000099107 001__ 99107
000099107 005__ 20210215194931.0
000099107 0247_ $$2doi$$a10.2166/wst.2016.227
000099107 0248_ $$2sideral$$a96080
000099107 037__ $$aART-2016-96080
000099107 041__ $$aeng
000099107 100__ $$0(orcid)0000-0001-9050-236X$$aPueyo, N.
000099107 245__ $$aLimitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxideozone process
000099107 260__ $$c2016
000099107 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099107 5203_ $$aThe purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide–ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation–flocculation–decantation and lime–soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5–12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN– of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.
000099107 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T33$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2014-TEC-11
000099107 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000099107 590__ $$a1.197$$b2016
000099107 591__ $$aENVIRONMENTAL SCIENCES$$b169 / 229 = 0.738$$c2016$$dQ3$$eT3
000099107 591__ $$aWATER RESOURCES$$b61 / 88 = 0.693$$c2016$$dQ3$$eT3
000099107 591__ $$aENGINEERING, ENVIRONMENTAL$$b38 / 49 = 0.776$$c2016$$dQ4$$eT3
000099107 592__ $$a0.404$$b2016
000099107 593__ $$aWater Science and Technology$$c2016$$dQ2
000099107 593__ $$aEnvironmental Engineering$$c2016$$dQ3
000099107 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099107 700__ $$0(orcid)0000-0002-1807-5049$$aMiguel, N.$$uUniversidad de Zaragoza
000099107 700__ $$0(orcid)0000-0003-4382-4539$$aOvelleiro, J. L.$$uUniversidad de Zaragoza
000099107 700__ $$0(orcid)0000-0003-3014-0322$$aOrmad, M. P.$$uUniversidad de Zaragoza
000099107 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000099107 773__ $$g74, 2 (2016), 482-490$$pWater sci. technol.$$tWATER SCIENCE AND TECHNOLOGY$$x0273-1223
000099107 8564_ $$s394755$$uhttps://zaguan.unizar.es/record/99107/files/texto_completo.pdf$$yVersión publicada
000099107 8564_ $$s2380397$$uhttps://zaguan.unizar.es/record/99107/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099107 909CO $$ooai:zaguan.unizar.es:99107$$particulos$$pdriver
000099107 951__ $$a2021-02-15-17:21:36
000099107 980__ $$aARTICLE