hazard for the long-term sustainability of agriculture and the delivery 

of ecosystem services (Hajjar et al. 2008). Reduced soil retention results in increased sediment 

delivery to freshwater systems and degrades these systems (Gobin et al. 2004). Natural 

vegetation enhances soil retention and plays a vital role in ameliorating the impact of erosion 

on freshwater systems (Reyers et al. 2009). Quinton et al. (1997) found that a decrease in soil 

loss was particularly notable when the percentage of vegetation cover increased from 0 to 

30% but there was little difference in the soil loss after vegetation cover values exceeded 70%. 

Trabucchi et al. (2012a) mapped erosion risk in the Martín Basin (expressed in t ha-1 yr-1) using 

the RUSLE model (Renard et al. 1997). To extrapolate vegetation percentage cover, we used 

the cover factor of the RUSLE model, called the C factor (see Appendix 9.1), which is the cover-

management term that represents the prior land use, crop canopy and surface cover (Renard 

et al. 1991) of our study area.  Following the methods of Egoh et al. (2008), soil retention was 

mapped as a function of vegetation cover (%) and soil erosion estimations. Based on these 
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data, vegetation cover densities were distributed in three classes: 0-30%, 30-70% and 70-100% 

(Fig. 15 D). Areas with vegetation cover greater than 30% and classified as having a very low to 

low erosion value were defined as having a potential to retain soil. A soil retention hotspot was 

defined as having a plant cover density greater than 70% with very low to low erosion values. 

Zones with cover densities of less than 30% and high to very high soil erosion values were 

extracted and identified as erosion-prone areas.  

3.2.6. Soil formation  

Accumulation of soil organic matter is an important process for soil formation and can be 

easily altered by habitat degradation and transformation (de Groot et al. 2002; Yuan et al. 

2006). Organic carbon content (OCTOP) (%) in the topsoil layer (0-30 cm) was mapped by Jones 

et al. (2005) for the European Soil Database using a 1 km resolution grid cell (Fig. 16 F). Data 

were expressed as a percentage weight of organic carbon in the surface horizon by combining 

refined pedotransfer rules with spatial-thematic data layers of land cover and temperature. 

We used these data as a surrogate measure for the supporting ecosystem-service soil 

formation. Areas with a high organic content (>3.45%) were classified as hotspots.  

3.2.7. Potential recreation and ecotourism services 

Landscape as a visual experience holds considerable societal value. For rural tourism, the 

landscape is often the main attraction and can add significantly to the quality of life of the 

surrounding residents (Brabyn and Mark 2011). Agriculture and cattle breeding have 

historically been the most important social and economic activities in the Martín River Basin, 

with rural society taking shape around the agricultural and livestock cycles. Mining activities 

during the second half of the 20th century not only changed the way of life in these rural 

communities, but it also changed the landscape in many parts of the watershed, particularly in 

the southern highlands. Since the end of the last century, many efforts have been made to 

promote tourism in the study area, which is rich in both natural and cultural resources. The 

basin is popular for its wide open spaces, scenery and the presence of the Martín River Cultural 

Park (http://www.parqueriomartin.com/en/), which is rich in both cultural heritage, including 

cave paintings, Iberian settlements and historical monuments, and natural sites, including 

caves, ravine waterfalls and mountain peaks. All of these cultural and natural sites are on 

hiking and mountain biking routes.  The track locations were downloaded from Wikiloc (2011) 

and from the official web page of routes in Aragon (Senderos de Aragón 2011). The viewshed 

tool in ArcGIS (Environmental Systems Research Institute 2008) was used on the selected 

routes to calculate the potential viewing area (Fig. 14 A), which is important for providing an 

attractive visible environment for tourists (Reyers et al. 2009). The resultant maps were 

included as hotspot production areas following the methodology of O’Farrell et al. (2010). 
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While we acknowledge that many other cultural aspects and values exist within this region, 

these tourism routes and viewsheds capture the potential for attracting visitors and providing 

socio-economic benefits to the local populations, which are key factors for socio-economic 

development and could have a major regulating impact on the area.  

3.2.8.  Mapping spatial distribution of services and hotspots at basin and 
subwatershed scale 

Maps of the selected ecosystem services were created following the methods of Egoh et al. 

(2008) and O’Farrell et al. (2010). In this study, data on surface water supply, flow regulation 

and soil formation had spatially continuous values that covered the whole basin, while data on 

the other services had spatially discrete values (e.g., the woody carbon storage layer was 

limited to forested areas and all other values were considered to be 0).  

The original values of the ecosystem services in generally had a Poisson distribution, each map 

were reclassified into five classes that were determined using a Natural Breaks (O’ Farrell et al. 

2010) were generated classes are based on natural groupings inherent in the data. Class breaks 

are identified that best group similar values and that maximize the differences between 

classes. The features are divided into classes whose boundaries are set where there are 

relatively big differences in the data values (Environmental System Research Institute 2008). 

These five classes were renamed as very high, high, medium, low and very low. We assigned 

the value of 0 to the very low class of surface water supply, flow regulation and soil formation 

to avoid overlapping these services for the entire area because insignificant values mask 

potentially interesting results. The rest of the services of our suite have not been modified 

because they have a lower spatial distribution and include areas with no service flow at all 

(e.g., carbon storage is limited only in forested areas). Finally, service layers were overlapped 

one by one, and overlapping percentages were used to describe the spatial relationships 

between these services.  

Hotspot maps were created for every single ecosystem service to identify, manage and 

conserve high service flow areas by extracting high and very high service values. In addition, 

multiple hotspot zones among services were identified and established by overlapping the 

hotspot layers of each of the different services following the methods of Egoh et al. (2008). 

Services were then generalized to the forth order catchments, which attempted to highlight 

the richness of services in every subwatershed by defining areas of land that are drained by a 

stretch of river of lower order than the main Martín River system. Sixty seven subwatersheds 

were distinguished in the Martín Basin. To identify service values for the subwatersheds (Fig. 

22 B, p. 74), we utilized basin service maps using the GIS Spatial Analyst-Zonal Statistic tool 

(Environmental System Research Institute, 2008) and selected the majority statistical option 

(ArcGis resource center 2012), which determines the value that occurs most often out of all 



58 

 

cells in the input in_value_raster that belongs to the same zone as the output cell. In our case, 

the majority statistical option attributes to every subwatershed the most frequent value of 

overlapping services for all of the cells in that subwatershed. When equal numbers of cells 

within a subwatershed received the highest and the second highest value, the lower value was 

assigned to the subwatershed. Despite this limitation, it is still considered to be the best 

statistical option for creating a general overview (Wu 2004). Following this overview for the 

whole Martín Basin (Fig. 22 A, p.74) and hotspot areas (Fig. 22 C, p. 74), the extraction of 

detailed overlapped-services maps (Fig. 22 C, p. 74) at the subwatershed scale was conducted. 

The same Zonal tool using the statistical majority option was applied at a subwatershed scale 

to select hotspot subwatersheds by the number of overlapped hotspot services (Fig. 22 B, D, 

p.74).  

This process of downscaling facilitates the selection of areas in the region that are particularly 

vulnerable to environmental degradation and have a high supply of ecosystem services. We 

extracted from the erosion map generated by Trabucchi et al. (2012a), the mean erosion value 

for every subwatershed of the basin using zonal statistics with GIS. We then reclassified the 

erosion values and generated a new degradation map. Reclassification of this map was based 

on thresholds for soil formation in the study area defined as lightly (0-12 t ha-1 yr-1) (Rojo 

1990), medium (12-17 t ha-1 yr-1) and highly (>17 t ha-1 yr-1) (Moreno-de las Heras et al. 2011) 

degradation level ( 

Fig. 23 left, p. 76). This allows us to label subwatersheds according to the provisioning of 

ecosystem services and degradation status, establish a relative ranking of priorities for 

restoration actions to recover lost and degraded ecosystem service provisions. Table 1 includes 

the criteria to prioritize subwatersheds for restoration based on the combination of ecosystem 

service delivery and environmental risk of erosion on Martín Basin. Our priority is where 

already service flow and erosion are high because there is an elevated risk of losing these vital 

services if erosion is not counteracted with restoration/management actions and where 

restoration can work improving the delivery of ecosystem services. 
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Table 1. Combined ecosystem services delivery and environmental risk criteria for establishing 

priority areas for restoration in Martín Basin. 

Environmental risk (erosion) → 

------------------------ 

Ecosystem service delivery 

                       ↓ 

      Low       High 

High Very low priority High priority 

Low Tertiary priority Secondary priority 

 

3.2.9. Soil erosion priority areas 

Scale-dependent disturbance dynamics have several important implications for land 

management (Turner et al. 1994). Martín Basin, as many areas in Spain is affected by erosion 

due to long history of deforestation, cattle grazing and mining (García-Ruiz 2010). Vegetation 

growth in the region is limited by semi arid condition (García-Fayos and Bochet 2009; Moreno-

de las Heras 2011). Natural ecosystems play a vital role in ameliorating these impacts by 

retaining soils and preventing soil erosion. Erosion is counteracted mainly by structural aspects 

of ecosystems, especially vegetation cover and root systems (Gyssels et al. 2005) that can be 

stimulated with restoration actions, creating synergy among services (Bennett et al. 2009). As 

example, soil retention can stimulate soil accumulation service that will contribute in the 

maintenance of water quality in nearby water bodies (de Groot et al. 2002) among many 

others. Areas requiring these services are those vulnerable to erosion, as determined by the 

topography, rainfall, soil depth, and texture. Trabucchi et al. (2012a) mapped erosion risk using 

the RUSLE model in the study area at 20m cell size resolution which is recognized as the most 

appropriate scale for estimate soil loss in semiarid areas (Ruiz-Navarro et al. 2012). 

Reclassification of this map was based on thresholds for soil formation in the study area 

defined as lightly (0-12 t ha-1 yr-1) (Rojo 1990), medium (12-17 t ha-1 yr-1) and highly (>17 t ha-1 

yr-1) (Moreno-de las Heras et al. 2011) degradation level ( 

Fig. 23 right, p.76). Data were extended for every subwatershed as mean using zonal statistics 

tool. The belonging at one of the three categories above established automatically classified 

subwatershed of the basin as Low, Medium and High erosion grade.  
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3.3. Regional multi-scale spatial analysis 

3.3.1.  Delineation of subwatersheds among different spatial aggregation levels  

To perform a multi-scale analysis of erosion and ecosystem services, we distributed the basic 

information on these variables, available at a 20 m cell size, at three levels, or scales of 

aggregation, moving gradually towards a finer resolution. We used the ARCGIS watershed tool 

to perform this analysis. Following this approach, we created three drainage networks for the 

Martín Basin with different numbers of subwatersheds, which are described here.  

We use three pixel spatial aggregations suitable for prioritization restoration actions, 

specifying the limit of pixels for flow accumulation, these being 20000 (level 1), 2000 (level 2) 

and 1000 (level 3).  

The spatial arrangement of the Martín Basin at subwatershed level 1 contained 67 

subwatersheds (Fig. 24 A left, p. 79), which presented a minimum area of 1.27 Km2, a 

maximum of 120.9 Km2 and an average of 28 Km2. The second subwatershed, level 2, included 

655 subwatersheds (Fig. 24B left, p.79), with a minimum area of 0.007 Km2, a maximum of 

12.1 Km2 and an average of 2.87 Km2. Finally, subwatershed level 3 consisted of 2534 

subwatersheds (Fig. 24 C left, p. 79), with a minimum area of 0.006 Km2, a maximum of 4.15 

Km2 and an average of 0.75 Km2. These subwatersheds are the functional ecological units for 

the delivery of the majority of our selected suite of ecosystem services, determining erosion 

dynamics and planning of restoration actions. Classifying assessment units directly assists in 

resource management, including restoration. 

Ecosystem service bundles and erosion maps were reclassified and summarized for every 

subwatershed level to create a new prioritization classification consisting of a combination of 

erosion rate thresholds and a number of services (Fig. 2, p. 22). 

3.4. Comparison of management units  

To investigate service delivery and erosion at the finest scale, we selected two subwatersheds 

from the first level presenting contrasting topographic features and land use practices as a 

case study. Our selection was made to facilitate the assessment and utility of our multi-spatial 

level approach for prioritizing restoration measures. Subwatershed number 4, located in the 

northern lowland region and subwatershed number 63, located in the south mountainous area 

(Fig. 25 A, p.80), were selected for this analysis. They were further investigated at the second 

and third levels (Fig. 31, p.88) to determine the optimal management area for planning 

restoration policies and to develop an understanding of how patterns of congruence change 
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with scale. Subwatershed number 4 (Foto 1, p.39) is a fairly homogeneous area that is mostly 

used for dryland and irrigation agriculture but also contains some remnant patches of 

shrubland. The erosion rate here was calculated to be 0.2 ± 64 t ha-1 year-1. In contrast, 

subwatershed number 63 contains a mix of conifer and hardwood forest, shrubs, grassland-

scrublands, abandoned and restored mines (Fig. 9, p.37) and dry agriculture areas. It has a 

calculated erosion rate of 0.5±165 t ha-1 year-1.  
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4. Results 
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4.1.  Erosion at the basin scale 

Based on the pixel resolution of the RUSLE model used (20 m cell), the mean erosion value for 

the Martín River Basin was 13.8 t ha-1yr-1, which is just over the maximum tolerable soil erosion 

that can occur and still permit crop productivity to be sustained economically (2.2 to 11.2 t 

ha−1 yr−1) according to the RUSLE model of soils in the United States.  

 

Fig. 17. Map of predicted soil erosion with the RUSLE model (A factor) in the Martín River Basin. 

The spatial distribution of potential soil loss rates predicted by RUSLE and the watershed area 

related erosion rates are shown in Fig. 17. Two-thirds (69%) of the area of the Martín Basin 

have low and medium soil loss rates (less than 20 t ha-1 yr-1), and one-third (31%) of the area, 

mostly located in the central and southern parts of the basin, has high (18% of the watershed 

area with 20-40 t ha-1 yr-1) and very high (over 40 t ha-1 yr-1 in 13% of the area) erosion rates. A 
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detailed description of the data estimated for each factor in the RUSLE equation is given in the 

appendix 9.4. p.151. 

The soil loss is at a maximum in rendzina-lithosol, with and area-weighted average (w.a.) of 

23.3 t ha-1 yr-1, and in regosol, with a loss of 15 t ha-1 yr-1 (w.a). This soil distribution covers the 

greatest part of the steep slope areas in the Martín Basin (0≤LS≥49 (Fig. 7, p. 35). 

Annual soil losses corresponding to the different land covers are shown in Table 2. Dry 

farming, which occupies 38.6% of the basin area, has a moderate value of potential soil loss of 

10.1 t ha-1 yr-1. Grassland-shrubland formations occupy 24.9% of the basin area, with a mean 

soil loss of 20.2 t ha-1 yr-1. The mean estimates for conifers (12% of the basin) and the 

formations of conifer and hardwood (8%) are 12 t ha-1 yr-1 and 12.2 t ha-1 yr-1, respectively. 

Scrub, irrigated agricultural, and unproductive land (mines, quarries, urban) cover 9.9%, 2.8%, 

and 1.5% of the basin area, respectively. Other cover (grassland, olive grove and vineyard, 

other hardwoods, poplar and aspen, vineyards, fruit trees) occupies 4.6% of the basin area. 
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Table 2. Statistic value of annual Soil loss (t ha
-1 

yr
-1

) for the different Land Uses at the Martín 

River Basin 

Land Use and 
Land cover 

 
Area 

% 
 

Min
 

Max 
 

Mean 

 
Standard 
deviation 

Dry farming 
38.6 0 403 10 15 

Grassland-
Shrubland 25 0 650 20 22 

Grassland 1 0 290 25 29 

Olivier dry 2 0 299 18 22 

Vineyard-
Fruit tree 1 0 191 12 16 

Unproductive 1.5 0 354 23 30 

Irrigation 3 0 260 7 12 

Scrub 10 0 603 24 28 

Poplar and 
aspen 0.5 0 232 15 21 

Other 
hardwoods 1 0 241 13 20 

Conifers 8 0 482 12 20 

Conifers and 
hardwood 8 0 370 12 19 

 
 

The final statistical model selected according to percentage of explained deviance (92%) and 

Akaike (1974) information Criteria (AIC) (Konishi and Kitagawa 2008) with a value of 473.8. 

Finally we selected the following model: log (Erosion) = log (LS) + R factor + Cover (Fig. 18).  

 



 

 

Fig. 18. Estimated effects of the covariates, with standard errors (SE). 95% confidence R factor 

is interval Cover %, LS factor is used R factor

 

The log (LS) topographic factor explained 78% of the total explained deviance (

contributed most of the variability of the values of predicted soil erosion. The percentages of 

plant cover explained only 21%. 

 

Table 3. Estimated effects of the covariates, w

(log (LS) R (Rain) and C (Cover)

    Estimate       

(Intercept) 1.0141 0.0698

log(LS) 1.0252 0.0096

RAIN 0.0023 0.0001

COVER -2.6843 0.0493

 

For modelling purposes, the variable 

with some covariates and its inclusion would cause co

two-term interactions were added.

 

 

effects of the covariates, with standard errors (SE). 95% confidence R factor 

is interval Cover %, LS factor is used R factor. 

) topographic factor explained 78% of the total explained deviance (

contributed most of the variability of the values of predicted soil erosion. The percentages of 

plant cover explained only 21%.  

Estimated effects of the covariates, with standard errors (SE). Where used LS factor

(Cover) factor. 

      SE       t value  p-value  

0.0698       14.52 <2e-16  

0.0096       105.82 <2e-16  

0.0001        18.87 <2e-16 

0.0493      -54.36 <2e-16   

For modelling purposes, the variable C factor was deleted because it was highly correlated 

with some covariates and its inclusion would cause co-linearity.  In the full model, all possible 

term interactions were added. 

68 

 

effects of the covariates, with standard errors (SE). 95% confidence R factor 

) topographic factor explained 78% of the total explained deviance (Fig. 18), and 

contributed most of the variability of the values of predicted soil erosion. The percentages of 

ith standard errors (SE). Where used LS factor 

factor was deleted because it was highly correlated 

linearity.  In the full model, all possible 
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Results obtained from all-subset regression with K = 10, (Fig. 19) shown as best models:   

 Model 1:  log (Erosion) ~ log (LS) + Cover + Rain + Cover: log (LS) 

 Model 2: log (Erosion) ~ log (LS) + Cover + Rain  

 

Fig. 19. Bayesian Information Criterium (BIC) of the different models obtained by all-subset 

regression (“:” indicating interaction between the covariates). 

 

According with the one-standard-deviation rule Model 2 was the  most parsimonious (Fig. 19), 

with best Cross-validation score inside the interval CV ± s/ √ K, being s the standard deviation 

of CV and K the validation samples (CV = 0.04,  sd = 0.014, K = 10).  

 

Fig. 20. Model selection with the one-standard deviation rule. (CV = cross-validation). 

 



 

 

 

4.1.1.  Erosion in the coal mines       

In the Martín Basin, 8 mines are in good ecologi

and 9 are in bad ecological status, as they are either non

degraded (6) (Comín et al. 2009). Five mines are closed basins; they have a surface design 

simulating natural geomorphol

between 1.4 and 328 t ha-1

restoration that are used for dry farming purposes and with wetland areas created in the old 

exploitation pit, which receive all the drainage of the surrounding areas. Maximum values 

were registered in very steep ditches, on hill slopes and, overall, in abandoned, non

or deficiently restored mines, where it was not possible for plants to colonize beca

zones and the use of overburden top soil material (

the eroding power of rainfall, generating high runoff.

Fig. 21. Histogram of predicted soil erosion with the RUSLE model in the Martín River Basin

 

Old, first generation mine restorations following sequences of platform

angle of 22º (Fig. 9, p. 37) have a range of 177

values ranging between 17 and 54 t 

yr-1 as maximum values and 17

corresponds to mines where restoration was performed following the same practices as in the 

Erosion in the coal mines        

asin, 8 mines are in good ecological status, as they are restored and preserved, 

and 9 are in bad ecological status, as they are either non-restored (3) or restored and 

degraded (6) (Comín et al. 2009). Five mines are closed basins; they have a surface design 

simulating natural geomorphology. The RUSLE estimates of soil loss in the mines ranged 
1 yr-1. The lowest rates correspond with flat areas created for 

restoration that are used for dry farming purposes and with wetland areas created in the old 

pit, which receive all the drainage of the surrounding areas. Maximum values 

were registered in very steep ditches, on hill slopes and, overall, in abandoned, non

or deficiently restored mines, where it was not possible for plants to colonize beca

zones and the use of overburden top soil material (Fig. 21). These areas are directly exposed to 

the eroding power of rainfall, generating high runoff. 

 

Histogram of predicted soil erosion with the RUSLE model in the Martín River Basin

Old, first generation mine restorations following sequences of platform-bank with a slope 

have a range of 177-328 t ha-1 yr-1 for maximum values and mean 

values ranging between 17 and 54 t ha-1yr-1. Abandoned mines have a range of 116

as maximum values and 17-44 t ha-1 yr-1 as mean values. The second generation 

corresponds to mines where restoration was performed following the same practices as in the 
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cal status, as they are restored and preserved, 

restored (3) or restored and 

degraded (6) (Comín et al. 2009). Five mines are closed basins; they have a surface design 

ogy. The RUSLE estimates of soil loss in the mines ranged 

. The lowest rates correspond with flat areas created for 

restoration that are used for dry farming purposes and with wetland areas created in the old 

pit, which receive all the drainage of the surrounding areas. Maximum values 

were registered in very steep ditches, on hill slopes and, overall, in abandoned, non-restored 

or deficiently restored mines, where it was not possible for plants to colonize because of steep 

). These areas are directly exposed to 

Histogram of predicted soil erosion with the RUSLE model in the Martín River Basin. 

bank with a slope 

for maximum values and mean 

es have a range of 116-320 t ha-1 

The second generation 

corresponds to mines where restoration was performed following the same practices as in the 
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first generation with lowered bank slopes (15º) (Fig. 10, p. 37). Intermediate erosion rates 

were estimated in these mine zones that still in exploitation-restoring process (17-25 t ha-1 yr-1) 

recording maximum soil loss of 184 t ha-1yr-1 with medium value of 174 t ha-1 yr-1. Micro-

watersheds with gentle slopes and a drainage network were created for the mines restored 

under third generation concepts (Fig. 11, p. 38). In these areas, maximum soil loss estimates 

range between 106 and 98 t ha-1 yr-1, while the mean values range from 16 to 23 t ha-1 yr-1. It is 

clear that applying improved restoration techniques reduces soil loss in mine zones and that 

non-restored and deficiently restored mines are sites contributing the highest soil loss (Fig. 8, 

p. 36). 
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4.2.  Ecosystem service provision and spatial distribution  

Water flow regulation, surface water supply and soil formation are all widespread services 

provided by, approximately, 79.5%, 67% and 61.5% of the study area, respectively (Table 4). 

Recreation and ecotourism is present in 36%, soil retention in 27% and carbon storage in 

21.1%. See, Fig. 22  A, p. 74 for a general watershed view of the spatial distribution of the 

values of the services in Martín Basin.  

Table 4. Percentages of the Martín Basin area where the ecosystem services listed are 

delivered. Between brackets is the percentage of the basin area where these services are 

delivered as hotspots (with high and very high values for the service). 

 

Ecosystem service 

Area (% of the 

total watershed 

area) 

Water flow regulation              79.5 (42.4) 

Surface water supply           67 (7.3) 

Soil accumulation        61.5 (19.4) 

Recreation/Ecotourism           36 (22) 

Carbon storage        21.1 (2.4) 

Soil retention        40.2 (19) 

 

Water flow regulation has the largest hotspot area, which is defined as the percentage of an 

area where a given service is valued as high and very high, with 42.4% and carbon storage had 

the smallest with 2.4% (Table 4). Water flow regulation is governed by rainfall distribution but 

is strongly influenced by permeable, underlying geology, which is high in the mostly porous 

soils of the southern part of Martín Basin and facilitates groundwater recharge.  

Surface water supply spread throughout the greater part of the basin. The highest values are 

located in the southern region and coincide with low values of soil formation.  

Carbon storage and soil retention depend on the density of canopy cover and are mostly 

distributed according to an altitudinal pattern. Higher values correspond to a range of 600-
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1100 m above sea level. At higher altitudes, both services decline to intermediate values. 

Certain riparian areas defy this altitudinal trend, having high values for both of these services 

and showing no relationship to altitude (Fig. 15 D, Fig. 16 E, p. 53-54).  

Soil formation is predominantly found in the southern part of the study area, with very low or 

negligible values identified as one progresses towards the northern lowland areas of the basin. 

Recreation and ecotourism services are found in some subwatersheds located in the southern-

central and northern-central part of the basin along the river system. Many hiking and 

mountain biking routes start near the towns of Albalate del Arzobispo, Montalbán and Utrillas 

and extend outwards.  

 

4.2.1. Relationship between services 

The greatest overlap of services (3-5 services) was observed in mountainous areas of the south 

and central parts of the Martín Basin where dense plant cover, woodland and scrubland are 

located (Fig. 5, p. 33). A relatively small part (14%) of the Martín Basin is not delivering any of 

the selected suite of services. One and two services are provided in 25% and 25.8% of the 

basin area, respectively, and three services are provided in 21% of the area (Fig. 22 A). 



 

 

Fig. 22. Ecosystem services richness

Martín Basin (A). Services richness as

subwatersheds (B) and as hotspot per 

are just correlative numbers to label them.

The spatial overlap among services is 

parts of the watershed do not show any service ove

overlapping (5-6 services) is observed in small part of the mountain area in the south

A). The maximum overlap between services was found between 

water flow regulation and accounted for 65% of the basin area

 

 

 

Ecosystem services richness, number of services from the bundle of ES studied,

Martín Basin (A). Services richness as hotspots (C). On the right respective service richness 

hotspot per subwatershed (D). The numbers in the subwatersheds 

are just correlative numbers to label them. 

The spatial overlap among services is low in general. Most of the north and central 

parts of the watershed do not show any service overlap, while maximum number 

6 services) is observed in small part of the mountain area in the south

The maximum overlap between services was found between surface water supply and 

water flow regulation and accounted for 65% of the basin area (Table 5).  
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, number of services from the bundle of ES studied, in the 

On the right respective service richness per 

. The numbers in the subwatersheds 

Most of the north and central 

lap, while maximum number of services 

6 services) is observed in small part of the mountain area in the south (Fig. 22 

surface water supply and 
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Table 5. Proportional (%) overlap of ecosystem services in the basin and hotspots (hotspots in 

brackets). 

  

Soil 

accumulation 

Carbon 

storage 

Soil 

retention 

Water flow 

regulation Surface water 

      Carbon 

storage      21.1 (1.26) 

    Soil retention         10 (5.1)   18.7 (2) 

   Water flow 

regulation  61.1 (16.3) 21 (2.23) 38 (13.2) 

  Surface water       59.4 (4.4)  20.7 (0.35) 3.5 (1.95)   65 (6.75) 

  Tourism       13.6 (4.3) 6.8 (0.18) 10 (4.5) 22,1 (11.5) 17.1 (5.6) 

 

The percentage area of the basin with overlapped hotspots of these two services was 

6.75% and was located in the southern region (Fig. 22 A). The soil retention and water surface-

supply overlap areas accounted for 3.5% and had an overlapped hotspot area of just 1.95% of 

the basin, which was associated with forest ecosystems. Recreation and ecotourism services 

have a relatively high overlap with water flow regulation but a small overlap with other 

services, such as carbon storage and soil retention (Table 5).  

The map of overlapped hotspot services generated using high and very high values for all of 

the services shows that a region comprising only 0.12% of the mapped areas incorporated all 6 

services. The area is located in the southern part of the basin and corresponds with conifer 

forest (Fig. 22 C). Conversely, 41% of the basin, mostly in the northern part, is not delivering 

high or very high values for any service.  Most of the areas classified as hotspots delivered one 

service (25.9%), two services (19%) and three services (9.2%). Only a small portion (0.71%) 

delivered five (Fig. 22 C). 

4.2.2. Subwatershed classification according to ecosystem service provision 

Applying the GIS Spatial Analyst tool and the majority statistic option within the zonal statistic 

module used to identify the greatest number of services found within each subwatershed, we 

did not find a subwatershed that provided all six services.  

The distribution of the overlapping services by subwatersheds shows the same pattern as for 

number of services overlapping but let distinguish that subwatersheds 53, 61, 62, 63 and 65 

are providing 4-5 services but only subwatersheds 53, 61, 63 and 65 are delivering 4 services as 



 

 

hotspots (Fig. 22 B, D). These subwatersheds 

its south part. They were also located in areas classified as having low and medium levels of 

degradation because of erosion 

Fig. 23). 

Fig. 23. Left: Spatial simplification of erosion 

Moderte: 12-17 t ha
-1

 yr
-1

; high:

subwatersheds. 

Subwatershed number 62 represents a focal point for surrounding subwatersheds that deliver 

at least 3 services (Fig. 22 C). In 

other subwatersheds deliver at least three services (nº25, 22,

and account for 7% of the total area. Nineteen subwatersheds deliver two services and 

accounting for 36.6 % of the basin area. 

low degraded status only subwatershed 48 and 54 we

degradation level ( 

Fig. 23 right). In contrast, most of the subwatersheds in the northern part of the basin (13 

subwatersheds) were delivering just one service, which was most commonly surface water 

regulation.  

4.2.3. Hotspot services at subwatershed scale

Only four subwatersheds were classified as 

their boundaries. They are located in the southern part of the basin (subwatershed 63, 65, 53 

D). These subwatersheds occupy 3.1% of the total area of Martin Basin in 

They were also located in areas classified as having low and medium levels of 

because of erosion ( 

implification of erosion classes in Martín Basin (Light: 0-12 

; high: >17 t ha
-1

 yr
-1

. On the Right erosion represented per

Subwatershed number 62 represents a focal point for surrounding subwatersheds that deliver 

). In between the southern and the central part of the basin, nine 

other subwatersheds deliver at least three services (nº25, 22, 34, 40, 41, 42,

and account for 7% of the total area. Nineteen subwatersheds deliver two services and 

36.6 % of the basin area. Mostly of these subwatersheds corresponds with a 

low degraded status only subwatershed 48 and 54 were classified as having a moderately

In contrast, most of the subwatersheds in the northern part of the basin (13 

subwatersheds) were delivering just one service, which was most commonly surface water 

services at subwatershed scale 

Only four subwatersheds were classified as hotspots and included up to four services within 

their boundaries. They are located in the southern part of the basin (subwatershed 63, 65, 53 
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and account for 7% of the total area. Nineteen subwatersheds deliver two services and 

Mostly of these subwatersheds corresponds with a 

re classified as having a moderately 

In contrast, most of the subwatersheds in the northern part of the basin (13 

subwatersheds) were delivering just one service, which was most commonly surface water 

and included up to four services within 

their boundaries. They are located in the southern part of the basin (subwatershed 63, 65, 53 
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and 61) (Fig. 22 D). Subwatersheds 63 and 65 incorporate a vast mined area which has been 

restored (Fig. 3, p. 31), but is still classified as highly degraded, were as subwatershed 61 is 

mostly covered by conifer and hardwood and has a medium degradation level. All of these 

subwatersheds are found on steep slopes. In the same part of the basin, there are other 

subwatersheds (53, 55, 59, 52 and 62) that supply three services and mostly fall with the low 

and medium degraded level ( 

Fig. 23 right). 
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4.3. Multi-spatial-scale approach for establishing restoration priorities 

against erosion through the evaluation of ecosystem services at 

watershed scale 

Here we present the methodological approach for establishing a hierarchical spatial 

classification of restoration zones in Martin watershed based on the spatial analysis of erosion 

rates and ecosystem services assessments. 

4.3.1.  Erosion patterns across subwatershed levels 

The landscape heterogeneity of the Martín Basin is a key determining factor explaining 

the erosion patterns in the region, with the northern area being predominantly flat and the 

southern area being mountainous, showing a considerable increase in slope, altitude and 

rainfall patterns. Contrasting the three spatial levels provides us with insights regarding how 

changes in spatial detail can facilitate the targeting of degraded areas. For example, in Fig. 24 

A, we are able to clearly identify areas with high erosion values grouped in the south and a 

large portion of the northern area showing a low erosion value. By increasing the scale detail 

from the first level to the second level, we are able to differentiate three erosion thresholds in 

the northern region (Fig. 24 B, C).  



 

 

Fig. 24. Erosion map at first (A), second (B) and third (C) level.

plotted the relationship between mean erosion and standard deviation

Furthermore, some areas identified at level one as showing low erosion were re

presenting both medium and high erosion r

facilitating more precise identification and location of areas for restoration. The results at 

Erosion map at first (A), second (B) and third (C) level. On the right of each map are 

plotted the relationship between mean erosion and standard deviation for each subwatershed

Furthermore, some areas identified at level one as showing low erosion were re

presenting both medium and high erosion regions when examined at the finer detail of level 3, 

facilitating more precise identification and location of areas for restoration. The results at 
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On the right of each map are 

for each subwatershed. 

Furthermore, some areas identified at level one as showing low erosion were re-identified as 

egions when examined at the finer detail of level 3, 

facilitating more precise identification and location of areas for restoration. The results at 



 

 

different scales mostly highlight a fairly constant pattern across these scales (

mean erosion rates (and the calculated standard deviations) exhibit similar values within single 

watersheds (Fig. 24  A, B, C, right

erosion rates and the calculated standard deviations. Subwatershed erosion rates that exceed 

the highest erosion threshold, indicating areas subjected

identified (Fig. 24 A, B, C). This pattern is repeated across different scales. However, the data 

dispersion increases as the d

aggregation. This is a fairly typical characteristic of ecological data (Levin 1992; Costanza and 

Maxwell 1994). At the third level, some subwatersheds with high standard deviations and 

mean erosion values in the low

4.3.2.  Ecosystem service patterns across subwatershed levels

There is a clear distinction in the ecosystem service supply across the study area (

northern, lower, reaches of the watershed showed the lowest values, which increased toward 

the south of the basin. However, at the third level, the ecosystem service supply was hi

differentiated (Fig. 26 C).  

Fig. 25. Ecosystem services bundle map at first level. Highlighted by the blue circle show 

subwatershed number 4 (North) and 63 (South)

 

different scales mostly highlight a fairly constant pattern across these scales (

mean erosion rates (and the calculated standard deviations) exhibit similar values within single 

, right) and a direct relationship was observed between the mean 

erosion rates and the calculated standard deviations. Subwatershed erosion rates that exceed 

the highest erosion threshold, indicating areas subjected to a high erosion risk, can be easily 

). This pattern is repeated across different scales. However, the data 

dispersion increases as the detail of the analysis increases through the three levels of data 

aggregation. This is a fairly typical characteristic of ecological data (Levin 1992; Costanza and 

Maxwell 1994). At the third level, some subwatersheds with high standard deviations and 

erosion values in the low-to-medium erosion threshold range are identifiable (

Ecosystem service patterns across subwatershed levels 

inction in the ecosystem service supply across the study area (

northern, lower, reaches of the watershed showed the lowest values, which increased toward 

the south of the basin. However, at the third level, the ecosystem service supply was hi

 

Ecosystem services bundle map at first level. Highlighted by the blue circle show 

(North) and 63 (South). 
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different scales mostly highlight a fairly constant pattern across these scales (Fig. 24 right). The 

mean erosion rates (and the calculated standard deviations) exhibit similar values within single 

) and a direct relationship was observed between the mean 

erosion rates and the calculated standard deviations. Subwatershed erosion rates that exceed 

to a high erosion risk, can be easily 

). This pattern is repeated across different scales. However, the data 

etail of the analysis increases through the three levels of data 

aggregation. This is a fairly typical characteristic of ecological data (Levin 1992; Costanza and 

Maxwell 1994). At the third level, some subwatersheds with high standard deviations and 

medium erosion threshold range are identifiable (Fig. 24 C).  

inction in the ecosystem service supply across the study area (Fig. 22). The 

northern, lower, reaches of the watershed showed the lowest values, which increased toward 

the south of the basin. However, at the third level, the ecosystem service supply was highly 

Ecosystem services bundle map at first level. Highlighted by the blue circle show 



 

 

Fig. 26. Ecosystem services bundle map at second (B) and third (C) level. 

 

 

Ecosystem services bundle map at second (B) and third (C) level.  
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Increasing the scale of analysis by decreasing the pixel aggregation up to the third level 

revealed previously masked ecosystem service values (Fig. 26). At the first level, the maximum 

number of services that overlap at the basin scale was five, but it increased to six as the 

resolution increased. Our method of calculation also influenced this trend. Here, we used the 

majority rule, which, when equal numbers of cells within a subwatershed received the highest 

and the second highest value, assigns the lower value to the subwatershed. In any case, at the 

lowest scale of pixel aggregation (higher detail), it is at the third level of analysis, the most 

detailed segregation of ecosystem services related to erosion is observed. 

4.3.3.  Hierarchy maps and patterns across subwatershed levels  

In searching for a scale of analysis that offers adequate spatial differentiation of the 

relationship between the state factor and the degradation factor, we create hierarchy maps 

and plotted ecosystem service bundle overlaps against the average erosion rates per each 

subwatershed created in the three aggregation levels analyzed (Fig. 27, 28, 29). 



 

 

Fig. 27. Hierarchy map at first level (A). On the right is plotted the erosion mean values against numbers of 

 

 

Hierarchy map at first level (A). On the right is plotted the erosion mean values against numbers of eco.serv. per subwatershed (t ha is a abbreviation of t subwatershed (t ha is a abbreviation of t ha
-1
yr

-1). 



 

 

Fig. 28. Hierarchy map at second level (B). On the right is plotted the erosion mean values agai

 

 

Hierarchy map at second level (B). On the right is plotted the erosion mean values against numbers of eco.serv. per subwatershed
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nst numbers of eco.serv. per subwatershed (t ha is a abbreviation of t ha
-1
yr

-1). 



 

 

Fig. 29. Hierarchy map at third level (C). On the right is plotted the erosion

 

Hierarchy map at third level (C). On the right is plotted the erosion mean values against numbers of eco.serv. per subwatershed (t ha is a abbreviation of t ha
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(t ha is a abbreviation of t ha
-1
yr

-1). 



 

 

 

The first level of analysis did not highlight any subwatersheds with high erosion rates and 

either high or low ecosystem service values (Fig. 27). In contrast, at the third level of analysis, 

the combination of ecosystem services and erosion for these thresholds was clear, highlighting 

the problem of generalization at the first and second levels (Fig. 28).  

 

Table 6. Combined ecosystem services delivery and environmental risk criteria (<12 (low), 12-

17(Medium) , >17 (High) t ha
-1

 yr
-1

) for establishing priority areas for restoration.   

Environmental risk 

(erosion) → 

------------------------ 

Ecosystem service↓  

      Low        Medium High 

High Fifth priority Tertiary priority  First priority 

Low Sixth priority Forth priority Secondary priority 

 

Here, we have aligned three erosion thresholds for Martín Basin with high and low ecosystem 

service supplies, developing priority cases, or scenarios. Cases 3, 4, 5 and 6 present a lower risk 

of losing services through erosion, and strategies aimed at improving land-use practices should 

be targeted to these areas. Areas classified as high priority, cases 1 and 2 here, should be 

considered for restoration action so that ecosystem services vital for the entire basin will be 

reestablished and maintained. This decision support tool was derived from a data dispersion 

plot of erosion vs. ecosystem services (Fig. 27 right).  

 

4.3.4.  Hierarchical map of management units at the second and third 
subwatershed levels 

The two case study subwatersheds, 4 and 63, provide contrasting examples that demonstrate 

the differences that are detectable across scales. At the second level, the same spatial 

heterogeneity is observed for ecosystem service delivery and the associated erosion (Fig. 30 A, 

B).



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30. Hierarchy map for subwatershed 4(A) and 63 (B

ecosystem service corresponding at each subwatershed

 

 

tershed 4(A) and 63 (B) at second level. On the right of each map are plotted the erosion mean values against numbers of 

ecosystem service corresponding at each subwatershed. (t ha is a abbreviation of t ha
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Fig. 31. Hierarchy map for subwatershed 4(C) and 63 (D) at third level. On the right of each map are plotted the erosion mean values against numbers of 

ecosystem service corresponding at each subwatershed
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subwatershed 4(C) and 63 (D) at third level. On the right of each map are plotted the erosion mean values against numbers of 



 

 

Our two selected subwatersheds show marked differences in the number of services delivered, 

with 0-1 ecosystem services being observed for subwatershed 4 at second level associated 

with an erosion rate of <12 and 12-17 t ha-1yr-1 (Fig. 30 A) and 3-4-6 services being obtained in 

subwatershed 63 with an erosion rate > 17 t ha-1yr-1 (Fig. 30 B). In subwatershed 63 the priority 

restoration area is represented by 3 and 4 services and an erosion rate > 17 t ha-1 yr-1, 

corresponding to the greater part of the subwatershed (Fig. 30 B). Moving from level two to 

level three, diversification increases (Fig. 31 C, D) and for subwatershed 4, the number of 

services now ranges from 0 to 3, but they are mostly associated with low erosion thresholds 

(Fig. 31 C). In subwatershed 63, at level three, the number of services per subwatershed 

ranges from 3 to 6 and most of the subwatersheds appear to present high erosion thresholds 

(Fig. 31 D). 
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5. Discussion 
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5.1. RUSLE for targeting restoration efforts 

This study demonstrates that the RUSLE model used with appropriate values for each factor is 

a powerful tool. Using the GP (Genetic Programming) methodology proposed by Puente et al. 

(2011) was proven as a reliable approach to generating specifically designed indices to 

estimate the C factor in contrast with traditional indices, such as those of the NDVI and SAVI 

family (Puente et al. 2011). We identified high-risk areas where soil conservation-restoration 

practices are needed. In the Martín River Basin, major efforts should be dedicated to retain soil 

in its southern high relief part and, especially, in the no-restored opencast coal mines to 

prevent the irreversible degradation of these zones. For this purpose, the results of this study 

are useful for identifying different zones of erosion risk at the watershed scale and at lower 

scales (e.g., subwatershed).  

The average annual soil loss rate estimated using RUSLE and GIS for the Martín River Basin was 

13.8 t ha-1yr-1. This estimation exceeds the estimated tolerable limits for soil formation of 

between 2 and 12 t ha-1 yr-1 in Mediterranean environments (Rojo 1990). These results 

compare well with other studies in similar areas (Renschler et al. 1999; Van Rompaey et al. 

2003; Capolongo et al. 2008), confirming that the RUSLE-GIS generated estimates of soil loss in 

this study appear to be reasonable.  

The spatial variation of erosion in the Martín Basin appears to be dominated by slope. The 

higher mean values of potential erosion were associated with zones located in the highlands 

with steep areas, including opencast coal mines that had the highest erosion rates even 

though large areas of many coal mine zones have been submitted to a restoration process. 

Although erosion varies greatly depending on the type of mine restoration, the steepest zones 

in the opencast mines match the highest erosion rates in the Martín River Basin because of the 

creation of large (sometimes 1 or more km2) hillslope areas inside and surrounding the mines 

by means of excavation. The scale of the mined areas (0.14 – 7.2 km2) in comparison with the 

pixel size of the DEM (400 m2) supports our assumption. Rill and gully networks in these 

reclaimed systems can markedly limit water availability and modify the spatial distribution of 

soil moisture at the slope scale by reducing the opportunities for down-slope runoff re-

infiltration and by concentrating the water flow along the channeling network (Biemelt et al. 

2005; Moreno-de las Heras et al. 2010). 



 

 

During the photographic field survey to evaluate the connectivity and eroded area prediction 

along the created buffer zone in the stream and river channels

areas, appearing in the model analysis as high erosion areas, corresponded to bare rock and 

rock landslide phenomena (Foto 

recognizes riverside degraded areas, as shown in 

that were degraded in the year of creation of the 

are now (2012) restored.  

Fig. 32. Example of highly degraded riversides, founded using RUSLE

the bottom left (a), concrete ditch discharging straight in the river

Road embankments have not been considered with a special focus in this paper, but during the 

photographic survey, we realized the magnitude of their impact on the river system

During the photographic field survey to evaluate the connectivity and eroded area prediction 

zone in the stream and river channels, we observed that some of the 

areas, appearing in the model analysis as high erosion areas, corresponded to bare rock and 

Foto 3); however, in the monitored areas, the model generally 

recognizes riverside degraded areas, as shown in Fig. 32. We also identified some mining areas 

that were degraded in the year of creation of the digital elevation model used here and that 

Example of highly degraded riversides, founded using RUSLE-buffer map. In evidence on 

the bottom left (a), concrete ditch discharging straight in the river. 

Road embankments have not been considered with a special focus in this paper, but during the 

raphic survey, we realized the magnitude of their impact on the river system
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Fig. 33. Road embankments in 

the north (c) in the south (d, e, f

 

These slopes are often directly connected by channels to the river network

bottom left of the picture and 

through depositional areas. 

slopes is doomed to failure if the ecological 

vegetation establishment is not taken into account at the time of road building. This argument 

is supported by the existence of road cuts with a slope gradient exceeding 45°, where intense 

erosion occurs, generating very high soil loss and impacts that 

Road embankments in different parts of the Martín Basin. In the central part

, e, f). 

often directly connected by channels to the river network

and Fig. 33 e) without having any way to intercept the sediment 

through depositional areas. García-Fayos et al. (2009) argued that the stabilization of road 

slopes is doomed to failure if the ecological knowledge of the topographic thresholds that limit 

vegetation establishment is not taken into account at the time of road building. This argument 

is supported by the existence of road cuts with a slope gradient exceeding 45°, where intense 

generating very high soil loss and impacts that other studies have
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highlighted in Mediterranean sites near the study area (Bochet and García-Fayos 2004). We 

also highlight that some areas are highly degraded but are disconnected from the fluvial 

channel or are intercepted by depositional areas. These areas are not a direct threat to water 

bodies because they are not significant contributing areas. Management plans for a watershed 

should take into account the need to evaluate the importance of these areas with respect to 

different uses and the potential benefits of restoring these areas, assessing the effective value 

for the production of ecosystem services and the mechanical and monetary possibility of 

action (usually steep slopes) to restore it. 

5.2. Plant colonization and reclaimed slopes 

Moreno-de las Heras et al. (2011) suggest that natural plant colonization in Mediterranean-

continental reclaimed environments requires vegetation cover of at least 30% and rill erosion 

rates below 17 t ha−1 yr−1. In our case, 59% of the river basin has less than 30% plant cover, and 

60% of the watershed has an erosion rate higher than 12 t ha−1 yr−1 and plant cover lower than 

30%.  This result is due to the very slow rate of plant recolonization and forest expansion, 

which occupies approximately 21% of the mountainous southern part of the basin.  

Fifty-six percent of the mine areas are included in the acceptable soil loss range for plant 

colonization, but the erosion rate is higher than 17 t ha−1 yr−1 in 44% of the mine zones in the 

Martín Basin. In these latter zones, plant colonization is difficult, enabling the formation of rill 

networks depending on the degree of disturbance, slope length and available water, among 

other factors (Moreno de las Heras et al. 2010). The consequence is a high erosion rate that 

endangers the life span of these newly created habitats and the wetlands created in the pit of 

the restored mines, which were established by being filled with high loads of mined materials 

but are filled with eroded sediments. This siltation process also reduces other key ecological 

processes (e.g., sediment-water column exchanges, organic matter enrichment) and the 

biological structure of this type of ecosystem (Mitsch and Gosselink 2007; Gell et al. 2009).  

In most of the (north) lowland and relatively flat part of the basin, which is dominated by 

agriculture, the estimated erosion rates are much lower (in general, <10 t ha-1 yr-1). The high 

rates in this part of the basin are associated with river dynamics (bank erosion) and land use 

(Fig. 5, p. 33), prevalent cereal crops and scrublands. In the southern and central zones of the 

basin, which are covered by conifers and hardwoods, the estimated values of the C factor (the 

vegetation-related variable in the RUSLE equation; see appendix 9.4.4.) were, as expected, low 

because of the relatively high cover density. The C factor for vineyards and olive trees had 

typical intermediate values because of the vegetation-free zones between the rows of plants, 

which are common in this type of land use. However, for scrubland, the C values obtained 
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reflect the low vegetation density of this land cover. Grassland was expected to show lower 

values than those obtained, but these values, again, depend on vegetation density, which is 

widely spaced. In any case, grasslands occupy only 0.5% of the whole area of Martín Basin. 

Grassland-shrubland was found to be more susceptible to soil losses by water erosion than 

cropland, forests and plantations. A high erosion rate seems unlikely to occur in conifer 

plantations, but the relatively high rate observed in this land cover in Martin Basin is probably 

due to these artificial plantations being established with the highly regular spatial distribution 

of the trees in hillslope areas. These results are similar to those observed in other semi-arid 

areas labeled as poor soil environments with past human overexploitation (Erdogan et al. 

2007). These results are also partially a consequence of the anthropogenic displacement of 

shrubs and forest from low slopes (Smith et al. 2007). Past agricultural practices in these zones 

have eliminated natural vegetation from the steep zones, leaving a difficult terrain for 

agriculture (García-Ruiz 2010). Other studies in Spain showed that reforestation followed by 

insufficient forest management may negatively affect both soil properties and the ecosystem’s 

response to the erosive action of rainfall (Pardini et al. 2003). 

Restoration planning to counteract erosion was approached with general reforestation actions 

extensively applied to large areas for most of the second half of the twentieth century. Now, 

more specific and autochthonous species are used for plant reforestation in Mediterranean 

areas (Pausas et al. 2004). Because slope plays a key role in erosion in the Martín Basin, 

restoration actions must focus on the mitigation of slope-based erosion impacts, which 

requires a more comprehensive restoration planning than just revegetating by planting trees.  

The most efficient place from which to remove pollutants and nutrients from watershed 

discharges is the riparian zone (Welsch and Management 1991), before the water flows enter a 

stream channel. As most steep zones are located in the upper parts of the basin, the most 

important locations for protecting and restoring riparian buffers are along these headwater 

streams. Buffers disrupt lateral linkages within catchments, and they may include alluvial 

pockets of floodplains, fans or piedmont zones that occur at breaks in slopes along valley 

margins, disconnecting lateral connectivity in catchments (Fryirs et al. 2007). Solutions include 

low-cost erosion control techniques such as contour hedgerows across the slope in cropped 

fields or regenerated on the base of steeper inaccessible areas, where restoration actions are 

impossible or too expensive, to reduce runoff velocity and prevent pollution of the river 

network. Lasanta et al. (2001) and other studies showed that in Spain, the main process 

following the abandonment of hillslope cropping is the collapse of the terrace walls by 

landslides. Many areas identified in the highlands are affected by this problem (Fig. 34). 
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Fig. 34. Collapse of the terrace walls in Martín Basin. 

 

Where possible, the recovery of decaying cropping terraces in the steep slopes will be a good 

soil conservation practice (Dunjó et al. 2003). Other techniques are stone terracing, where a 

stone embankment (Marienfeld 1994) around a hillside intercepts overland flow, enhances 

infiltration, and safely guides runoff off field. These are some of the major recommended 

engineering structures for controlling soil erosion.  

Stimulating extensive livestock forage in depleted soil using leguminous forage crops 

(Medicago sativa L.) would improve the soil conditions in the valley floors (Prosperi et al. 

2006). Because the shortage of nutrients in the Aragón region is the first limiting factor for 

plant colonization (Ries et al. 2000; Lasanta 2000), an enormous step forward will be the 

creation of a management plan for the use of organic waste as compost. This action would 

improve soil structure with organic matter and nutrients, taking advantage of this precious 

resource that is currently lost in landfills. This action will help plant colonization and 

consequently soil cover, which, when exceeding 60%, can significantly reduce soil erosion in 
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semi-arid environments (Sauer and Ries 2008). These combined benefits will result in 

increased and sustained crop yields as well as enhancements to multiple ecosystem services. 

5.3. Ecosystem service mapping, value of the approach 

The presented approach is valuable because areas are selected according to the ecosystem 

services they deliver for a river basin, which is a useful tool for prioritizing restoration at a 

watershed scale when the information is evaluated alongside the area’s environmental risk of 

degradation. This is a substantial change of focus for restoration and management planning. 

Previously, restoration actions were planned mostly at an ecosystem scale used reference 

ecosystems to define restoration actions (SER 2004) and didn’t take into account that regions 

are made up of mosaics of ecosystems. Additionally, land and natural resource management 

are usually based on maintaining basic features and, using the combined evaluation of multiple 

services, provides a tool to plan an objective-based strategy to maximize multiple service 

provisions according to the mosaic of ecosystems forming an area (Aronson et al. 2006). The 

evaluation and categorization of different ecosystem services is based on two factors: the 

consideration of multiple ecosystem services and the approximation of the value of ecosystem 

service to obtain zones where high and very high services overlap, which increases the value of 

these selected zones. The inclusion of multiple ecosystem services, particularly those that are 

strongly related to key ecological processes and ecosystem functions, provides a more 

complete understanding and a stronger basis for making comparisons between zones (Swift et 

al., 2004; Carpenter et al. 2009). Targeting restoration prioritization at a basin scale is 

significant because basins are mosaics of ecosystems, and most restoration plans focus on 

single ecosystem types (Palmer 2009). It is true that some correlation exists between 

ecosystem services, but this is also the case for ecological processes regulating ecosystems (de 

Groot et al. 2010).  

A critical issue in mapping ecosystem services is data quality and availability. Mapping involves 

GIS overlay analysis and geoprocessing to combine input layers from diverse sources to derive 

the final ecosystem service map. Difficulties encountered with deriving ecosystem service 

maps relate to the scale, age and accuracy of the input layers (Troy and Wilson 2006). An 

appropriate level of precision is vital if end maps are going to direct restoration and 

management. In our case, soil formation and water supply maps had a large cell-size unit (1 

km) that should be re-sampled to direct further detailed analysis. Comparability of data is 

essential to meet the goal of establishing priority areas and objectives for restoration and land-

use management. 
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Our analysis focused on several ecosystem services based on ecological processes and/or 

characteristics that are the most significant for sustaining the ecological functions of the whole 

basin. Most of the services are regulation services that enhance ecosystem resilience, and 

many have a synergy with provisioning and cultural services (Bennett et al. 2009). It’s clear 

that our results need to be supported by data for additional ecosystem services to support and 

define precise future decisions about management and restoration actions in the study area.  

However, the methodological approach presented here is the basis for more comprehensive 

studies that will include a stakeholder perspective to understand which services are important 

for a sustainable development in the basin (Forsyth et al. 2012). 

5.4. Trade-offs between services 

High values of some ecosystem services, especially provisioning services, are sometimes 

inversely related to other services, which challenges the sustainable use of the whole basin 

(Bennett et al. 2009; Viglizzo et al. 2011). Our results show that most part of Martín Basin is 

important for the delivery of at least one service within our selected suite of services. Only a 

few small areas produce very high numbers of services. The high degree of clustering between 

services points to a synergistic relationship between most of the services selected, and this has 

also been highlighted by other studies (Naidoo and Ricketts 2006; Nelson et al. 2009). As 

expected, the areas important for carbon storage, soil accumulation and retention and water 

flow regulation were clustered with different overlapping percentages. It is well known that 

trees stabilize soil with their roots, contribute to organic carbon accumulation due to the 

formation of leaf litter and facilitate water infiltration and storage, which facilitates plant-

growth and the storage of carbon dioxide (Durán Zuazo and Rodríguez Pleguezuelo 2008; 

Winjum and Schroeder 1997). In any case, trade-offs among services are possible. Bellot et al. 

(1999) highlight that a landscape created by human management can increase plant biomass 

and the use of water by wild vegetation, agriculture and the human population while also 

reducing runoff that affects reservoir storage, deep drainage and the aquifer recharge.  

However, it is not always valid to say that an area rich in services has a good ecological status. 

If restoration focuses on just one service, tradeoffs among services can create declines in some 

ecosystem services (MA 2005; Tallis et al. 2008) and could lead to negative impacts on 

biodiversity or provisions for other services. Use of suitable indicators for quantifying 

ecosystem services at a regional scale is challenging because major ecosystem services vary 

across different ecosystems. Too many indicators may confuse the public and decision makers, 

while too little will invalidate the results (Su et al. 2012). It is important to select or develop 

indicators that reflect the potential of the system to sustain the yield of each service 

(McMichael et al. 2005). When planning and managing restoration, considering a number of 
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ecosystem services with the intent of improving the balance of the selected services is an 

objective-based strategy that offers a long term benefit to the whole socio-ecological system 

rather than just to a few structural and functional ecosystem characteristics (Kremen and 

Ostfeld 2005; Palmer et al. 2009). An example of this is the case presented by Barbier et al. 

(2008) that demonstrates the negative, long-term socio-ecological impacts after the 

conversion of mangroves to shrimp farming. Another example is the case of using alien species 

monocultures for cellulose production (Eucalyptus), which causes a reduced water yield from 

catchments among other service trade-offs (Samraj et al. 1988).  

5.5. Guidelines for watershed management and restoration 

Using this approach, we were able to identify subwatersheds located in the northern part of 

the lowlands of Martín Basin that only supplied one service of our suite. There were 24 

subwatersheds marked in this area, representing 39.5% of the basin area. Most of these (13) 

did not provide any ecosystem service, and eleven of these subwatersheds provided only one 

to two services (Fig. 22 B, p. 74). 

Conversely, subwatersheds that delivered an increased number of ecosystem services, often 

with high value, were located in the southern part of the basin in the highlands, which is also 

the area where major impacts from mining activities originate.   

These results suggest that alternative decisions should be made regarding the spatial 

allocation of restoration actions at the basin scale. Is it better to restore services in the 

northern part of the basin, which currently provides mostly just one service, and manage this 

part of the basin to enhance multiple services simultaneously? Or is it better to restore key 

impacted and degraded areas in the southern part, which are already providing high values of 

multiple services, because of their importance in assuring the continuous delivery of services?  

Placing the major restoration emphasis on the southern region would improve ecological 

functions as erosion is a major detractor in the provision of ecosystem services, negatively 

affecting soil retention, water supply, and the biodiversity based services. Adopting this 

strategy would increase the delivery of ecosystem services throughout the entire basin 

because the lowlands depend on ecological processes taking place in the highlands. For 

example, some surface water supplied in the highlands may become available in the lowlands 

due to run-off or human-managed systems acting as reservoirs and canals. The six services that 

we have focused on have high values in the highland area of the basin, and their proper 

maintenance will stimulate synergy among services ameliorating the flow of services 

throughout the basin. In addition, the northern lowlands are dominated by agricultural 
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production. Prioritizing restoration in the lowland region of the basin would compromise the 

benefits obtained from extensive agricultural farming and would likely affect the positive social 

atmosphere required for producing an efficient restoration project.  

The marked spatial heterogeneity of this basin largely governs the distribution of ecosystem 

services. Our findings clearly note the need for an integrated approach for land-use 

management and restoration prioritization. This is particularly relevant in watersheds with 

large agricultural areas (Zhang et al. 2007) and/or where intensive extractive activities, such as 

mining, are of key economic importance for the population of the region. Integrative strategies 

should focus on enhancing ecosystem service delivery through restoration of hotspots or 

subwatersheds that offer high numbers of ecosystem services while simultaneously promoting 

sustainable land-use practices in areas where ecosystem services are limited. Table 6. 

Combined ecosystem services delivery and environmental risk criteria (<12 (low), 12-

17(Medium) , >17 (High) t ha-1 yr-1) for establishing priority areas for restoration providing a 

framework for decision-making with regards to the prioritization of areas within a watershed 

based on the approach presented here: the combination of improving ecosystem service 

delivery and reducing environmental risks of degradation. 

In the Martín Basin, restoration efforts in the southern region could focus on the protection, 

stabilization and enhancement of existing synergies between services in areas where service 

values are relatively low. Restoration action should focus on increasing soil retention by 

reestablishing forest ecosystems, thereby stimulating ground water recharge, soil 

accumulation, carbon sequestration and climate regulation, which will positively influence 

ecosystem services in other parts of the basin. Bennett et al. (2009) showed that when 

investments are made in securing regulating services, provisioning and cultural services also 

increase, resulting in an increased resilience of the local ecosystems. These restoration actions 

should be followed up with the development of forest management plans to increase carbon 

forestry and protect important headwater areas. In these areas, vegetation management will 

be essential for improving the cover to prevent irreversible degradation. 

 In the northern lowland area of the Martín Basin, a best management practice approach 

would ensure long-term provisioning of agriculturally derived benefits. The adoption of good 

agricultural practices, including conservation tillage and adaptation to threats of climate 

change, should be encouraged. Additional management practices could include the use of 

manure and biomass residues (e.g., straw mulching), which will help to improve soil organic 

carbon levels (Jones et al. 2005), thereby reducing soil and water losses (Su et al. 2007). The 

implementation of multi-crop rotation strategies would also increase the level of soil organic 

carbon (West and Post 2002) and improve soil structure, making soils more resilient (Lal, 

1997). The establishment of leguminous forage crops on low productive areas would improve 
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livestock production (Delgado 2000). This would require the use of native and adapted species 

to avoid potential negative impacts on the ecosystems.  

Special attention must be given to the mining areas because they are the major source of 

sediment in the basin (Trabucchi et al. 2012a). These mines have been restored using a variety 

of restoration techniques and strategies at different times (Moreno de- las Heras et al. 2008). 

The opportunity to create new services in restored areas exists and has been demonstrated on 

several restored mines in the Martín Basin that have been planted with crops and fruit trees. 

However, in order for these areas to be sustainable, best agricultural practices need to be 

adopted due to the high susceptibility of their soils to erosion and the very low soil organic 

carbon content. Furthermore, wetlands created in the old mine pits can provide multiple 

functions at a smaller scale, including recreation and education, and contribute multiple 

services at a larger/watershed scale, which could be accomplished in this semi-arid area 

through re-establishing a network of sites for biodiversity development (Moreno-Mateos et al. 

2009).   

Mapping multiple ecosystem services provides a useful framework for management and 

restoration planning at the watershed scale. Detailed spatial prioritization of restoration 

actions will require analysis of ecosystem services and tradeoffs at a finer spatial resolution. 

Watersheds or basins have fractal characteristics, so fractal methods of analysis can be 

effective in predicting ecosystem service patterns at multiple scales (Halley et al. 2004). 

5.6. Restoration implications from multi-scale analyses 

Landscapes are complex systems that require multi-scale analyses if they are to be 

appropriately managed and if the outcomes of interventions are to be anticipated (Hay et al. 

2001). Basin-scale analyses (such as that performed in our case study area, the Martín Basin) 

appears to represent an appropriate extent scale for evaluating our methodology as the basin 

is considered the optimal functional ecological unit of management or, at least, that where 

more intensive interactions occur between human use of the resources and ecological 

processes (Golley 1994), both of which determine ecosystem services. Exploring a variety of 

spatial scales is a necessary exercise for understanding resource distribution (Lewis et al. 1996; 

White and Walker 1997). In our case, different spatial scales (levels of analysis) were used to 

investigate the spatial locations of possible restoration actions and the dynamics of ecosystem 

services associated with erosion. The type of multiscale spatial analysis performed in the 

Martín Basin to assess ecosystem services, which has frequently been suggested (Kremen and 

Ostfeld 2005; Hein et al. 2006; de Groot et al. 2010), proved useful for identifying sites to be 
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targeted for restoration (to ameliorate erosion) that simultaneously increase the provision of a 

selected bundle of ecosystem services. 

An initial assessment of the Martín Basin at low spatial detail is able to provide a general 

understanding of this territory and to identify the general status of broad areas in the basin, 

which is useful for a preliminary general statement of types of restoration action according to 

differences in the environmental risk and ecosystem service provision in these areas 

(Trabucchi et al. 2012a). Chu et al. (2003) described this need for obtaining a broad-scale 

understanding related to system dynamics so that it will be possible to explain cause-effect 

relationships in detail. The introduction of additional hierarchies or levels facilitates the 

integration of more detailed information. Our third level of analysis was found to be key in 

determining watershed processes and the mechanism of ecosystem degradation (Nakamura 

et al. 2005). As expected, reducing pixel aggregation increased spatial differentiation and detail 

and facilitated the location of areas for the prioritization of restoration and management 

actions. The second and especially, the third level of analysis followed a bottom-up approach. 

This approach increased the accuracy of the identification of site-scale areas to be targeted for 

action and provides a defensible basis for hypothesis testing in field experiments. We explored 

the third level (highest resolution) in detail, as this scale is expected to be the most 

economically suitable for directing restoration actions. In our case study, this level of analysis 

corresponded closely to the scale of opencast mine areas, which present a mean average area 

of 1.5 Km2. 

The fine-scale analysis highlighted subwatersheds or geographical areas in the basin where 

restoration actions to control erosion should be prioritized hierarchically to maintain or 

increase the provision of ecosystem services. This would not have been possible if we had only 

undertaken a single broad level (first level) of analysis.  

5.7. Developed approach for including priority restoration areas 

As a first step in restoration planning, a regional analysis aims at constructing an overview of 

ecosystem conditions to identify altered areas in need of management action (Nakamura et al. 

2005). To manage a river basin efficiently, objectives must be established and restoration 

priorities identified (Kondolf and Micheli 1995). This understanding is essential to achieve the 

optimal and efficient allocation of limited resources (Palik et al. 2000; Suding 2011), especially 

at a broad scale, where costs can grow exponentially. In the Martín Basin, areas presenting few 

services and low erosion rates were found to be predominant in the flat northern areas, which 

have historically delivered provisioning services related to food production. In this 

homogeneous landscape with an oligotrophic environment (low precipitation, low soil organic 
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matter content), restoration actions would be disproportionately expensive compared with 

the benefits that would be derived from such actions.   

We have adapted a simple risk decision support matrix previously used in watershed risk 

analysis (Milne and Lewis 2011) to facilitate the selection of priority areas for restoration 

(Table 6 p. 86).  

A hierarchical mapping approach could be used for a variety of purposes, particularly in 

exercises related to site location (Palik et al. 2000; Palik et al. 2003). Area selection can be 

further refined by coupling the generation of hierarchy maps for prioritizing subwatersheds 

with desired biological or physical ecological indicators (e.g., water quality, land use, erosion) 

(Niemi and McDonald 2004), combinations of which can be chosen to infer cause and effect 

relationships (such as explanatory environmental variables and responses manifested as 

changes in ecosystem services) (Nakamura et al. 2005). Furthermore, alternative state models, 

emphasizing internally reinforced states and recovery thresholds, can help in guiding 

restoration efforts (Suding et al. 2004). These thresholds could include types of pollution (e.g., 

nutrients, suspended soil, gas emissions) and general environmental disturbance thresholds 

(e.g., fires, floods) (Groffman et al. 2006). 

 Ecological problems often require the extrapolation of fine-scale measurements for the 

analysis of broad-scale phenomena (Turner et al. 1994). The generation of hierarchical maps 

that allow the evaluation of restoration activity across a hierarchy of scales, ranging from a 

broad region to an individual site (Ziemer 1999), appears to be a logical and efficient way of 

locating key potential restoration areas. It is well recognized that restoration and landscape 

ecology exhibit an unexplored mutualistic relationship (Bell et al. 1997; Li et al. 2003). Our 

proposed framework integrates multi-scale studies, representing a key interest in landscape 

ecology (Turner et al. 1994; Hay et al. 2001; Brandt 2003; Burnett and Blaschke 2003; Wu 

2004), with the type of hierarchical prioritization used in restoration ecology (Lee and Grant 

1995; Palik et al. 2000; Cipollini et al. 2005; Nakamura et al. 2005; Comín et al. 2009) and the 

growing field of ecosystem service research (Fisher et al. 2009; Reyers et al. 2009; de Groot 

et al. 2010; Su et al. 2012). Such a multidisciplinary approach has been recommended to make 

restoration plans more attractive (Benayas et al. 2009; Bullock et al. 2011; Trabucchi, et al. 

2012b) and to enhance research and the application of the three disciplines. Here, the focus of 

ecological restoration shifts from the site-scale studies adopted in the past aimed at the 

reestablishment of historical abiotic conditions to promote the natural return of the 

vegetation (Dobson et al. 1997; Bell 1998; Prach et al. 2001) or the reestablishment and 

improvement of animal habitat (Huxel and Hastings 1999; Bond and Lake 2003) to broad 

analyses of environmental conditions at regional scales. This vision is supported by modern 

restoration practices, which acknowledge the importance of ecosystem patterns and processes 
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occurring at landscape scales (Nakamura et al. 2005). During the nested analysis, various 

spatial and field assessment data can be added as layers to complement and enrich the 

analyses and improve the precision of prioritization according to the proposed objectives 

making our methodology extremely adaptable at each single case of research purpose. 

5.8. Investigation of possible trade-offs in restoration prioritization 

Ecosystem service trade-offs are defined as situations in which one service is increased or 

improved at the expense of another (Bennett et al. 2009) and can arise from the differing 

interests of social agents (Martín-López et al. 2012). Analyzing the spatial patterns of 

ecosystem service bundles allows us to understand how services are distributed across a 

landscape, how the distributions of different services compare and where trade-offs and 

synergies among ecosystem services might occur (Raudsepp-Hearne et al. 2010). The 

presented approach highlights where potential ecosystem service improvement can be 

achieved through restoration and consequently, which trade-offs can be established between 

the services evaluated here (carbon storage, soil formation and retention, water flow 

regulation, surface water provisioning, eco-tourism), which contribute positively to natural 

resource enhancement and those that contribute negatively to natural resource conservation, 

which are typically provisioning services based on human extractive activities  as intensive 

agriculture and mining. Conventional agricultural practices degrade the soil structure and soil 

microbial communities due to mechanical activities such as plowing, but management 

practices can also protect the soil and reduce erosion and runoff (Lupwayi et al. 1998; Holland 

2004). The Martín Basin, especially its northern region, displays clear evidence of trade-offs 

between regulatory and provisioning services, which is an issue that has been noted in many 

other regions of the world (Rodríguez et al. 2006; Power 2010). Management decisions often 

focus on the immediate provisioning of a commodity or service at the expense of this service 

or another ecosystem service at a distant location or in the future (Power 2010). However, 

win-win scenarios are possible when appropriate land-use practices, such as conservation 

tillage, crop diversification and legume intensification, are applied (López et al. 1998; Prosperi 

et al. 2006; Trabucchi et al. 2012a). The potential success of integrating these approaches 

depends on the maintenance of ecological integrity and cohesion (Gómez-Sal and González-

García 2007). Therefore, it may be possible to manage agro-ecosystems to support a diversity 

of ecosystem services while still maintaining or even enhancing certain provisioning services 

(Power 2010; Nainggolan et al. 2011). Understanding the benefits and costs of different types 

of management practices is necessary to allow the establishment and maintenance of 

sustainable agro-ecosystems (Dale and Polasky 2007). 
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Due to the predominant natural land cover in the southern part of the Martín Basin, the trade-

offs among ecosystem services in this region are of another type and are more difficult to 

identify because they also exhibit many synergies and dependent ecological processes (section 

5.4. p.84). For example, most of the ecosystem services produced in perennial vegetation 

areas, such as under forest cover, are related to water (e.g., purification, regulation) and these, 

in turn, are linked to soil (e.g., accumulation, retention) (Klijn et al. 1996; Milne and Lewis 

2011; Powlson et al. 2011). While there are clear synergies, there are also potential trade-offs. 

For example, increasing carbon storage through the planting of fast-growing trees for CO2 

accumulation (a carbon storage service linked to climate regulation) or cellulose production (a 

provisioning service) may reduce the surface water supply and could also result in the 

salinization and/or acidification of soils, with consequent decreases in ecosystem services 

associated with grasslands and reduced resilience of such systems (Bot and Benites 2005; 

Cespedes-Payret et al. 2009). 

Identifying trade-offs is an important step that allows policy makers to understand the long-

term effects of preferring one ecosystem service over another and the consequences of 

focusing only on the present provision of a service, rather than the future (Rodríguez et al. 

2006). 

5.9. Possible methodological limitations and future research needs  

5.9.1. Data management  

Spatial analysis typically involves GIS overlay analysis and geoprocessing to combine diverse 

sources of input layers in deriving a desired map. This analysis is often complicated by 

differences in parent scales, years of creation, accuracy levels, modeled data and minimum 

mapping units for each input layer (Troy and Wilson 2006). There is no single “correct” or 

“optimal” scale for characterizing spatial heterogeneity, but comparisons between landscapes 

using pattern indices must be based on the same spatial resolution and extent. Indeed, a 

comprehensive empirical database containing pattern metric “scalograms” and other forms of 

multiple-scale information on diverse landscapes is crucial for achieving a general 

understanding of landscape patterns and developing spatial scaling rules (Wu 2004). The 

relationship between ecosystem service delivery and the regulation of environmental factors, 

such as erosion, may also change according to the spatial scale of analysis (Jackway and 

Deriche 1996). An analyst's job will often include assembling many layers with different 

resolutions to obtain a final map that is suitable for management purposes. Ecosystem 

services, such as the ecological functions and processes from which they are derived, may 



 

108 

 

change in relation to the spatial pattern of observation (Hein et al. 2006; Hurteau et al. 2009), 

posing a major challenge for mapping these services. It is difficult to define the most 

appropriate scale of a study, as the resolution at which the phenomena of interest operate and 

are operated upon may not be immediately apparent (Rutchey and Godin 2009). Thus, in most 

cases, the best practice may be to adopt the highest resolution affordable (Haines-Young and 

Chopping 1996) but there must be a threshold for increasing the resolution (decreasing the 

grain size) of the analysis which once surpassed provides not so useful information as it is not 

related to functional aspects of the ecosystem (basin in our approach) or could result on 

excess of resources used in the analysis versus value of the information obtained. 

Furthermore, high-quality databases and new sampling approaches that support research at 

broader spatial and temporal scales are critical for enhancing ecological understanding and 

supporting further development of restoration ecology as a scientific discipline (Michener 

1997). 

5.9.1. Statistical analysis 

Selecting appropriate statistical procedures and asking the right questions is vital for meeting 

targets (Marcot 1998). This study employed one of several available methods for aggregating 

spatial data to analyze ecosystem service bundles. We used the majority rule method because 

of our interest in identifying the major number of services present at each spatial level 

(Trabucchi, submitted). Although this is probably the most commonly used rule in ecological 

and remote sensing applications (Wu 2004), it would be interesting to compare how different 

aggregation methods affect the characteristics of ecosystem service bundles. The use of rules, 

such as maximum, minimum and average rules and others available in GIS zonal statistical 

tools can have a marked effect on the obtained results (Smith et al. 2007).  

5.9.2. Validation of the framework 

In the Martín Basin, some subwatersheds at the third level, classified as being of high priority 

for restoration (presenting erosion of > 17 t ha-1 yr-1 and >3 ecosystem services), coincide with 

closed mines. This finding confirmed both the appropriateness of the size of the 

subwatersheds generated at this level as well as the erosion and ecosystem service 

categorization applied for prioritizing restoration. However, future studies are needed to 

investigate the application of hierarchical maps at a mine scale, where these data are 

available, to further validate the approach presented here. 
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Fig. 35 Mandala for criteria priorization

      

environmental risk and high ecosystem services as no risk exists for ecosystem services

This generalization can be re-ordered in similar way to those plankton mandalas by Margalef 

to express the potential relationships among parts of an ecosystem under 

different environmental conditions which work both in the same direction to favor restoration 

(synergy: erosion × ecosystem services) or which both set against (erosion/ecosystem services) 

some ecosystem characteristics (Fig. 35.). This type of mandala can be interpreted

inking the restoration priority criteria for different zones of a watershed, but also as a 

framework for a potential synergistic effect among restored (with the above criteria) zones in a 

watershed. Restoration to decrease environmental risks of zones with high ecosystem services 

the provision of ecosystem services with effects in other zones of the watershed 

with lower ecosystem services and high environmental risk, which in turn may favor increasing 

provision in zones with low environmental risk. Further develo

the approach presented will be necessary to show if this dynamic aspect of influences between 

zones of a watershed restored with the priority criteria presented here takes place

cases of restoration at watershed scale performed with this approach will provide advances in 

priorization for different zones of a watershed 
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6. Conclusions 
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• The publication of the Milenium Ecosytem Assessment promoted using ecosystem 

services into restoration studies after 2006. However different approaches have been 

followed until now reflecting the diversity of types of restoration plans and that there 

is not a general framework to include ecosystem services in restoration plans (with ad 

hoc methods and general definitions) which could facilitate defining and evaluating 

ecosystem services. Mapping in a complementary way the evaluation of ecosystem 

services and factors of environmental disturbance is a solution for the hierarchic 

prioritization of restoration actions in a territory. 

• The RUSLE model (Revised Universal Soil Loss Equation) has been used to estimate the 

erosion risk in the watershed of Martn River (Aragón, NE Spain) using an innovative 

vegetation index to evaluate the key C factor (cover factor), obtaining better results 

than other vegetation index available. One of the RUSLE model limitations is that it 

does not include deposition and remobilization processes which take place down slope 

resulting in laminar erosion. Results from RUSLE-GIS applied to Martín Basin resulted 

in average erosion rates similar to those obtained for other zones with similar 

environmental characteristics.  

• The average soil erosion in Martín Bain is 13.8 t ha-1 year-1. The south part of the basin, 

highlands, is that with high erosion because of marked orography (24 t ha-1 year-1) 

while in the north part, lowlands where mostly dry agricultural use is established, 

relatively low erosion was estimated (10 t ha-1 year-1). The erosion map generated with 

this model let analyze the major zones in the watershed as sediment sources. Pasture 

areas are those with the highest erosion rates (25 t ha-1 year-1), although this type of 

habitat only covers 1% of the total watershed area; schrublands, which also include 

some bare soil zones mixed with schrublands and mine zones, also have high erosion 

rates (23, 24 t ha-1 year-1, respectively for schrublands with some bare soil zones and 

firsts generation restored mine zone). 

• The main advantage of this method for estimating erosion rates at landscape scale is 

that it is easy for implementation after some information which is relatively easy to 

obtain nowadays. This methodology has been shown the utility of remote sensing 

techniques for basic and applied studies, both at basin and regional scales (10-100,000 

km2). Based on our experimental studies, we think that RUSLE-GIS, can improve the 

estimation of soil erosion rates and, consequently, can be a useful tool for land use 

management, conservation and restoration at basin scale. 

• A bundle of ecosystem services soil retention and accumulation, water supply and 

regulation and carbon storage, (selected based on their relevance for the ecological 

functioning of the watershed) and ecotourism as a cultural service, were evaluated 

using surrogates, (organic carbon in the topsoil, carbon dioxide stored in forest 

vegetation, runoff, aquifers recharge), and mapped in Martín Basin. Water runoff 

regulation, surface water supply and soil formation are those present in large areas of 
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the watershed (80%, 67% y 62%, respectively), while ecotourism, soil retention and 

carbon storage are provided in smaller areas of the watershed (36%, 27% and 21%, 

respectively). Hotspot areas (zones with provision of an ecosystem service at high 

value) are located in the south part of the basin (highlands). Water regulation has the 

largest hotspot area covering 42.4% of the watershed and climate regulation the 

smallest one (2.4%). 

• The spatial distribution of the ecosystem services related to water follows the spatial 

rainfall pattern. Surface water supply is present in the entire watershed and coincides 

with low values of soil accumulation in the low part of the basin. Climate regulation 

and erosion control depend on the plant cover; both are distributed increasing with 

altitude. Soil accumulation dominates in the south part decreasing towards the north, 

lowlands. Ecotourism is located mostly in the south and central parts of the 

watershed, and close to towns where trekking routes start. 

• The highest service overlapping, 3-5 ecosystem services, is observed in mountain 

zones of the south and central parts of the basin, in accordance with relatively high 

plant cover, mostly forest and shrubland. One or two services are provided in 25% of 

the watershed and 3 services in 21%. Four and five services represent the 10% and 

2.6% respectively of the basin. Six services together are delivered only in a small area, 

0.67%, near Montalbán. The area providing not any of these ecosystem services is 14% 

located in the north part of the basin. Ecosystem service overlapping is high in general. 

Those services related with water show the highest overlap, 65% of the watershed and 

6.75% of the watershed shows overlap of some hotspot services. 

• As it has been observed by other author’s mountainous areas provides greatly 

ecosystem services. Mountain areas of Martín Basin, with high relief and relatively 

high rainfall provide a higher number of services with higher value than lowlands 

highly influenced by human activities and used for agricultural production in semiarid 

landscapes. The same characteristics favoring the provision of ecosystem services may 

contribute to their decrease if land and natural resources management and use are 

not adequate or if important environmental risks, as erosion, exist in these zones. This 

is the case for a few subwatersheds of Martín Basin with sparse plant cover and others 

with open coal mines where erosion rates higher than 17 t ha-1 year-1 and only 1-2 

services are delivered.  

• In this work an approach for establishing a spatial hierarchic classification of zones for 

restoration has been proposed bases on the analysis of the spatial distribution of 

erosion, as the factor of environmental risk, and the evaluation of ecosystem services, 

as the state variables, using 20 m × 20 m basic data. This methodological approach was 

followed after analysis at three spatial scales (level, of analysis defined as different 

number of pixels containing data aggregated as the basic data of spatial analysis). This 

let identify the most adequate spatial level analysis for selecting priority areas for 

restoration in Martín Basin. In order to establish criteria for prioritize sites for 
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restoration, three erosion thresholds related to ecological thresholds for the 

establishment of vegetation in the study area were used combined with the provision 

of ecosystem services. Mapping the results, it is observed how the spatial 

diversification and precision of areas proposed with different priority category for 

restoration increase as the spatial aggregation of analysis decreases (definition 

increases). Mine zones, with areas of about 1.5 km2 and erosion rates over 17 t ha-1 

year-1and high provision of ecosystem services, are distinguished between those small 

subwatershed selected as high priority areas for restoration at the fine grain size 

analysis. The first pixel aggregation level of analysis in Martín Basin is useful to 

distinguish large areas of the basin and potential general strategies for their 

restoration or management. 

• This approach, combining the evaluation of the factor regulating the environmental 

disturbance factor, erosion, and the evaluation of ecosystem services, as state 

variables, and its graphical representation with GIS, constitutes a logic and practical 

approach for establishing a hierarchy of sites for restoration. Basic data availability 

with good resolution and the analysis of interest by stake holders may be further 

requirements to be incorporated for further development of the approach. 

• A conceptual framework is derived from this work with easy application for the same 

purpose to other territories with environmental disturbance for ecosystem service 

provision (but for provisioning services). At the watershed scale, it is recommended to 

establish a hierarchy of area for restoration as follows: first priority to those areas with 

high environmental risk and high provision of ecosystem services (in order to decrease 

the environmental risk of losing  high ecosystem services provision); second priority to 

those areas with high environmental risk and low provision of ecosystem services 

(where some ecosystem service gain can be obtained after restoration, decreasing the 

environmental disturbance); third priority for restoration in those areas with low 

environmental risk and ecosystem services provision (expecting to gain ecosystem 

services after performing some improvement of the environmental conditions); and 

not acting in areas with low environmental risk and high ecosystem services provision 

(as there is no risk of losing the provision of ecosystem services). 

• As a general conclusion, this work has shown that the assessment of ecosystem 

services is a useful tool to plan the ecological restoration and land management of a 

territory made of a mosaic of ecosystems.  
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7. Conclusiones 
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• La inclusión de los servicios de los ecosistemas en los estudios de restauración a escala 

de cuenca se ha incrementado desde el año 2006 bajo el impulso del Millenium 

Ecosystem Assessment, pero los enfoques adoptados para este fin hasta ahora son 

diversos. Esto se debe a la herencia de la utilización de enfoques ad hoc en los planes 

de restauración del pasado (ej. restauración de hábitat de una única especie) y a la 

inexistencia en la actualidad de un marco general a seguir para la inclusión de los 

servicios de los ecosistemas en los planes de restauración (basado en una metodología 

y definiciones generales) que podrían hacer la localización y evaluación y localización 

de los servicios más directa y sencilla. La complementación cartográfica de los servicios 

con factores que amenazan la continua provisión de los mismos parece una solución 

para priorizar jerárquicamente las necesarias acciones de restauración. 

• Se ha usado el modelo RUSLE (Ecuación de pérdida de suelo Revisada), un modelo de 

tipo empírico para evaluar el riesgo de erosión en la cuenca del Río Martín utilizando 

un innovador índice de vegetación para la evaluación de un factor clave (factor C 

cobertura) del modelo elegido que ha demostrado obtener mejor resultados que los 

disponibles en la actualidad. La limitación de este modelo es que no incluye 

fenómenos de deposición y retransporte que ocurren en un perfil ladera-abajo ya que 

resulta en un valor de erosión laminar. La implementación de RUSLE  SIG (Sistema de 

Información Geográfica) ha permitido la estimación de la tasa media de erosión, 

obteniendo valores muy similares a los deducidos en otras áreas con características 

similares.  

• El aporte medio anual de sedimentos en la cuenca del Río Martín fue de 13.8 t ha-1 

año-1. La parte sur de la cuenca resulta ser la más afectada por erosión influenciada 

por la orografía acentuada de la zona (24 t ha-1 año-1). La parte baja, norte, de la 

cuenca (principalmente campos agrícolas), es donde se registran las menores tasas de 

erosión (10 t ha-1 año-1). 

• El mapa de erosión generado por el modelo permitió analizar las principales áreas 

fuentes de sedimento. El pastizal resulta ser el área con más altas tasas medias de 

erosión (25 t ha-1 año-1) aunque solo representa el 1% del área de la cuenca, los 

matorrales; las zonas de suelo desnudo como las minas y algunas zonas de matorral-

pastizal, fueron las responsables de las más altas tasas de erosión generadas en la 

cuenca (23, 24 t ha-1 año-1 respectivamente), todas ellas en su parte sur. 

• La principal ventaja de esta metodología es la sencillez de su implementación a partir 

de fuentes de información relativamente fáciles de adquirir hoy en día.  

• La metodología desarrollada en este estudio ha demostrado la utilidad de las técnicas 

de teledetección para realizar estudios básicos y aplicados, tanto a escala de cuenca 

como a escala regional (10-10,000 km2). Sobre la base de nuestros resultados 
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experimentales, creemos que RUSLE-SIG, no obstante sus limitaciones y el uso del 

índice de vegetación como el GPVI, podrían mejorar la predicción de las tasas de 

erosión del suelo y la consecuente planificación, gestión, conservación y restauración 

del suelo a escala de cuenca. 

• Mediante la evaluación y el cartografiado de un conjunto de servicios ecosistémicos en 

la cuenca del Río Martín se ha observado que la regulación hídrica, la producción de 

agua dulce superficial (escorrentía) y la fertilidad del suelo son los servicios más 

extendidos con respectivamente el 80%, 67% y 62% del área de la cuenca, mientras 

que los servicios de ecoturismo (36%), control de la erosión (27%) y regulación 

climática (captura y almacenamiento de carbono en pies mayores) (21.1%) se proveen 

en extensiones menores de la cuenca. Las áreas hotspot están concentradas en las 

partes sur, más alta, de la cuenca. La regulación hídrica tiene el área más vasta de 

hotspot cubriendo el 42.4% de la cuenca y la regulación climática la más reducida con 

un 2.4%, ambas en el sur de la cuenca. 

• Los servicios relacionados con el agua siguen el patrón espacial de la lluvia. La 

producción de agua dulce superficial está presente en toda la cuenca y coincide con 

bajos valores de acumulación de suelo en el sur de la cuenca. La regulación climática y 

el control de la erosión dependen de la densidad de la vegetación y están distribuidos 

mayoritariamente siguiendo el patrón espacial de aumento de altitud. La acumulación 

de suelo predomina en la parte sur reduciéndose progresivamente hacia la parte 

norte, baja, de la cuenca. El servicio de ecoturismo se distribuye en distintas áreas del 

sur y centro-norte de la cuenca y, en muchos casos, se centran cerca de los pueblos de 

Albalate del Arzobispo, Montalbán, y Utrillas, ya que las rutas senderistas empiezan en 

estos núcleos urbanos o sus cercanías. 

• El más alto valor de solapamiento, de 3 a 5 servicios se ha observado en áreas 

montañosas del sur y del centro de la cuenca correspondiendo con una alta densidad 

de cobertura vegetal forestal y de matorral. Uno y dos servicios son provisionados en 

el 25% y 25.8% de la cuenca respectivamente y tres servicios en el 21%. Cuatro y cinco 

servicios representan el 10% y 2,6%, respectivamente, de la cuenca. Seis servicios 

juntos se encuentran solamente en un área pequeña, 0,67%, en el entorno natural 

alrededor del pueblo de Montalbán, mientras un 14% de la cuenca no proporciona 

ninguno de los servicios seleccionados en ese estudio. El solapamiento espacial entre 

servicios es grande en general. Los servicios relacionados con el agua son los que 

tienen el más alto porcentaje de solapamiento con el 65% de la cuenca y 6.75% de los 

correspondientes hotspot en la parte sur de la cuenca, lo cual indica sinergia en la 

presencia de estos servicios.  

• Como se ha observado por otros autores, las partes montañosas con su relieve 

heterogéneo y mayores precipitaciones son capaces de generar un mayor número de 

servicios y de mayor valor que las zonas de llanura altamente antropizadas y dedicadas 

a producción agrícola con clima semiárido cual es el caso de la cuenca del Martín. El 



 

121 

 

mismo relieve aportador de heterogeneidad bio-geofísica y riqueza paisajística puede 

acentuar la disminución de estos servicios en estas zonas si su gestión y uso no son los 

apropiados poniendo en peligro la continua producción de servicios capaces de influir 

en el buen estado ecológico de toda la cuenca si existen factores alteradores 

importantes, como la erosión. Este es el caso de algunas subcuencas o zonas de la 

parte sur de la cuenca del Martín con escasa cobertura vegetal y otras en donde se 

ubican zonas mineras en las que se han estimado tasas de erosión mayores de 17 t ha-1 

año-1 y 1-2 servicios de los ecosistemas. 

• Se ha elaborado un marco para la definición y jerarquización de zonas de restauración 

a escala de cuenca hidrográfica basado en mapas jerárquicos de la erosión, como 

factor de alteración, y de los servicios de los ecosistemas, como variables de estado, 

para identificar zonas prioritarias de restauración basadas en umbrales de erosión y 

números de servicios producidos utilizando datos básicos en mapas con pixel de 20 m 

× 20 m. Esta metodología incluye tres niveles espaciales de análisis, en este caso de la 

cuenca del Martín, definidos por tres niveles diferentes de agregación espacial de los 

pixeles que forman los mapas de erosión y de provisión de servicios, que son 

agregados para evaluar su congruencia espacial. La elaboración de mapas y patrones 

multi-escala (con diferente agregación de pixeles) ha permitido identificar la 

resolución ideal de análisis espacial para seleccionar áreas prioritarias de restauración 

de la erosión para mejorar la provisión de servicios ecosistémicos en la cuenca del 

Martín. Para la clasificación de zonas se establecieron tres umbrales de erosión, que 

coinciden con límites ecológicos para el establecimiento de la vegetación en el área de 

estudio, contrapuestos con el número de servicios. Graficando los resultados notamos 

como reduciendo la agrupación espacial de los pixeles, creando subcuencas más 

pequeñas, el grado de precisión y la diversificación en la definición de zonas de la 

cuenca con diferentes valores combinados de erosión y de servicios ecosistémicos 

aumenta. Entre las subcuencas generadas al tercer nivel de agregación de pixeles, 

destacan zonas mineras que tienen un área media de 1,5 Km2, al sur de la cuenca, 

donde se observan tasas de erosión mayores de 17 t ha-1 año-1 y alto número de 

servicios. Una escala de análisis a escala de cuenca fluvial sirve para tener una visión 

amplia de condiciones diferenciadas entre partes amplias de la cuenca. 

• Esta aproximación, combinando en una escala el factor de alteración, la erosión, y el 

factor de estado, la provisión de servicios de los ecosistemas, constituye un enfoque 

lógico y práctico para la selección y establecimiento de una jerarquía de áreas de 

restauración; y su representación gráfica mediante SIG, una herramienta útil para la 

selección y establecimiento de una jerarquía espacial de áreas de restauración en la 

cuenca hidrográfica. La disponibilidad de los datos con una resolución óptima y el 

análisis de necesidades de los interesados se requieren para que este enfoque pueda 

mostrar todo su potencial.  
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• De este estudio se deriva un marco conceptual adaptable y fácilmente aplicable a la 

definición de zonas de actuación de mejora del funcionamiento ecológico natural en 

otras cuencas o territorios que tienen perturbaciones ambientales que amenazan la 

provisión de servicios del ecosistema (exceptuando los de producción). A la escala de 

cuenca hidrográfica, se recomienda ordenar las actuaciones de restauración 

priorizando las zonas identificadas a la escala espacial adecuada como de alto factor de 

disturbio y de provisión de servicios (por existir riesgo de alteraciones y de pérdida de 

servicios); seguidas de zonas con alto factor de disturbio y baja provisión de servicios 

(por haber una potencial ganancia de servicios derivada de la restauración que obraría 

disminuyendo el factor de alteración), y con menor interés de realizar actuaciones de 

restauración ambiental las zonas con bajo riesgo de alteración ambiental y donde 

puede existir una mejora en la provisión de servicios; dejando sin actuaciones las zonas 

con bajo impacto y alta provisión de servicios, ya que no existe riesgo para la provisión 

de estos servicios.   

• Como conclusión general se ha comprobado con este trabajo que la evaluación de los 

servicios de los ecosistemas es una base útil para la planificación de la restauración 

ecológica y la gestión de un territorio formado por un mosaico de ecosistemas. 
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9.1.  Literature search and data extraction 

We followed the methodology of Egoh et al. (2007) using the Web of Science 

(http://www.newisiwebofknowledge.com) to search for peer-reviewed publications from 

1998-2010 (February), written in the English language. We limited our search to 1998 and 

beyond because this is when it was consistently   introduced the terminology “ecosystem 

services” in published literature by Daily (1997). These publications among others create a 

clear increase of studies which cite ecosystem services (see Fig. 1in, Fisher et al., 2009). We 

were using the term “restoration project” AND in the advanced search on ISI  using the 

Booleans AND associated with the following search terms: “ecological restoration”, 

“restoration planning”, “ecological rehabilitation”, “ecological reclamation”, “ecological 

management”, “water quality”, “priority area”, “area identification”, “stream restoration”, 

“planning restoration”, “restoration plan”, “landscape restoration”, “river basin”,  

“watershed”, “catchments” and “restoration goals”. This search identifies a total of 414 

studies.  We then conduct a search on this sample with EndNote, selecting for Any Field the 

phrases “ecosystem services”, “restoration”, and, as they are sometimes used 

interchangeably, “watershed”, “basin” and “catchment”. Due to the small result obtained 

(three) we just use the words “ecosystem services” and “restoration” but the result was small 

(eleven) so we decided to read the abstracts of all 414 to search for all papers that include 

ecosystem services that are not quoted literally according to the classical definitions used by 

MA (2005). 

 

9.1.1. Data extraction 

We partially followed the data extraction of the methodology of Rey-Benayas et al. (2009) 

examining the titles and abstracts of the 414 references to determine how closely they aligned 

with our selection criteria of ecosystem services within basin areas thereby determining their 

inclusion in this review. If the manuscript reported on measures of one or more ecosystem 

services and/or biodiversity in relation to restoration at the basin scale the study was included. 

During this research we eliminated 310 because we do not consider the theory modelling, 

animal restoration, review, conservation projects, marine projects or the studies just not 

consider the river basin scale and excluded other 28 papers from the sample because not 

pertinent (energy, dental medicine, radiology etc.). Finally we selected 45 by their implicit link 

reference to ecosystem services related with a basin restoration projects. After an accurate 
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reading we selected and included for revision 13 studies that make clearly reference to 

ecosystem services in a river basin restoration context and classify them following the criteria 

at the MA (2005). In the following Table 8 they are listed. 

9.2. Articles reviewed 

Table 8. Ecosystem services founded in 13 basin-scale restoration plans.  

Ecosystem service Method of identification Source 

Supporting   

Biodiversity support Aerial Photo 
Land cover 
Stream sinuosity 

(Rayburn and Schulte 2009) 

Biodiversity support, Habitat 
(Salmon) 

Land use, Human population 
growth 

(Fullerton et al. 2009) 

Biodiversity support, Habitat 
(oak Savanna) 

Species diversity, avian 
community richness  

(Grundel and Pavlovic 2008) 

Biodiversity support, Habitat 
(birds) 

Vegetation provisioning 
habitat survey 

(Vesk et al. 2008) 

Biodiversity support, Habitat 
(Salmon) 

Old data restoration Project (Katz et al. 2007) 

Biodiversity support, Habitat 
(Salmon) 

LULC, Aerial Photo, field 
observation 

(Fullerton et al. 2006) 

Biodiversity support, Habitat-
Cultural 

Abiotic and biotic variables (Nienhuis et al. 2002) 

Biodiversity support, Habitat 
(native plant communities) 

Unclear (Cuevas and van Leersum 
2001) 
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Cultural   

Cultural landscape Questionnaire local habitants (Schaich 2009) 

Regulatory   

Flood-Drought prevention Predict impact on climate 
change published 

(Palmer et al. 2009) 

Temperature regulation -
Habitat (Salmon) 

Climate models 
LULC, 
Population dynamics, 
Hydrology model 

(Battin et al. 2007) 

Water purification Clean water act (Novotny 1999) 

Provisioning   

Water production Water monitoring (Cobourn 1999) 

 
  

References of the rest papers selected (32) 

(Shirazi et al., 1998; Urbanska, Erdt et al., 1998; Bowler 2000; Curnutt et al., 2000; Palmeri and 

Trepel 2002; Campbell and Mazzotti 2004; Martinez-Abrain, Sarzo et al., 2004; Groninger 2005; 

Schulte, Pidgeon et al., 2005; Noss et al., 2006; Twedt et al., 2006; Wightman and Germaine 

2006; Alexandridis et al., 2007; Mcintire et al., 2007; Johnson et al., 2007; Rumps et al., 2007; 

Spanhoff and Arle 2007; Wang et al., 2007; Brudvig and Mabry 2008; Mollot and Bilby, 2008; 

Montgomery and Eames, 2008; Pavao-Zuckerman, 2008; Robbins and Lewis 2008;  Sogge, 

Sferra et al., 2008; Baron, Gunderson et al., 2009; Bradley and Wilcove, 2009; Castillo and 

Figueroa, 2009; Cha et al., 2009; Fullerton et al., 2009; Howie et al., 2009; Lane and Texler, 

2009; Likens et al., 2009; Papanastasis, 2009) 
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Restoration Possibilities in the Western United States Resulting from Climate Change." 

Restoration Ecology 17(5): 715-721. 

Brudvig, L. A. and C. M. Mabry (2008). "Trait-based filtering of the regional species pool to 

guide understory plant reintroductions in Midwestern oak savannas, USA." Restoration 

Ecology 16(2): 290-304. 
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successful urban river restoration." Water Science and Technology 59(11): 2101-2109. 
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9.3. RUSLE factors description  

A = R * K * L * S * C * P 

A is the average soil loss from sheet and rill erosion, reported here in tons per hectare per year 

(t ha−1 yr−1).  

R is the rainfall-runoff factor, representing the erosion energy in MJ mm ha−1 h−1 yr−1 according 

to the methodology of Renard et al. (1997), and it is the average annual summation (EI) values 

in a normal year's rainfall. The erosion index is a measure of the erosion force of a specific 

rainfall event. When other factors are constant, storm losses from rainfall are directly 

proportional to the product of the total kinetic energy of the storm (E) times its maximum 30-

minute intensity (I). 

The K factor is the soil erodibility factor, which represents both the susceptibility of soil to 

erosion and the rate of runoff, as measured under the standard unit plot condition expressed 

in (t h MJ−1 mm−1) (Renard et al. 1991). In RUSLE, factor K considers the whole soil, and factor 

Kf considers only the fine-earth fraction, i.e., material with a <2.00 mm equivalent diameter. 

For most soils, Kf = K 

Only R and K have units; those units, multiplied together, give the erosion in units of mass per 

area and time. Each of the other terms scales the erosion relative to specified experimental 

conditions (>1 is faster than under those experimental conditions; <1 is slower). The remaining 

factors are non-dimensional scaling factors. 
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The LS factors are topographic factors describing the combined effect of slope length and 

steepness, and they are calculated with the approach of Moore and Wilson (1992) as a 

function of the net contributing area (χη) and the slope angle (θ, radians).  

3.14.0

0896.0
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.
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

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= θχη
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Formula 1
 

L It is the ratio of soil loss from the field slope length to that from a 22.1-meter length on the 

same soil type and gradient. S is the slope steepness, representing the effect of slope 

steepness on erosion, and the ratio of soil loss from the field gradient to that from a 9% slope 

under otherwise identical conditions.  

9.3.1.  Data collection (Measurement for estimating the factors) 

The R-factor map for the area was implemented by Angulo-Martínez and Beguería (2009) 

following the methodology proposed by Renard et al. (1997) using the SAIH system (automatic 

hydrological information network) of the Hydrographic Confederation of the Ebro River. Each 

meteorological station provides precipitation data at a time resolution of 15 min. The system 

began in January 1997 and is the only dense network in the region providing data at a sub-

daily resolution.  

More than 110 selected rainfall series were used from those authors to calculate R-factor 

values for the periods May 2005–May 2006, May 2006–May 2007 and May 2008. No high time 

resolution data were available for the 1955–2008 period, so they used an approximation based 

on daily rainfall data (Angulo-Martínez and Beguería 2009). 

Point estimates were interpolated by means of smoothing splines with the geostatistical 

analysis package of the GIS software to create R-factor maps. 

9.3.1.1  K Measurements 

The study assessed the soil erosivity factor K by selected areas, following the land covers and 

soil types that were sampled. Because of the lack of detailed soil maps for the study area, it 

was necessary to analyze the soil samples. A total of 97 sites generally encompassing the 

spatial variability of soil type-land cover combinations were sampled in triplicate (Fig. 7, p.35) 

(Foto 4). 
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Foto 4. Muestreo en diferentes tipos de suelo en la cuenca del Río Martín con su 

correspondiente cubierta vegetal.  

 

 The K-factor values were determined from soil texture data (Romkens and Wang 1987) 

according to the following equation: 
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   (Formula 2) 

where Ktext is a soil erodibility factor (Mg h MJ-1 mm-1) and Dg is the geometric mean weight 

diameter of the primary soil particles (fraction < 2 mm). Dg was determined using a Coulter 

laser diffraction particle size analyzer (Coulter LS 230) for the 2–2000 µm fraction, following 

removal of organic matter. The K-factor values were then corrected to reflect the effect of 

stones in the soil surface on soil erodibility (Box 1981), according to the following equation: 

  (Formula 3) 

where St is the weight of stones in the topsoil, expressed as a percentage of the total weight of 

the topsoil. 

 We interpolate field data with the soil map, excluding bare rocks and predominantly rocky 

areas. We generate, for each type of soil, an averaged corresponding value of K. 

9.3.1.2 LS Measurements 

We evaluated LS with the flow accumulation tool (ArcMap) using a DEM (Digital Elevation 

Model) from the Aragón Territorial Information Centre (CINTA) (2006) and a watershed 

delineation tool to consider the topographical and hydrological effects on soil loss (Fig. 13, C p. 

48). 

This approach is easy to run within a GIS application and has been satisfactorily used in other 

Mediterranean areas, such as northwest Spain (Martínez-Casasnovas and Sánchez 2000) and 

southern Italy (Di Stefano et al. 2000).  

9.3.1.3 C Measurement 

The field measurement procedures were adapted from the RUSLE manual, and we followed 

the methodology of González-Botello and Bullock (2012). The measurements were taken at 20 

different random points along the 30 m transects placed at the perpendicular direction to the 

predominant slope, and human trampling in the area was reduced as much as possible .  

A plumb was dropped at each point. Then, the surface cover percentage was visually 

estimated within a 10-cm-diameter micro-plot around the plumb using five linear categories (0 

= 0-1%, 1 = 1-25%, 2 = 25-50%, 3 = 50-75%, and 4 = 75-100%) (Foto 5). 
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Foto 5. Transectos en la cuenca del Rio Martín para evaluar el factor C del modelo RUSLE. 

Vegetation transect in different part of the Martín Basin for different vegetation cover 

 

 

In the absence of long-term experiments, where soil loss is measured from field plots to obtain 

estimates for any variety of site conditions, it is possible to estimate the C factor using a 

standard calibration of sub-factors. Wischmeier and Smith (1978) identified three major sub-

factors that determine the effectiveness of vegetation in limiting soil erosion on rangelands. 

The first sub-factor includes the canopy cover sub-factor (above-ground plant biomass and the 

height that raindrops fall from the plant to the soil surface). The second sub-factor includes the 

soil surface cover (composed of non-eroding material such as rocks and organic litter, plant 

basal area). The third sub-factor is the residual and tillage sub-factor (root biomass effects and 

other organic matter in the soil avoiding compaction and facilitating surface stabilization). 

Prior to the fieldwork, to identify representative sampling sites, a detailed examination of 

satellite imagery and topographic maps of the river basin was conducted. The C factor (Fig. 13 

D, p.48) was estimated for each sampling site by using the following equation derived from 

data in Wischmeier and Smith (1978; Table 10): 

C = 0.45(e [-0.012 ・ b] ) ・ (1 - p ・ e[-0.328 ・h]) ・ e(-0.039 ・ g ・ [0.24/r]^0.08)       (Formula 4) 

Where h is the canopy height; p the percentage of canopy cover; r is the surface roughness; b 

was defined by primary productivity according to the methodology described by Weltz et al. 

(1987); and g is the surface cover. This equation is similar to equations described by Weltz et 

al. (1987) and Renard et al. (1997). 
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Once the field measurements were obtained, the next step was to extrapolate the punctual C 

factor values to the entire area of study using a Landsat 5 image corresponding to the sampling 

period, courtesy of the National Geographic Institute (Ministry of Development) through the 

National Plan for Remote Sensing (http://blogpnt.wordpress.com/). There are three main 

approaches to the problem of extracting C from satellite imagery as tools to generalize local 

field plot samples to a broad area: the classified thematic map method, the Vegetation Index 

method, and the more complex Linear Spectral Mixture Analysis (LSMA). We use the Genetic 

Programming methodology described by Puente et al. (2011) to obtain Vegetation Indices (VIs) 

designed exclusively for our area of study. Genetic programming (GP), as stated by Koza (1992) 

and Poli et al. (2008), is an evolutionary computation (EC) technique inspired from the 

principles of biological evolution that is used to create computer programs that learn a user-

defined function. The GP approach is able to evolve a population of computer programs. That 

is, generation by generation, GP stochastically transforms populations of programs into new, 

hopefully better, populations of programs.  

In the GP process, programs are usually expressed as syntax trees rather than as lines of code. 

The variables and constants in the program (in this case, the reflectance values of NIR and Red 

bands) are leaves of the tree, which are called Terminals, while the arithmetic operations (+, - 

and ÷) are internal nodes, called Functions. The sets of allowed Functions and Terminals 

together form the primitive set of a GP system. In our GP, the Terminal set will be represented 

by information on the spectral bands, such as Red, NIR, and Green. The function set will be 

represented by all arithmetic operations (+, -, *, and ÷) because these kind of functions are 

widely used in common VIs. Both sets of terminals and functions form our primitive set that 

the GP system will use to create composite operators. 
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Fig. 36. General flowchart of the methodology to estimate C from vegetation indices 

synthesized by GP (from Puente et al. 2011). 
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Fig. 36 shows the flowchart of the procedure developed to generate novel VIs to estimate C. A 

run of the GP algorithm consists of the following steps. First, satellite imagery is georeferenced 

to prepare the input data through the identification of all pixels in the spectral bands that 

match each sample in the field data. Then, the primitive set is defined as follows: 

F = {+, − , ∗ , / } 

T = {Red, Gr, Bl, NIR, SWIR1, SWIR2, a, b, aG, aR, aNIR, aSWIR1, NDVI, EVI, TSAVI, GV I, SASI }, 

where Red, Gr, Bl, NIR, SWIR1, and SWIR2 represent the image bands of the Landsat5-TM 

satellite. Moreover, aG, aR, aNIR, and aSWIR1 characterize the angle between the three 

consecutive bands considering the previous satellite channels (see [10] for details about how 

to obtain such angles). In these expressions, the a and b terminals represent the soil line 

parameters. Finally, to complete the terminals, we consider the most common vegetation 

indices that are represented by NDV I, EVI, TSAVI, GVI, SASI. The initial population of solutions 

is now generated. Then, each individual is evaluated by the fitness function. The fitness 

function is based on the correlation coefficient ρ(x,y) that indicates the strength and direction 

of the linear relationship between the factor C and the evolved vegetation indices. The 

correlation is 1 in the case of an increasing linear relationship and -1 in the case of a decreasing 

linear relationship. In this work, we choose to apply the absolute value operator of ρ(x,y) 

because the closer the coefficient is to either -1 or 1, the stronger the correlation between the 

variables. Hence, the fitness function is defined as follows: 

Q = max(|ρx,y|) , such as   ρx,y =  cov(x,y)  = E((x – μx)( y – μy))  ,  (Formula 5) 

σx σy         σx σy 

where E is the expected value and cov means covariance. x represents the RUSLE’s C factor, y 

is the evolved vegetation index and ρx,y is defined within the range {ρx,y : −1 ≤ ρx,y ≤ 1}. 

The next step is to select candidate solutions to rank all individuals and discard the solutions 

with low fitness. Then, the genetic recombination between selected trees is performed 

through crossover, and mutation is then applied. Finally, the next population is created using 

the stochastic universal sampling method. These steps are iterated until the maximum number 

of generations is reached. From the population of the last generation, only the best solution is 

kept to perform regression analysis. The result of the linear regression is a C factor map for the 

entire region. 

Additionally, we calculated cover percentage to obtain information about how cover 

influences erosion. We developed a C factor map with the assumption that Cover Density (CD) 
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= 0.00 if the C factor is 0.45 and 1.0 if the C factor is 0. By simple algebra, we can say that CD = 

1.0 - (1/0.45)*C = 1.0 -2.22*C. This calculation is an empirical estimate of CD based on the end-

member extreme cases, and it includes cover effects from both ground cover and canopy 

cover (including live and dead material). 

9.4.  Factor results 

9.4.1.  R values 

In the Martín Basin, the rainfall erosivity factor (R) had a mean value of 603 MJ mm ha-1 h-1 yr-1, 

with a minimum value of 390 MJ mm ha-1 h-1 yr-1 in the north, a predominantly flat area, and a 

maximum value of 905 MJ mm ha-1 h-1 yr-1 in the southern highlands, where steep zones are 

located. The large variation in the rainfall erosive factor is a consequence of the highly variable 

interannual and seasonal precipitation behavior, with long dry periods alternating with some 

wetter periods (October-November), although April-May and summer often benefit from the 

triggering high-intensity storms (Peña et al. 2002).  

9.4.2.  K values 

The soil erosivity factor (K) ranged from 0.022 t ha h ha-1 MJ-1 mm-1 to 0.041 t ha h h a-1 MJ-1 

mm-1. Because the value of K belongs to the most common soil, which is more widespread in 

the basin, we decided to use a constant value for a K factor of 0.03, that is, an average value. 

9.4.3. LS values 

The LS factor map, generated from the DEM, had a mean value of 3.7, and the LS ranged from 

0 to 49. The LS ranges 0-1, 1-2, 2-4, 4-8, 8-16, >16 covered 32%, 17%, 19%, 18%, 11% and 2%, 

respectively, of the study area. Thus, the values of LS in the Martín River Basin are distributed 

mainly in the 3 lower ranks (68%), with 0-1 being the most abundant at 32%. Only 

approximately 2% of the basin shows steep, long slopes that favor very high erosion. 

9.4.4.  C values 

The C factor map (Fig. 13 D, p. 48) had a mean value of 0.28 in the Martín Basin. The highest 

mean values were associated with unproductive uses, such as open coal mines and dry 

agriculture (Table 9). 
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Table 9 C value for the different land covers at the Martín Basin 

Land Use-Land Cover MEAN 

Dry agriculture 0.37 

Grassland-Shrubland 0.26 

Grassland 0.28 

Olive tree 0.29 

Vineyard-Fruit tree 0.34 

Unproductive 0.35 

Water 0.36 

Irrigation 0.27 

Scrub 0.25 

Poplar and aspen 0.17 

Other hardwoods 0.13 

Conifers 0.13 

Olive tree and Vineyard 0.32 

Conifers and hardwood 0.11 

 

 The lowest values were related to conifers and hardwood and poplar and aspen. In the 

riparian areas with dense scrubland, the mean value was 0.25 (Table 9). 
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A Isa para contestar a mis llamadas en el corazón de la noche sin odiarme nunca jejeje. 

A todo el equipo de la minas de Endesa  por su amabilidad y buen trato que siempre recibí. 

Inolvidables los primeros tiempos en Zaragoza como becario en compañía de Alvaro, Belinda, 

Maria, Edu, Cecilia…me lo pasé genial trabajando, divirtiéndome con vosotros y empujándonos 

uno a otro para acabar…ya he llegado!!! 

En cuanto tuve la beca por algunos empezaron pesadillas, Paz te recuerda algo?? Javi, Luis 

Carlos, os suena? Si señores, fuiste mis ángeles del GIS en estos años aprendiendo un poco de 

uno y un poco de otro me he hecho hombre jejeje…casi…gracias por haber sido tan amables y 

altruistas os lo agradezco de corazón a Javi también le agradezco los innumerables pasajes de 

estos años ;-). Añadiría en los últimos tiempos también Jorge jejeje venga chaval que 

acabamos juntitos! 

A José María García Ruíz, Santiago Baguería y Estela Nadal para haberme aconsejado y 

ayudado con el artículo de erosión infinitas gracias por haberme concedido vuestro tiempo! 

Miguel ya sabes, con tu altruismo me salvaste la vida pasándome lo que me pasaste! 

(Camellito jejeje) Infinitas gracias por aguantarme y las pesadillas que nos haces pasar las 

noche a los usuarios de los software comerciales! 

A mis compis de despacho pasados Jorge, Jesús, Pablo por pasarlo tan bien y presentes Edu, 

Maria, Paloma para aguantar mi mala ostia, cafeína y stress…a partir de hoy seré 

otro!...espero!!  

A Iker y María Pata por ser tan altruistas y permitirme vivir de okupa unos meses sin pedir 

nada a cambio…a María también por su inestimable ayuda con la maldita estadística mil 

gracias chicos! 
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A Adría por haberlo pasado pipa en casa juntos dale duro chaval que todavía hay camino para 

hacer! A Diego y Edu mi nuevos compis que me han nutrido, cuidado y hacer sonreir cuando 

no tenía la cabeza ni para eso, es grande estar con vosotros ahora! 

Juan de la Riva por animarme desde el comienzo de mi tesis, suportarme y ayudándome a 

cualquier hora del día desde cualquier parte del mundo! 

El departamento de Geografía de la Universidad de Zaragoza, por la disponibilidad y  

amabilidad de todo su grupo de trabajo, por haber tenido siempre un tiempecito para 

escuchar mis dudas. Carlos Montes, Alfredo Ollero, Fernando Pérez, Mayte Echéverria, María 

Zuñiga, Luisa Jimeno 

A parte del trabajo quedan miles de persona tuve la oportunidad de conocer en Mañolandia, 

no puedo olvidarme de Isa y Pedro que me acogieron en su casa haciéndome sentir “como en 

casa”, Chabi...ya lo sabemos…por ser Chabi que va a ser lo mejor de los padres del mundo 

mundial! Claramente no puedo olvidarme de las tantas personas que conocí gracias al amor 

por la bicicleta, Raul, Dani, Marta, Quico, Sergio etc etc… sois demasiadooo ¡QUE VIVA EL 

PEDALEA! 

En último, pero para nada como importancia, a Roquiat, mi amor, mi vida, llegaste en este 

momento loco de mi vida, por darme fuerza y amor, te lo agradeceré toda la vida. 

 

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          


